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1. INTRODUCTION

The LHC will be a very complex environment with most of theeimtsting physics signals, and their
backgrounds, consisting of multi-parton (and lepton/phpftiinal states. The ATLAS and CMS exper-
iments will measure these final states with negligible stigl error, even in the early running, and in
many cases with systematic errors smaller than those ahigy the experiments at the Tevatron (see
the contribution in these proceedings from G. Dissertdri)e luminosity uncertainty and the uncertainty
in the parton distribution functions (PDFs) can be minirdiby the normalization of the physics process
of interest to certain Standard Model (SM) benchmark preegssuch as , z , andtcproduction. Thus,
itis important to have theoretical predictions at the samtgetter precision as the experimental measure-
ments. In many cases, SM backgrounds to non-SM physics cextiapolated from background-rich to
signal-rich regions, but a definite determination of thekgmound often requires an accurate knowledge
of the background cross sections. An accurate knowledgeciss section requires its calculation to at
least next-to-leading order (NLO).

There are many tools for constructing basically any comfieal state at the LHC at leading
order (LO). When interfaced to parton shower Monte Carlogpains, such predictions can provide a
qualitative prediction of both inclusive and exclusive figtates. There are several different interfaces
between fixed order (both LO and NLO) matrix element and pesttower Monte Carlo programs, with
a benchmark comparison reported in this workshop.

A realistic theoretical description of complex final statdwugh, exists only at NL@) with the
current limit of such calculations being! 3and2 ! 4 processes (see below). At LO, calculations
often have large scale dependence, a sensitivity to kinermatis, and a poor modeling of jet structure.
These deficiencies are most often remedied at NLO. NLO padetgai calculations can serve as useful
benchmarks by themselves, as well as providing an even noonglete event description when inter-
faced with parton shower Monte Carlo programs, or when resation effects are included. For the
crucial benchmark processes mentioned abaveZ andttproduction), it is useful to go beyond NLO
to NNLO. This has been done far andz production, including the calculation of differential idjy
distributions, and is expected far, z= +jet andw +jet production in the near future. Progress towards
tris reported in the contributions from M. Czakon, A. Mitov aBdMoch.

Even at NLO, the calculation of ! 3 (and2 ! 4) processes is extremely time- and theorist-
consuming, so clear priority needs to be established f@elpoocesses most needed for the LHC. In the
2005 Les Houches proceedings, such a realistic NLO wishbst established (see Table 1). It is grati-
fying that 3 of the 8 processes (and some which were not listedexample the one-loop interference
between gluon fusion and weak boson fusion in Higgs plus pifgduction [1,2] ), have been calculated
in the intervening two years, but daunting to know that 5 renzand a new process has been added.
As noted in the table, three groups have calculated +jet since Les Houches 2005 and a detailed
comparison of the results is presented in these Les Houabesgrlings. In addition to the new NLO
calculation, several processes beyond NLO also have beksudd the list.

The new processes that have been added are:
pp ! bdb

There are several interesting physics signatures invglwvo b-pairs in the final state, such as

oH (! b) and hidden valley signatures whetebosons may decay to multiptequarks. Re-

lated to this calculation is the production of 4jets, whisHass interesting experimentally, but a

benchmark calculation from a theoretical point of view.

The calculations beyond NLO added to the 2007 version ofishaie:
gg! WW O0(?3)

S

This subprocess is important for understanding the backgte fors ! w ¢ W ()
NNLO pp ! t

lUnless otherwise stated, the terms LO, NLO , NNLO refer todtter in perturbative QCD only.
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This process is important for the usetafproduction at the LHC as a precision benchmark.

NNLO to weak vector boson fusion (VBF) ard= +jet
VBF production of a Higgs boson is essential for measurirgctupling of the Higgs to bosons.
7= +jetis an essential experimental process that is used terstaohd the jet energy scale. It will
also be useful for PDF determination.

In addition, to further reduce the theoretical uncertaifty the benchmarki =z processes, a
combined NNLO QCD and NLO electroweak (EW) calculation isaed. The cross sections are
known separately to NNLO QCD and to NLO EW, but a combinedwdaton will improve the
accuracy of the result.

It is also daunting to realize that all of the three finisheltwations from the 2005 list remain
private code. To be truly useful, such calculations neeckttavailable in programs accessible to exper-
imenters. Most useful is if the event 4-vectors and evengiatedutputs can be stored in ROOT n-tuple
format, so that experimental analysis cuts can be easillieabip a manner similar to what is used for
the actual data, and so that results do not have to be reajedéf the analysis cuts change. In such a
format, it is also easy to store not only the nominal evenigigigenerated with the central PDF of a
NLO set, but also the weights for the set of error PDFs as vielsuch a manner, the PDF uncertainty
for any event configuration can be easily established, aekipense of a larger n-tuple size. Such a
modification is being carried out for the MCFM program.

The calculation of complex multi-parton final states resuitthe generation of many subtraction
terms for soft and/or collinear real radiation (e.g. Cat8aymour dipole or antenna subtraction terms),
and each of these in turn requires a counter-event to be @edefor the Monte Carlo evaluation of the
matrix element. Thus, for example, in MCFM far +2jets (and for Higgs+2jets as well), there are 24
counter-term events for each real event. The net resulteigghquirement of a large amount of CPU
time for computing such cross sections, and the need for ri@hpf disk space for storing the results
in ntuples. These requirements will become even more extrasnthe complexity of the calculations
increases.

Although most of the NLO calculations for multi-particlegaluction so far are private code tai-
lored to the particular process at hand, there is a cleartdffivards more automatisation and making
results available to the community. Several agreements begn made during the workshop to facilitate
comparisons and to make at least certain building blockeriggt NLO calculations publicly available:

Les Houches accord on master integrals: the aim is to havwaryi of one-loop integrals, finite
as well as divergent ones, which can be used by anybody usinegtiaod which requires scalar
master integrals. It has been agreed that the format foraibelling of the integrals respectively
their arguments should follow the LoopTools [13, 14] corti@ms, as the infrared finite integrals
are already available in LoopTools. The infrared divergamés recently have been classified and
listed in [15] and can be found in analytic formfatt p: / / gcdl oop. f nal . gov. The final
aim is a webpage containing

1. acollection of scalar one-loop integrals in analytiarior
2. benchmark points and comments which kinematic regioas haen tested,
3. code to calculate the Laurent series of each integraliatgspecified by the user,

4. ideally also various codes for the reduction to mastegrals.
This webpage is in Wiki format, such that contributions camaldded easily. The location of the
webpage is
http://ww. i ppp. dur. ac. uk/ LoopFor ge/ i ndex. php/ Mai nPage, and input is
eagerly awaited.

If an amplitude is published in an analytic form, numericalues at some benchmark points should
be given to facilitate cross-checks by other groups.
All of the 2005 NLO wishlist processes that have been comegldd date relied on traditional

Feynman diagrams for the loop amplitudes. On the other hasdhe complexity of the final-states

4



Process
(V2 fz;w; g

Comments

Calculations completed since Les Houches 2

D05

l.pp! VVjet
2.pp ! Higgs+2jets
3.pp! VVV

W W jet completed by Dittmaier/Kallweit/Uwer [3];
Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)
NLO QCD to thegg channel

completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

7 7 7 completed by Lazopoulos/Melnikov/Petriello [
andw w z by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 20(

IS)

4.pp! tthbo
5.pp! tt+2jets
6.pp! VV I
7.pp! VV+2jets

8.pp! V+3jets

relevant fortH

relevant fort

relevant for VBF! H ! VvV, tH
relevant for VBF! H ! vV

VBF contributions calculated by
(Bozzi/)Jager/Oleari/Zeppenfeld [10-12]
various new physics signatures

NLO calculations added to list in 2007

9.pp! Bib

Higgs and new physics signatures

Calculations beyond NLO added in 2007

10.gg! W W O ( ? 2)
11. NNLOpp ! t
12. NNLO to VBF andz = +jet

backgrounds to Higgs
normalization of a benchmark process
Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forw =z

precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC preess
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grows further, it may prove necessary to adopt as well newcamhes and methods. At the 2007 session
of Les Houches, several such approaches were under discwssl development, primarily those based
on the general analytic structure of amplitudes. These odstlinclude recursive techniques at both
tree and loop level; the use of (generalized) unitarity iorfdimensions, and ik 2 dimensions
(the latter in the context of dimensional regularizaticemd automated solutions for coefficients of one-
loop integrals, which is also connected with generalizeitauty. Complex final states possess intricate
kinematic regions in which either the amplitude itself b®es singular, or a particular representation of
it becomes numerically unstable. The general identificadiicsuch regions, and methods for dealing with
potential instabilities, are also areas of active intenabich are not unrelated to the use of analyticity to
construct loop amplitudes.

Even with the rapid progress we have been seeing in the lastdars, there are NLO cross sec-
tions of interest that will not be completed in a timely manfa the LHC. One question is whether
we can provide any approximations/estimates of the untzkml NLO matrix elements based on expe-
riences with simpler calculations. Talhle 2 shows the Kefec{NLO/LO) tabulated for some important
processes at the Tevatron and LHC. Of course, K-factors anmalified way of presenting the effects
of NLO corrections (depending on both scale choice and P[RH i@ example), but the table provides
some interesting insights. For example, it appears thatgsses that involve a large color annihilation
(for examplegg ! Higgs) tend to have large K-factors for scales typicallysgoto evaluate the matrix
elements. The addition of extra legs in the final state teadsdult in a smaller K-factor. For example,
the K-factor for Higgs+2jets is smaller than for Higgs+1j@hich in turn is smaller than that for inclu-
sive Higgs production. The same is true for the K-factorifot-2jet being less than that for +1jet
and the K-factor forct+1jet being less than that fat. Can we generalize this to estimate that the NLO
corrections fomr +3jets andtt+2jets will be smaller still?

Typical scales Tevatronk -factor LHC Kk -factor

Process 0 1 K(o) | K() | KA )| K(o)|K(1)][K o)
W my | 2my 1.33 1.31 1.21 1.15 1.05 1.15
W +ljet m oy pft 142 | 1.20 1.43 121 | 1.32 1.42
W +2jets m pft 1.16 | 0.91 1.29 0.89 | 0.88 1.10
W W +Het my | 2my 119 | 1.37 1.26 1.33 | 1.40 1.42
t me | 2m¢ 1.08 | 1.31 | 124 | 1.40 | 159 | 1.48
te+ljet me | 2my 113 | 1.43 | 137 | 097 | 1.29 | 1.10
b my | 2my 120 | 1.21 2.10 0.98 | 0.84 2.51
Higgs my | prt 2.33 - 233 | 1.72 - 2.32
Higgs via VBF | m g pft 1.07 | 0.97 1.07 123 | 1.34 1.09
Higgs+1ljet my pft 2.02 - 2.13 1.47 - 1.90
Higgs+2jets |my | p™* - - - 1.15 - -

Table 2:x -factors for various processes at the Tevatron and the LH&ileded using a selection of input parameters. In all
cases, the CTEQ6M PDF set is used at NkQuses the CTEQG6L1 set at leading order, wiid$tuses the same set, CTEQ6M,
as at NLO. For most of the processes listed, jets satisfydfeirements: > 15 GeV/c andj j< 25 (5:0) at the Tevatron
(LHC). For Higgs+1,2jets, a jet cut of 40 GeV/c andj< 4:5 has been applied. A cut @fft > 20 G eV=chas been applied
for the ttHet process, and a cut @fft > 50 Gev=cforw w +et. Inthew (Higgs)+2jets process the jets are separated by

R > 0:52, whilst the VBF calculations are performed for a Higgs bosbmass120 GeV. In each case the value of the
factor is compared at two often-used scale choices, wheredale indicated is used for both renormalization and ferettion
scales.



The dream of experimentalists is for every NLO parton lewatalation to come packaged with a
complete parton shower for the partons produced in the NL@ beattering process. So far, this exists
for a few not-too-complicated processes, but it is not sg gaarrange this for each given NLO parton
level calculation. To make this process easier, it will befulto have a very systematic shower with a
simple structure that can be matched to the structure of tt@ dhlculation. Two programs discussed
at the workshop, and represented by contributions latenigidection, may help. One would naturally
match to a NLO calculation with antenna subtractions. Theotvould naturally match to a NLO
calculation with the widely used Catani-Seymour dipoletsadtions.

