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Primordial Fluctuations and Non-Gaussianities in Multifield Dirac-Born-Infeld Inflation
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We study Dirac-Born-Infeld inflation models with multiple scalar fields. We show that the adiabatic and
entropy modes propagate with a common effective sound speed and are thus amplified at the sound
horizon crossing. In the small sound speed limit, we find that the amplitude of the entropy modes is much
higher than that of the adiabatic modes. We show that this could strongly affect the observable curvature
power spectrum as well as the amplitude of non-Gaussianities, although their shape remains as in the

single-field Dirac-Born-Infeld case.
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The past decade has seen an accumulation of cosmo-
logical data of increasing precision. Together with future
experiments planned to measure the cosmic microwave
background (CMB) fluctuations with yet further accuracy,
we may be able to piece together more clues about early
Universe physics. In parallel with this observational effort,
there has been tremendous progress in recent years in the
construction of early Universe models in the framework of
high energy physics and string theory.

A particularly interesting class of models based on string
theory is known as Dirac-Born-Infeld (DBI) inflation [1,2],
associated with the motion of a D3-brane in a higher-
dimensional background spacetime. The characteristic of
DBI inflation, and that which gives it its name, is that the
action is of the Dirac-Born-Infeld type and thus contains
nontrivial kinetic terms. Most studies of DBI inflation
models (or even of string-based inflationary models) have
so far concentrated on a single-field description meaning,
in the DBI case, that the inflaton corresponds to a radial
coordinate of the brane in the extra dimensions. Taking into
account the “angular’” coordinates of the brane naturally
leads to a multifield description since each brane coordi-
nate in the extra dimensions gives rise to a scalar field from
the effective four-dimensional point of view. This setup has
started to be explored only very recently [3,4].

In this Letter, we show that the multifield DBI action
contains some terms, higher order in spacetime gradients
and vanishing in the homogeneous case, which have been
overlooked. The inclusion of these terms leads to drastic
consequences on the primordial fluctuations generated in
these types of models. The scalar-type perturbations in
multifield models can be divided into (instantaneous) adia-
batic modes, fluctuations along the trajectory in field space,
and entropy modes which are orthogonal to the former [5].
In contrast with previous expectations, we show that, in
DBI models, these two classes of modes propagate with the
same speed, namely, an effective speed of sound ¢, smaller
than the speed of light. As a consequence, the amplification
of quantum fluctuations occurs at the sound horizon cross-
ing for both types of modes. Moreover, when ¢; < 1, this
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leads to an enhancement of the amplitude of the entropy
modes with respect to that of the usual adiabatic modes. As
primordial non-Gaussianities—potentially detectable in
forthcoming experiments if strong enough—discriminate
between various models, we also study the impact of the
entropy modes on non-Gaussianity in the DBI case.

Our starting point is the DBI Lagrangian governing the
dynamics of a D3-brane:

1
Lopt = =3/ = det(g + Gy9u8'0,67), (D

where f = f(¢') is a function of the scalar fields ¢! (I =
1,2,...) and G;,;(¢X) is a metric in field space. From a
higher-dimensional point of view, (1) is proportional to the
square root of the determinant of the induced metric on the
brane, meaning that the ¢’ correspond to the brane coor-
dinates in the extra dimensions, f embodies the warp
factor, and Gy; is (up to a rescaling) the metric in the extra
dimensions. We also allow for the presence of a potential
and hence consider a full action of the form

R
S = fd4xJ—_g[2 + P}
1
f(@h)
where we have set 877G = 1. The determinant D =

det(8% + fG,;;0*¢'d,¢’) coming from Eq. (1) can be
rewritten as

D = det(8] — 2fX7)
=1 -2fG, X" + 42XV x ) — 83X x1xK)

2)

P= WD -1 - V(g

+ 164X X XK X 3)

where we have defined
XV =—largla, ¢, X =GxN, @
and where the brackets denote antisymmetrization of the
field indices. In the single-field case (I = 1), the terms in

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.101.061301

PRL 101, 061301 (2008)

PHYSICAL REVIEW LETTERS

week ending
8 AUGUST 2008

f2, 3, and f* in (3) vanish. This is also true for multiple
homogeneous scalar fields for which X =1¢¢’.
However, for multiple inhomogeneous scalar fields, these
terms, which are higher order in gradients and have not
been considered in previous works, do not vanish. We now
show that they change drastically the behavior of
perturbations.

