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ABSTRACT: We consider a Higgs boson coupled to gluons via the five-dimensional effective
operator HtrG,, G"”. We treat H as the real part of a complex field ¢ that couples to
the selfdual gluon field strengths and compute the one-loop corrections to the ¢-MHV
amplitudes involving ¢, two negative helicity gluons and an arbitrary number of positive
helicity gluons. Our results generalise earlier work where the two negative helicity gluons
were constrained to be colour adjacent. We use four-dimensional unitarity to construct the
cut-containing contributions and the recently developed recursion relations to obtain the
rational contribution for an arbitrary number of external gluons. We solve the recursion
relations and give explicit results for up to four external gluons. These amplitudes are
relevant for Higgs plus jet production via gluon fusion in the limit where the top quark
mass is large compared to all other scales in the problem.
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B. Scalar integrals

1. Introduction

The startup of the LHC anticipated for the autumn of 2008 heralds the arrival of a new
arena for the exploration of particle physics. The large centre of mass energy is expected to
produce complex multiparticle final states both as decay products of putative new physics
Beyond the Standard Model and through the Standard Model itself. Extracting the signals
of new phenomena and discriminating between different models of new physics is only
possible if the predictions for the Standard Model, and its prominent extensions, have
sufficient accuracy. The precision which can be achieved using calculations at leading
order in perturbation theory is, in most cases, not sufficient for detailed studies of signals
and especially backgrounds at the LHC. In many cases, the calculation of multi-particle
final states at next to leading order (NLO) will be essential to the successful interpretation
of the data. Over the past few years vast leaps in our understanding of the structure of one-
loop amplitudes in gauge theories has lead to the widespread belief that soon predictions
for many multi-jet final states will soon become available.

The use of four-dimensional on-shell techniques, originally pioneered by Bern et al [, P
in the mid-90’s has lead to a vast reduction in the complexity of one-loop calculations. The
use of gauge-invariant physical amplitudes (at tree level) as building blocks means that
simplifications due to the large cancellation of Feynman diagrams occur in the preliminary
stages of the calculation, rather than the latter. The unitarity method sews together four-
dimensional tree-level amplitudes and, using unitarity to reconstruct the (poly)logarithmic
cut constructible part of the amplitude, successfully reproduces the coefficients of the cut-
constructible pieces of a one-loop amplitude. This has extensive uses in supersymmetric
Yang-Mills theories, which are cut-constructible i.e. the whole amplitude can be recon-
structed from knowledge of its discontinuities.

The more modern applications of unitarity were kick-started by the discovery of the
MHYV rules by Witten and collaborators in 2004 [J]. The realisation that MHV tree am-
plitudes could be promoted to vertices which could be used to create amplitudes with any
number of negative helicity gluons sparked a revolution in the field of on-shell QCD. In a
series of remarkable papers, Brandhuber, Spence and Travaglini (BST) [ showed how the
MHYV rules can be used at one-loop for the calculation of n-point gluonic MHV amplitudes.
Around the same time, the quadruple cut [f] using complex momenta was introduced to re-
duce the determination of the coefficients of box integrals to simple algebraic manipulation
of four tree level amplitudes. Double and triple unitarity cuts have led to direct techniques
for extracting triangle and bubble integral coefficients analytically [f-[. In cases where
fewer than four denominators are cut, the loop momentum is not frozen, so the explicit



integration over the phase space is still required. In the BBCFM-approach [f-[], double
or triple cut phase-space integration has been reduced to extraction of residues in spinor
variables, and, in the case of a triple cut, residues in a Feynman parameter. This method
has been recently used for the evaluation of the complete six-photon amplitudes [L{, [L1].

Despite its success, the four-dimensional unitarity method does not give the complete
result for non-supersymmetric theories such as QCD, since there are missing rational func-
tions which are cut-free and as result do not possess discontinuities in physical channels.
The missing rational parts have only simple poles and are therefore tree-like. Since the
rational pieces of one-loop amplitudes are tree like in their discontinunity structure they
can be calculated using a straightforward generalization of the tree level recursion rela-
tions. One can then use the tree-level on-shell recursion relations [[3, [[J] to compute the
rational pieces of one-loop amplitudes recursively. The ability to calculate the rational
pieces of amplitudes independently of the cut-constructible terms lead to the development
of the unitarity bootstrap approach [[4-P(]. Recently, an automated package BlackHat
has been developed to compute these rational terms for pure QCD amplitudes [2]].

Another approach is to extend use of unitarity to D = 4 — 2e dimensions [§, P27
and to take the cut particles into D = 4 — 2¢ dimensions. This approach has the great
advantage of calculating both the cut containing and the elusive rational terms at once,
but care must be taken with application of the four-dimensional spinor helicity formalism
in D dimensions.

It has also been observed that the rational parts are related to the ultraviolet behaviour
of the amplitude, and can be directly obtained from the traditional Feynman diagram ap-
proach P§-B0, [[d]. In a very interesting work, Ossola, Papadopoulos and Pittau [BI] have
applied the unitarity ideas directly to the integrand of the Feynman amplitude, without
necessarily appealing to the simplified forms of the cut diagrams. They find algebraic iden-
tities which can be automatically solved to give the coefficients of the master integrals as
well as the rational part. This approach is being further developed [B3-Bg] with a view to
providing automated computations of both cut-constructible and rational parts of one-loop
scattering amplitudes. A summary of the current state of the art is given in ref. Bg].

In this paper, we exploit the unitarity bootstrap approach [E,E] which meshes to-
gether the calculation of the cut-constructible parts of an amplitude (via generalised uni-
tarity, one-loop MHV rules etc.) with the ability of the BCFW recursion relations to
calculate the rational pieces. As a result of the splitting the total amplitude is given by
the combination

AL = ¢, +R,. (1.1)

Here the C),, are the purely cut-constructible pieces which arise from box, triangle
and bubble (and in massive theories tadpole) loop integrals, the functions in C,, are those
which contain discontinuities, in general poly-logarithims (and associated 72 terms). C,
may contain unphysical singularities which are produced by tensor loop integrals and must
be cancelled by rational contributions. To make this cancellation explicit, we add the
cut-completion terms C'R,,, so that the “full” cut-constructible pieces are defined as,

Co =Ch+ CR,. (1.2)



These additional rational terms would be double counted if we naively calculated the
rational terms with the BCFW recursion relations, so we redefine the rational pieces as

R, =R, —CR,. (1.3)
The rational part now contains only simple poles, and can, in principle, be constructed
recursively using the multiparticle factorisation properties of amplitudes. We label this
direct recursive term by RZ”. By construction, the recursive approach generates the com-
plete residues of physical poles. However, the cut-completion term C'R,, may also produce
a contribution at the residue of the physical poles, and may lead to double counting. These
potential unwanted contributions are removed by the overlap terms, O,.

To generate the recursive contribution, one generally shifts two of the external momenta
by an amount proportional to z. Complex analysis [[[J] then generates the correct amplitude
provided that

Ap(z) = 0 as z — 00. (1.4)

For a generic tree-level process it is frequently possible to shift two momenta such that ([[.4)
is obeyed. Similarly, for one-loop processes, one can often make a similar shift. However,
because the choice of CR,, is not unique, the shift may introduce a “spurious” large z
behaviour in CR,,, labelled by Inf C'R,,, which should be explicitly removed [[[§, [9]. The
rational part (provided that A, (z) — 0 as z — 00) is given by,

R,=RP 1+ 0, —InfCR,, (1.5)
while the physical one-loop amplitude is given by [, [[]],
AD = ¢+ CR, + RP + 0, — Inf CR,. (1.6)

In this paper, we focus on the ¢-MHV amplitudes involving ¢, two negative helicity
gluons and an arbitrary number of positive helicity gluons. Our results generalise earlier
work [R(] where the two negative helicity gluons were constrained to be colour adjacent.
The paper proceeds as follows. In section [, we give a brief overview of the Higgs couples
to gluons, and how this is related to ¢-amplitudes. Section [ reviews the four-dimensional
unitarity methods for constructing the cut-containing contribution C,,. There are many
similarities with the pure-gluon case, and we develop the derivation of the cut-constructible
parts of pure-glue MHV amplitudes and ¢-MHV amplitudes in sections B.d and B.4. Sec-
tion [ deals with computation of the three separate rational pieces, the cut-reconstructible
part CR,,, the on-shell recursive part R and the overlap term O,. As an example, we
derive the four-point amplitudes Afll)(qﬁ, 17,27,37,47) and Afll)(H, 17,2%7,37,47) in sec-
tion [, while section [ describes the checks we have performed on our result. Finally, in
section [}, we present our conclusions. Two appendices detailing the explicit construction
of the cut-completion terms and the forms of the one-loop basis functions are enclosed.

2. The Higgs model

The coupling of the Higgs to gluons in the Standard Model is produced via a fermion
loop. Since the Yukawa coupling depends on the mass of the fermion, the interaction is



dominated by the top quark loop. For large m; this can be integrated out, leading to an
effective interaction,

: C
Ly = S Htr GG, (2.1)
This approximation works very well when the kinematic scales involved are smaller than
twice the top quark mass [E0—[g]. For the interesting pp — H plus two jet process, the
approximation is valid when mpyg, pj < my ). The strength of the interaction C has been
calculated through to order O(a?) in the standard model [i4]. To order O(a?) [E], this is

Qg 11 o
C <1+Z?+...> (2.2)

67w

The MHV-structure of Higgs-plus-gluons is best understood [f] by defining the Higgs
to be the real part of a complex scalar ¢ = £(H + iA) so that

ﬁ%f =C |:¢U“GSD wGES + oTtrGasp WG’;%’D] (2.3)
where the purely selfdual (SD) and purely anti-selfdual gluon field strength tensors are
given as

GHY — 1 GHv *GHY G — 1 GHv * G 9.4

SD_§( + ) ASD_§( - ), (2.4)

with '
* v 4 vpo
G = §6H 77 Gpo- (2.5)

Because of selfduality, the amplitudes for ¢ and ¢! have a simpler structure than those for
the Higgs field [E6]. The following relations allow for the construction of Higgs amplitudes
from those involving ¢ and ¢f.

A1(’Lm)(H7 g]_)\17 R 792’”) == Agzm)((ba g]_)\17 e 79271) + Ang)((bT?gi\l? . 791%\1,’”)7 (2’6)
1
A (A g ) = = (A;W(gs,gfl,...,ggn) _ Agm>(¢f,gf1,...,ggn)) L@

Furthermore parity relates ¢ and ¢ amplitudes,

AGD(g, g, gan) = <A7(1m)(¢7 g, ,QEA”)> : (2.8)

From now on, we will only consider ¢-amplitudes, knowing that all others can be obtained

using eqs. (R.6)-(R.9).

The tree level amplitudes linking a ¢ with n gluons can be decomposed into colour
ordered amplitudes as [{7, [g],

AD(6, {kis Niai}) = iCg™ > Y te(T0 - T%0) AD(,0(1M, ... ;™). (2.9)
O'ESn/Zn

Here S,/Z, is the group of non-cyclic permutations on n symbols, and j* labels the
momentum p; and helicity A; of the 4% gluon, which carries the adjoint representation



index a;. The T% are fundamental representation SU(/N.) color matrices, normalized so
that Tr(T*T?) = §°. The strong coupling constant is o, = g2/(47).

Tree-level amplitudes with a single quark-antiquark pair can be decomposed into
colour-ordered amplitudes as follows,

=iCg" 2 D (T%@ - T%00) A (6,10, 0(2%, ... (n— 1)), n 7).
oE€ESH_2

where S,,_5 is the set of permutations of (n — 2) gluons. Quarks are characterised with
fundamental colour label i; and helicity A; for j = 1,n. By current conservation, the quark
and antiquark helicities are related such that Ay = —\,, = XA where \ = :l:%.

The one-loop amplitudes which are the main subject of this paper follow the same
colour ordering as the pure QCD amplitudes [, 9] and can be decomposed as [50, f1, B0,

[n/2]+1

AW (b, ki Mivai}) =iCg™ Y D Gue(0)AP (9,01, n) (2.11)

c=1 UESn/Snc

where

G (1) = N tx(T™ - .- T%) (2.12)
Grio(1) = tr(T - - T% 1) tr(T% ... T%) ¢ > 2. (2.13)

The sub-leading terms can be computed by summing over various permutations of the
leading colour amplitudes [[]]
The tree level o-MHV amplitude has the same form as the pure-glue MHV amplitude,

(Lm)’!