For many physics processes, though, we will have to contiouely upon LO parton shower
Monte Carlo programs (interfaced with exact LO matrix elemealculations). In many instances, a
large part of the difference between LO and NLO predictienthée use of LO PDFs for the former and
NLO PDFs for the latter. Nominally, the choice indicatedada correct, but LO PDFs can differ from
their NLO counterparts by a significant amount due to the arfie of DIS data on the global fits. The
LO PDFs often are changed in such a manner as to lead to sagiifieviations of LO predictions with
LO PDFs from NLO predictions with NLO PDFs, in some kinemagigions. One solution that has been
discussed is the use of NLO PDFs with LO Monte Carlos. Thigesothe problem mentioned above,
but can lead to additional problems, for example with préalis for low mass objects at the LHC. The
solution adopted by several groups, and presented at thikshap, is the development ofodi ed LO
PDFs, including the best features (for use in LO Monte Canddghe LO and NLO PDFs. It will be
useful/important to tabulate the K-factors using theseiffentiLO PDFs.

For the maximal exploitation of physics, there are also irequents on the experimental side. We
suggest that cross sections at the LHC should be quoted &iatren level, and where possible with
the estimated parton-to-hadron corrections, so that aegrétical prediction (parton or hadron level)
can easily be compared after the fact to the archived dafa fl§o, the experimental data needs to be
guoted only for the range of measurement, rather than edtagal to the full cross section; for example,
measurements of ! e should be quoted for the range of electron transverse manmreand rapidity
and of missing transverse energy actually used in the triggend analysis, rather than performing an
extrapolation to the fulli cross sections. Such recommendations were the exceptldk {C+jets)
rather than the rule at the Tevatron and a clear model nedus et for the LHC.

The structure of this report is as follows. First a review apexted cross sections and uncertain-
ties at the LHC from an experimental point of view is givenébthe stage. Then various new approaches
to the calculation of tree-level and one-loop multi-leg &tades are presented, followed by a section
on “improvements on standard techniques”, with partic@arphasis on the analysis of singularities
which can create numerical instabilities when integratimglti-particle one-loop amplitudes. Section
Il contains various results, first a tuned comparison diedént NLO calculations fopp ! W W +jet,
then results pointing towards thecross section at NNLO, and finally NNLO predictions for hadoo
event shapes ia" e annihilation. The latter is not of direct relevance for thd@, but is a benchmark
calculation in what concerns the construction of NNLO MoG#glo programs in the presence of a com-
plicated infrared singularity structure. The report issgd by a section on parton showers, addressing
the matching of parton showers with multi-leg LO matrix etaits as well as the matching with partonic
NLO calculations, which is of primordial interest at presand future TeV colliders.

2. MEASUREMENTS OF HARD PROCESSES AT THE LHCE
2.1 Introduction

We are approaching the start-up of the world’s most poweduticle accelerator ever built. It is expected
that CERN’s Large Hadron Collider (LHC) will start its op&oa in 2008. Thanks to the unprecedented
energies and luminosities, it will give particle physisisthe possibility to explore the TeV energy range

2Contributed by: G. Dissertori



for the first time and hopefully discover new phenomena, Wwigio beyond the so successful Standard
Model (SM). Among the most prominent new physics scenaniedlae appearance of one (or several)
Higgs bosons, of supersymmetric particles and of signatiorethe existence of extra spatial dimensions.

However, before entering the discovery regime, considerafforts will be invested in the mea-
surements of SM processes. We are sure that these have terbarskthus they can serve as a proof for
a working detector (a necessary requirement before angnabdidiscovery is made). Indeed, some of
the SM processes are also excellent tools to calibrate phitte detector. However, such measurements
are also interesting in their own right. We will be able to idrage the SM predictions at unprecedented
energy and momentum transfer scales, by measuring crossrseand event features for minimume-bias
events, jet production, W and Z production with their leptotdiecays, as well as top quark production.
This will allow to check the validity of the Monte Carlo geagors, both at the highest energy scales
and at small momentum transfers, such as in models for thepoesent underlying event. The parton
distribution functions (pdfs) can be further constrainedneasured for the first time in kinematic ranges
not accessible at HERA. Important tools for pdf studies dljet+photon production or Drell-Yan pro-
cesses. Finally, SM processes such as W/Z+jets, multifgéttap pair production will be important
backgrounds to a large number of searches for new physictharefore have to be understood in detail.

The very early goals to be pursued by the experiments, orecéri data are on tape, are three-
fold : (a) It will be of utmost importance to commission andilmate the detectors in situ, with physics
processes as outlined below. The trigger performance hlas tmderstood in as unbiased a manner as
possible, by analyzing the trigger rates of minimum-biasngs, jet events for various thresholds, single
and di-lepton as well as single and di-photon events. (b)lltbe necessary to measure the main SM
processes and (c) prepare the road for possible discovétimssinstructive to recall the event statistics
collected for different types of processes. For an integrdtiminosity of1f * per experiment, we
expectabout0’w ! e eventsontape, afactoroftenless & e andsomeo®t-! +X events.

If a trigger bandwidth of about 10% is assumed for QCD jethwiinsverse momentugy > 150 GeV,

bb ! +X and minimum-bias events, we will write abaLit® events to tape, for each of these channels.
Also the existence of supersymmetric particles, for exanghiinos withm ;1 TeV, or a Higgs with
my 130 GeV, would result in sizeable event statistias’(  1¢). This means that the statistical
uncertainties will be negligible after a few days, for moétttee physics cases. The analysis results
will be dominated by systematic uncertainties, be it thaitkd understanding of the detector response,
theoretical uncertainties or the uncertainty from the liosity measurements.

Concerning the experimentally achievable precision, wasth noting that the numerous quality
checks during construction and beam tests of series detacidules let us conclude that the detectors as
built should give a good starting-point performance. Femtiore, cosmic ray muons, beam-gas interac-
tions and beam halo muons are available as commissioningadifadation tools already before the first
real proton-proton collisions. Finally, with such first ksions in hand, the trigger and data acquisition
systems will be timed-in, the data coherence checked, ystieres synchronized and reconstruction al-
gorithms debugged and calibrated. The electromagnetibatibnic calorimeters will be calibrated with
first physics events. For example, the initial crystal idelibration precision of about 4% for the CMS
ECAL will be improved to about 2% by using thesymmetry of the energy deposition in minimum-bias
and jet events. Later the ultimate precision (:5% ) and the absolute calibration will be obtained using
7z ! e e decays and the =p measurements for isolated electrons, such as in e decays [17].
The latter requires a well understood tracking system. Tigumnity of the hadronic calorimeters can
be checked with single pions and jets. In order to obtain ¢hefergy scale (JES) to a few per-cent
precision or better, physics processes such asgt, z(! “‘)+ gtorw ! 2 jetsintop pair events
will be analyzed. Finally, the tracker and muon system atignt will be carried out with generic tracks,
isolated muonsor ! *  decays. Regarding all these calibration and alignmenttsffthe ultimate
statistical precision should be achieved very quickly instntases. Then systematic effects have to be
faced, which, eg., implies that pushing the tracker alignment from an initia 00 m to about10 m



might involve at least one year of data taking. More detaitadews of the initial detectors and their
performance can be found in Refs. [18] and [19].

The anticipated detector performance leads to the follgveistimates for the reconstruction pre-
cision of the most important physics objects :

Isolated electrons and photons can be reconstructed wilatave energy resolution characterized
by a stochastic term (which is proportional t& E) of a few per-cent and an aimed-for 0.5%
constant term. Typically isolation requirements are defibg putting a cone around the elec-
tron/photon and counting the additional electromagnatid laadronic energy and/or track trans-
verse momentum within this cone. The optimal cone size in spa@depends on the particular
analysis and event topology. For typical acceptance cutd) as a transverse momentum above
10-20 GeV andj j< 235, electrons and photons can be expected to be reconstrudttecxw
cellent angular resolution, high efficiency ( 90% ) and small backgrounds. Again, the precise
values depend very much on the final state topology and thresmnding tightness of the selec-
tion cuts. Most importantly, the systematic uncertaintyttom reconstruction efficiency should be
controllable at the 1-2% level, using in-situ measuremsnthz ! <" e decays, with one of
the electrons serving as tag lepton and the other one as pigbet for which the efficiency is
determined.

Isolated muons, with similar acceptance cuts as mentiohedeafor electrons, should be recon-
structed with a relative transverse momentum resolutiah-d&8% and excellent angular resolution
up to several hundreds of GeV. Again, a systematic uncéytaimthe reconstruction efficiency of
1-2% appears to be achievable.

Hadronic jets will be reconstructed up to pseudo-rapigité 4.5 - 5, with good angular resolu-
tion. The energy resolution depends rather strongly on peeic calorimeter performance. For
example, in the case of ATLAS (CMS) a stochastic term of ttteeoof 50 - 60% (100 - 150%)
is to be expected when energy deposits in projective cagigntowers are used for the jet clus-
tering procedure. Important improvements on the CMS jetgnessolution are expected from
new approaches such as patrticle flow algorithms. Well abdoedrigger thresholds jets will be re-
constructed with very high efficiency; the challenge is thderstanding of the efficiency turn-on
curves. In contrast to leptons, for jets the experimentatespatic uncertainties are much more
sizeable and difficult to control. A more detailed discussidll follow below.

A further important question is the lowegt threshold above which jets can be reconstructed
reliably. Contrary to the naive expectation that only highebjects (around 100 GeV and higher)
are relevant, it turns out that many physics channels regats to be reconstructed with rather
low transverse momentum of 20 30 GeV. One reason for this is the importance of jet veto
requirements in searches for new physics, such as itithe w w ! 22 channel, where

a jet veto is necessary to reduce the top background. Theiegeal difficulties related to the
understanding of the lows: jet respon@ the thresholds due to noise suppression, the impact of
the underlying event and additional pile-up events andnately the knowledge of the JES lead to
the conclusion that it will be extremely challenging, if nimtpossible, to reliably reconstruct jets
below ap: of 30 GeV. In addition, also the theoretical predictions @rallenged by very lows:
effects, as for example induced by jet veto requirementse ifiged-order calculations may have
to be supplemented by resummations of large logarithms.

Finally, the missing transverse energy will be a very imaott’indirect” observable, which is
constructed from measurements of other quantities, suahl ealorimeter energy deposits. Many
searches for new physics, such as Supersymmetry, rely vech ron this observable. However,
it turns out that it is also an extremely difficult quantityrteeasure, since it is sensitive to almost
every detail of the detector performance. Here it is evenemlifficult to give estimates of the

%Here denotes the pseudo-rapidity andhe azimuthal angle around the beam pipe.
“The jet response is defined as the ratio of the reconstrucig:the “true” jet momentum.



expected systematic uncertainties. Also, the reconsrugierformance depends very much on
the details of the particular final state, such as the numbgt®and/or leptons in the event, the
existence of “true” missing energy, e.g. from neutrinog, dimount of pile-up events and in general
the overall transverse energy deposited in the detectoe VEny first data will be of paramount
importance for a timely understanding of this quantity.

More detailed discussions of the expected detector andiséremtion performance can be found in recent
reviews ( [18], [19]), for ATLAS in Ref. [20] and for CMS in it®hysics Technical Design Reports
(PTDR), Vol. 1 [17] and Vol. 2 [21].

In the following | will concentrate on the early physics rhaaf the LHC experiments, i.e. on
measurements to be performed on the first few hundred pp to 1 fb * of integrated luminosity. Many
reviews exist on this topic, such as Refs. [19,22-24] to ioarunly a few. Most of the results presented
here are taken from the CMS PTDR \ol. 2 [21], because it regmssthe most recent comprehensive
overview compiled by one of the LHC experiments.

2.2 Jet production

Because of its extremely large cross section, the includijg production (pp! 2 jets + anything)
completely dominates over all other expected LHC procegsgslarge momentum transfer. At low-
est order in perturbative Quantum Chromodynamics (QCDs #tescribed as a ! 2 scattering of
partons (quarks and gluons), with only partons in the ihiiistermediate and final state. Depending
on the exchanged transverse momentum (or generally thgyeseale of the scattering process), the
final state will consist of more or less energetic "jets” wharise from the fragmentation of the outgo-
ing partons. Indeed, soft scattering processes, whichtwdargest contribution to the total inelastic
proton-proton cross section, are most likely, leading talfgtates with hundreds of soft (i.e. below a few
GeV) charged and neutral hadrons, uniformly distributedrawnost of the experimental acceptance in
pseudo-rapidity. Since these are the most likely processescur, they are triggered on with the least
stringent requirements and thus called "minimum-bias’néseFor the same reason they also represent
the typical pile-up events which can occur simultaneousth wther triggered proton-proton collisions.
Therefore very early measurements of the productionﬁamd the charged particle distributions will be
extremely important, in particular for the tuning of the wigd used Monte Carlo generators. Here | will
not discuss further this class of measurements, but rathezentrate on the parton scattering at large
transverse momentum. Examples of envisaged studies ofrminibias events can be found in [21].