In order to study the dynamics of linear perturbations
about a homogeneous cosmological solution, we expand
the initial action (2) to second order in the linear perturba-
tions, including both metric and scalar field perturbations.
This is a constrained system, and the number of (scalar)
degrees of freedom is the same as the number of scalar
fields. It is convenient to express these degrees of freedom
in terms of the scalar field perturbations defined in the flat
gauge, usually denoted Q. To obtain the second-order
action, we follow the procedure outlined in Ref. [6] for a
Lagrangian of the form P(X, ¢”), with X = G;;X". As we
have stressed above, the multifield DBI Lagrangian is not
of this form, but despite that it can be rewritten as

PR = 212X 0=V, ©)
where X = (1 — D)/(2f) [see Eq. (3)]. Although in the
homogeneous background X and X coincide, their per-
turbed values differ. Taking into account the corresponding
extra terms, one can show [7] that the second-order action
can be written in the compact form

1 L~
S(z) = E /dtd3xa3[P,gGUfD,QlfD,Qj

2. . ,
—_2P ¢G1;9,0'0'07 —

M,,0'0’
+2P 3,0’ D,Q’} ©)

Here a is the cosmological scale factor; the effective
(squared) mass matrix is

Mu = _DIDJP - P,XR1KL1¢K¢L

XP3~ . .
P s b1 +PX1¢J) +—= 2H2 ( _C_?>¢I¢J
_ID[;; x( >¢I¢Ji| (7)

and we have introduced covariant derivatives 7); defined
with respect to the field space metric Gy;, as well as the
time covariant derivative D,Q’ = Q' + '} ¢’ 0K, where
Il is the Christoffel symbol constructed from Gy and
R krs is the corresponding Riemann tensor. Finally, we
have defined the (background) matrix

2 X 1
mealem =1, + 2 6ol 3

N
where e/ = ¢! /\/2X (¢ = \/2X is also used in the follow-
ing) is the unit vector pointing along the trajectory in field

Giy=Gy+

space, L= Gy —

the vector ¢!, and

es1€,7 18 the projector orthogonal to

d= PX_ gy _pp 9)
P, x T ZXPY %

Let us stress that the only difference between action (6)
and the corresponding expression in Ref. [6] is the term in
spatial gradients, with coefficient c%f’xél ; instead of
P,XG, ;. This crucial difference implies that all perturba-
tions, both adiabatic and entropic, propagate with the same
speed of sound in multifield DBI inflation, in contrast with
Refs. [3,4,6], where they have different speeds. Finally, one
should recall that the above expressions apply to the DBI
context where P is given in (5) so that 13,)? =1/c,.

For simplicity, let us now restrict our attention to two
fields (/ = 1,2). The perturbations can then be decom-
posed into Q' = Q el + Q,el, where e!, the unit vector
orthogonal to e’,, characterizes the entropy direction. [For
N fields, the entropy modes would span an (N —
1)-dimensional subspace in field space.] As in standard
inflation, it is more convenient, after going to conformal
time 7 = [dt/a(t), to work in terms of the canonically

normalized fields
a [= ~
Vs = C_S P,XQO" Vg = a,/P’XQS. (10)
Note that the adiabatic and entropy coefficients differ
because Gy, is anisotropic. The equations of motion for
v, and v, then follow from the action (6), reexpressed in
terms of the rescaled quantities (10). One finds

" /
— vl + <c§k2 — Z—)vo - (2¢)
Z Z

v, =0, (1)

/

"
v+ Evl+ <c§k2 _2 aZ;L%)vS —Z—fvg =0, (12)
o Z

where

&= [(1+ AP, — 26?Pg,) (13)
O'PX

_ ao 1/ a=a,fPs, (14)

and u? follows from the mass matrix (7) (see [6,7] for
details). We will assume that the effect of the coupling &
can be neglected when the scales of interest cross out the
sound horizon, so that the two degrees of freedom are
decoupled and the system can easily be quantized. In the
slow-varying regime, where the time evolution of H, c,,
and ¢ is slow with respect to that of the scale factor, one
gets 7//z=2/7% and @”/a ~ 2/7%. The solutions of (11)
and (12) corresponding to the Minkowski-like vacuum on
small scales are thus

1 ; i
~ ~ —ike,T(1 — , 15
Vok = Usk ZkCS e ( ch 7_) ( )

when u?/H? is negligible for the entropic modes (if
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w2/H? is large, the entropic modes are suppressed). The
power spectra for v, and v, after sound horizon crossing
therefore have the same amplitude P, = (k*/272)|v|>.
The power spectra for Q, and Q; are thus

H? H?