V(G172 mT ) = e

(2.14)
The only difference between the gluon only and the ¢-MHV amplitude being momentum
conservation, here the sum of all the gluon momenta equals —pg. Since we will encounter
MHYV diagrams in which a fermion circulates in the loop we will also need the amplitudes
involving a ¢ with a quark anti-quark pair [5J],

Ofp 1- 9F e oy Lm)* (nm)
Ay (0,15,27,...om7, . ny) 12 (1)’
- y_ {nm)*(1m)
W(G15,25 . mT ) = S (2.15)

Also as a consequence of the 1-loop nature of the ¢-gluon vertex the following all minus
amplitude is non-zero at tree-level,

4
Mg

A%O)(‘ﬁv 17,27,...,n7) = (_1)nm

(2.16)

Amplitudes with fewer (but more than two) negative helicities have been computed
with Feynman diagrams (up to 4 partons) in ref. [i§] and using MHV rules and on-shell



Figure 1: A generic one-loop MHV diagram or unitarity cut.

recursion relations in refs. [i6, 53]. The MHV amplitude for an arbitrary number of gluons
but with two adjacent negative helicity gluons was computed in refs. [0, p3.

In this paper we concentrate on the general helicity case for the one-loop ¢-MHV ampli-
tude. For definiteness, we focus on the specific helicity configuration (17,...,m™,...,n").
Throughout, we will use the notation,

sij = (pi+pir+-+pj1+p)° =P},
sij = 2(pi-pj) = (i) [7 i, (2.17)

with the exception of section f] where we use the notation Py to represent p, + pp + pe.

3. The cut-constructible parts

The calculation of the cut-constructible terms has been performed within both the BST ap-
proach [E] and the BBCFM approach [E, E} Both methods rely on reconstructing the ampli-
tude using four-dimensional unitarity with a double cut. Compared to conventional meth-
ods, one is attempting to compute the (four-dimensional) coefficients of the loop integrals
as efficiently as possible. The methods differ in how the integration over the phase space
of the cut particles is carried out. The BST method uses Passarino-Veltman techniques to
eliminate any remaining tensor integrals, and aims to cast the integrand into the form of
well-known phase space integrals. It has been shown to work well for MHV amplitudes.

On the other hand, in the BBCFM method, the use of spinor variables yields an al-
ternative to the Passarino-Veltman reduction of tensor integrals, based on spinor algebraic
manipulation and integration of complex analytic functions. It has been applied success-
fully to non-MHV amplitudes. Here, we use both methods as a check of our results.

3.1 The BST approach

In the BST approach [[] a generic diagram can be written:

D=

1 dAL, d'L
/ L2 226MW(Ly — Ly — P)AL(lh, —P,—15)Ar(ly, P,—1,) (3.1

@mt) I¥ I3

where Ap(p) are the amplitudes for the left(right) vertices and P is the sum of momenta
incoming to the right hand amplitude. The key step in the evaluation of this expression is



to re-write the integration measure as an integral over the on-shell degrees of freedom and
a separate integral over the complex variable z [H]:

d4L1 d4L2 le d22
g o
1 2 21 22
2dzdz’
= (42—
S Py Py

@M d 6 (12)6) (12)
'y d 100 (13)5) (13), (3.2)

where 2 = 21 — 29 and 2/ = 21 + 29. The integrand can only depend on z, 2’ through the
momentum conserving delta function,

§(Ly —Ly—P) ="y —ly — P+ 2n) =60 (1, — 1, — P), (3.3)

where P = P — zn. This means that the integral over 2z’ can be performed so that,

. 2 . N
D= (422):? / dz / A dMp6 ) (126 (12)6W (1) — Iy — P)AL (I, —P, —lo) Ag(la, P, —11)

42 27TZ/ /dLIPS ll,lg, )AL(ll, P—ZQ)AR(ZQ,P, —ll), (34)

where,

dLIPS™ (=11, 15, P) = Ld 6D (126 (1360 (1, — 1, — P) (3.5)

1
(2m)*
The phase space integral is regulated using dimensional regularisation. Tensor integrals
arising from the product of tree amplitudes can be reduced to scalar integrals either by using
spinor algebra or standard Passarino-Veltman reduction. The remaining scalar integrals
have been evaluated previously by van Neerven [54].

At this point, one has obtained the discontinuity, or imaginary part, of the amplitude.
However, by making a change of variables the final integration over the z variable can be
cast as a dispersion integral

D)2
% = Ad(i (3.6)
z P2 P2

that re-constructs the full (cut-constructible part of the) amplitude.

3.2 Spinorial integration

In the BBCFM approach [, fi], we make a conventional double cut, so that a generic
diagram can be written:

1 d*ly d*l
D= (2r)2 / 121 1225(4) (lh —lo — P)AL(lh,— P, —12)AR(l2, P,—1y), (3.7)

with 12 =13 =
The double-cut can be written as,

= / dLIPS™ A (1), —P,—12)Ag(la, P, —1y), (3.8)



where the dLIPS® can be parametrised in spinorial variables, as follows [f]],

/ dLIPS® = ( 2717) . / d*hd'ly 5 (17) 6 (13)6 (1 — 1, — P)

1 [ {edn)edg P
- | e/ ““(t <€!P\€]>’ 39

where the delta function eliminates the integration over Iy, and the remaining [, integration

variable has been rescaled, [y =t ¢, corresponding to,
) =VEl0,  ul= Vil (3.10)

with {3 = ¢2 = 0. Accordingly, the double-cut can be written as,

1 [ ednledg o
P= (27r)4/ @ P /td”(t (e\Pye]) Ar(t,10),10) Ar(t.10,10)  (3.11)

where we indicate only the dependence of the tree-level amplitudes on the integration
variables. By means of Schouten identities, one can disentangle the dependence on |¢) and
|¢], and express the result of the t-integration (trivialised by the presence of the d-function)
as a combination of terms whose general form looks like,

D- ﬁ Z /<e e do T, (3.12)

with

[n 0"

T; = pi (|£)) (| P, |g]”+1 (4] Py |£]

(3.13)

where P; and P, can either be equal to the cut-momentum P, or be a linear combination
of external vectors; and where the p;’s depend solely on one spinor flavour, say [¢) (and
not on |[¢]), and may contain poles in |¢) through factors like 1/(£Q) (with |Q) being a
massless spinor, either associated to any of the external legs, say |k;), or to the action of a
vector on it, like P|k;]).

The explicit form of the vectors P; and P; in eq. (B.13)) is determining the nature of the
double-cut, logarithmic or not, and correspondingly the topology of the diagram which is
associated to. Let us distinguish among the two possibilities one encounters, in carrying
on the spinor integration of Z;:

1. P, = P, = P (momentum across the cut). In this case, the result is rational,
hence containing only the cut of the 2-point function with external momentum P (or
degenerate 3-point functions which can be expressed as combination of 2-point ones).

2. P =P, P, # P, or P # P, # P. In this case, the result is logarithmic, hence
containing the cut of a linear combination of n-point functions with n > 3.



IfP =P =P,

[n 0"

Z; = pi(I£)) P

(3.14)
If, however, P, = P, P, # P or P # P> # P. one proceeds by introducing a Feynman
parameter, to write Z; as,

"

R (319)

1
T = (n+1) /O dx (1— )" p; (10)
with
R=cPi+(1- )P, (3.16)

The spinorial structure of eq. (B.I4) and eq. (B.I7) is the same. Therefore, we proceed with
the spinor integration of eq. (B.I5) because it is more general than the eq. (B.14), because
of the presence of the Feynman parameter.

First, the order of the integrations over the spinor variables and over the Feynman pa-
rameter is exchanged and we perform the integration over the |¢]-variable by parts, using

mg"  [de oy "t
P = e D @R P (317
obtaining,
1
I /(e e de] T; =

—_— : i) e
_ W/o dz (1 - z) /(z e By (3.18)

Afterwards, the integration over the |¢)-variable is achieved using Cauchy’s residues theo-
rem, in the fashion of the holomorphic anomaly [F5—F7], by taking the residues at |[¢) = R|1]
and at the simple poles of p;, say |£) = |{;;),

D; = ﬁ/(@ e de] T, =

_emi) [N (R s ei10)
= (271')4/0 dx (1 x) {(R2)n+1 + ; 51—1>12j <€£z]> <E|R|€]n+1 <E|R|77]} . (319)

To complete the integration of eq. (B.19), one has to perform the parametric integration
which is finally responsible for the appearence of logarithmic terms in the double-cut. Alter-
natively, the spinorial integration of eq. (B.14) would generate a pure rational contribution.
We remark that the role of |¢) and |¢] in the integration could be interchanged.

— 10 —



(i+1)+ i+ (i—|—1)+ it

Figure 2: The MHV diagrams contributing to one-loop gluonic MHV amplitudes

3.3 Gluonic amplitudes

We note that there are many similarities between ¢-amplitudes and pure glue amplitudes,
and we will exploit this by first rederiving the cut-constructible contribution to pure glue
MHYV amplitudes with the same helicity configuration.

The graphs contributing to the one-loop gluonic amplitude Agl)(l_, ceymT .o, nT)
are shown in figure fJ. There are two distinct types of diagram, labelled (a) and (b). In
type (a), only gluons circulate in the loop, while in type (b) gluons, fermions (and scalars)
may circulate. They can be characterised by the following sums

n—2 n m—3 m—1 n m—1 n—1 m-—1 m m—2
(@ >+ and OIS+ 3 Y433 320
i=m j=i+2 i=1 j=i+2 i=n j=2 i=m+1 j=1 i=m j=1

The various contributions have been computed using the MHV rules in refs. [, B8, B9
We note that contributions of type (a) associated with a cut in the S(j+1),; channel have
an integrand of the form,

o <61€2>4 (1m>4
AeAnoans = GH DY - GlalGal) GG + 1) - G6 )
m)? ~
= ﬁ g(i,i-l—l,j,j-i—l)
=AY G(i,i+1,5,5 +1) (3.21)
where
= (oly)(i(1 + 1)) (Lrla) (5 (5 + 1))

Gli,i+1,5,j+1)= (3.22)

(i) (01(i + 1)) (jl2)(l2(j + 1))
For diagrams of type (b), there are three possible contributions - depending on whether
gluons, fermions (or for supersymmetric theories scalars) are circulating in the loop. It is
convenient to consider both (b)-type diagrams in the s(; ) ; channel together. Immediately,
we write down
gluons <1€2>4<m€1>4 + <1€1>4<m€2>4
(ALAR)(-+1) . = . A X .
T (0 (i 1)) - () (Cala) (€2 (5 + 1)) - - - (ily) (£rla)
(Ap Ap)fermions _ (101)(Le)* (mly) (mds)? + (L) (101 )* (mly) (mdp)?
UFDE 7 {0 (i 4 1)) -+ (j0a) (€2lr) (2(§ + 1)) - - (il1) {2 o)
scalars <1€1>2<1£2>2<m£2>2<m€1>2
(ALAR)( j+1),3 = . B . .
T (i 1)) e (Gl (Lalr) (b2 (G + 1)) - - (1) (lala)

(3.23)

— 11 -



In each case, the denominator has the same structure as in the (a)-type diagrams and only
the numerator changes with the particle type. We can exploit the Schouten identity

(L) (mby) — (Ll1)(mla) + (Im){l1l2) =0 (3.24)
to rewrite each of the numerators into a simpler form.
(1) (mly)* + (1e1) (mbo)* = (Im)*(£165)*
+4(10o) (mly ) (101) (mbs) (1m)? (€1 £)?
+2(105) 3 (mly)* (161)? (mls)?
(3.25)
(101) (L1lo)? (mila) (mly)? + (Llo) (L01)* (mly) (mbe)® = (16o)(mly)(161)(mbs)(1m)? (145)
+2(102) 3 (ml1)* (161)2 (ml)*
(3.26)
We see that the first term on the r.h.s. of eq. (B.2]) corresponds to an (a)-type gluonic
contribution which we label with G, while the third term looks like the scalar contribution

of eq. (B:23) which we label with S. Similarly, the fermion contribution can be separated
into a fermionic piece F' and a scalar contribution S. We define the three contributions as,

a (1m)* {t169)*
ALARG s = T DY Gl Gl ) Bl T DY ) )
= A9 Glii+1,5,5+1) (3.27)
(A AR = (103) (mty) (1€1) (mla) (1m)? (¢142)*
PRG0S T GG+ 1) - () (G6) (GG + 1) - (i) (G )
= —AQ F(ii+1,5,5+1) (3.28)
(ApAR)S . = (101)%(1la)* (ml2)*(ml1)?
PRG0S T GG+ 1) - (Gh) (G6) (GG + 1) - (i6) (G )
= A0 S(i,i+1,5,j+1) (3.29)
where QA(Z,Z +1,7,7 + 1) is defined in eq. (B.29) and,
= . _ i+ D))+ 1)) (1) (mby) (1) (mis)
FOIHLITHD = 060 (06 + D) GGG + D) (3.30)
e o 2 2 2 2
SGit1,5,j+1) = (@i + 1)) (7 + 1))(101)*(mly)*(14a)*(ml2) (3.31)

(Im)4(l12)?(il1) (€1 (i + 1)) (3l2) (l2(j + 1))

Restoring the particle multiplicities in supersymmetric theories, we see that for NV = 4
SYM with four fermions and six scalars (in the adjoint representation), only the “gluonic”
part remains

(ALAR)ET: — 4 (AL ARSI + 6 (ALAR)GSS = (ALAR) 1) (3.32)

On the other hand, for QCD with N fermion flavours in the fundamental representation,
the contribution from this graph is,

N N
CD G F F S
(ALAR)8+1),Z' = (ALAR)(j+1),i +4 <1 - W) (ALAR)E'—FI),Z' + 2 (1 — W) (ALAR)(j-i-l),i .