For outgoing partons with transverse momentum well aboeeQ@RD fragmentation scale (
1 GeV) the picture of jet production arises, namely well coldited bundles of particles, leading to
isolated clusters of deposited energy in the calorimet&sveral algorithms exist for the clustering
of the final state objects (simulated particles, calorimete/ers, charged tracks) into jets with a well
defined four-momentum, which in the optimal case closelycineg the four-momentum of the original
scattered parton. Examples of commonly used prescripttwasthe Iterative Cone, Midpoint Cone,
SISCone and; algorithms. In particular, the latter two algorithms rettgmeceive a lot of theoretical
and experimental attention, mainly because of their ptgparbeing infrared and collinear safe to all
orders of perturbation theory. A detailed discussion okth@et algorithms is given elsewhere in these
proceedings, as well as in [25—-27] and references therein.

For the measurement of the inclusive jet cross section wplgioount the number of jets inside
a fixed pseudo-rapidity region as a function ofjet For a second typical measurement, the dijet cross
section, events are selected in which the two highegets, the leading jets, are both inside a specified
pseudo-rapidity region and counted as a function of the @ijgariant) mass. Both cases are inclusive
processes dominated by the 2 QCD scattering of partons. The distinction between ingrigts and

SCurrently the extrapolations from the TEVATRON up to the Lig¢Bergies suffer from large uncertainties. For example,
various Monte Carlo generators predict charged track iplidities which differ by more than 30%.
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dijets is only in a different way of measuring the same precésr a common choice of theregion,
events selected by the dijet analysis are a subset of théseselected by the inclusive jet analysis, but
the number of events in the two analyses coming from QCD ig&ea to be close at high:. The
steeply falling cross sections are shown in Elg. 1. For thisive jet case, the spectrum roughly follows
a power law, however, with increasing power for increasingie., the power increases from about 6 at
pr = 150 GeV to about 13 ap; = 3 TeV and keeps on increasing with jet.
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Fig. 1: Inclusive jet (left) and dijet (right) cross sectioreasurements as foreseen by CMS [21]. The central crogsrsect
values are taken from a leading-order calculation in deproe of the transverse momenta of the hard interaction. et
on the right plot indicates various trigger paths.

It can be seen that even for very small integrated lumiressitihe statistical uncertainties will be
negligible, up to very high jet momenta. Thus the TEVATROIHale in terms of highest momenta and
therefore sensitivity to new physics, such as contact actesns or heavy resonances, will be quickly
surpassed. For 1 fd, the inclusive cross section for central jet production & pseudo-rapidities
below 1) will be known statistically to better than 1% up tgaof 1 TeV, and the statistical errors on
the dijet cross section will be below 5% up to dijet masses t&\3.

The real challenge for these measurements will be the detation and control of the jet energy
scale. As mentioned above, the cross sections are stedlplg fa&s a function of jeto; . Therefore any
relative uncertainty on the jgt: will translate into an-times larger relative uncertainty on the cross
section, wheren indicates the power of the spectrum in a specifiedegion, ie.d =dpr / p.". For
example, &% uncertainty on the energy scale for jets around 100-200 (evansverse momentum
induces a30% uncertainty on the inclusive jet cross section. This is alsown in Fig[ 2 (left), here
for the case of a 3% JES uncertainty. As a comparison, il JHgg@t) we see the expected theoretical
uncertainties on the inclusive jet cross section from tlopagation of pdf uncertainties. These are below
the 10% level up to a jgt: of 1 TeV, thus much smaller than the experimental systeméiien the JES.
Therefore it is obvious that a measurement of the inclugterpss section will not allow to constrain the
pdfs, unless the JES is known to 2% or better. This is definliel/ond reach for the early phase of the
LHC, and might remain a huge challenge even later. Furthexptmecause of these large experimental
uncertainties, it might turn out that the currently knownxtam-leading order (NLO) perturbative QCD
calculation of the hard scattering process is precise émdoiga comparison to data. However, with
better experimental control at a later stage and/or othnitdlens of observables (see below) the need
for going to next-to-next-to-leading order (NNLO) mighisa.

Obviously, the knowledge of the JES also has a strong impatihe achievable precision of the
dijet cross section measurement, as shown in[Big. 3 (lefjweaver, the problem can be avoided by
performing relative instead of absolute cross section oreasents. A well suited observable is the dijet
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ratioN (3 < 309N (Gni< J i< Jjourds i€., the ratio of the number of dijet events within an
inner region;j j< 7, 7jto the number of dijet events within an outer regiorn, j< j < Jjour] Both
leading jets of the dijet event must satisfy thejcuts. In Ref. [21] the values chosen wekg = 05
and ... = 1, whereas in a recent update [29] of the CMS studies on induaind dijet production
they have been increased to 0.7 and 1.3, respectively. Téteralio has two interesting features. First,
it is very sensitive to new physics, such as contact intenastor the production of a heavy resonance,
because those lead to jets at more central rapidities thgennine QCD dijet events. Second, in the
ratio we can expect many systematic uncertainties to careml example, the luminosity uncertainty
completely disappears in the ratio. More importantly, dleJES uncertainty is strongly reduced, since
the dijet ratio is sensitive only to the relative knowledddlh® scale as a function of rapidity, but not to
the absolute scale any more. This is well illustrated in Bi¢right), where the JES uncertainty is shown
to be reduced to about 3%. In this figure also the sensitigityew contact interactions at various scales
is indicated. Hence we have a nice example of a ratio measmtewhere systematic uncertainties are
reduced. Having an observable in hand with experimentdésyaic uncertainties at the level of 5% or
less, it might become relevant to obtain a NNLO predictionjéb production.

As we have seen above, the JES is the dominant source ofaintgih jet cross section measure-
ments. Obviously, it is also important for many other anasyand searches which involve jet final states
and possibly invariant mass reconstructions with jets. r@floee major efforts are devoted by the ex-
perimental collaborations to prepare the tools for obtardES corrections, both from the Monte Carlo
simulations and, more importantly, from the data themseNgurrently approaches are followed which
are inspired by the TEVATRON experience [30, 31]. The cdroecprocedure is split into several steps,
such as offset corrections (noise, thresholds, pile-wgdative corrections as a function of absolute
corrections within a restricted-region, corrections to the parton level, flavour-specificrections etc.
At the LHC startup we will have to rely on Monte Carlo corrects only, but with the first data coming
in it will be possible to switch to data-driven correctiort a later stage, after a lot of effort will have
gone into the careful tuning of the Monte Carlo simulatioisnight be feasible to use Monte Carlo
corrections again. A rough estimate for the early JES uatgyt evolution in CMS is 10% at start-up,
7% after 100 pb! and 5% after 1 fb! [32]. Certainly it will be difficult and require time to obtaia
detailed understanding of the non-Gaussian tails in therjetgy resolution.
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scales (solid line and curves). Plots taken from [21].

Concerning data-driven JES corrections, one of the besingigis + jet production. At leading
order, the photon and the jet are produced back-to-back,ttieiprecisely measured photon energy can
be used to balance the jet energy. Real life is more difficudtinly because of additional QCD radiation
and the large background from jets faking a photon. Thesebeasuppressed very strongly with tight
selection and isolation cuts (eg., no additional third jehwa transverse energy beyond a certain threshold
and tight requirements on additional charged and neutexiggnin a cone around the photon). The need
to understand well the photon-faking jet background andoth@on fragmentation is avoided by using
the channel Z! ““)+ jet, with electrons or muons, however, at the price of a logress section.

Besides being a tool for obtaining JES corrections, bothet and Z + jet processes will also be
important handles for constraining the gluon pdf. It appdaasible to probe the gluon pdf at Bjorken-
values between about 0.0005 and 0.2 with a few per-censtitatierrors after only 1 fb' of integrated
luminosity [33]. Thex value is well determined using the lepton or photon kineasatinly, thus it does
not suffer from the less precise measurement of the jet maumenOf course, in order to consistently
constrain NNLO pdf sets (which should become more and mdegart with time), a NNLO calculation
of the hard scattering part of the process is needed. Whéhneaappears beyond reach for the jet
case, the Z+jet process might be tractable within the notféo future. As discussed below, Z+jet (as
well as W+jet) production is a very important background tany searches, therefore having a NNLO
prediction should be very valuable, also as a benchmark fontlsl Carlo generators which combine
leading order (LO) and/or NLO matrix elements with partoowkr models.

2.3 Vector boson production

The production of vector bosons (W and Z), triggered on whtkirt subsequent leptonic decays, will be
among the most important and most precise tests of the SMedtHIC. The leptonic channels, mainly
electrons and muons, can be reconstructed very cleanlyglatskatistics, with excellent resolution and
efficiency and very small backgrounds. At the same time,likeretical predictions are known to high
accuracy, as discussed in more detail below. This precigitinbe useful for constraining pdfs, by
measuring the rapidity dependence of the Z production ceston, in particular when going to large
rapidities and thus probing lowvalues. As proposed in [34], this process will serve as alstahcandle
for determining to high precision (at the few per-cent I@¥leé proton-proton luminosity or alternatively
the parton-parton luminosity. Finally, it will be attemgtéo improve on the current precision of the W
mass. Besides that, W and Z production will be an importapegmenter’s tool. As mentioned already
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earlier, Z and W decays to leptons will be used to understadatalibrate various sub-detectors, measure
the lepton reconstruction efficiencies and control evemifssing transverse energy measurement.

Below I will first discuss the inclusive case, concentratorgresonant production. Then | will
highlight some issues for the W and Z production in assamiatiith jets. Although being highly in-
teresting processes, di-boson production will not be dised here, since for integrated luminosities up
to 1 fb ! the statistical precision will be the limiting factor foredbe measurements and only allow first
proofs of existence and rough validations of the model etgtiens.

2.3.1 Inclusive W and Z production

Inclusive W and Z production currently is and probably wéhmain the theoretically best known process
at the LHC. Predictions are available at NNLO in perturbat®CD, fully differential in the vector
boson and even the lepton momenta [35]. Fidure 4 (left) shbv<Z rapidity distribution at various
orders in perturbation theory. We see that the shape stebilvhen going to higher orders and that the
NNLO prediction nicely falls within the uncertainty band thie NLO expansion, giving confidence in
the good convergence of the perturbation series. More itaptly, the renormalization scale uncertainty
is strongly reduced at NNLO, to a level of about 1% for Z rapédi below 3. A renormalization scale
uncertainty even below 1% can be obtained for ratio obséggaduch as W* )y W )and W)/ (2),
possibly as a function of rapidity. Again, ratio measuretaere interesting also from the experimental
point of few, since many systematic uncertainties canceliptetely or to a large extend. The prospect
of a precise measurement and knowing the hard scatteririgppére process so well means that we
have a tool for precisely constraining pdfs (or couplingd arasses, in a more general sense). Indeed,
when taking the full theoretical prediction for the W and Dguction cross section, ie., the convolution
of pdfs and hard scattering part, its uncertainty is donadaby the limited knowledge of the pdfs,
currently estimated to be around 5-7% [36, 37]. This willrtreso limit the proton-proton luminosity
to a precision of this size, unless the pdfs are further caim&d, mainly by the rapidity dependence of
the cross section, as for example shown in Ref. [36]. It isthvooting that at this level of precision also
electro-weak corrections have to be considered [38—40].