= = 16
Q0 4ar’c P g 0 4 ciP g (16)

evaluated at the sound horizon crossing. One recognizes
the familiar result of k inflation for the adiabatic part [8,9],
while for small c,, the entropic modes are amplified with
respect to the adiabatic modes: Q; =~ Q,/c,.

These results can be reexpressed in terms of the comov-
ing curvature perturbation R = (H/¢)Q, which is useful
to relate the perturbations during inflation to the primordial
fluctuations during the standard radiation era. We recover
the usual single-field result for the power spectrum of R at
the sound horizon crossing:

H* H?
- 8mc XP ¢ 87 ec,

Pr, , (17)

where € = —H/H? = XP 3/H? (the subscript * indicates
that the corresponding quantity is evaluated at the sound
horizon crossing). It is then convenient to define an entropy
perturbation S = ¢, % O, such that Pg, = Pg_. The power
spectrum for the tensor modes is, as usual, governed by the
transition at Hubble radius, and its amplitude P, =
(2H?/7?);—,p is much smaller than the curvature ampli-
tude for ¢, < 1.

Leaving aside the possibility that the entropy modes
during inflation lead directly to primordial entropy fluctu-
ations that could be detectable in the CMB fluctuations
(potentially correlated with adiabatic modes as discussed
in Ref. [10]), we consider here only the influence of the
entropy modes on the final curvature perturbation. Indeed,
on large scales, the curvature perturbation can evolve inJ

a

3
(main) __ 3 a 23 1A A
Sop = fdfd xzcg(;—[Q” +¢;0,07]

2030

time in the multifield case, because of the entropy modes.
This transfer from the entropic to the adiabatic modes
depends on the details of the scenario and on the back-
ground trajectory in field space, but it can be parametrized
by a transfer coefficient [11] which appears in the formal
solution R = R, + TrsS. of the first-order evolution
equations for R and S which follow from (11) and (12)
in the slow-varying regime on large scales. Equivalently,

one can define the “transfer angle” ® by sin® =

Trs/+/1 + T% s (so that ® = 0 if there is no transfer and

|®| = 7r/2 if the final curvature perturbation is mostly of
entropic origin). This implies in particular that the final
curvature power spectrum can be formally expressed as
Pr = (1 + Tx5)Pgr, = Pg,/cos’0O. Therefore, the ten-
sor to scalar ratio is given by

Py
Pr

r = 16€c,co0s>0. (18)

This expression combines the result of k inflation [9],
where the ratio is suppressed by the sound speed c, and
that of standard multifield inflation [5].

We finally turn to primordial non-Gaussianities, whose
detection would provide an additional window on the very
early Universe. This aspect is especially important for DBI
models since it is well known that (single-field) DBI
inflation produces a (relatively) high level of non-
Gaussianity for small ¢, [2]. How, therefore, do the en-
tropic modes, whose amplitude is much larger than that of
the adiabatic fluctuations, affect the primordial non-
Gaussianity? In the small ¢, limit, one can estimate the
dominant contribution by extracting from the third-order
Lagrangian the analogue of the terms giving the dominant
contribution in the single-field case, but including now the
entropy components. These terms are [7]

[0,(VO,)* — :0,(VQ,)* +2c;0,VO,VQ,]

where we have replaced f by 1/¢7 since, for ¢, < 1, fo? = 1. Following the standard procedure [12—14], one can
compute the 3-point functions involving adiabatic and entropy fields. The purely adiabatic 3-point function is naturally the
same as in single-field DBI [15,16]. The new contribution is

H* 1

(Qo(ky)Q, (k) O (k3)) = _(2”)3’5(2"’) il [OK [—2k3k3K3 — ki(ks - k3)(2kyks — Ky K + 2K?)