(3.33)
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The functions X for X = G, F, S represent contributions to the cut amplitude. Per-
forming the phase space and dispersion integrals generates the “cut-constructible” contri-
bution to the full amplitude. We define,

. d .
X@,i+1,5,j+1) :/5 /dDLIPS(—ll,lg,P) X(iyi+1,5,j+1). (3.34)

Explicit expressions for X (i,i41, j, j+1) are written down in appendix [f]. The one-loop glu-
onic MHV amplitude is thus obtained by summing combinations of the “cut-constructible”
contributions according to eq. (B:2(). As a result the one-loop gluonic MHV amplitude is
given by,

Cn;1(1_72+, .M 7n"’)

= cr AV <Agl(m,n) - 4(1 Zﬁ)A L(m,n) — 2(1 - %)Aiﬂm,n)) (3.35)

where
n
AG (myn) = == Fi™(si40: 504 r1ir2)
n;l ) - 2 4 (S4,i4+25 Sii+1, Si+1,i+2
i=1
n n+i—3
e .
——E E F3™(84,5, 8i+1,j—15 Sit1,5» Sij—1)- (3.36)
=1 j=1+3

The terms associated with the fermion loop have the following form:

n
F e
An;l( § § b Sz Jor Si—1,5+1; Si— 1,]7317]4-1)

i=m+1 j=2

_ Z Z S%i’ a i mL1(Pit1,5), Pl g))

= (L Pagonys 4m) e
+> . AOT (Pasiay, Pagy)- (337)
=2 j=m+1 m

Here we have introduced the shorthand notation
r_(abed) = (ab) [bc] (cd) [dal (3.38)
and the auxiliary functions,

tr_(m7 Z?j? 1) tr_(m7 j7 Z? 1)

- 3.39
1m sng%m ( )
7 tr_ 17 ‘7 ‘7 . .

Ay = (HEEE - ). (3.40)
ij

Note that b]1 is symmetric under both 7 < j and 1 < m, while Alm is antisymmetric
under 1 <> m. The function F2° is the finite pieces of the two mass easy box function (or

— 13 -



the finite pieces of the one mass box function in the limit where one of the massive legs
becomes massless). We define the triangle function T;(P, Q) as

log (Pz/ Q%

T,(P,Q) = Li(P,Q) = Q%) P?2£0, Q*+#£0. (3.41)
If one of the invariants becomes massless then the triangle function becomes the divergent
function,
1(=P?)¢ 2
T;(P, —1) - . 42
(P.Q) = (-1 @ =0 (3.2

The terms associated with a scalar circulating in the loop have the form,

n
_ 7/.7 me .
E E — (b5 F (80, Sic1,j413 Sim1j» Sij+1)

i=m+1 j=2

m—1 n ) 3
tr_(l,Pi,' 7Z,m) i
n . E : [_ (4” ADTs(Piiva,y Plig)

357,

r_(l,P(i,j),i,m)z ii
- 25 K, To (Pt iy, Pl j))

r—(lvp(i,j)viam) j
+ o 7y m 11 (Plis1,5) Pig))

Pi,'—l 9 ) 11—
1-1) A T3(Pj—1y> Pl jy)

7
i=2 j=m+1 35Tm
tr—(lvp(i,'—l)7j7 ) j(i— 1)
* 23]1* Kim  To(Pj-1) Pag)
tr—(lapi,'—l M) i1
N ;%] ) I T (P Pag) |- (343)

Here we have introduced two further auxiliary functions which are defined as follows,

y tr_ (1,4, j,m)? o
Ko = <% ~(—J+ 1)>7 (3.44)
ij
y tr_(1,4,7,m)* tr—_(1,4,4,m .
T, = < Lisgml (L1 ﬂ+1)>. (3.45)
ij

3.4 ¢-amplitudes

The graphs contributing to one-loop ¢-MHV amplitudes are shown in figure | Diagrams
of type (b) are the QCD graphs dressed with an additional ¢, which may couple at either
the left or right vertex. The presence of the ¢ does not alter the spinor structure of the
amplitudes, so these graphs are exactly those for the pure-QCD amplitudes of the previous
section, modified to account for the momentum carried by the ¢. The ranges of summations
correspond to those given in eq. (B.20).

On the other hand, the diagrams shown in figure Bj(a) have no counterpart in pure-
QCD. They all vanish in the limit where the four-momentum of the ¢ vanishes. The
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o 0
1~ m-

(b) (G+1)* (G+1)*
6 =3 L
(i+1)7F o+ (i+1)F o

Jt G+n+  J° (j+1)
o) .0
1~ m-
(i+ 1)+ A i

Figure 3: The MHV diagrams contributing to one-loop ¢-MHV amplitudes.
(i+1)*"

.
+

Figure 4: A ¢ only diagram in the s;11,; channel

diagram contributing to a cut in the s;41; channel is shown in figure f].

(f1l9)*(1m)* _ o 4+ 1) (4l)
Ardrhin = GGy~ GG~ (6 + D))
= A0 (—14G(3,i+1)) (3.46)
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(i +1)* it

Figure 5: A ¢ only diagram in the s;19,; channel

Figure 7: A ¢ only diagram in the s;,41,,m—1 channel

with G(i,j) defined in eq. (A.d). The diagram contributing to a cut in the s;12; channel
is shown in figure [j.

_ (frl)" (1m)*
(Ardn)icos = T DNG T D) () (i 1+ 2)) - G0 (1)
= AO Glii+1,i+1,i+2). (3.47)

n

The diagram contributing to a cut in the sy, channel is shown in figure f. There are
contributions from both gluon and fermion loops, and we find,

(ALAR)SSDzAgO) <§(n’ 1,1,2)—4 <1 - %) F(n,1,1,2)—2 (1 — %) S(n, 1,1, 2)) .
(3.48)
The diagram contributing to a cut in the s,,41,,—1 channel is shown in figure E There
are contributions from both gluon and fermion loops, and we find,

~ N ~
(ALAR)%E?M_I = A%O) <g(m,m +1,m—1,m)—4 <1 - ﬁ) F(m,m+1,m—1,m)

—2 <1 - %) S(m,m+1,m — 1,m)>. (3.49)

Combining all of the diagrams together we find that the cut-constructible pieces of the
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general ¢-MHV amplitude is given by,

On;1(¢71_72+7"' smo, . ,’I’L+)

= cpAD) (Aﬁﬁ(m,n) - 4(1 — %)Aﬁﬁ(m, n) — 2<1 - %)Aﬁi(m,n)), (3.50)

where
n n+i—1
APC F2M (g, i 515 Sig g, Si
n;l(m7 Z Z SZ,]7SZ+1,_]—17SZ-‘rl,]asl,]—l)
=1 j=1+3
1 -
—52 Fi™ (810125 Siit1s Sitnive) +Y (F3™ (Sinti2) —F3™ (sinti1)). (3.51)
i=1 i=1

We notice that Aig(m, n) is independent of the position of the two negative helicity gluons;
this is exactly as one would expect from an N = 4 theory. Nevertheless, the presence of
the colourless scalar has removed the supersymmetry and as a result we see the appearance
of F %m functions which are not present in eq. (B.36). We can write the fermionic pieces as,

OF _ § : 2 : .
An;l(m,n) = b F4F Sz,j,3i+1,j—173i+1,j73i,j—1)
=2 j=m+1
m—1 n
I 2
+ 1m + 4F (8]71’ 8.7+177‘_17s.]+17l78.]7l_1)
=2 j=m+1

m—1 n )
tr_(m, Py jy,4,1)
_ 5 J A%1L1(P(i+1,j)v Bij)

1=2 j=m S1m
m—1 1
(1 P( Z)’Z7m) 1
+ Z Z S J) Alj LI(P(j,i—l)a P(],Z))
=2 j=m+1 1im
m o otr_ (m P( )2 Js ) i 1
+ Z Z S A] (P(i,j—1)7 P(Z,j))
=2 j=m+1 1im
m—1 n
tr— (L, Py, J,m)
=7 sljm AL P, Bii) (3.52)

where the functions b 1 and Aml are the same auxiliary functions as in the pure-glue case

and are given by eqgs. (B-39) and (B.4() respectively.
Finally the scalar pieces are given by,

m—1 n
¢S o iJ \2 "2me .
AR (mn) ==> " ) (07,) " Fa® (81,5, Sis1,—15 Sit1,5, Sij—1)
i=2 j=md1
n m—1
iJ \2 2me X
- > (07 FIRC(si s Sit1,j—15 Sid1 g Sij—1)
i=m+1 j=2
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m—1 n )
tr_(m,Pi,' 4y 1) )
[ _ (i.9) A La( P15y Fig)

33‘11m
r_ (ma P(Z j)ai7 1)2

_ 5 = ICZLIL2(P(2'+1,J')7 Fij)
Sim

r_(m,P(i’-),i,l) ij
L0 TP gy Pg))

Sim
(1, P, m)? ji
+ Z Z [ ;4) Al Ls(Pj410), Piii))
puc iy 1m
tr—(1, Piji), 4, m)?
B 2;‘11 K7 mL2(Py1,i), Piy)
r_(1, iy, J,m)
I 8519 ) Ij Ll(P(j+1,i)’P(j7i))
im
ig)J ,1)° j(i—1)
+Z Z [ ow A Lol )
i=2 j=m+1 lm
T_ (m7 P(i,j)7]> 1)2 j(i—1)
+ 25411m ,Ciﬂl L2 (P(ivj_l)’ P(Z’j))
(m PZ ]7 ) j(i—1
B Sl( J)’ an(l )Ll(P(Lj—l)?P(iJ))
m—1 1 ]
tr_ (1, Pj 5,3, m)° b
+>> [ 33]4 ATV (P a1y Piay)
i=2 j=m+1 tm
tr_(17P("i)7i7m)2 z( 1)
+ 2;‘11 Kipm " La(Piji-1), Pia)
I‘_(l,P',iv ) ?
_ S?’ 7iU- I)Ll(P(j,i—l)’P Ga)|  (3:53)

where the auxiliary functions K;il and Z:gl are the same as in the pure-glue case and are
given by eqs. (B.44) and (B.45)) respectively.

The similarities and differences between the gluonic MHV and the ¢-MHYV calculation
are now most obvious. It is clear that both have the same type of auxiliary functions
multiplying the one-loop basis functions, however the presence of the scalar has introduced
a second set of summations. One difference is that in the ¢-MHV result there are no
degenerate triangles. This is a consequence of the absence of O(e~!) terms as predicted by
the infrared pole structure.

3.5 Cross check: the adjacent minus amplitude

The one-loop (¢,17,27 ...nT) amplitude has been calculated [20 . and provides a check of
our calculation. As mentloned earlier A¢ 1 is independent of m so we only need explicitly
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check the remaining two contributions, which collapse to,

" tr_ (1, Plistn)ds 2)
Aii(zn) = Z G L) Li(Piiy1,1ys Plany)

=3 512
2,P3,_1y,4,1)
—I-Z (3 D LI(P(2,2'—1)7 P(2,i))7 (3.54)
and
- tr—(27P3,i—l 0% 1)3
A% (2,n) = < ) L3(P2i-1), P2,i))

3
357

I'_(2, P(3,i—1) ) i7 1)2

L2(P(2,i—1)7p(2,i))>

23%2
n—1 . 3
tr— (1, Pliy1.n),%,2)
+>° v 3 & L3(Pi+1,1), Pipy)
i=3 3515

I'_(l, P(i+1,n) 31y 2)2
2s2,

L2(P(i+1,1)’P(i,l)))’ (3.55)

respectively, and which is in agreement with the result of [R(].