An important point to make in this context is the importané¢daving differential cross section
predictions. If we take resonant W and Z production at cénteetor boson rapidity, we probe values
of around 0.006, a region rather well constrained by theerurpdf fits. However, for larger rapidities
we probe more and more the smalkegion, which is less well known, eg., at leading order andafo
Z rapidity of 3 we need (anti-)quark pdfs at= 0:12 andx = 0:0003. Experimentally, because of
the detector acceptance, we can only access a limited gidnref the full phase space. This means
that when measuring a total cross section, we have to eXatgpthe measurement to the full accep-
tance (eg., full rapidity), which introduces a model deparat, especially on the poorly known low-
region. On the other hand, having differential predictione can compute exactly the same quantity as
we measure, thus eliminating any extrapolation uncestaiSimilarly, for constraining NLO (NNLO)
pdfs, exactly the same acceptance cuts (on the leptons)ths oata can now be applied on the avail-
able NLO (NNLO) predictions. Of course, with more and mor#edéntial higher-order predictions
becoming available, this kind of argument applies to angreection measurement (and/or deduced
determination of physics quantities such as couplings,segdfs), namely that we should compare
the measurements and predictions for the experimentatlgssible acceptance and avoid un-necessary
extrapolations, which will not teach us anything new andamiroduce additional uncertainties.

As mentioned above, the experimental reconstruction of \ Armproduction is rather straight
forward. Leptons are required to have a minimpmof about 20 GeV, within a pseudo-rapidity of 2.5
(cf. Fig.[4, right). In the Z case the mass peak allows fohfirevent selections and background estima-
tions. However, the neutrino in the W decay leads to missimeygy, which obviously is reconstructed
less precisely. Instead of an invariant mass peak only #mswerse W mass can be reconstructed, with
larger backgrounds than for the Z. Here it is interesting emtion that a jet veto can help to control bet-
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Fig. 4: Left : QCD predictions at various orders of perturbattheory for the Z rapidity distribution at the LHC. The sleal
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ter the QCD backgrounds and to improve the resolution of thesing transverse energy reconstruction.
However, a jet veto introduces sensitivity to lgw-QCD radiation, thus comparing the measurement to
a calculation for the same acceptance cuts will only be nmedmii if soft-pr resummation effects are
taken into account in the predictions. Fortunately, with #+jet process we have an experimental han-
dle to study these issues rather precisely (see also bedoweg the radiation pattern in W+jet and Z+jet
events is very similar. In Ref. [21] it has been shown thabnstruction efficiencies and ultimately cross
section measurements with systematic uncertainties dr@¥n(or better) should be possible, excluding
the luminosity uncertainty.

2.3.2 W/Z+jets production

Vector bosons produced in association with jets lead to §itzes with highs: leptons, jets and possibly
missing transverse energy. Such a topology is also expéatedany searches, in particular for squark
and gluino production and subsequent cascade decays. Wit will be important to understand
these SM processes as quickly as possible and validate diiatdg Monte Carlo generators, which typ-
ically combine LO matrix elements with parton showers. Angfard observable will be the W/Z cross
section as a function of the associated leading jet trassv@omentum or the number of additional jets.
Obviously, such measurements will suffer from the same Ji®mainties as the QCD measurements
discussed above, and thus constitute only limited caldmabols during the early data taking. The prob-
lem can be reduced by defining clever ratios of cross sectiomslving different vector bosons and/or
number of additional jets, or by normalizing the predicido the data in limited regions of the phase
space (eg. for small jet multiplicity and extrapolating &oger multiplicities). A completely different
approach is to take a more inclusive look at this processhénsense that the Z transverse momen-
tum is measured from the lepton kinematics, which is possbhigh statistical and, more importantly,
high experimental accuracy (cf. Fig. 5). This distributicen be understood as the convolution of the
Z+0/1/2/: : jets distributions, therefore any model intended to désczi+jets production has necessarily
to reproduce the £; distribution over its full range. As mentioned above, irsthbntext it would be
highly desirable to have a NNLO prediction, possibly mattheth a resummation calculation, for a
comparison to the precise data and as benchmark for othemdpations, implemented in Monte Carlo
simulations.
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2.4 Top pair production

The top quark is produced very abundantly at the LHC. With 1*fof integrated luminosity, we should
already have a couple of thousand clean signal events orirtdpe di-lepton channel, and a factor of
10 more in the single lepton channel (lepton+jets chanrddl). [The physics case for the study of top
production is very rich and can not be discussed in detad.Heor example, a recent review can be found
in Ref. [42]. Combining many different channels, a top masasurement with a precision of 1 GeV
might be achieved, which together with a precise W mass memnt constitutes an important indirect
constraint of SM predictions and its extensions. The prtdoccross section (for single and top-pair
production) will be an important measurement, again fotirigsthe SM predictions and because top
production is a copious background to a large number of neygiph searches. In the single muon+X
channel, the top-pair production cross section will so@n @ith about 1 fb') be measured with a
statistical precision of 1%. The total uncertainty of 184 %excluding the luminosity uncertainty) will
be dominated by systematics, most notably due to the kngeled the b-tagging efficiency. At the
moment it seems difficult to reduce this uncertainty to beld@®o [21], even for much larger integrated
luminosities. Therefore this should be seen as a benchnaude o be challenged by the theoretical
predictions. Efforts are under way to compute the NNLO adiioms to top-pair production and it will
be interesting to compare the ultimately achievable th@aeprecision to the experimental accuracy.
Precise higher order predictions (possibly including remation), both for inclusive top and top+jets
production, should also be very valuable for obtaining jm@dackground estimates, such as in Higgs
searches. Although it will be tried to calibrate the backpmds with the data themselves, by using
background-enriched samples for the normalization [4B,d theoretical predictions are still needed
for the extrapolation from the background-rich to the slggrariched regions of phase space. A good
theoretical precision will lead to reduced systematicshanitackground, which will be most relevant for
searches with small signal-to-noise ratios. It is worth timgning that for the measurement of the b-jet
cross section similar observations hold as for the top,the,statistical error will soon be negligible,
whereas the systematic uncertainty is expected to be arthh2®%, dominated by the JES.

Finally, top production will become an extremely valuab#dilaration tool. The mass peak can
already be reconstructed with much less than 1 fleven without b-tagging requirements. With a clean
sample in hand, it can be exploited for controlling the bgiag efficiency and serve as a closure test for
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the JES corrections determined from other processes. @Gungehe JES, the mass of the hadronically
decaying W serves as a calibration handle. CMS expectsahaitermediate jep; values this sample
could lead to JES uncertainties around or below 3% [21].

2.5 Conclusions

| have summarized the experimental and theoretical prespecsome of the most important measure-
ments of SM processes at the LHC, namely jet, vector bosoriggndroduction. The early benchmark
measurements will include the inclusive jet cross sectioa dijet cross section and the dijet ratio, pho-
ton/Z plus jet production, the Z rapidity distribution, iz of W and Z cross sections, the Z transverse
momentum distribution and top pair production. | have iatkd the expected uncertainties of the mea-
surements and shown how these processes serve as toolg famdbrstanding of the detector, for the
control of backgrounds and for the validation and tuning aifi#¢ Carlo generators. Particularly inter-
esting are ratio measurements, because otherwise impsstsiematic uncertainties cancel out in this
case. With differential predictions at higher order in pdvation theory in hand, | have highlighted the
importance of comparing theory and experiment for the sacoe@ance cuts, thus avoiding extrapola-
tion errors. It is important to have (differential) NLO pietions, possibly combined with resummation
calculations such as implemented in the Monte Carlo gemeMC@NLO [45, 46], for as many pro-
cesses as possible. For the cases where this appears tditadtdd achieve, LO plus parton shower
approaches might still be very valuable tools. Howeverhéigorder predictions, up to NNLO, should
be aimed for as benchmarks, at least in a few cases. | havifigmlijet, Z+jet and top production as
most interesting cases for investing the efforts towardd.8Nalculations.
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NEW APPROACHES

3. ON-SHELL RECURSION RELATIONS@
3.1 Introduction

The efficient calculation of scattering amplitudes with maxternal legs is a challenging task and
needed for phenomenological studies at TeV colliders. & hst years, various new methods for
efficient calculations in QCD have been introduced, oriynmotivated by the relation of QCD am-
plitudes to twistor string theory [47]. These methods ideluhe diagrammatic rules of Cachazo, Svrtek
and Witten (CSW) [48], where tree level QCD amplitudes amestmicted from vertices that are off-
shell continuations of maximal helicity violating (MHV) aiitudes [49], and the recursion relations of
Britto, Cachazo, Feng and Witten (BCFW) [50, 51] that camttiscattering amplitudes from on-shell
amplitudes with external momenta shifted into the complexg@. These developments have triggered
significant research and numerous applications towards Baplitudes in QCD [52-73]. In addition,
when combined with the unitarity method [74,75] the recumsielations have proven very useful for one-
loop calculations in QCD [76-105]. Here, we would like toiesv the basics of the on-shell recursion
relations for Born QCD amplitudes and the proof of its validi

Contributed by: C. Schwinn, S. Weinzier|
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3.2 Helicity amplitudes and colour decomposition

It is a well-known fact that the complexity of a calculatioased on Feynman diagrams grows factorially
with the number of external particles. In order to keep tze sf intermediate expressions under control,
a divide-and-conquer strategy has been proven useful: @iged the quantity to be calculated into
smaller pieces and calculates the small pieces separately.

One first observes that it is not necessary to square the taahpland sum over the spins and
helicities analytically. It is sufficient to do this numeally. This avoids obtaining (N ?)terms from an
expression witto (N ) terms. The individual amplitudes have to be calculated ielesity or spin basis.
This is straightforward for massless fermions. The two-ponent Weyl spinors provide a convenient

basis:
) ) 1
P 1=7 (1 s)u(p): Q)

In the literature there are different notations for Weylrsps. Apart from the bra-ket-notation there is
the notation with dotted and un-dotted indices: The retabietween the two notations is the following:

Prti=p; M+j=pi P i=F; M J=9: 2
Spinor products are defined as
hogi=tp  #+i;  [pal= o+ 1 i 3)

and take value in the complex numbers. It was a major bre@kijin, when it was realised that also
gluon polarisation vectors can be expressed in terms ofcwoponent Weyl spinors [106—112]. The
polarisation vectors of external gluons can be chosen as

nt . _ 1 j j< i. n . — 1+ j j<+ l
(qu) - ?— N4 (qu) - p— . N4 (4)
2 k+1 2k + ¢ i

wherek is the momentum of the gluon amrds an arbitrary light-like reference momentum. The depen-
dence on the arbitrary reference momentymill drop out in gauge invariant quantities.

The second observation is related to the fact, that indalidhelicity amplitudes can be decom-
posed into group-theoretical factors (carrying the colstmuctures) multiplied by kinematic functions
called partial amplitudes [113-117]. These partial amghs do not contain any colour information and
are gauge-invariant objects. In the pure gluonic case énd Amplitudes withh external gluons may be

written in the form
X
A,(l;uz5n) = g° 2 2Tr (T® @ T ® @A, ( (1) () ; (5)

28n=Zn

where the sum is over all non-cyclic permutations of the melegluon legs and the normalisation of

the colour matrices is Tm2T® = =2, The quantitiesa , on the r.h.s. are the partial amplitudes

and contain the kinematic information. They are coloureoed, e.g. only diagrams with a particular

cyclic ordering of the gluons contribute. In general, théooo factors are combinations of open strings
(T2 T2 ). . and closed strings Tir ™ 7™ of colour matrices. These building blocks form a basis
in colour space. The choice of the basis for the colour afrestis not unique, and several proposals for
bases can be found in the literature [118—-120].

