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Abstract
Probability matching priors (PMPs) provide a bridge between Bayesian and
frequentist inference by yielding Bayesian posterior intervals with frequentist
validity. PMPs are, in general, challenging to implement as they are defined
as solutions to a potentially high-dimensional and non-linear PDE. Outside
the orthogonal case, no general framework exists for the implementation of
PMPs. Recent work has made progress in this area, although no approach can
yet be applied in generality. We consider PMPs for the three Poisson system
arising in LHC experiments. Connections to reference and reverse reference
priors are also considered. Theoretical and simulation results are presented,
with comparison to other Bayesian techniques.

1 The Problem & Motivation

The problem of reliably estimating the intensity of a ‘signal’ in the presence of background and calibra-
tion uncertainties is a common one in LHC Physics and throughout the scientific world. Here we consider
application of a class of Bayesian prior distributions to this problem, known as probability matching pri-
ors (PMPs). PMPs provide a bridge between the two main paradigms of statistical inference: frequentist
and Bayes. Direct implementation of PMPs is, in general, extremely challenging as a result of possibly
high-dimensional and non-linear partial differential equations (PDEs) that must be solved. This paper
introduces both the rich rewards that may be reaped from applying PMPs in LHC Physics analyses, as
well as the challenges that must first be overcome.

The primary criterion for the methods considered here will be their coverage properties. Other
criteria such as credibility, length, bias and behavior in ‘boundary’ cases are also of importance and shall
be addressed where space permits. PMPs are constructed to have (approximate) frequentist validity, will
have good credibility over a range of prior distributions, and avoid many undesirable properties such as
zero-length intervals. In this sense, where the desired coverage can be achieved, PMPs would appear
to provide an ‘optimal’ solution likely to be accessible to both Bayesians and frequentists. However,
existence of a PMP is not guaranteed. In the LHC example presented here, a large class of candidate
priors are shown to not be PMPs.

While the theoretical properties of PMPs are well understood (see Ref. [1] for a review), their
implementation remains an immense challenge. Recent papers by Levine & Casella [2] and Sweeting
[3] have attempted to address this challenge, albeit not yet in full generality. In section 2 we provide a
brief introduction to PMPs and orthogonality. Implementation is discussed in section 3, with an LHC
application presented in section 4. Brief discussion is provided in section 5.

2 Introduction to Probability Matching Priors

2.1 Probability Matching Priors

The definition of a PMP for ψ ∈ R, is that the posterior quantiles of ψ have (approximate) frequentist
validity. See Ref. [1] for a formal definition. Peers [4] derived a PDE that a prior distribution must
satisfy if it is to be first order probability matching (PM) (i.e., coverage of ψ (1−α), the 100(1 − α)
posterior percentile of ψ, is 1− α+ o(n−1/2) for all 0 < α < 1, where n is the sample size).
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Theorem 1 First Order PMP Condition: Let ψ be a univariate parameter of interest, with φ ∈ Rp−1

a nuisance parameter. The data are assumed to be generated from the family f(·;ψ, φ). Let Iij and I ij

denote the corresponding elements of the Fisher Information matrix and its inverse respectively. A prior
π(·) is first order PM if and only if it satisfies the PDE:

∂

∂ψ

{
π(ψ, φ) · (Iψψ)1/2

}
+

p−1∑
j=1

∂

∂φj

{
π(ψ, φ)Iφjψ(Iψψ)−1/2

}
= 0. (1)

Analytic solutions to this generally nonlinear p−dimensional PDE are rarely possible, and numerical
solutions are often equally as elusive. However, in the case of an orthogonal parameterisation, that is,
Iψ,φj = 0 for all j, the solution is trivially given by:

π(ψ, φ) = I
1/2
ψψ · d(φ) (2)

where d(φ) is an arbitrary smooth function of the nuisance parameter (see Tibshirani, Ref. [5]). We,
therefore, naturally attempt to extend the utility of (2) even when the parameterisation fails to be exactly
orthogonal. The arbitrary function d(φ) can have a strong impact on finite-sample properties: the reverse
reference prior [6] is a recommended tool for selecting within this class.