3.6 Cut-completion terms

The basis-set of logarithmic functions in which the results are expressed contains unphysical
singularities, which we remove by adding in rational pieces, the so-called cut completion
terms. The new basis is given by the transformation,

Li(s,t) = Li(s,t),
Lg(s,t) = ﬁg(s,t) + 2(81— t) <% + 1),

S

Ls(s,t) = La(s,t) + ! <l + 1). (3.56)

2(s —t)2\t s

From the breakdown of our amplitude it is clear that only the scalar pieces contribute.
When considering the overlap terms in the next section it proves most convenient to write
the cut-completion terms in the following form,

Z 1 1
CRu(¢,17,...,m™,...,n") [Z Z pznllp(i,j—l))< — "‘f)

Sii— S
1=2 j=m+1 i1 v

m—1 n m—1 n+1 1 1
, 1
=D A (Pavi) < + >+§ > P P(j,i—l))<s.. +8..>
1= 2] m Lj 0,J i=2 j=m+1 Ji—1 75t

_Z Z P j+1z)< ,1 +i>]

i=1 j=m+1 S+ 85y
(3.57)
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The factor I'y, is given by,

crNp
T, = , .
2y, (aa+1) (3:58)
and
3 2
a m| P, ;yall)” m|P; jyall “
1 (Pg) = SRy (0 Plenall) e (3.50)
3(a|P )l al (a|Pujal
with
a ma) (bl
A% = % —(b—b+1), (3.60)
2 2
b1l
K — % —(b—b+1). (3.61)
We have also introduced the short-hand notation,
N,
Np = 2<1 - NF>. (3.62)

4. The rational pieces

In addition to the cut-constructible terms calculated in the previous section, one-loop am-
plitudes in non-supersymmetric theories also contain rational terms with no discontinuities.
By definition this means that these terms can only contain simple poles in physical invari-
ants, which makes these terms amenable to the BCFW recursion relation techniques. So
far successful applications have included amplitudes in QCD [[4—[L§] and the finite and
adjacent minus ¢ amplitudes [p(].

In an earlier section, we cancelled unphysical poles in C, by introducing the cut-
completion terms C'R,,. If we naively set up the recursion relations we would double count
on these rational pieces. To avoid this, we define the recursion relation as a function of the
physical poles R,, = R,—C R,,. We make a complex shift of the two negative gluons such that

1) =[1) +2lm),  |im] = |m] - 21, (4.1)
ensuring that overall momentum is conserved since

z z
P =+ St g () =gl — 2 (m#). (42)

The recursion relation on R, is defined through the following integral,

1 dz » 1 dz

Provided that z is chosen such that A(z) — 0 as z goes to infinity, the integral vanishes.
The residues of the integrand are fixed by multiparticle factorisation so that the rational
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m~ 1= J

(m+1)* m 1~

Figure 8: The direct recursive terms contributing to Ry, (¢,17,.

pieces are given by:

R, (0) =— Z Res.—, (Bn(2) — ORn(2))

z

phys poles z;

P2

i

) Z AV () Rp(2) + RL(Z)AE%?)(Z) + ZReszzzi

CRn(z). (4.4)

The final piece of this equation is called the overlap term. It’s calculation is relatively

simple if the poles are all first order.

4.1 Recursive terms

The direct recursive terms are obtained by using the following formula

5 AP ()Rr(z) + Ru(2) AR (2)

D _
R, = [z

n

i

— 21 —

(4.5)



For our chosen shift (1), the allowed diagrams are shown in figure §, and the summation
over these given by eq. (.11). In the sum R is defined as the full rational part of the
amplitude with fewer than n external legs. Due to our choice of shifts the tree amplitudes

A(O)(j+7 1_7_P_

(17_7'))7 A(O)(j+7 7_P+

(m,J))

are both zero, (here j € {2,n,(m = 1)}). These three point amplitudes are hence not
included in either the diagram or the sum. Other terms that vanish are Ra(¢, —+) which
is required to be zero by angular momentum conservation, and R(j,m ™, Pi) since the
corresponding splitting function has no rational pieces.

Because the tree amplitudes with fewer than two negative helicities vanish, the one
requires the one-loop contributions with one negative helicity. These are finite one-loop
amplitudes and are entirely rational. The finite ¢ — + ---+ amplitudes were computed
for arbitrary numbers of positive helicity gluons in ref. [f(J]. As a concrete example, the
three-gluon amplitude is given by,

Np (12)(31)[23] 1 L AO (g1 2+, 3%), (4.6)

17,2737
Rs(6:17.2737) = 5673z~ a2

Similarly, the pure QCD — + - - - 4+ amplitudes are given to all orders in ref. [f{, [4]. In the
four gluon case, the result is,

Np  (24) 24

Ra(17,27,37.47) = oo o o (03) G 4) [41]

(4.7)

Finally, there the “homogenous” terms in the recursion which depend on the ¢-MHV
amplitude with one gluon fewer. The first few ¢-MHV amplitudes are known,

~ oo 1 o0 Z oo
1
R3(4;17,27,3%) = @A(O)(Q 17,27,3%), (4.9)
1
Ry(0:17,27,37) = o540(6,17,27,37). (4.10)
Combining the various diagrams, we find that recursive terms obey the following rela-
tion,
R£(¢,1_,...,m_,...,n+) =
n m—1
A . A . 0 N— . ~— .
+> > R(o,1 ,...,j+,PJ+1J.),(z+1)+)8j+u,4< NPy GHDT i)
i=mj=1 ;
m—1 n
0) . . ~— .
—I—ZZA( (p,17,...,57, (]+l,i)’ (z+1)+)sj+1 iR( P(—;+1 " LD,
j=li=m s
m—1 n
A . 0 S— . ~— .
+Y Y RO, G =Pl ), (z+1)+)8i+1jA( (& By GHDT, i)
j=li=m g
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m—1 n

— . A . 1 - ) . .
+ZZA(O)(1 7’--7j+7P(i+1’j)7(2+1)+) R((b?_P(—L_Lj)a(]+1)+77'--7m 7...,Z+)

Tliem Si+1,5
+R(9, 17, (m =) =P (m - 2)T) F— AONEL s (m 1))
FR(GA7, o (m =2 =B (1)) Sm_le AO(PL = 1))
+AO (i, P(Z,w”ﬂ;l,lR(@ B 2 e (= 1))
+AO, B, 2+)$R(¢, B 8 ), (4.11)

The value that z takes is obtained by requiring that the shifted momenta
DU _ ph z
P(Lj) = P(i,j) + §(m|7“|1], (4.12)

is on-shell. In this equation, the sign is positive when the momentum set {p;, p;} includes

p1 and is negative when it includes p,,. There are six independent channels, each one

specified by a particular invariant mass, s;41,, sj,i+1, or by the double invariants, s, m+1,
Sm—1,m, Sn,1 and s1 2. In each channel, we find that the value of z and the hatted variables
are given by,

Sj+1, channels Zj41i = _ Sitld
’ T (m Py
’i> _ |(p1 + P(j+1,i))P(j+17i)m> ‘m] _ |(pm - P(j+1,i))P(j+1,i) 1]
(m|Pgs1,1] 7 (m|Pgs1,1] 7
P PG mPyial
(G+15) =

(m [P 1]

sji+1 channels 2l = S S 2 N
(m| Pyl 1]
|i> _ ‘(pl - P(j,i+1))P(j,i+1)m> |m] _ ’(pm + P(j,z‘+1))P(j,i+1)1]
<m ‘P(j,i+1)’ 1} <m \P(j,i+1)’ 1}
P PG M P i
gy =
Uit (m|Pg i)l 1]
_[(m+1)m]
Sm,m+1 channel Zmm41 = (m+1)1]
-1 +pm),m+1] [1m]
1) = =
1) Am+ )] ] = [m + ][1(m+1)],
p | Pomman1][m +1]
(m,m+1) — [(m + 1) 1]
[(m —1)m]
Sm—1,m channel Zm—1,m =
[(m —1)1]
o _ 1+ pm),m —1] A [1m)]
1) = ; ] = [m — 1] ;
[1(m —1)] [1(m —1)]
- | Pim—1,m) 1][m — 1|
Fonm) = =6 1))
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Sp,1 channel Il = — s

1) = n) L o = @1+ po))

1) =| ><nm>, 7] it
P [n) (m P,
(n 1) — W

51,2 channel 29 = _%
<1m> m] = ’(pl +pm)2>
i) = 2t = 12 20)2)

4.2 The large z behaviour of the completion terms

In order for the direct recursive contribution to correctly generate the rational terms, the
shifted amplitude Asll)(z) must vanish as z — oo. With the shift defined in eq. ({.1)) acting
on two negative helicity gluons this is indeed the case. However, the cut-completion term
CR,(z) introduced in eq. (B.57) to ensure that the cut constructible part does not have
any spurious poles, does not vanish as z — oco. We therefore have to explicitly remove the
contribution at infinity from the rational part, which now becomes [[[§, 9],

R, =RP 4+ 0, —InfCR,, (4.13)
where
Inf CR,, = lim CR,(z). (4.14)

The calculation of Inf C'R,, is straightforward. For the special case of adjacent negative he-
licities, corresponding to m = 2, the cut-completion terms behaves as 1/z as z — oo so that,

Inf CR,(¢,17,27,...,n") =0. (4.15)

For the general, non-adjacent, case, there is a contribution as z — oo and we find the
contribution to be subtracted is,

InfCR,(¢,17,...,m ,...,n") =

CFNP [
2 (m2) (nm) T} (aca + 1)

w],z—l Pz . (
> (Pij) <m!P(i,j—1)\1] !P(u 1]

1=3 j—m+1

n

_Z Z w’] P(z

22j m—+1

(
_Z zn: W (P ) < \P” ol
s

=2 j=m+1

m—1 n—1

0> W Py

=2 j=m

)
<m\Pz+1y 1] <m\P ]>
i)
)

\Pz+1g!1] " m \P 1]
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m—1 n+1 i1, 1 1
1,]— P ..
up Z W (]’Z))<<m|P(j,i—1)|1] ! <m|P(J'vi)|1]>

1 1

+
<<m |Pyyall]  (m|Pyal1]

|

j=m+1 )
noo 1 1
_ W (Pa) + )
jg,;ﬂ G\ (m |Pay1] T (m Py 1]

i=2
m—2
1 1
+ wh (-Z«))( - } (4.16)
1=1 j=m+1 ’ < |P(J+1 i) | 1] <m |P(Jﬂ)| 1}
with ) ,
WP ) = (m [Py alm)” {am) (bm) 17
(4) 2[1a] (ab)’ ’
and P(; ;) = Py — p1
4.3 Overlap terms
The overlap terms are defined as [I§, Q]
CR,(2)
@) Zi:Res i (4.18)

They can be obtained by evaluating the residue of the cut completion term C'R,, given in
eq. (B-57) in each of the physical channels. To expose the coefficients of the poles most
clearly the cut-completion terms are rewritten as follows,

m n—1

Clin =T {ZZ (“ H(Pag)) + o (Plgy) = il (P ) = mel’](Pa',j)))

=3 j=m

i— 1 1,i—1 i,J i—1j
£y Z j( T () + i (Pagy) = 3 (Pigy) = o™ (P W)))

i=m+1 j=2

- 1 n,i—1 7N i—1,n
+>° o (pml (Pin)) = Pt (Pliin)) — Prnt” (P(i,n))>

i=3 “h"
£ 30 (A W) - Ao - A )
i=m+1 """
1/ .
Y o <Pf%b11(P(27j)) + ol (Pey) — Piﬁ(P(Lj)))
7-]

J
m— 1 o n n,J
n = <pj1’m(P( )+ P (P(l,ﬂ)_Pl#L(P(M)))

1 n n
+— (%%(P(z,n)) - P?ﬁ1(P(2,n))>] , (4.19)
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with plnlfb defined in eq. (B.59).

The cut-completion terms contain many different simple poles in s; ; but only those
invariants which contain either p; or p,, (but not both) have non-trivial overlap terms. We
observe that the cut completion term contain only simple residues, so for the F; ;) pole,
the overlap term is given by, .

O:{j = CRn(ZZ'J)% (4.20)
Si,j
where z; ; is the value of z that puts ]3@-7]-) on-shell. The multiplicative factor removes the
Si; pole in CR,, and replaces it with the correct propagator s; ;.

The cut-completion terms also contribute to the overlap terms because of singularities
associated with the multiplicative tree factor in eq. (B-57). The poles in (12) and (n1)
must be treated carefully, but, since the shift leaves (m/| unaltered, there are no overlap
terms generated by (m (m + 1)) or ((m — 1) m).

Splitting up the cut-completion terms in this way gives the overlap terms the following

structure,
m n—1 n
:ZZO + > ZO +ZO”L+ 2:011
=3 j i=m+1 j=2 i=m+1
n—1 m—1
+>0R+ ) 0+ 0+ 01+ 0opt (4.21)
j=m j=2

We now describe in detail the derivation of each of these terms.