3.3 Spinor space versus momentum space
It will be useful to discuss the relationship between spspace and complexified momentum space. Let

us first fix our conventions. The metric tensogis = diag(+ 1; 1; 1; 1). Anull-vector satisfies

: > @) = o: (6)

©) @7 (@)
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This relation holds also for complex . In complexified momentum space it is possible to chooseia bas
consisting only of null-vectors:

e = (1;0;0;1); e = (0;1;4;0); e3= (0;1; 10); a= (1;0;0; 1); (7)
is an example of such a basis. Light-cone coordinates aneedkéis follows:
Py =Po+P3; P =P0 B =Pt i e =p Ip: (8)

Note thatp, does not involve a complex conjugation f or p,. A convenient representation for the
Dirac matrices is the Weyl representation:

0 , 1 0
= o os= il ET= T =W =) (9)
with ~ = ( «; y; ») being the Pauli matrices. A Weyl spingx is an element of a complex two-

dimensional vector spacg and similar a spinop,_is an element of (another) complex two-dimensional
vector spaces’. We will think of p, andp, as independent quantities. The dual space will be
denoted bys, its elements by*. Similarly, we denote the dual spaced6by s®and its elements by
p*. The two-dimensional antisymmetric tensor provides amim@hism betweers ands as well as
betweens“ands®

' =" ps=ptan; = "y py = Py (10)
We take the two-dimensional antisymmetric tensor as
0 1
nAB _ "p = nAB- _ "A_B_= Lo . (11)

Spinors are solutions of the Dirac equation, therefore we liar massless Weyl spinors
P Pri=0; p P i=0; h+jp =0; m Jp =0: (12)
As normalisation we take for massless spinors
o J P i=2p; Ip+J Ppri= 2p: (13)

The solutions to eqd._(112], (13) and10) are

o e ) B o ei(+%) o
Pti= Pp——— ’ i P 1= 7
P ] P P 3 P2
e i) L5
ot j= —p—-( pip);i M J=P— (P P ): (14)
P+ ] P+ ]

Here is an arbitrary phase and is the phase ob, = ., je' . The spinors corresponding to a
four-vectorp are only determined up to a phase. With these spinors we have

hpgifp] = 2p  g: (15)
It is worth to note that the relation(p) = u(p)?Y °, or equivalently

p+r¥=tp+3; b = J; (16)
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holds only for realb and positivep, (e.g. = 0), since

o=
N

i( ) i(+3 )
'_'p+iy=e—??(( R ) oips )i P f=E??(p+ P ) (17)

Here the upper asterisk denotes the usual complex conjugahi pair of spinors(p, ;s ) determines a
(unique) null-vector through

1 1
p = Eppr“spa = S+ J pri (18)

This is just eq.[(I3) written reversely. For arbitrasy andps the four-vectorp will be in general
complex. While eq.[{14) defines a map from complexified mommanspace to the spinor spaseand
s% which is unique up to a phase, €0g.1(18) goes in the reversetitin: It defines a map from the space
s® s to complexified momentum space. In this context it is wortbliserve that if we changeg or

pe (but not both) by a linear transformation as

Py ! Pt zg OF pg ! ps zG ; (29)

the resulting four-vectop (z) will be a linear function ofz. Note however that a linear changegdn as
inp ! p + zg with a subsequent application of eg.j(14) will not result iimaar change irp, nor

Pr .

3.4 On-shell recursion relations

In the previous section we have seen that we can associatg tab-vectorp a pair of spinorsip, ez ).
From this pair we can reconstruct the original four-vectwotgh eq.[(18). To state the on-shell recursion
relations it is best not to view the partial amplitude as a function of the four-momenta, but to replace
each four-vector by a pair of two-component Weyl spinorser€fore the partial amplitude ,, being
originally a function of the momenta; and helicities 5, can equally be viewed as a function of the
Weyl spinorsk; , k. and the helicities ;:

An(ki; 1i5kn i n) = Balg ke ;i 17K KD oo

): (20)

Let us now consider the-gluon amplitude. For the recursion relation we single e particlesiand
3. If ( 55 )€ ( ;+)we have the following recurrence relation:

1.1
An kyikg i 1505k ;kg_; hn = (22)
X X 3 1 A A l A AN
AL :::;Eg sk o uniKa ;iK —Ar KK

. = = jusk) ,EB_, Jp

B
partitions =
where the sum is over all partitions such that particie on the left and particlg is on the right. The

momentumk is given as the sum over all unshifted momenta of the origexéérnal particles, which
are part ofa ;. In eq. [21) the shifted spinois., 12; K » andK ,_ are given by

N . o . o K, o k& A k2K
ko =ka 2k kl=1X +2zk; Ka=p=LEr; K, = p=——c=; (22
B hi+ K jj+1i hi+ K jj+1i
and
KZ
= — —: (23)
hi+ K jj+1



Here we shifted<! and ké_, while k! andk; were left untouched. We could equally well have used

the other choice: Shiftingi_ andkJ , while leavingk: and k;_ unmodified. In this case one obtains
a recursion relation valid for the helicity combinations;; ;) € (+; ). Therefore for all helicity
combinations oft ;; 5)there is at least one valid recursion relation. Applying tieicursion relation to
the six-gluon amplitude s (1 ;2 ;3 ;4" ;5" ;6% ) with three positive and three negative helicities, we
choose(i;j) = (6;1). In this case only two diagrams need to be calculated and wenothe compact
result

Ag(l ;2 ;3 ;47;5";67)=
6+ L+ 2P+ 1 M+ H+ 63+ 1

24
61102 134iM515, 0012 + L+ 65+ 1 23134 156ibliseei2+ L+ 65+ 1 (24)

3.5 Quarks, massive or massless

QCD does not consist solely of gluons, but contains the quaskwell. Let us now discuss the general
case of the inclusion of massive quarks. All formulae wilvé@a smooth limitn ! 0, therefore the
case of massless quarks will need no further discussionmBesive fermions we have to consider Dirac
spinors. We can take them as

1 1
u( )=————@+m)Hy i u( )=——7F—hy JE+mn);
w3 i g P i
1 1
v( J)=— @ m)y 1i; v( )=—— JE m): (25)
g i by P i

Here,pis the momentum of the fermion ang+ i andhg + jare two independent Weyl spinors used as
reference spinors. These two spinors define a light-like-f@getorg = %h:j + j o+ i, which in turn
is used to associate to any not necessarily light-like f@matorp a light-like four-vectorp!:

2

pb = p

q: (26)
2p g

The reference spinors are related to the quantisation dtiseaspin for the fermion, and the individual
amplitudes with labek or  will therefore refer to this spin axis. From the Dirac spisiave can
reconstruct the four-vectgs as follows:
1X
p o= 4 ul) uC (27)

For the recursion relation, we again single out two partidland 5, which need not be massless, with
four-momentap; andp;. To these two four-momenta we associate two light-like fmamental; and 1
as follows [121, 122]:
. p—
1 1 2pipy  SIgn(2pp5)
L= —m /@ iPi)i L= — ( P+ pj)i k= - > -
1 i 1 i 2pk
)2

(28)

with (2p iP5 4§p§. These light-like four-vectors define massless spinp#si, nl; + j jj+ 1
andhl; + j If particle iis a massive quark or anti-quark, we uge- iandhl; + jas reference spinors
for particle i. If particle jis a massive quark or anti-quark, we uge iandhl + jas reference spinors
for particle 5. We have the recursion relation

Ap (Ui ( )+ );Xl;:::;%g( Vit (+); n)= (29)
Ay ompud( )u); genivg ()R (+);
partitions =
ﬁAR we (d ()7 smmug ()b ); g

k
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Here we denote by the intermediate particle where we factorise the amplitaaiel byk the off-shell
four-momentum flowing through this propagator in the urtslifamplitude. We shift the Dirac spinors
as follows:

w’ )=u( ) zgi udE+)=uyH)+ zhk+ oz = (30)
For the intermediate particlewe define the polarisations with respect to the referenasospiil;+ iand
Bk + 4

0 B 1 0 . 0 B 1 o 0 .
ug ( )_miK_+mk ki Lk(*’)—mhlj jk="+ my ; (31)
where
K° =K  ZHy+3 f+i; K! =K }Kizhliqt i+ i (32)
2 )BT 2hL+ K Jy+ i R

The recursion relation is valid for ;; ;)6 ( ;+)with the following exceptions:
Particlesiand j cannot belong to the same fermion line.
The combinationgg ;g§ ), (af ;g§ ) (g iy )and (g; jq; ) are excluded.
If iis massive, the combinationg ;qg+ ), (G ;qg+ ), (@ ;qg+ )and (g ;qg+ ) are excluded.
If jis massive, the combinationig ;af ), (g ;o ) (g ;o )and(q ;4] )are excluded.
Instead of shiftings; () andy; (+ ), we can alternatively shifti; (+ ) anduy( )

K mﬁ
hl; + :Kj]i-i-i.

For the intermediate particlewe define the polarisations now with respect to the referepoeorsi.+ i
andhlj + j

W)= wE)  zhi+ F ous? )= uw( )+ zti; z= (33)

1 1
0 0 . . 0
- g i S S ; (34
ug () v i +my Jy 1 143(+) ' :K[Jrihli JE="+ my (34)
where
K° =K  ZHi+ 5 J+i; K! =K }Kizm-+ i+ i (35)
23T ’ 2hL+ K i 0 ) '

Doing so, we obtain a recursion relation valid for;; ;)6 (+; )with the following exceptions:
Particlesiand j cannot belong to the same fermion line.
The combinationsg ;qg A ;q§ ) (@ 595 ) and (g ig; ) are excluded.
If jis massive, the combination§ ;%" ), (af ;al* ), (g ;i )and (g ;4" ) are excluded.
If iis massive, the combinationg ;} ), (q ;4 ) (g ;o )and(q ;4] )are excluded.

As we are free to choose the particleand 5, we can compute all Born helicity amplitudes in QCD
with two-particle shifts via recursion relations, excelpé tones which involve only massive quarks or
anti-quarks. Amplitudes consisting solely of massive gsiand anti-quarks and with more than six
particles may be calculated recursively if one allows mareagal shifts, where more than two particles
are shifted.

22



3.6 Proof of the on-shell recursion relations

For the proof [51, 55,59-61, 72] of the on-shell recursidatien we discuss as an example the case of
the holomorphic shift as in ed_(22) or ef.{30). One considee function

Az) = An =iu( ul )i gismug( g ); g (36)
of one variablez, where thez-dependence enters through
w’( )=w( ) oz uSE )= usE )+ Zhk+ F 37)

The functiona (z) is a rational function ok, which has only simple poles in This follows from the
Feynman rules and the factorisation properties of ammgudrherefore, ifs (z) vanishes forz | 1,

A (z) is given by Cauchy’s theorem as the sum over its residuess iShust the right hand side of
the recursion relation. The essential ingredient for theopis the vanishing o (z)atz ! 1 . If

( 15 3)= (+; )itcan be shown that each individual Feynman diagram vasifhrez ! 1 . For the
helicity combinationg+ ;+ )and( ; )one first constructs a supplementary recursion relatioacdas
three-particle shifts and deduces from this represemtatie largez-behaviour ofz (z). This establishes
the recursion relation for these helicity combinationshiiite exceptions indicated above. The proof for
the anti-holomorphic shift as in ed._(33) proceeds analstyou

4. ON-SHELL RECURSION TO DETERMINE RATIONAL TERMS [i

On-shell methods offer an auspicious approach for dealiitig tive rapid growth in complexity of loop
amplitudes as the number of particles in the process ineseabhese methods rely on the unitarity of
the theory [123, 124] which requires that the poles and brauts of amplitudes correspond to physical
propagation of particles. On-shell methods are presemitiergoing intense development for use at loop
level (see, for example, refs. [86,87,89,95,97-104,123})1 Their advantage lies in the relatively mild
growth in complexity as the number of external particles@aseseffectively reducing loop calculations
to tree-like calculations

On-shell methods fall into two basic categories: the uititanethod [74, 128] which constructs
amplitudes based on their branch cuts, and on-shell rexufSD, 51] which constructs amplitudes from
their poles. In this section we discuss using on-shell i@oaras a means for computing rational terms
of one-loop amplitudes. The loop-level construction isdobdirectly on the construction of tree-level
recursion relations by Britto, Cachazo, Feng and WittenKB(, though a number of new features are
present. Further discussion of the unitarity method apgrpas well as other new methods exploiting
on-shell conditions on intermediate states [80, 89, 95198, 104, 129] may be found in other sections
of this report. Introductions to on-shell methods may bentbin various reviews [130-132]. Earlier
reviews of spinor methods, which are profitably used in cocijion with on-shell methods, may be
found in refs. [133, 134].

In the context of the unitarity method, it is convenient teidié the amplitudes into pieces that
contain branch cuts, plus rational (non-cut-containinigces. When using dimensional regularization,
the branch-cut containing pieces may be computed by iggdhe distinction between = 4 2
dimensions and four-dimensions in the numerators of thp-fmomentum integrands [74, 128]. This
observation allows powerful four-dimensional spinor teigiues to be used to greatly simplify the on-
shell tree amplitudes appearing in the unitarity cuts. Hmxeif one wants to obtain also the rational
terms directly from the cuts [130, 135], then the 2 ) dimensional contributions are crucial: dropping
these pieces leaves undetermined additive rational tgffing branch cuts can determine rational terms
ato ( °)because they develop branch cuts at ).) By using amplitudes validin = 4 2 dimensions
in the unitarity cuts, all rational terms are Keéjbiut at the cost of more complicated expressions. It has

"Contributed by: Z. Bern, L.J. Dixon
8In the language of dispersion relations [136, 137], thimnstruction is possible because the dispersion integesigerge
with dimensional regularization [138].
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physical poles E

C

spurious poles

Fig. 6: Using Cauchy’s theorem, rational terms in loop atoplies can be reconstructed from residues at poles in thelermp
plane. The poles are of two types: physical and spuriousp@li locations are knowa priori. Residues at physical poles
follow from factorization onto lower-point amplitudes. §téues at spurious poles cancel against correspondingmatitins
from the cut parts, and so they can be inferred from four-disie@nal cuts.

been pointed out [90-93] that the rational terms are radgtieasy to obtain from Feynman diagrams
because they do not require the full set of tensor integlalgddition, Brandhubeet. al. have argued
that the rational terms can be obtained from a set of cowantest [125]. Britto and Feng have recently
given a complete set of formulee for constructing loop aragkss, including their rational terms [104],
following earlier work [80, 89,97-100, 129].