2.2 Orthogonality

The formal definition of orthogonality, from Cox & Reid [7], is that the partitioned Fisher Information
(FI) is block diagonal, that is, Iψ,φj = 0 for all j. Cox & Reid showed that for a scalar parameter
of interest there always exists a transformation to achieve orthogonality with a (p − 1)−dimensional
nuisance parameter. However, the transformation is defined as the solution to a set of (p − 1) PDE’s.
These equations are in general not solvable by standard methods, and pose arguably a greater challenge
than the PMP PDE (1). Hence, two obvious routes to finding probability matching priors, from the
definition and via orthogonal parameterisation, are blocked by the obstacle of an intractable (set of)
PDE(s). A third route is to derive either the reference prior of Berger and Bernardo [8], or reverse
reference prior and check whether it is probability matching (frequently they are). However, outside the
orthogonal case, their derivation can also become extremely challenging.

3 Existing Implementation Methods & Their Limitations

Levine & Casella [2] (LC) describe a Monte Carlo scheme to sample from the posterior distribution
under a prior that is a solution to (1), when the nuisance parameter is univariate. The high run-time for
the algorithm also makes it infeasible for large-scale simulation studies as considered here. Sweeting
[3] proposes a more general approach that removes the restriction to univariate nuisance parameters, by
seeking a local probability matching prior, using data-dependent approximations. The approach requires
a non-trivial condition on the parameterisation, a condition that is not satisfied in the LHC application of
section 4. In the general case it is unclear how to construct a parameterisation satisfying the condition if
one is not immediately obvious. Indeed, in the LHC examples of section 4 the condition is not satisfied.

4 LHC Physics Example

The following problem is a common one in LHC Physics. The parameter of interest, s, represents the
signal, monitored for M decay channels, with εi and bi unknown channel-specific effective area and
background parameters. Consider,

ni|s, εi, bi ∼ Pois (εis+ bi) , yi|bi ∼ Pois (tibi) , zi|εi ∼ Pois (uiεi) , (3)

with i = 1, . . . ,M , {t1, . . . , tM , u1, . . . , uM} known constants and observations assumed to be indepen-
dent. The goal is to find a PMP for s under this model. For simplicity we consider only the single channel
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Coverage surface for Jeffrey’s prior: ε=1 b=3
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Coverage surface for RR prior: ε=1 b=3
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Fig. 1: Coverage surfaces for Jeffreys’ [L] and the reverse reference [R] priors. The z−axis displays the coverage,
x and y-axes indicate nominal coverage and the value of s. A ‘perfect coverage method’ would give a plane at 45°.

(M = 1) case and drop the subscripts. The multi-channel setting is known to be more challenging, see
Heinrich [9]. The first order PMP PDE can be shown to be:
∂

∂s

(
π

r
εst(u + s) + bu(1 + t)

ε2tu

)
− ∂

∂b

(
π

s
b2u

εst2(u + s) + but(1 + t)

)
− ∂

∂ε

(
π

s
s2εt

εstu(u + s) + bu2(1 + t)

)
= 0

(4)
This cannot be directly solved by standard software, which may suggest that no solution exists. The prior
from (2) here becomes π(s, b, ε) ∝ d(b, ε)/

√
sε+ b. Jeffreys prior is found to be a special case, where

d(b, ε) =
√
εtu/b. This is not the case for M > 1. In all cases posterior propriety must be checked. The

general M−channel reverse reference prior πrr can be fully derived. The regular reference prior πr for
the ordered parameterisation ψ = s, φ = (b, ε), if it exists, is of the form:

πrr(s,b, ε) ∝
√√√√∑M

j=1 εjuj∏M
j=1 bjεj

·
M∑
j=1

ε2j
sεj + bj

· 1∑M
j=1 εj

, (5)