4.3.1 The overlap term Ofnjn

The first overlap terms we consider are those arising from the s; ; channel when 3 <i <m
and m < j < n — 1. Since it is always the case that p, € F;;), we use the shift
21 = sij/(m P65 1]. Under this shift the various functions become,

2
Pyl
Tu(a1) = i mlPapl | . (422)
2525 (e + 1) (m [Py gy (01 + P jy| 2) (n (01 + P jy) Pyl m)
while
(ma) (bl(pr + P ) Pujlm)
Adb (21):< )7 () —(b—>b+1)>
! (ab) (m|Py ;1]
2 2
4 Py) Py
Kf;f’l(zl):< ) (bl + Pi) (;)‘m> —(b_>b+1)>. (4.23)
(ab)? (m| Py 1]

The prefactor multiplying the A and K functions is simplified since F; ;) in the numerator
is never shifted (as it is always adjacent to a (m]),

(m P al 1) (m|Pigla] <<a|(p1 +P<i,j))P<i,j)|m>">
m |Pi 1] (alPy 1]

) 4.24
< (4.24)

(al Py jy |a]"=1
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Ofnj n is thus given by,

N Pl ; P. )P, . 3
0 — (1) [L{ (m [Pl ] <<J |(p1 +. (i) (z,é)!m> A6 ()
(m| P 1] 3(j1Pupl1]

(G 1(pr + P jy) Pyl m)®
2(J [P 1]
(m|Pg j)li] (_ (i](py +P(i,j))P(i,j)|m>3Az’j (1)

(m|Pjl1] 3(i| Pl 1]° "

. 2
<Z|(p1+P(ij))P(ij)|m> i .
- DD e ) ) (i = = 1, Py — Pag) (|-
2(i| Pl 1] ! )

(4.25)

827.]

Kfﬁ‘l)(zl)> +(J =7+ 1P — Paj)

4.3.2 The overlap terms O:{", O,%’j and 072{"

The contributions in the s; ., s2; and sa, channels are evaluated under the same shift as
O%,n, such that,

Oin — T (zl)[ 1 {<m|P(i,n>|i] (_ il [Pi.1) Pyl m)” (mi) (0| Pty Paw| m)
. 2 N2 2
Py Py Py Py
Bd @Y ()| ) <m2} <Z| (i,1) (z,n)|72”> ) 4 (i—i—1,Pay — Puy)
2 (i | Pyl 1] (in)” (m|Pynl 1]
m | Py n| ((n|F; Pinm3ni— n|P; Pinm2 n(i—
(m | Pin)| ]<< 1Pty Piim)| 2> e D (o)1 PP P >Km(1 ”(m))}]
(m|Paml I\ 3(n|Pyn1] 2 (n [Pl 1]

. . 3 .
O — Fn(zl)[ 1 {<m!P<2,y>U] <_ (1P Peglm)” (mj) (21Pa) Peglm)

Si,n

e 525 L (m [Pz 1] 3(ilPeyl]® G2 (mlPeyl1]
| |Pa.j) Py m)® (m )2 (2| Py Pyl m)?
_UlPug Paylm) <mJ>' <2| (1.9) (2,a)|;”> >+(j_>j+17p(i7j) . Puy)
2(j 1P| 1] (1 2)" (m|Pg ;1]

(mPepl 2/ 21Puy Peplm)’ o (21Puy Peplm) s
2 ml(zl) Kml(zl) )
3(2|Pa,1] 2(21Pe,! 1]

(m [Pl 1]
0% — T (2) [L{ (m [P n] <_ (] Py Pyl m)® (mn) (2|Pa ) Poaylm)

o 52,n <m |P(2,n)| 1] 3 <Tl ’P(Zm)‘ 1]2 <2 7”L> <m |P(2,n)| 1]
(nlPan) Pon m)? (mn)® (2|Py ) Pro,l m)’ >

2 <n [Pl 1] (2 n>2 <m |Pan)l 1] 2
(m | Pam2] (_ (2|Pany Pyl m)’ (m2) (n| Py Po|m)

(m|Pgonl1] 3(2|Paml1]’ (2n) (m|Pon|1]
_21Pa Paw|m)” (m2)* (0 |Paw Pow) m>2> H (4.26)
2(2|Pem!1] (2n)? (m | P 1]°
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4.3.3 The overlap terms O’l"i, O}L’j and Oi{l

A similar set of overlap terms are generated in the s; ;, s1; and s; ;1 channels when p; €
P j). We therefore use the shift zp = —s;;/ (m|P; j|1]. Once again the tree factor, I
and the functions A and K must be evaluated under this shift;

2
N Pyl
T, (2) = ————t (m 1P| 1] . (4.27)
200525 (aa+ 1) (m [P j) (01 = P i)l 2) (nl(p1 = P jy) Pag)lm)
with,
b P (p1— Py
g () = (2 il = Peplle) )

{ab) (m [Pzl 1]
(bm)* (m| Py j) (01 = Pay)la)®
(ab)? (m| Py 5)1)°

K® (z) = < —(b—b+ 1)). (4.28)

Finally the prefactor multiplying the A and K functions is given by,

A Pagalm)y™ o (mIPagpla] <(P(zyj> —p)™ <“m>n>, (4.29)

@Peplat (mIPpT\ (alPey1]"

The overlap contributions are given by,

L{ (m | Pyl ] ( Py =) Gm)” iy
sig L{m [Pz 37 [P 1]2 m
(P gy —p1)* (G m)
2(j [Pig1]
(m| P ] <(P<m> —P) M) s
(mPapl I\ 3(i|P )" 2

(Pagy —p)*(im)® i
,J

1 ( (m|Pajln] [(Poy)t(nm)? nj
14 5 Ai (22)
s15 L3(m|P)1] (n|Ppaj 1]
+<j —Jj+1, P — Pa,j>

Py )8 Gim)3 — P, )Pyl
(- P Gl P Pl )
3(jPayl1] (jn) (m|Pq j1]

(Pag)' Gim)? ( fnm)? (m (o1 = Pag) Pag| )
2(j|Pal1] < (jn)? (m|Py )| 1]2 Lm) ))H

0 = rn<zz>[

2
Kffff”(é)) +( —J+1, P — Puj)

B (Pt (n m)?
2(n|Pa|1]

0,7 = Ty(2) [ K%(%))
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il RS (m|Puyli] ((Pany)® Em)® ((2m) (m| Py ) Puli)
On" = Tl 2)[ { (m|Pg 1|1 ]< 3(i|Punl1]” ( (24) (m | Py 1| 1]
(Pia) (im)*( 2m)* (m|Pin) Py i)’
2(i[Paml ]\ (202 (m|Pyyyl1)°

(m| Pyl 2] B (Piny)® (2 m>3A2(i—l)(z )+(P(i7n))4 (2 m>2K2(i—1)(Z )
Pyl 1] ot YT ] T
<m | (z,l)| 3 <2 |P(Z7n)| 1] (i,m)

+um))

+(1 m>2>> +(i—i—1,Pa— Pi,)

(4.30)

At first glance there appear to be poles of order greater than one in s15 and s,;, however

2n ensures that when i = 1,5 = 2 or 4,j = 1 there

the presence of the factor (P(i,j) - p1)
are no issues with higher poles. As a result, poles in these channels are only generated by

the multiplicative tree factor.

4.3.4 The overlap terms O}" and O}?

The final two overlap terms have a more subtle origin than the previous contributions
and since they come from the tree factor the form of the cut-completion terms, can be
compacted. We will however, need to have forms for s; ; when they acquire a z dependence
(with z now in either the sj2 or s,; channel). We consider first the s15 channel (23 =
—(12) /{m?2)), we use the following form for s; j, when p,, € P j):

<m ’P(i,j) (P(i,j) +p1)| 2>

S@j(Zg) = <’I7L 2> (4.31)
We will also require the tree factor I' and the functions A and K:
_ crNp (2m)
Tnlzs) = 21'[3;; (aa+1) (Im) (n2)(12) (4.82)
At () — <<b2<>2<;7;1<>a<$ YD (b b+ 1)) (4.33)
2 2 2

The overlap terms associated with this channel are defined by using the (1 < m) symmetry
of the cut-completion terms:

O} =0, +01 (4.35)
With O},%n defined by,

02, = > > Tul(zs) H _ e U(( | Pujyil2)” (1m AT ()

i=3 j=m (4,5—1) +p1 + P, (4,5— 1]’2>

)
2
<m|P(ZJ ]|2> (Im KJ(Z 1)( 3)}
2<m|]( (4,5—1) +p1)+P(2j 1]|2> m
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1 1 )
x n
<<m [P gy (P gy +p)l2)  (m|Pu 1) (Paj-1) +p1)l2)
m n . 3
. (m P i[2)” (1m)°

DINE

D3 = B (mi(Piga ) +p1) + Pus,)il 2)
. 2

B (m [P il2)” (1m)* K

2(m |i(Pyy1,5) +p1) + Pliy1,5)il 2)

2 A%l(%)

(r T : )

(m|Py 5 (Pujy+p0)|2)  (m|Pus1y) (Puti) +p1)l2)
P (mlPaw il 2P (Im) (i) (n2) (1m)

" Zz_: { <m |’L'P(H_171) + P(i+17n)i| 2>2 (Z n> <2 m>
(m|Pinil2)* (Am)®  (mi)* (n2)? (1m)> }

2(m|iPiy11) + Parimil2)  (in)? (2m)”

=3

1 )
X + . (4.36)
<<m |Pian) Pyl 2) (M1 Plsin) Pis1)]2)
For the second set of sums we will need to know s; ; with p1 € F; ;,
(m|Pg) (Pig) —p1)l2)
siji(z3) = m2) . (4.37)
We also require,
bm) (1m) (2a)
AL _ (! ~(b—b+1 4
2 2
Kb (z) = <<bm> <12m> <§ Dy 1)), (4.39)
(2m) (ab

1 1
X +
( m | Py 5y (Pajy —p)l2)  (m|Py -1y (Pyj—1) — 1)l 2>>
m— 3 .
1{ @Ry dlm)” (am)’ <<2,7> (nm) (1m) | <1m>>
2 L 3(mliPan + Paj-nil2)* '

(2 Pugydlm* Am® (@ mPam?

1 1
X +
<<m 1Py Pepl2)  (mlPaj-1) Paj-l 2>>
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n

m—1 3
(21 Py il m)® (1m)
- 3 I )
i=m+1 j= m‘ (P(H-l Jj) ) + P(i-i—ld)” 2>

B (2] Py jyil m)” (1m)? i,
2(mli (P(z+m> )+P<i+1,j)i’2>K ! 3)}

1 1
X + . (4.40)
<<m 1P gy (Pugy —p)l2)  (m|Puga ) (Pagag) — p1)l 2>>}

In writing the above, we have used Al (23) = 0.

The final overlap term is O"! and is calculated noting the (n < 2) symmetry in the

shift. Once again we define the usual functions under the shift (z4) = — (1n)/(mn) ,
When p, € P j,
(m Py (Pij) +piln)
y - ) ’ , 4.41
S 7)(’24) <m ’I’L> ( )
together with,
crNp (nm)
Th(zg) = — , 4.42
(=4) 23 (e + 1) (Im) (n 1) (2n) (4.42)
bn) (1m) (ma)
A - (¢ ~(b—b+1 4.4
m1(24) < <nm> (ab) ( — b+ ) ’ ( 3)
bn)? (1m)? (ma)?
Kfrf)l(%):(( ) 2> <2 ) —(b—>b+1)>. (4.44)
(nm)” (ab)
The overlap terms in this channel are again split into two terms
Ont = O, + 014, (4.45)

with
m n—1 . 3 3
m|P;n7ln)” (Im (i
Ot = 33 ey { - e B,
i=3 j=m 3 <m 17 (P j—1) +p1) + Pl j—1)d] n>

<m‘Pij Jl >2(1m>2 j(z 1)
2<m’j( (4,5— 1)+p1)+sz 1]‘ >K (4)}

+

X

: N\

1 1
(m| Py ) (Py.j +p1)\2> (m|Py 1) (P(i,j—l)+pl)‘n>>
. <m|P(2g iln) (1m)®  (mg) 2n) (1m)
= \3(m|jPy )+ Poy_niln)?  (2) (nm)

(m| Poydln)” (0m)®  (mj)* 2m)* (1m)? }
2(m|jPu 1)+ Poj_niln)  (52)* (nm)®

+

x( 1 1 >
m n 1 m 3 B
+zz{ i A% 1)

=2 iom 3 (m i P(z+1g)+P1)+Pz+1gZ! n)’
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m| P j 1m)? i
(ml Py il )" (Lm) K%(Zs)}
2<m P(H_l])"‘pl)"’_Pz—l—ljZ’ >