An early version of on-shell methods was used to compute tieel@op matrix elements needed
for the NLO QCD corrections te* e ! ;2 0 djetsandop ! W ;z + 2 jets [139]. They have also
been used to obtain analytic expressions for the completdamp six-gluon amplitude [74, 76, 78, 80,
86,87,89-92,128] as well as a variety of helicity configiora forn-gluon amplitudes [82,85-87,101].
The results confirm the mild growth in complexity of these hoels as the number of external particles
grows.

A crucial next step for applying these methods to LHC phy@dfe construction of automated
programs to compute the large number of phenomenologiaairesting high-multiplicity processes.
As discussed in other sections of this report, such autainategrams are in the midst of being con-
structed [103,126], using the integration machinery ofdssPapadopoulos, and Pittau [95]. The recent
numerical implementation by Ellis, Giele and Kunszt [126fh@ unitarity method presently makes use
of D = 4 simplifications and hence does not contain rational terrhg. frogram of Ossola, Papadopou-
los, and Pittau [103] can be used to obtain the rational tebmiscurrently requires one-loop Feynman
diagrams to capture these terms, instead of more efficiesheh tree amplitudes.

On-shell recursion offers an efficient alternative for domsting one-loop rational terms directly
from their known factorization properties, in much the sanay as the BCFW recursion relations can
be used to obtain tree-level amplitudes. However, a numbeew issues arise at loop level that must
be dealt with first to have a practical method. These issu#gde the appearance of branch cuts, spuri-
ous singularities, the behavior of loop amplitudes undeydaomplex deformations and in some cases,
‘unreal poles’, which are present with complex but not reahmenta. More practical issues are automa-
tion and numerical stability. Here we briefly summarize tbastruction of rational terms via on-shell
recursion [81-83, 86, 87, 101], describing in particulairapte modification making it straightforward
to automate.

In general, any one-loop amplitude can be divided into tveces,
h i
AY=c Cch+ Ry ; (38)

n

wherec ,, are the ‘cut-containing terms’ possessing logarithmsylpghrithms, and associateds. The
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Fig. 7: Diagrammatic contributions to on-shell recursiormae-loop for a[5;1i shift. The labels ‘T’ and ‘L’ refer to tree and
one-loop vertices corresponding to the rational parts welepoint on-shell amplitudes.

rational terms, denoted l®y/,,, are defined by setting these (poly)logarithmic terms tozer

1 1
R, —A, —A, : (39)
c rat c InLip; !0
Let us assume that the cut-containing terms of the particular amplitude under consideration have
already been computed using four-dimensional unitarithis Teaves the problem of computing the
rational termsR ..

On-shell recursion relations can be derived by considezomgplex on-shell deformations of am-
plitudesa (z), which are characterized by a single complex parametgrl]. The z-dependence al-
lows us to use standard complex variable theory to consémnglitudes via Cauchy’s Theorem. To set
up an on-shell recursion relation fer, consider the effect of shifting some set of external momenta
ki ! ki(z), such that the on-shell conditioris; (z)¥ = m ¢ and the original momentum conservation
are satisfied. In the massless case, it is particularly coemeto shift the momenta of two external legs,
say, jand],

Z . . .
kj ! kj(z)=kj Ehj 4 i;

k

z
.l kl(z)=kl+5hjj i i; (40)

wherez is a complex parameter anif i and 4. i are Weyl spinors of positive and negative chirality,
following the notation of ref. [133]. In terms of these spiscthe shift is

P il i zii; Ti!l i+ zg i (41)
We denote the shift in eq$. (40) andl(41) agai shift.
The on-shell recursion relations follow from evaluating gontour integral,

I
1 R,
—  dz =) ; (42)

2 1 ¢ z

where the contour is taken around the circle at infinity, gsiated in fig[6, and&k , (z) is R , evaluated
at the shifted momenta_(40). If the rational terms under iclemation vanish as ! 1 , the contour
integral vanishes and we obtain a relationship betweenebkieat! rational contributions at= 0, and a
sum over residues of the poles®wf, (z), located at ,
R, (0)= g Res, , Ral2), (43)
poles z

If R, (z)does notvanish as ! 1 , then there are additional contributions. A systematiategyy for
computing such large contributions using auxiliary recursion relations wassarted in ref. [86], to
which we refer the reader.
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Fig. 8: Diagrammatic representation of one-loop overlamgsfor a[j; 1i shift. The channels correspond to physical poles and
remove double counts induced by cut completion.

As illustrated in fig[®, the poles in one-loop rational terfak into two categories: the physical
poles, which are present in the full amplitudes; and theisparpoles, which cancel against poles in the
cut-containing terms.

Residues at physical poles are dictated by factorizatido lower-point amplitudes. They may be
computed using the recursive diagrgin;fig.lzl,

X R, (2)
Rg ResZZer -
pl(lys: poles fr;sg
X tree tree
= AL (z = er)TRR (z= zrs)+ Ry (2= ZIS)TAR (z= Zrs)
rish Kr S Kr s
SH )
Ry
+ Altlree(z= ZIS)KTA;Iee(Z: Zrs) ¢ (44)
r s

The ‘vertices'R |, andR i in this recursion relation are the pure rational parts —gie definition[(3B)
— of the lower-point, on-shell one-loop amplitudes. Thertiees’ A == and A = are on-shell tree
amplitudes. The subscripts andR on the vertices indicate their location to the left or rigifttioe
central propagator in fif] 7. In the vertices the shift vaeabis frozen to the values

S

i (45)
hj ¥& i

corresponding to the location of the poleszincoming from shifted propagators. The rational pagt

of the factorization functiore [140] only contributes in multi-particle channels, andyoiilthe tree
amplitude contains a pole in that channel. Generically wee e double sum, labeled hys, over
recursive diagrams, with legsandlalways appearing on opposite sides of the pole. There issadson
over the helicityh of the intermediate state. The superscrippnR ? indicates that this set of recursive
diagrammatic contributions is not the whole rational pastdiscussed below.

Zrs =

It is interesting to note the similarity of the one-loop resian relation[(44), to the corresponding
tree-level recursion relation [51],
i tree
KTAR (z= 2zyg): (46)

r S

Artfee = Z—\Efee(z = Z.5)
risih
Thus loop-level recursive diagrams echo the simplicityreétlevel recursion.

One way to deal with the spurious poles is to start by findingua tompletion’¢,, [83, 86, 87,
101, 132]. One adds certain rational terghs , to C,, such that the spurious poles i, (z) cancel
entirely. Because physical amplitudes cannot have spaismgularities, the remaining rational terms,

®Unreal’ poles, which do not correspond to factorizationshweal momenta, may be avoided by choosing appropriate
shifts [86].
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Fig. 9: Non-vanishing recursive diagrams for the ratioealrts ofa ("' (1 ;2 ;3" ;4" ;5" ), using a[l ; 21 shift.

K, (z), must also be free of these spurious singularities. Thisomtpletion makes it unnecessary to
compute residues at spurious poles. It is rather helpfulnnde¥iving compact analytic expressions for
the amplitudes. It does introduce additional ‘overlap ciags’, as depicted in fig] 8. These diagrams
correct for the contributions o R , in physical factorization limits. They are simple to comgditom
the residue of R ,, at each physical pole...

Following the cut-completion procedure, a variety of raibterms with an arbitrary number of
external legs have been constructed [85—-87, 101], givimypbete amplitudes when combined with the
previously-computed cut-containing parts [74,78,79184,128]. More generally, it should be possible
to form a set of cut completions using integral functions tef type given in ref. [141] to absorb the
spurious singularities.

For the purposes of automation in a numerical program, ana@pproach is preferable [142]. It
is simpler to obtain the residues at the spurious poles tjréom the cut parts, calculated from the
four-dimensional unitarity method. Because a completelitindle is free of spurious poles, any spurious
pole found in the rational parts must cancel a spurious polke cut parts. To get the full rational part,

R,=R. +R5; (47)

we add to the recursive diagrarRs some ‘spurious’ contributiong 3, evaluated by means of the cut

termsc , (z),

X R, (z) X Cnh(z)
R§= Res,_, nz = Res,_, = :

(48)

spur: poles spur: poles

The spurious poles can be classified systematically in terms of the vanishieg lqz) = 0, of shifted
Gram determinants associated with box, triangle and bubble functions. (Inrfessless case, the
bubble Gram determinant does not generate a spurious pole.)

To illustrate this modified procedure, consider the fivwglamplitud@él’;s(l ;2 ;3% ;4% ;5%

with a scalar in the loop. The construction of the rationahiin this amplitude, using on-shell recursion
with cut completion, has already been discussed in somd d&tewhere [83, 132]. Here we describe
the new approach for obtaining these terms.

The cut part of the amplitude [143] is

i ni 2i3
Co = 1 . . 1 . 1 23 + 31
612 3ih3 41 5ih5 11 2 2
n S23
1iB4MA 112 4i[45](h2 313411+ W24i[45h511) Ss1 s (49)
3 h34ind 51 (ss1 93)°
where “?is a scale and ° ' signifies that we are dropping terms not pertinent for owcdssion. The
spinor inner products and kinematic invariants are defirsgd a
rebi M o i; ab] M jo i; Sap (e + kp): (50)
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The rational terms are determined by evaluating the regeidiagrams, plus the rational residues
of the cut terms at the spurious poles. Here we usethei shift. (As discussed in ref. [83, 86], for
this shift there are no additional contributions from eittage z behavior or unreal poles.) With the
[1;2i shift, the non-vanishing recursive diagrams are depiatefibi[@. A simple computation of these
diagrams (see section 5.1 of ref. [132]) gives,

hl 213 _ g 1 241357 (51)
h23ih3 414 5ih511 °

1 8
Do =1 —+ — _ ;
3 9 3h34i[12][15]23F
as the recursive contributions.
We still need to account for the residues at the spuriousspéitethe present example with(g;2i
shift, the only such pole comes from solvisg, (z) $3(z) = 0 (corresponding to a shifted two-mass
triangle Gram determinant). The solution is,

% H5iB2]+ nl3iB32] nldiR4] -

Ss1 93 Ss51 33 | (52)

To obtain the residue, we start from the logarithmic termeaf{49), and perform thg ;21 shift eq. [41),
yielding,
Cs(z) 1B4MA1i(241i+ zhl 41)[45)((23i+ zhl 31)34M41i+ (h24i+ zhl 41)45F514)

z 3 h34i 51

(h2 3i+ zhl 31)[3 2]

In h51i([1 5] z[25])

; (53)

. +
z(ssy 93 zhl4i24)¥

where we have kept only the term contributing to the spurresglue at.

The residue needed for e@. {48) can be extracted straigfafdly, by series expanding both the
logarithm and its coefficient in ed. (b3) around- z.. Cleaning up the result of this residue evaluation,
we find,

Cs(z
S5(a) _ ReSz:zS 5( )
_ i h12i2hl4i[34j . ihl1 4i[34]35] h14i[34] hl5i[35]
B o hl 5ih2 31h3 41 5i[2 3] 6 hl 5ih3 4id 5i[L5]23F
i Ss1 + So3 B4 1i24i[45] 23134 1i+ h24i[45h511i
- 54
6523851 (S51 93)° h3 41 51 (54)
The total rational part,
Re=R2+RE=D&+DP+ sk, (55)

matches the result obtained in refs. [83,132] using a cufpdetion. The complete amplitude is obtained
by summing the cuf(49) and rationfl {55) contributions.