πr(s,b, ε) ∝ g(s)

√√√√ M∏
j=1

bjuj(1 + tj) + εjstj(s+ uj)
bjεj(bj + εjs)

. (6)

By plugging in the form of the prior distribution into (4), it can be proved that, for the single-channel
case, neither the regular reference prior nor any priors within the Tibshirani class of priors from (2) can
be a PMP. For example, plugging the reference prior into (1), we obtain an ODE for the function g(s).
However, this ODE can be shown to have no solution. An analogous proof holds for the Tibshirani class
from (2), hence, also the reverse reference prior. These results, combined with the failure to directly
solve (4), strongly suggest that there in fact may be no PMP in this example.

Instead, we considered three priors of the form (2):

dJ (b, ε) =
√
ε/b d(b, ε) = 1/

√
bε d(b, ε) = 1, (7)

where dJ corresponds to Jeffreys prior and d = 1/
√
bε to a form of pseudo-Jeffreys’ prior for b and ε.

For comparison, priors of the form π(s, b, ε) ∝ 1√
s

and 1
s are also considered. 110,000 datasets were

simulated from (3) with b = 3, ε = 1, t = 33.0, u = 100.0 and with s taking on 22 values in the range
0.1 to 48.0. Posterior intervals were obtained under all of the above prior distributions. Figure 1 displays
the coverage surface for Jeffreys’ prior. Numerical results are presented in Table 1. Both Jeffreys’ and
the d = 1√

bε
prior have excellent coverage properties over a wide range of s. For M ≥ 8, say, coverage

properties often deteriorate. Overcoverage for small s is inevitable under the Bayesian methodology, and
a necessary price to pay for any method that does not produce zero-length intervals.
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Table 1: For s = 20, the actual coverage of nominal 5, 10, 25, 50, 75, 90, 95 & 99th percentiles produced by using
each of the different priors discussed in section 4

s(α) πrr: d = 1√
b

Jeffreys’: d =
q

ε
b

d = 1√
bε

d = 1 π ∝ 1 π ∝ 1√
s

s(0.05) 0.06 0.05 0.05 0.05 0.06 0.06
s(0.10) 0.12 0.10 0.11 0.11 0.12 0.12
s(0.25) 0.29 0.25 0.27 0.28 0.29 0.29
s(0.50) 0.54 0.49 0.51 0.52 0.54 0.54
s(0.75) 0.78 0.74 0.75 0.76 0.78 0.78
s(0.90) 0.91 0.89 0.90 0.91 0.91 0.91
s(0.95) 0.96 0.95 0.95 0.96 0.96 0.96
s(0.99) 0.99 0.99 0.99 0.99 0.99 0.99

5 Discussion

Since the primary goal is to produce intervals with frequentist validity: “why not just be a frequen-
tist?” One benefit of PMPs is that they produce intervals accessible to frequentists and Bayesians alike.
Moreover, this accessibility is independent of the criteria by which they are evaluated. Other criteria
are discussed in Heinrich [9]. In many of these respects PMPs may provide a more satisfactory solution
than other methods produced from frequentist principles alone. For example, as discussed in Heinrich
[9], both frequentist and likelihood-based methods can produce undesirable zero-length intervals. This
behaviour cannot occur under the Bayesian construction presented here, a side-effect of this is overcov-
erage for small signal s.

PMPs, where they exist, may provide an ‘optimal’ solution to coverage problems. In the LHC
example considered here, no exact PMP has been found so far, but approximate PMPs seem to exist over
restricted ranges of the parameter space, and may be all that is required for practical purposes. Reference
and reverse priors are also recommended as an effective default prior for Bayesian inference, often sat-
isfying the PMP property. Further progress on both computational issues and operational properties will
help give practitioners another option for making reliable inference about important physical parameters
arising in LHC experiments.
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