1 1 )}
X + .
((m |Pi.j) (Pujy+p1)ln)y  (m|Pus1 ) (Pas1y) +p1)ln)

(4.46)
For the second set of terms we need to evaluate s; ; when p1 € P j), so that,
_ (m [Py (Pag) —p)ln)
sij(24) = ) , (4.47)
and,
bm) (1m) (na)
AL _ (¢ —(b—b+1 4.4
1m(z4) < <nm> (ab) ( — b+ ) ’ ( 8)
2 2 2
K® (z4) = <<bm> <1;”> <Z“> (bbbt 1)). (4.49)
{(nm)”{ab)
We find that
n m—1 . 3 3
Py 1 il
of), = Fn(z4)[ { L RupdlmlAmT e
P (m|j(Pyj—1) —p1) + Py j—niln)
. 2 2
P. . 1 L
N '<n| i) 31 m)” (1m) ' K{,(;_l)(zz;)}
2(m |j(Pyj—1) —p1) + Py j—niln)
" < 1 1 )
(m |P(ij (Pij) — 1 |n> (m|Pyj—1y (P j—1) — p1)|n)
. (n|Pg ) ilm)” (1m)° ij
o0 ! LKL R
i1 = <3 (mi(Pyg) — )+P<i+1,j>””>
2
2(m |i(Pis1,) —p1) + P giln) "

1 1 >
X +
<<m |P.j) (P(i h—pU)ln)  (m|Pug ) (Pay1y) — pu)ln)

N Z { o (n|Pyyilm)° (1m)? <<1m>+<m>.<1m><2m>>

i=m-+1 ‘ZP(2+1 n) + P(z+1 1) Z’ > <Z 2> <7”L m>

Py ilm) (1m)? e nd)? (tm)* 2m)’
2 <m ’iP(i+1,n) + P(z‘-‘,—l,l)i‘ TL> ( (Lm) ( > }

1 1
X + . (4.50)
<<m 1Py Pawyln) — (m|Put11) Pigiml n>>]

5. The four point amplitude

The calculation of all Higgs plus four-gluon amplitudes at NLO in the heavy-top effective
theory has been performed numerically in [f1]. Here we provide an analytic form for the
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Ail)(H ,17,27,37,47) to illustrate the use of our results for the ¢-MHV amplitude for
general n.

The cut-constructible part of the ¢-MHV four point amplitude is given by setting
n =4 and m = 3 in eq. (B.5()), using the gluonic, fermionic and scalar contributions given

in eqs. (B.51)), (B.52) and (B.53) respectively,

4
_ _ 0 1
Ci(p,17,27,37,4%) = Ai ){ -3 E Fa™C (5 143, Si41,i42; Sit1.i4+3 Sii+2)
i=1

4 4
1
—3 D FI(8642) Siit1s Sivrive) T O (FF(sio1) — FE™ (si344))
i=1 1=1

Np \ [1tr_(3241) tr_(3421) _,
—4(1- = Fie
( 4Nc> [2 2,52 4F (5234, 523, 534)
tr_(3241) tr_ (3421
— ( ) 5 ( )L1(823,8234)+(2<—>4)+(1<—>3)+(1<—>3,2<—>4):|
5245713
Np 1tr_(3241)% tr_(3421)% _,
—2(1- — = Fie
( Nc> [ 5 ey AF (5234, 523, S34)
tr_(3241) tr_(3421) [/ tr_(3241)2
Ctr( )4 (3421) ( (3241) L (523, 5231)
tr_(3241) tr_ (3421 tr_(3421) tr_ (3241
+ ( )2 ( )L2(823,8234)— ( )3 ( )L1(823,8234)>
253, 524
+(2<—>4)+(1<—>3)+(1<—>3,2<—>4)H. (5.1)

The cut completion terms are given by eq. (B-57),

_ _ Np 1
CRi(9,17,27,37,47) = 555 (12) (23) (34) (41)
(3]24(1)% (34)(21)  (3]24[1)* 342 (21)*\ [ 1 1
. K © 3(s231 —523)2  (42)  2(sa34 — s23) (42)* > <8_23 - Q)}

+2e4)+(1o3)+ (13,2 4). (5.2)

The remaining rational contributions are obtained by shifting the two negative helicity
gluons,

1) =1y +2[3), 3] =13] - z[1]. (5.3)
As discussed in subsection [L.3, this shift generates a non-vanishing contribution as z — oo

in the cut completion term CR4. To compute this contribution, we use eq. ({.16) with
m =3 and n = 4 to find,

Inf CRy(¢p,17,27,37,47) = — (5.4)
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The direct rational contribution is generated by the recursion relation (f.11)), again
with m = 3 and n = 4 and is given by,

R N 1 ~ ~
Ry(¢,17,2%,37,4%) = A0 (¢, 17, Py )— R(— P55, 2+,37,47)

5234
o . 1 . A
+R(4%, 17, 2%, - P, — A0 (¢, Py, 37)
5412
N . 1 A
+R(¢,17,27, —P5}, )S—A@)(Pg;, 37,4%)
34
FR(p, 17, 4%, ~P) A0 (P, 9%, 37)
23

FAO (i, i 4T S R(6,— Py, 2+, 57)
S41

“ o 1 R
+AOA- P, 2+)—S R(¢, —Ppy,37,4%), (5.5)
12

where we recycle the known lower point amplitudes. For the four-point amplitude, we
require the rational parts of the ¢ with one minus and two positive helicity gluons ([.4),
the two and three-point ¢-MHV amplitudes given in eqs. ({.§), (£.9) and (E.10), as well as
the pure four-gluon QCD amplitude with a single negative helicity of eq. ([L.7).

We find that

31 Np my (24)[24] (3| Pasa| 1]

R = . 5.6
* 9672 5234 (4| Paga| 17 (2 | Posa| 1]° >0
Similarly,
1 _ ... N [24] [21] (4|P123]2]
24 _ ) (gt 4+ oF P ’
=——A 47,2 17) —
R4 ]2 ((JS ) ’ ) 3 3 ) 9672 5123 [3 1] [2 3] <4 ’P123‘ 1]2 )
R = R¥® (2 4). (5.7)
In the other channels,
1 o
Ry = —WA(O)WJ ,37,2%,47)
R? =R (4<2), (5.8)

and finally,

n2 _ Ne 24 (3|Pus| 1)?
B = 9607 s (24) 122 [41)* (5:9)

The overlap terms are given by,

O4(p,17,2%,37,47) = 033 + 033 + O03* + Of' + 0} + O1*%. (5.10)

'~

The first term is generated by eq. (.26) with n = 4 and has the following form

Np (1 (3] Pa3a Piasa| 2)” [42]
32125234 \ 3 (24) (2| Posa| 1]?
1(32) (3| P34 Pr2sa| 2) (3| Pasa Prozal4) [42]
2 (24)” (2| Paga| 1] (3| Pysal 1]

234 _
05" =

(2o 4)). (5.11)

— 34 -



(]

The overlap pieces in the 23 and 34 channels are given by eq. (1.26) and eq. ({.2§) (with
1=7 = 3)7

0B~ _ Np (_ (32)° (4] Prog| 2 [24]
3212523 3(4|Pas|1)% (42)
(32) (34) [24] (2| Pr23] 2] (4| Pr2s| 2]> (5.12)
2[12] (42)% (4| Pia3| 1] ’ '
o= 0P (4« 2). (5.13)

O*! and O'? both vanish, while eq. (:30) with i = 4, j = 2 leads to,

1 C1{(23)°[42)°

oMz _ 1
4 2 (24) (3|Pypo| 1] [41] 3 (24) [41]?

2
_32;\5];412 (1 (23) (43) (3| Pyi2] 4] [42] + (2o 4)). (5.14)

Combining contributions, the full four-point amplitude is given by,

Az(ll) (¢7 1_7 2+7 3_74+) = C4(¢7 1_7 2+7 3_74+) + CR4(¢7 1_7 2+73_74+)
+Ra(¢,17,27,37,4%), (5.15)

with
R(¢,17,27,37,4T) = O4(6,17,27,37,4%) + Ry(p,17,2%,37,47)
~InfCRy(¢,17,27,37,4T). (5.16)

After some algebra, the combination of overlapping and recursive terms can be written in
the following form, free of spurious singularities,’

Ra(0,17,24,37,4%) = 404,17, 2,37 4
s

Np [24]* ( 523834

e 1223 B4 [41]

523534 512541 512541
5245412 S54 5245234 S54
(5.17)

where A(©) (A,17,2F,37,4%) is the difference of ¢ and ¢ amplitudes. Finally the full Higgs
amplitude is given by the sum of ¢ and ¢! amplitudes

AV 17 27,37 4ty = AV (g, 17,2737, 47) + AW (g, 17, 2%, 37,47), (5.18)
with,
Az(ll) (¢T7 1_7 2+7 3_74+) = Az(ll) (qb’ 2_7 3+7 4_7 1+)<Zj><—>[l]] (519)

We note that the rational terms not proportional to Np in eq. (b.17) cancel when forming
the Higgs amplitude, just as for the Afll)(H, 17,27,3%,47) amplitude of ref. 0.

!"Which we have checked with the aid of the package S@M [@]
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The one-loop amplitudes in this paper are computed in the four-dimensional helicity
scheme and are not renormalised. To perform an M S renormalisation, one should subtract

)

an M S counterterm from Ag ,
2 A0, (5.20)
The Wilson coefficient (R.4) produces an additional finite contribution,

n n

AL AW 4 % AL, (5.21)

6. Cross checks and limits

6.1 Infrared poles

The infrared pole structure of a one-loop ¢-amplitude has the following form,

c - 2 \©
A,<3>:—6—5A<0>Z< a > + O(Y). (6.1)

— 8
i—1 1,041

Since only AzlG(m, n) contributes at O(e~2) the IR pole structure of the general ¢-MHV
amplitude is identical to that of the adjacent minus case (apart from the trivial change in
the tree amplitude). This combination was shown to have the correct IR behaviour in [R(].

6.2 Collinear limits
The general behaviour of a one-loop amplitude when gluons 7 and j become collinear, such
that p; — 2K and p;+1 — (1 — 2)K, is well known,

.
A&Ll)(...,z“i,zurWH,...)Z”Z—*»

S LAY (i = e KR 2 SO (< KRN 1)
h=%
+AD (=1 KR 2N OSplitM (— K i 1)) (6.2)

n

The universal splitting functions are given by [, B, 6],

2
Split© (—K+;17,2%) = z , (6.3)
2(1—2)(12)
N2
Split® K+ 17,97y = =2 (6.4)
2(1—2)(12)
1
Split@ (=K —;1F,2%) = , 6.5
plit™ ( ) 12 (6.5)
Split (—K—;17,27) = 0. (6.6)

The one-loop splitting function can be written in terms of cut-constructible and rational

components,

Split™M (=K =" 171 222) = Split(DC(— K —h 1M 2%2) 4 SplitM B(— K= 17 222 (6.7)
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where

SplitMC(— K+, 17, 2%) = Split @ (- K+, 1, 2+)C—F

(2 (o (o) o (). o

SplitC(—K+,17,27) = Split @ (K +,17,27) L

() (oo >3m< ) o0

Split()C(—K~,17,27) =0, 6.10)
Split-F(—Kk* 17,2%) = 0, (6.11)
. e N. z(1—2)
(W),R(_fc+ AT i
Split* " (—=K™T,17,27) 962 12 (6.12)
. . . Npz(1—=2)(12)
it R(—K—,17,27) = —2 . 1
Split*™( 17,27) = 56 g 2P (6.13)

Explicitly, the cut-constructible parts should satisfy,
a1
Co(.oyiyi 1) TR SR
h=+
Cre1(ooyi— 1M1 Kh i 92h2 ) Split D (=K i i+ 1)
FA (i = P KR 28 ) Split (KM 1), (6.14)
while the rational pieces obey,
Role.,iyi4 1)1 §
h=+
Rp1(...,i— 1% K i 2%+2 ) Split® (— K =R it i 4 1)
+ A (i = e KR G2 ) SplitW R (- KP4 1), (6.15)

6.3 Collinear factorisation of the cut-constructible contributions

In ref. [BQ], it was demonstrated that the helicity independent cut-constructible gluonic
contribution obeys,

CHOY( M e )IE S
h=+
CAGH (i =1t KP4 282 ) Split©) (= KRy it 4 1h)
FAQ (i KR 2dee ) SplitW O (KM i 4 1) (6.16)
Therefore to check the collinear behaviour of the general ¢-MHV amplitude, we simply
need to check that the fermionic and scalar contributions satisfy the following relation,

.
COESY( i z‘+1N+1,...)’”Z—>+

Z ‘“FS} Ji— TN KRG 22 ) Split® (— KR i 121)(6.17)
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In other words, the F' and S contributions should factorise onto the tree-level splitting
amplitude for the helicity of the gluons considered. According to the definition of C,, in
eq. (B-50), there is an overall factor ASLO), which in the collinear limit produces the correct
tree-level splitting function. It therefore remains to show that,

F.¢S F.¢S
APTPS — APTD (6.18)

in the collinear limit with Azl; (m,n) and Azi(m, n) given in eqs. (B.59) and (B.53) respec-
tively.