The modified construction described here is amenable tavatton. In a numerical program,
instead of obtaining the residues at spurious poles bysserkpansion, we may compute them by nu-
merically evaluating the cut terms at several points arceach pole. The automation and numerical im-
plementation of on-shell recursion to amplitudes of indeéfer LHC phenomenology will be described
elsewhere [142].
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5. FOUR- AND D-DIMENSIONAL UNITARITY CUTS
5.1 Four-dimensional unitarity cuts

The application of unitarity as an on-shell method of caltioh, as introduced in [74], is based on the
principles that products of on-shell tree-level amplitsigeeoduce functions with the correct branch cuts
in all channels [144-147], and that any one-loop amplitiadele expressed as a linear combination of of
scalar (i.e. trivial numerator) master integrals [148-{1%dven the independent knowledge of the master
integrals, to compute any amplitude it is sufficient to eaduthe coefficients of such a decomposition.

For one-loop amplitudes, systematic techniques have beeglaped to extract the coefficients
algebraically, preserving gauge invariance at every imegliate stage of the computation. The use of
four-dimensionalktates and momenta in the cuts enables the constructior gillilogarithmic terms
in the amplitudes, which are fixed by their branch cuts, buegeally drops rational terms, which have
to be recovered independently.

Some recent developments of unitarity-based methods agplgralized unitarity cuts to ampli-
tudes and master integrals. The coefficients are then ¢éattdy matching the generalized cuts. General-
ized unitarity corresponds to requiring more than two in&tparticles to be on-shell, and the fulfillment
of these constraints can only be realized through complegrkatics. Complex kinematics are the key
for the exploration of singularities of amplitudes and tise of factorization information to reconstruct
amplitudes recursively, since the singularities of a seaty) amplitude are determined by lower-point
amplitudes in the case of poles and by lower-loop ones indke of cuts [49, 130, 133, 134].

A notable application of complex momenta within generalimaitarity is the quadruple cut, which
allows for an immediate and purely algebraic determinatibihe coefficients of box functions [129].
Every box coefficient is simply determined by the product lué four tree-level amplitudes sitting at
each corner, evaluated at the two particular values of top lmomentum which fulfill the four equa-
tions imposed by the vanishing of the cut denominators. [mahd triple unitarity cuts have led to
direct techniques for extracting triangle and bubble irdegoefficients analytically [80,89,99]. In cases
where fewer than four denominators are cut, the loop monmeigwnot frozen, so some explicit integra-
tion over the phase space is still required. In [80, 89, 96lade or triple cut phase-space integration
has been reduced to extraction of residues in spinor vagaland, in the case of a triple cut, residues
in a Feynman parameter. This approach has been used to ecompalytically the final contributions
to the cut-constructible part of the the six-gluon amplJ#o0, 89], and the complete six-photon ampli-
tudes [93, 94].

In general, one can computepoint (n  4) coefficients from quadruple cuts, three-point coeffi-
cients from triple-cuts, and two-point coefficients fromutdte-cuts, by avoiding the conventional tensor
reduction. As it turns out, given the decomposition of anyphiude in terms of master integrals, the
coefficient of anyn-point master integral can be recovered from thparticle cut. Obviously, any-
particle cut may also detect higher-point master integrglsch appear with different analytic structures
for they come from the Landau poles specific to each of the enastegrals. This is indeed the case
for the usual (double) unitarity cut, which can be used esigkly to derive box, triangle, and bubble
coefficients. In cases with massive particles, it is usef@pply a generalized cut to find the coefficient
of the 1-point (tadpole) master integral.

The algorithm of [80, 89] for evaluating any finite unitarityit involves a change of coordinates
that brings the loop momentum variable into the spinor fdisna The idea is that the final integrals
always localize to some poles in the region of integratiohade space integration is thus reduced to
a sequence of algebraic manipulations, up to an integratien a single Feynman parameter, which is
responsible for logarithms. Ultimately, even this intdégma does not need to be carried out, since it
is possible to match integrands at an early stage of the lesimn. The procedure naturally leads to
a clean separation of the master integrals, allowing fornahividual calculation of the corresponding

0Contributed by: R. Britto, P. Mastrolia
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coefficients.

By now, explicit analytic formulas for the results of unitgrbased methods are available [100,
102,104, 105, 129]. Coefficients of the master integralsliated directly in terms of tree-level input
data. All integration and reduction can now be avoided. éliljh it may not be a significant distinction
in terms of the final results, we note that the derivationsloP] 105, 129] used generalized cuts, while
those of [100, 104] used ordinary double cuts.

5.2 D-dimensional unitarity

Full one-loop amplitudes can be reconstructed from umjtatts ino = 4 2 dimensions [135, 138].

In the D -dimensional unitarity method, there is no need to distisigtrational” and “cut-constructible”

parts of the amplitude. Contributions that might be calleatibnal” (after expanding around = 0)

appear here as-dependent terms in the coefficients of the master integbsfore expanding around
= 0).

A systematicd -dimensional unitarity double-cut method was propose®i) 98], reducing one-
loop amplitudes to master integrals for arbitrary valuethefdimension parameter. Coefficients of the
master integrals can be extracted without fully carrying the D -dimensional phase space integrals.
Only a four dimensional (massive) integration is explicittquired. That can be performed by four-
dimensional unitarity techniques or any other availablerahtive. The remaining integral, which gives
rise to the -dependence of the cut-amplitude, is mapped to phase-spageals ind + 2n 2 dimen-
sions, wheren is a positive integer. With recursive dimensional shiftrtiges, similar to the ones in
loop integration, the cut-amplitude is reduced in termsuddlide, triangle, box and pentagon cut master
integrals in4 2 dimensions. The reduction is valid for an arbitrary numbedimensions. Expand-
ing in  gives both the (poly)logarithmic and rational part of thepditnde ato (°) and higher; these
contributions are required in cross-sections beyond tha-teeleading order in the relevant coupling
strength.

Generalized unitarity cuts are possible and useful idimensions as well [99, 154]. The benefits
of the double-cut integration of [80, 89, 97, 98] have beeiemed to the evaluation of triple cuts [99],
for the direct extraction of triangle and higher-point-ftion coefficients from any one-loop amplitude
in arbitrary dimensions. Accordingly, the triple cut isdted as a difference of two double cuts with the
same particle content, and the same propagator carryipgetigely causal and anti-causal prescription
in each of the two cuts. The triple cut phase space for a nessglarticle inD dimensions is written
as a convolution of a four-dimensional triple cut of a masgarticle, and an integration over the cor-
responding mass parameter, which plays the role of & )-dimensional scale. Just as in the case of
the double-cut [97, 98], to perform the four-dimensiondégration, one combines the method of spinor
integration of massive phase-space integrals, and arratieg over the Feynman parameter. But, in the
case of the triple-cut, after Feynman parametrization,dmlzining back the two double-cuts, the para-
metric integration is reduced to the extraction of residigethe branch points in correspondence of the
zeroes of a standard quadratic function in the Feynman peanit is that standard quadratic function
(or rather, its roots) that carry the analytic informatidracacterizing each master integral, therefore de-
termining its own generalized cuts. The final integratiorrahe dimensional scale parameter is mapped
directly to the triple cut of master integrals, possibly wghifted dimensions.

5.3 Mathematica package for spinor formalism

Recently, the package S@M (Spinors@Mathematica) wassedef 55]. It implements the spinor-
helicity formalism in Mathematica. The package allows the af complex-spinor algebra along with the
multi-purpose features of Mathematica, and it is suitabletie algebraic manipulation and integration
of products of tree amplitudes with complex spinors sewneinggalized unitarity cuts.
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6. COMMENTS ON UNITARITY BASED ONE-LOOP ALGORITHMS
6.1 Introduction

At the LHC deviations from the Standard Model will likely shaip in observables of complex multi-
particle final states. It is important to understand the &ath Model predictions and uncertainties for
these complicated final states. Leading-order Monte C&®@-MC) programs give a first estimate.
However, to understand the uncertainties we need at leasttaamleading order Monte Carlo (NLO-
MC).

The basic calculational framework for both tree-level aitnples (needed for the LO-MC) and
one-loop amplitudes (needed for NLO-MC) is the perturleatxpansion in Feynman diagrams. This
immediately gives us a straightforward algorithm suitdblenumerical implementation. However, such
implementations are not satisfactory from a numericaldgpaimt. The number of Feynman diagrams
grows faster than factorial with the number of external ipkes$ involved in the scattering process. As a
consequence the number of multiplications, and therefereedbmputer time needed to evaluate a phase
space point, will grow at least as fast.

In computer science, algorithms with factorial growth aaibed exponential or factorial algorithms
or simply E-algorithms [156]. Such algorithms are not cdeseéd optimal, i.e. the number of external
particles we can calculate becomes quickly limited by co@presources. In contrast, the other class
of algorithms with polynomial growth in the number of extaliiegs are called P-algorithms. Such
algorithms are highly desirable as the added computateff@it needed to go froms to (N + 1) external
particles is NN—” . This means the limiting factor for these types of algorighim scattering amplitude
calculations is often human resources instead of compesgeaurces. In the subsequent sections we will
argue that for numerical solutions, especially in the edaH€ physics, the complexity of the algorithms

are an important consideration.

6.2 Tree-level algorithms of polynomial complexity

The number of Feynman graphs grows very fast with the numbextrnal legs. For a tree-level
N -gluon scattering the number of individual Feynman graghapproximatelyn ™ 3 (within 5%
accuracy up to 16 gluons) [157]. This means that to extend @&vIC from 2 gluon ! 5 gluon to

2 gluon ! 6 gluon, the number of multiplications increases by at ledsictor of 13. Several LO-MC
are available for the numerical evaluation of arbitraryettevel processes in the Standard Model and
some of its extensions. Most of these packages are basethple dfeynman diagram evaluations. We
call these Numerically Implemented Exponential (NIE) aidions. A prominent representative in this
class of algorithms is MadGraph [158].

By using currents instead of amplitudes in Feynman diagraloutations one can construct re-
cursion relations [159]. This method re-uses recurringigeoof off-shell Feynman graphs in an optimal
manner. Because this leads to a more factorized way of edicglthe scattering amplitude one can im-
mediately extend the analytic calculations to more complecesses such as vector boson production
with up to 6 partons [160, 161] and 7 parton processes [162].

Another consequence of the recursion relations is the fatiom of an algorithm of polynomial
complexity. For a tree-levall -gluon process the number of multiplications growsNa$s[157]. This
means that to extend the LO-MC fromgluon ! 5 gluon to2 gluon ! 6 gluon the increase in
the number of multiplications is only 1.7 (compared to 13 $tandard Feynman graph calculations).
We will denote the LO-MC programs based on recursive typevafuation Numerically Implemented
Polynomial (or NIP) algorithms. A prominent representatis the ALPGEN program [163].

As is clear from the discussion we have reached a point foM©where the problem of numer-
ically calculating the scattering amplitudes can be carsid solved.

HcContributed by: R.K. Ellis, W.T. Giele, Z. Kunszt

31



6.3 Toward one-loop algorithms of polynomial complexity

The LO-MC prediction at LHC type of energies for QCD and/oedto-Weak processes are rather
gualitative. One estimates the magnitude of the crossoseatid predicts the shape for an observables.
The NLO-MC will give us a first real estimate of the expectednmalization and will give an order ¢
correction to the shape. Within the perturbative conteistdifiows us to estimate the uncertainties on the
predictions with some confidence.

The one-loop amplitude of the baskcgluon ! 2 gluon was already calculated analytically in
1986 [164] using the standard Feynman diagram calculati@me can extend this method brute force
with modern day computers. Using a combination of e.g. QGREF5] and FORM [166] one can
generate and manipulate the Feynman graphs giving tenstifodents times tensor integrals. The tensor
integrals can be determined using Pasasarino-Veltmarctiedu167] or other techniques. This then
can be straightforwardly implemented in a numerical codeefg. 2 gluon ! 4 gluon [168]. The
evaluation of a single phase space point for this procesistieamrder 9 second (10,000 times slower as
the 2 gluon ! 2 gluon one-loop amplitude generated using the same proggdittis clear that such a
direct approach using Feynman diagrams is severely affdstehe factorial growth in complexity. One
needs badly a polynomial complexity calculational apphoac

It can be shown that any dimensional regulated multi-looplaade is fully reconstructible using
unitarity cuts [169]. Because the unitarity cuts factasize one-loop amplitudes into a product of
two tree-level amplitudes this proves the existence of grmohial complexity algorithm for one-loop
calculations. This was exploited in the analytic calcolatf thee* ¢ ! 4 partons one-loop amplitude
[139]. The method applies four-dimensional unitarity cuts, ¢bgrit only partly reconstructs the one-
loop amplitude through unitarity, the so-called cut-camstible part. The missing part is referred to as
the rational part and is determined by other methods. Theeapf#-dimensional unitarity method has no
direct numerical equivalent, but it is explicitly demoraded that such methods of polynomial complexity
work very well within the context of analytic multi-leg orleep calculations.