+ k%(kl * kz)(Zklkz - k3K + 2K2) + k%(kl * k3)(2k1k3 - sz + ZKZ)], (19)

where K = Y ;k;. By using R = A,Q,. + A;Qy, with A, = (H/0). and A = Tgscs A, one can express the
3-point function of the curvature perturbation R, which is the observable quantity, in terms of the correlation functions of
the scalar fields. We find

<R(k1)R(k2)R(k3)> = (le(r)3<Q0'(k1)Qa'(kZ)Qo'(k3)> + lea'(~ﬂls)2|:<Qa'(kl)Qs(kZ)Qs(k:’o» + perm‘]
= ("7“0')3<Q0'(k1)QU’(kZ)QO'(k3)>(1 + T%{S): (20)

where we have implicitly assumed that the vectors k; are of the same order of magnitude (so that the slowly varying
background parameters are evaluated at about the same time). As we see, the above quantity depends on the symmetrized
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version of the 3-point function (19), which has exactly the
same shape as in single-field DBI. Note that the enhance-
ment of the mixed correlation {Q,Q,Q;) by a factor of
1/c2 is compensated by the ratio between A, and A, so
that the adiabatic and mixed contributions in (20) are
exactly of the same order. In principle, there are other
contributions to the observable 3-point function, in par-
ticular, those coming from the 4-point function of the
scalar fields, which can be reexpressed in terms of the
power spectrum via Wick’s theorem [17]. The amplitude
of this contribution will depend on the specific models. We
implicitly ignore them in the following.
The non-Gaussianity parameter fy, is defined by

(R Rk R (ks =~ 8 S ) 5 /vt (P

0
X % =k (21)
from which we obtain, for the equilateral configuration,
35 1 1 35

(3) —

1
SRR S ~ 0@, (22
NCT U108 2 1+ T2 o8 (22)

108 2

One can easily understand this result. The curvature power
spectrum is amplified by a factor of (1 + T% ) due to the
feeding of curvature by entropy modes. Similarly, the 3-
point correlation function for R resulting from the 3-point
correlation functions of the adiabatic and entropy modes is
enhanced by the same factor (1 + T s)- However, since
fi 1s roughly the ratio of the 3-point function with respect
to the square of the power spectrum, one sees that fy, is
now reduced by the factor (1 + T%{ s)- The so-called UV
model of DBI inflation is under strong observational pres-
sure because it generates a high level of non-Gaussianities
that exceed the experimental bound [18,19]. We stress that
their reduction by multiple-field effects may be very im-
portant for model building.

We end by revisiting the consistency condition relating
the non-Gaussianity of the curvature perturbation, the ten-
sor to scalar ratio r, and the tensor spectral index ny =

—2¢€, given in Ref. [20] for single-field DBI. In our case,

substituting fl(\?ﬂ =~ — % %cosz(ﬁ in (18) gives

r+8np = —r(y=3f4lcos 2O — 1).  (23)

As we can can see from (22) and (23), violation of the
standard inflation consistency relation [corresponding to a
vanishing right-hand side in (23)] would be stronger in
multifield DBI than in single-field DBI and thus easier to
detect. In the multifield case, the consistency condition is
only an inequality (unless ® is observable when the en-
tropy modes survive after inflation).

To summarize, we have shown that both adiabatic and
entropy modes propagate with the same speed of sound cy,
in multifield DBI models. Both modes are thus amplified at
the sound horizon crossing, with an enhancement of the

entropy modes with respect to the adiabatic ones in the
small ¢, limit. The amplitude of the non-Gaussianities,
which are important in DBI models, is also strongly af-
fected by the entropy modes, although their shape remains
as in the single-field case. All of these features are generic
in any model governed by the multifield DBI action. The
model-specific quantity (depending on the field metric, the
warp factor, and the potential) is the transfer coefficient
between the initial entropy modes and the final curvature
perturbation between the time when the fluctuations cross
out the sound horizon and the end of inflation. Recent
analyses (see, e.g., [21]) in slightly different contexts
show that this transfer can be very efficient, leading to a
final curvature perturbation of entropic origin (as in the
curvaton scenario). More generally, our results show that
multifield effects, common in string theory-motivated in-
flation models, deserve close attention as the entropy
modes produced could significantly affect the cosmologi-
cal observable quantities.
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