6.3.1 Collinear behaviour of mixed helicity gluons

We first consider the limit where two adjacent gluons become collinear, one of which has
negative helicity. For definiteness, we take the limit (m — 1) || m.

The coefficient of the box function b% 1 enters both A?S and A®F. In this limit,
i m=1m tr_(K,i,5,1)tr (K, j,i,1)

=b9 6.19
ml s?jS%K K1 ( )

b

For the special cases, i =m — 1 and j = m — 1, we have,
pr b = pmTt — g (6.20)

so that the box contribution correctly factorises onto the lower point amplitude.

The remaining terms in the sub-amplitudes are proportional to one of the auxiliary
functions 7, with F = A, K and Z and which are defined in eqs. (B47), (B-44) and (B4]).
We shall see that these too have the correct factorisation properties. Let us first consider
the ranges 2 <1 <m —1and m < j <n. When i < m — 2, the momentum P(i,j) always
contains both m — 1 and m, while P;;) never includes either m — 1 or m, and we find
relations such as,

r_(m, P(Z,j)? 1, 1) m—1|lm tr— (K, P(z,])7za 1)

s%m ™ S%K K
r_(1, P(]Z),z,m)Ai%_l) m—1|m tI‘_(l,Péj,i)a'L,K)Azi([j{—l)‘ (6.21)
S S
Tm 1K

We note that for the special case i = m — 1,

tr—(m,j,m—1,1) tr_(m,j,m,1) m-1|m

m 17.7 0
Aml Sm_17] vaj 7
Am 1,7 m—1|lm 0’
-1
b=t ety (6.22)

Similar relations hold for the terms involving C and Z. Therefore, all terms in the n-gluon
version of A‘Mi and A(Zﬁs1 therefore either collapse onto similar terms, or vanish in such a Way

that the reduced summation precisely matches onto the corresponding A¢ _1 and An L1
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6.3.2 Two positive collinear limit

Next we consider the limit when two positive helicity gluons become collinear. We focus
on the specific example where £ — 1 || £ with 3 </ < m — 1. As in the previous subsection,
let first consider the ranges 2 <i < m — 1 and m < j < n. We note that,

e Ky
J
blm7

(—1j

blm ’

0 - .

b= bR (6.23)

The collinear factorisation of box functions has been well studied [fl, B, B3] and in this case,
the relation,

(—1j 2 j 2 .
(blm ) FiR(se-1, 80415 80,3, 80-1,5- 1) (m) FiF®(se, se41,5-15 6415, 5¢,5-1)
”Z Kj 2
(b > Fir (5K, js S041,j—15 SK j» S041,j—1)
(6.24)

ensures the box terms correctly factorise onto the lower point amplitude.
The next set of functions we consider are the triangle functions which have j as the
second index, these functions possess the general form:

. \n oi(i—1
Z tr_ (m, P(i,j)?j? 1) fgn(l )LH(P(i,j—1)7 P(Z,j)) (625)
i=—1
There is no contribution when i = £, because fsz_ ) = fj =1 0, while the remaining

i = £ — 1 contribution collapses onto the correct term,

tr_(m, P(KJ),E -1, 1)”.721(1]{_1)LH(P(K7J-_1), P(KJ-)). (6.26)
Similarly, when we consider
¢
Z tr_(m, Py, 5, 1)" Fly Ln(Pli1.4): Pl (6.27)
i=—1

there is no contribution when ¢ = ¢ — 1, while for ¢ = ¢, we recover the correct contribution.
The remaining types of triangle function are of the form

Z tr_(m, Py )i, 1)"Fidy Ln(Piiy1.g) Pj))- (6.28)
i=—1
Since .7-"6 =Foa (“~1)J e have contributions from both terms, however, it is straightforward

to show that,
tr_ (m, P(Z—l 7)s l— 1, 1)”Ln(P(g7j), P(Z—l,j)) + tr_ (m, P(Z+1,j)7 f, 1)”Ln(P(g+17j), P(&j))

—1|e "
tr—(m, P(Z—i—lj) K,1)"L, (P(Z—i-lj) P(K )) (6.29)
Similar considerations apply to
¢
. (=1
Z tr_(1, P4, ,m) ~7:1,(7J,, )Ln(P(j,z'—n,P(j,z‘))a (6.30)
i=0—1

thus ensuring the correct collinear factorisation.
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6.4 The cancellation of unphysical singularities

The cut constructible terms eq. (B.-53)-(B.53) contain poles in (ij). For the most part, i
and j are non-adjacent gluons and as such there should be no singularity as these become
collinear. In the following section we prove that this is indeed the case. To be explicit, we
consider the collinear limit ¢ || j with,

1 — zK,
j— (1-2)K. (6.31)

Let us consider the cut-constructible pieces associated with the fermionic loop contri-
bution, Aiﬁ(m, n) given in eq. (B.59). There are ten terms containing an explicit pole in
s;; which are given by,

i 2me .
bim Farp© (8ijy Sit1,j—15 Sit1,5, Sij—1)

1] 2 .
07, FAR (55,60 $j41,i-15 St 1,65 Sji-1)
tro(my Py ), 1) tr (myd, 5, 1)

$Tm w0 et F6)
tr_(m,PH—l,'—l 7i, 1) tr_ (maiaj’ 1)
" (S% Jj—1) o Ll(P(H_Lj—l)?P(i,j—l))
m K

tre (17 P(j,i—l) y 1y m) tr_ (17 i, 7, m)
— - o Ly(Pi-1): Pi)

tr— (1, Pjy1,i-1),6m) tro (1,4, 5,m)

+ = » Li(Pyy1i-1): Plsay)
1m v
tr_ (m7 P(i,j—1)7j7 1) tr_ (m7j> Z.a 1)
- e o L0, Fay)
im 1]
tr_ (m7 Pi+1, i~1)>J> 1) tr_ (m7j> i, 1)
+ ( i ) = Li(Piy1j-1): Plivg)
Sim, Sij
tr_(l, P(j+1,i)7j7 m) tr_ (1,j, ’i, m)
- o2 o L Pa)
im 1]
tr—(17 P j+1,0—1 7j7 m) tr_ (Ljv ia m)
+ (js% ) p Ly(P(js1,i-1), Pi-1))- (6.32)

Using Plit1j) = Plitrj-1) + P Pli-ny) = Pyyri-n +Pjs Paj-1) = Payij-1) +pi and
P14 = Psii-1) + i, as well as tr (1,5,4,m) = —tr_ (1,4, 5,m) + O(s;;) etc, we can
rewrite these terms as

b (FIRC(si gy siv1 15 8i415 804-1) — 5601 (Pis1 gy Pagy) — siLa (P i1y Pag)))
+07,, (Fi?o(sj,ia Sj41im13 Sj41,0 5j,i—1) — SigL1(Pyi—1) Pyiay) — siskn (Ps.4), Piy))
tr—(m, Plig1,j-1),% 1) tr— (m,i, j,1)

— 2 o X (L1(Ps,jy, Pligy) — L1 (Pas,j-1)> Plij-1)))
tr—(m, Pyy1-1y,J. 1) tr— (m, i, 7,1
+ (s% i ( . ) X (LI(P(i,j—l)v P(i,j)) - LI(P(iJrl,j—l)’ P(i+1,j)))
m v
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tr— (1, Pjs,i-1),%m) tr— (1,4, j,m)
_ =N 5 X (L1(Pi1) P = T(Pions Plsi)
im v
tI‘_(l,P j+1,i—1 s Js m) tr_ (1,4,5,m
+ (Jsz — ( o (L1(Pyrrp Phiay) = Ln(Pai-1)s Pi-)) -
1m R

(6.33)

Finally, in the i || j collinear limit,

tr_(m, Piy1,j-1), %, 1) (L1(Pus15)s Pig)) — Li(Piat1j—1), Paj-1))
— tr_(m, P j-1),5,1) (L1(Py j—1): P jy) — L1(Pig1,j-1) Pis1,j)) (6.34)

and noting that the combination,

Fi?o(si,j, Si+1,j—15 Si+1,55 Si,j—l) - sile(P(i+1,j)a P(i,j)) - Sz‘le(P(i,j—n,P(i,j)) - O(S?j)v
(6.35)
we see that all singularities cancel. The same arguments apply to the cut-constructible
pieces associated with the scalar pieces.

6.5 Collinear factorisation of the rational pieces

This section is devoted to the collinear factorisation of the rational pieces of the four point
amplitude. Since there is a (1 «» 3) and (2 < 4) symmetry there are two independent
limits 1 || 2 and 2 || 3. We first consider the collinear limit 2 || 3. It is straightforward to
see that the amplitude correctly factorises onto:

Ri(6,17,27,37 4%)+ORy(6, 17,27, 37,47 L2 Ry(6, 17, K+, 47)Split© (— K~ 2+ 37)

+Rs(¢,17, K, 47)Split ) (~K+,27,37). (6.36)
In a similar fashion the remaining non-trivial collinear limit takes the form,

Ri(6,17,27,37 4%) +ORy(6, 17,27, 37, 47) L2 Ry (6, K 37, 47)Split© (— K=, 17, 27)

+R3(¢, K~,37,47)Split O (—K*,17,2%). (6.37)
6.6 Soft limit of A" (¢, 17,2+ 3 4%)

The final test is to take the limit as the ¢ momentum becomes soft. Our naive expectation
is that in this limit, the ¢ field is essentially constant so that

CotrGsp VGM’V — trGsp ,,GM’V. 6.38
12 SD I SD

In other words, the amplitude should collapse onto the gluon-only amplitude. Follow-
ing [p{], we expect that,

AD (@, n_g g™ "5 e AD(n_g™,nygh), (6.39)
while .
DPy—0
AS)(¢T7H—9_7”+9+) = Ny Agll)(n—g_7n+g+)’ (6.40)
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We first consider the cut constructible contributions. These factorise onto the four
gluon amplitude in rather trivial manner since in our construction we separated gluon-only
like diagrams and those which require a non-vanishing ¢-momentum. In the soft limit, the
one and two mass easy box and triangle functions have smooth limits so that,

) €
—0
( H 2) P, (6.41)

1\ pe—0
( ) =0 (6.42)
(6.43)

Furthermore, in the soft limit the L; functions become the massless T; functions defined

in eq. (.43,

Bub(3234) — Bub(823) py—0 (—1)k ,u2 €
L , 823) = . 6.44
1 (5234, 523) (S231 — Szg)k - 81536(1 —2¢) \ —s23 ( )
Altogether, we find that
Cu(d, 17,2437, 47 P50 00, (17, 27,37, 4%), (6.45)

where Cy(17,2%,37,47) is given by eq. (B.3§) with n = 4. This confirms that the cut-
constructible terms of the amplitude do follow the naive factorisation of eq. (.39)

The rational terms of eqs. (5.17) and (5.9), are each apparently singular in this limit.
However, careful combination reveals the soft behaviour,

py—0 Npcp
—

Ry(¢,17,27,37,4%) + OR4(4,17,27,37,4%) A7, 2% 37 47). (6.46)

This is similar to the soft limit found in ref. [0, [64] for the MHV amplitudes with adjacent
negative helicities, but, as anticipated in ref. (], is not consistent with the naive limit of

eq. (6.39).
7. Conclusions

Previous analytic calculations of ¢-amplitudes at one-loop with arbitrary numbers of gluons
are the adjacent minus ¢-MHV [R{], the all minus [F1], and the finite all plus and single
plus [BJ] ¢-amplitudes. Higgs amplitudes produced by the effective interaction between
Higgs and gluons induced by a heavy top quark loop, may be constructed from the sum of
a ¢-amplitude and its parity conjugate ¢!. In this paper, we have extended the calculation
of one-loop MHV ¢-amplitudes to include the general MHV configuration.

One-loop amplitudes naturally divide into cut-containing, C),, and rational, R, parts.
As in ref. [R(], we used the double-cut unitarity approach of ref. [i] to apply the one-loop
MHYV rules to derive all the multiplicity results for the cut-constructible contribution C,,.
In this paper we also used the spinor integration technique of ref. [f], [i] to determine C,,
finding complete agreement between the two methods. We found that the cut-constructible
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terms had a natural decomposition in terms of the pure glue MHV amplitude, we discovered
that the new diagrams which arose as a result of the ¢ interaction could be easily described
by the basis functions used in the construction of the pure glue result. An explicit formula
for the cut-constructible part of the ¢-amplitude are given in eq. (B.50), with the gluonic,
fermionic and scalar contributions given in eqs. (B.51), (B-53) and (B.53).

The rational terms have several sources - first the cut-completion term C'R,, which

eliminates the unphysical poles present in C,, second the direct on-shell recursion con-
tribution RY, third the overlap term O,, and finally from the large z limit of the cut
completion terms Inf CR,,. Explicit formulae for each of these contributions are given in
eqs. (B.57), (K.11)), (4.21) and (K.1G) respectively.

The four gluon case is worked through in detail, and an explicit solution for the ¢-
amplitude with split helicities, Afll)((b, 17,2%,37,47), together with instructions for how
to assemble the Higgs amplitude Afll)(H ,17,27,37,4T) are given in section . Numerical

results for this amplitude have previously been obtained in ref. [61]. We have checked our
analytic expressions in the limit where two of the gluons are collinear, in the limit where
the ¢ becomes soft and against previously known results for up to four gluons.
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A. Evaluation of the §, .7? and S functions

A1 G(ii+1,5,)+1)
The function G is defined in eq. (B-29). Using the Schouten identity, we can rewrite it as,

~

where the function G(i, j) is given by,

(il2) (jl1) T(i,la, ], 1)

G(i,7) = — - = . A2
(i,9) (ily)(jla)  201.pi202.p; (4.2)
Clearly,
G(i,i) = 1. (A.3)
If ¢ # j then
. P.p; Pp;  N(P,pipj)
G(i,j) =1+ - + ; A4
( j) 261.])2' 262.pj 251-]%'252-]93' ( )
where
N(P,i,j) = P*p; - p; — 2P - p;P - p;. (A.5)
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G is now written in terms of scalar integrals so we can directly use the results of van
Neerven [p4] to perform the phase space integration:

N(P7p17p2) —
(I1 + p1)?(l2 + p2)?

Do P2
O 2isin(me)u®| P25 F, <1,—e; 1 - %> (A.6)

/dDLIPS(—ll, lo, P)

(4m)%e N(P, p1,p2)
D _ 2(P pl) _ cr .. 2¢| p2|—€
/d LIPS(—l4,12, P) Lo )? (47T)2622281n(7re)u | P~ (A.7)
D _ _ cr ;o 2| p2|—e¢
/d LIPS(—14,13, P) ame = 26)21 sin(7e) | P (A.8)

where the factor cr is given by,

e o T(1+6e)T%(1 —¢)

cr = (4m) T(1— 2¢)

(A.9)

The final integration is over the z variable. However, the only dependence on z appears
through the quantity P17n2 S0 it is convenient to make a change of variables,

D)2
dz _ _d(P)” (A.10)
z P2 _ p2

to produce a dispersion integral that will re-construct the parts of the cut-constructible
amplitude proportional to (s1,,)7¢,

d(ﬁ)2 . D2|—€ _ : 2\e
/m%sm(ﬂeﬂp | 7€ = 2mi(—P~)". (A.11)

We define the function G(i,7) to be the reconstructed contribution after integration over
phase space, and after performing the dispersion integration,

d
Glid) = [ [ dPLIPS(-11,12,P) 6.5). (A12)
Explicitly, we find that in the P? channel

2 € 2
e (N o pienP ¢
G(i,j) = 2 <—P2> <1 2F'q <1, €1 —¢ N(P,i,j)) + 1_2€> (A.13)

The terms associated with triangle and bubble contributions will always cancel in the

summation of the G(i,7) leaving only the contributions from the hypergeometric function
as one would expect.

A.1.1 Spinorial integration

Let us show how the function G can be computed via spinorial integration. It is convenient
to rearrange the integrand by applying different Schouten identities from the ones used
above, so that

~

2Through a suitable choice of 1, one can always ensure that N(P, p1,p2) is independent of z [E]
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where

(i4) (€162)
(i 1) (jl2)

By using momentum conservation, lo = P + [y, one can rewrite I'(é, 7) in terms of [y,

I'(i,5) = (A.15)

G
P69 = Py Gl e - (A.16)

Then, one uses the rescaling in eq. (B.10), so that,

(i)

|
I'(i,j) = n P2W . (A.17)

The above expression is the integrand of the double-cut integration, defined as,
G'(i,j) = / dLIPS™W T'(i, 5) . (A.18)

By substituting the parametrization of dLIPS™® given in eq. (B.9), one has

poo [ (e deye dr p? 1 (i 5)
2n)* G'(i,5) = /W/t dt&(t—m> - P2m

_ 2 (i)
- [waniean p WO PGP

(i) [£d]
(G P e (eafe] (el pie)

= / (€ deye de) P2 (A.19)
where the t-integration has been performed trivially. Before carrying through the spinor in-

tegration, we introduce a Feynman parameter to combine the two denominators depending
on |¢)

1 i) [0i
&, j) = ﬁ /0 do / (€ o)t de] P’ i(jgﬁ e]] Wi'!ﬁ]z (A.20)
where
R=xk;+(1-2)P. (A.21)
Integrating-by-parts in |¢), using the idenity,
(edey (76
wrReE = TR TR (8.2
we obtain,
N B (ig) [¢d] (5 2)
Cl69) = gy | e [t o0t a0 Pt
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The integration on [¢] can be performed by Cauchy’s residues theorem, by taking the
residues at the two poles, [¢] = P|j) and |{] = R|j),

i 2 [ (PR GIRE P ) 6P LGPl
6 = i |, TGPy GeR G RES ) A

Inserting the definition of R in terms of z (paying attention to R? that is quadratic in ),
we can perform the parametric integration, and by using some spinor identities, find that

G'(i,5) = /dLIPS<4> I(i,j) = 2y <1 — P2%> (A.25)

(2m)* (il Pi] (| P |5]
o 271 (2])2 . pj)
= Gl (1 Pl 'pj)> 7 (A.26)

which corresponds to the (discontinuity of) the double-cut of (the finite part of) the one-
loop box function.

A2 F(ii+1,5,j+1)
The function F is defined in eq. (B30). Again we define

Fl,i+1,5,7+1)=F(@,j)+F@i+1,j+1)—F@i+1,j)—F@,5+1) (A.27)

with,
(im) (jm) (142) (141)
(i61) (j 6o) (1m)?

Then after using the Schouten Identity twice this can be written as,

(01) (im) (Gm) (14y)  (im) (jm) (Lj) (1) | (i1) (im) (j 1) (jm) ({1 6o)

(i 5) (i 1) (1m)> (i 5) (j £2) (1m)* (i g) (i 1) (j 62) (1m)?
(A.29)

(A.28)

Promoting to traces

tr— (1,4, 4, m) tr—(1,41,7,m) n tr—(1,4,4,m) tr—(1, 42, 7,m)
8151 (201.94) 81 51m (202-p;)
tr—(1,4,4,m) tr—(1, 4,7,m) tr_ (4,4, €1, {2)
57;81m (202.p5)(201.p;)

(A.30)

Which we recognise as two linear triangles and a box function similar to those in G. If we
commute {3 and j in the final term we can get something which looks like eq. ([A.4).

tr— (4,4, 01,74 tr—(g,01,%,¢

r (]71, 1, 2) -1 r (]7 152, 2) (A?)l)

(261.p;)(202.p;) (261.p;)(202.p;)
The first term will cancel the bubbles which arise in the calculation and the remaining
terms are triangles and boxes. However, since the coefficients of F depend on i and j there
will no longer be a cancellation between the four terms. This is important in controlling
the IR divergences of the amplitude, the triangle pieces are needed to cancel off the IR
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poles coming from the box functions. After performing Passarino-Veltman reduction on
the tensor integrals and performing the dispersion integrals we find.

2\ Ttr— (1,4, 4,m) tr—(1, j,i ;- pj P?
F(z’,j):c—F< u >[r (717]777;) : (,J,z,m)<_1+2F1 (17_6;1_6; Pi - D >>

€2\ —P? 87:51m N(P,i,j)
+<tr_(1,i,j,m)tr_(l,P,i,m) 1 +tr_(1,j,i,m)tr_(1,P,j,m) 1 > € ]
SijS3 2(P.p;) 8ijS3m 2(Ppj))1—-2¢|
(A.32)

A.2.1 Spinorial integration

Alternatively the function F can be computed via spinorial integration. Using momentum
conservation, lo = P+ly, and the rescaling in eq. (B.10), one can rewrite F (i, j) of eq. (A:29)
in terms of ¢, and ¢,

(im) (jm) (1) (1| P ]

Fli,§) = —
) (0 (m1)2 (4 P10}

(A.33)

The above expression, which turns out to be independent of ¢, is the integrand of the
double-cut integration, defined as,

F'(i,j) = / dLIPSYW F(i,j) . (A.34)

By substituting the parametrization of dLIPS® given in eq. (B:9), and performing the
phase-space integration with spinor-variables, one finds,

ml|i j Llm](m|ji1|m]

F,(Zaj) f— _< 82' s% G,(Z,]) +
i m
2w ((m|jillm](m|i P 1lm] .
- (@2n)! { Sij 52 (1] P |i] +( ‘_’J)} : (A.35)

where G'(i,j) was given in eq. (A:26). We remark that the term proportional to G'(i, j)
corresponds to the (discontinuity of) the double-cut of (the finite part of) the one-loop box
function; while the rational part of eq. (J[A.35) corresponds to the discontinuity of logarith-
mic functions associated with a combination of 2-point and (1m- and 2m-) 3-point functions.

A3 8(3i,i+1,5,j+1)

The final pieces of the amplitude, associated with the propagation of scalar particles around
the loop, are the most complicated. The function § is defined in eq. (B:31). In a similar
fashion to the gluonic and fermionic pieces we define,

N

with
(161)% (105)* (m 1) (m o) (im) (j m)

(Im)* (01 02)* (i 1) (j o)

S(i,5) = (A.37)
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After using the Schouten Identity the above can be reduced to a scalar box and third rank
triangles which can be solved via Passarino-Veltman reduction generating,

2 € . 2 s 2 2
tr—(1 tr_ (1 P
S(Z,]) — i_1;< H > |: r ( 727]>m21 41' ( 7J>Z’m) <1 _ 2F1 <1,—€,1 — € bi - Dj >>

— P2 83:51m "N(P,i,j)

1/tr_(1,4,5,m)tr_(1,P,i,m)®> 1 .
+{3 < 5ij51m (2p;.P)3 i)
1/tr_(1,4,5,m)*tr_(1,Pi,m)> 1 .
2< e ppp )
tr_(1,4,5,m)*>tr_(1, P,i,m)tr_(1, 4,4, m 1 o
_< (1,i,4,m) (34 ) tr—(1, i, m) +(ZH])>} € }
83:81m (2p;.P) 1—2¢
(A.38)

A.3.1 Spinorial integration

Alternatively the function S can be computed via spinorial integration. By using momen-
tum conservation, Iy = P + [1, and the rescaling in eq. (B.1(), one can rewrite eq. (A.37)
in terms of £ and t,

(im) (Gm) (m £) (£1) (m]| P10 (1] P|4°

S(i,j) =t
(,5) =t PA(it) (m1)* (j| P |{]

(A.39)

By substituting the parametrization of dLIPS™ given in eq. (B-9), and performing the
phase-space integration with spinor-variables, one obtains,

S'(i, ) = / dLIPS™ (i, j)

_ (m|ij 1|7n]42 T'j“'mﬁ Glif) + 27”'4 (m|1 ijlﬂz] <m|i{3 1|m]
Sij Sim (2m) Sij St (1] P 1]

y _(m|i P1m}® (m|1ij|m] (m|i P 1|m]
3 (i| P |i]? 2 sij (i| Pi]

Jr<m|1 z'j|m]2<m|ij 1 |m] > 4 (i <_>j)} , (A.40)

s

where G'(i,j) was given in eq. (A:26). We remark that the term proportional to G'(i, j)
corresponds to the (discontinuity of) the double-cut of (the finite part of) the one-loop box
function; while the rational part of eq. (JA.4(0) corresponds to the discontinuity of logarith-
mic functions associated with a combination of 2-point and (1m- and 2m-) 3-point functions.

B. Scalar integrals

The one-loop functions that appear in the all-orders cut-constructible contribution C,, given
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in section 3 are defined by,

]

Ef D)

F{™(P%s,t) = —[

2 w2\ us
2 2 2. _ . .
F4me(P 7@ 7s’t)_6_2|:<—8> 2 'y (17_671_67 P2Q2—St>
+

and
2\ €
F3™(s) = ;2 <%> : (B.4)
2\ €
Bub(s) = e(1 i 2¢) <ﬁ_s> (B:5)
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