The first numerically implementable method came from theated quadruple cut method [129].
While presented as an analytic method to calculate coefficiaf the 4-point scalar master integrals for
multi-gluon processes, it has a direct numerical implemtort. The numerical procedure can be used
to calculate the box coefficients for any multi-particle tseang process. By applying the quadruple
cut the one-loop graph breaks down into four tree-level @nmbds. This is therefore instantly a NIP
algorithm for calculating the coefficients of the 4-pointstex integrals. From the unitarity constraints,
i.e. the four cut propagators have to be numerically zere, @ets only two complex solutions for the
loop-momentum. By evaluating the product of the four treesl graphs using the two complex loop
momenta solutions, one gets the coefficient by simply avegaoyver the two solutions.

The numerical implementation of the method is extremelydasd simple, showing the potential of
a full numerical implementable unitarity method. To aclki#ivis one also has to calculate the coefficients
of the other 3 master integrals (the 1-, 2- and 3-point sdatagrals). A direct generalization of the
quadruple cut method becomes complicated because of pgertacontributions. By applying a triple
cut to determine the 3-point coefficient one has to take intmant that part of this contribution is also in
the quadruple cut. Disentangling these overlapping dautions proves to be not that straightforward.

For a one-loop amplitude one can construct a general paranf@im of the integrand and deter-
mine its coefficients by demanding different combinatiohseis of propagators to be zero (i.e. cutting
the lines) for both the parametric form of the amplitude anel éxpression obtained using Feynman
graphs [95]. This method is purely algebraic as it works anitibegrand level. When setting four propa-
gators to zero this method is identical to the quadruple @thiod. However, we now get in addition the
full loop dependence of the integrand of the 4-point mastactions through its parametric form. This
allows one to simply determine the triple cut contributidrtlee parametric 4-point integrand and hence

2The 5 gluon one-loop was calculated using string inspirethous [143].
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we know the subtraction term.

Using this method to construct the subtraction terms it i straightforward to formulate a nu-
merical implementable algorithm of polynomial complexity the cut constructible part [126]. Because
we determine the coefficients of the 2-, 3- and 4-point pataoi@rm of integrands by the equivalent of
unitarity cuts, the actual one-loop amplitude factorizea product of two, three or four tree-level ampli-
tudes. Thatis, we can determine the full parametric fornmefihtegrand from tree-level amplitudes. The
final loop integration over the parametric form is straigihtfard and gives us the three scalar master in-
tegrals and their respective coefficients. This method ndenels the polynomial complexity algorithm
of the quadruple cut method to include also the triple andbtibgut contributions. As a demonstra-
tion we used this method to numerically evaluate multi-glsoattering amplitudes. We found using a
single standard processor the following results: ztgduon ! 2 gluon at 9 seconds/10,000 events, the
2gluon! 3gluon at 35 seconds/10,000 events andxtgkion ! 4 gluon at 107 seconds/10,000 events.
This can be approximated by°=450 seconds/10,000 events, which by extrapolation would givarad
260 seconds/10,000 events fogluon ! 5 gluon. These evaluation times are more than sufficient for
use in NLO-MC generators, even on a modest single procegstars.

6.4 Conclusions: the rational part

The final step is a numerical suitable algorithm for the radigpart of the one-loop amplitude. This is
the final hurdle in achieving a full solution of polynomialmplexity for numerical one-loop amplitude
evaluations. Three methods exist in the literature. Thée rivsthod determines the rational part of the
tensor integrals. These rational parts can then be coattaciwith the tensor coefficients to give the full
one-loop rational part [90, 93]. This method goes back toRéygnman diagram expansion and leads to
an algorithm of factorial complexity. This negates all pegs made with the determination of the cut
constructible part using numerical unitarity techniques.

The other two methods are more analytic in concept, but shioybrinciple be suitable for a nu-
merical implementation. The so-called bootstrap methasl e a recursive procedure for the rational
part [86] similar to the tree-level unitarity based recarsielations [51]. This makes the method of poly-
nomial complexity. However, in its current formulation & mot suitable for numerical implementation.
The reason is that both the rational and cut constructibiegbéhe one-loop amplitude contain so-called
spurious poles. When adding the two parts together thesgospyoles cancel. This means that for
the construction of an unitarity based recursion relatiothie rational part these spurious poles have to
be removed. This procedure is called cut-completion, i.akerboth cut-constructible and rational part
free of spurious poles. Then the rational part contains phiysical poles and a unitarity based tree-level
like recurrence relation for the rational part is constillet Unfortunately the cut-completion procedure
requires analytic knowledge of the spurious terms, whiclhoupow have only be determined by explicit
analytic calculation of the cut-constructible part.

One can in principle retrieve the full one-loop amplitude dyplying D -dimensional unitarity
cuts [98, 135]. Such an implementation is per constructibpabynomial complexity. It requires the
calculation of thed -dimensional tree-level amplitudes. This can be impleeiiy restricting oneself
to massive scalar internal particles where the mass in gegteby the extra-dimensional length of the
loop-momentum. In this manner the extra-dimensional dafreloop-momentum can be integrated out.
After that one can read off the appropriate master integoafficients and rational part. The required
scalar internal particles restrict this method at the mdnempurely gluonic scattering amplitudes. In
its current implementation this method is restricted tolgi@applications for purely gluonic one-loop
scattering amplitudes.

It is clear from the discussions that a numerical algorithnpaynomial complexity is the only
issue left in fully solving one-loop calculations in a siarilvay tree-level calculations have been solved.
Achieving this final step would open the way to a multitude &fONMC generators for processes such
as forexamplep ! tw+2jets,pP ! tt+ oandpP ! Vector-Boson + 3, 4 jets.
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A NIP implementation for the rational part has to exist. lemstruction in the near future is of
great importance to make the first step towards more comnipticliLO-MC programs relevant for the
LHC phenomenology.

7. PHYSICAL APPLICATIONS OF THE OPP METHOD TO COMPUTE ONE-LO OP AM-
PLITUDESTH

7.1 Introduction

In two recent papers [95, 96], we proposed a reduction tecien(OPP) for arbitrary one-loop sub-
amplitudes athe integrand leve]121] by exploiting numerically the set of kinematical etjaas for
the integration momentum, that extend the quadruple,et@pid double cuts used in the unitarity-cut
method [105,126,128,129]. The method requires a mininfatimation about the form of the one-loop
(sub-)amplitude and therefore it is well suited for a nuarimplementation. The method works for
any set of internal and/or external masses, so that oneag@btudy the full electroweak model, without
being limited to massless theories.

In Sectior 7.2 we outline the basics features of the metho&ektior 7.8 we describe a numeri-
cally stable implementation of the OPP algorithm, in a foiina 8ORTRAN9O code,Cut Tool s [103].
In the last section, we compute, as an application, the ooe-lQCD corrections to the process
pp ! zz7 atthe LHC, also showing distributions for physically irgsting quantities.

7.2 The OPP method

The starting point of the OPP reduction method is the gerealession for thentegrandof a generic
m -point one-loop (sub-)amplitude

N
A= —— B p - gr

2
ms ; & 0: 56
DOD]_ Dm . i7 Po ( )

In the previous equation, we use a bar to denote objectgllivin = 4+ dimensions, and = o+ <,
wheres’ is -dimensional ande q) = 0. N () is the 4-dimensional part of the numerator function
of the amplitude. If needed, thedimensional part of the numerator should be treated stgras
explained laterN (q) depends on the-dimensional denominators; = (g+ p:)° m? as follows
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Inserted back in Eq[(56), this expression simply statesrtbki-pole nature of anyn -point one-loop
amplitude, that, clearly, contains a pole for any propagatthe loop, thus one has terms ranging from

BContributed by: G. Ossola, C.G. Papadopoulos, R. Pittau
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1tom poles. Notice that the term with no poles, namely that on@gntonal toP () is polynomial
and vanishes upon integration in dimensional regulanzatinerefore does not contribute to the ampli-
tude, as it should be. The coefficients of the poles can badusplit in two pieces. A piece that still
depend omg (the termsd;e;B;a), that vanishes upon integration, and a piece that do naraepn g
(the termsd;c;b;a). Such a separation is always possible and the latter setafficients is immedi-
ately interpretable as the ensemble of the coefficients| giaisible 4, 3, 2, 1-point one-loop functions
contributing to the amplitude.

Once Eq.[(5F) is established, the task of computing the oop-amplitude is then reduced to
the algebraical problem of fitting the coefficientsc;b;a by evaluating the functiom (q) a sufficient
number of times, at different values gf and then inverting the system. That can be achieved quite
efficiently by singling out particular choices giuch that, systematically, 4, 3, 2 or 1 among all possible
denominator® ; vanishes. Then the system of equations is solved itergtiveist one determines all
possible 4-point functions, then the 3-point functions smoén. For example, calling, the 2 (in general
complex) solutions for which

Dop=D;=Dy,=D3=0; (58)

(there are 2 solutions because of the quadratic nature gfrtipagators) and since the functional form
of &(g;0123) is known, one directly finds the coefficient of the box diagreomtaining the above 4
denominators through the two simple equations

Y
N (@) = [(0123)+ dlg, ;0123)] Di(q ): (59)

60,123

This algorithm also works in the case of complex denomirstoamely with complex masses. Notice
that the described procedure can be performethe amplitude levelOne does not need to repeat the
work for all Feynman diagrams, provided their sum is knowre just suppose to be able to compute
N (g) numerically.

The described procedure works in 4 dimensions. Howeven eieen starting from a perfectly
finite tensor integral, the tensor reduction may eventulgld to integrals that need to be regularized
(we use dimensional regularization). Such tensors arefihitt tensor reduction iteratively leads to rank
m m -point tensors witht  m 5, that are ultraviolet divergent whem 4, For this reason, we
introduced, in Eq.[(36), the-dimensional denominators ;, that differs by an amoun# from their
4-dimensional counterparts

DiZDi-l-qz: (60)

The result of this is a mismatch in the cancellation of dhdimensional denominators of Eq. {56) with
the 4-dimensional ones of Eq._(b7). The rational part of the amgé, calledr ; [170], comes from
such a lack of cancellation. A different source of Rationairiis, calledR ,, can also be generated from
the -dimensional part ofi (q) (that is missing in EqL_86)). For the time being, it shouldaaeled by
hand by looking at the analytical structure of the Feynmaagidms of via a dedicated set of Feynman
Rules. Examples on how to compute are reported in [170] and [171, 172]. The Rational Temms
are generated by the following extra integrals, introduicel®5, 96]

Z

.2 , 2
DD 2 3
z 12 Z q4 j_2
Pg—a— = —+0(); dg—i— = —+0():  (61)
D 1D D ¢ 2 DD DD, 6

The coefficients of the above integrals can be computed hiirigoat the implicit mass dependence
(namely reconstructing th¢' dependence) in the coefficientsc;bof the one-loop functions, one# is
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reintroduced through the mass shift | m? . One gets
b(ijje’) = b(ij)+ ob? (i); clijkia’) = clijk)+ *c? (ijk): (62)
Furthermore, by defining

% 1 h 1 my 1
D ™) (q;e) Ao dpdsjof ) + A(Qiiod dpds jof ) D:; (63)

dp< i< i< iz 6 g ;i1 iAo s

the following expansion holds

x . .
D™ gif)= o Pa® Yq); (64)
=2

where the last coefficient is independentspn
d(Zm 4)(q): d(Zm 4) . (65)

In practice, once the-dimensional coefficients have been determined, one canthedfits for different
values ofe?, in order to determine') (i), c?’ (ijk) andd®® *). Such three quantities are the coef-
ficients of the three extra scalar integrals listed in Eq)),(6dspectively. Therefore, the OPP method
allows an easy and purely numerical computation of the Ratiderms of typer ;.

7.3 Cut Tool s and the problem of the Numerical Inaccuracies

A FORTRAN9O program Cut Tool s) implementing the OPP method can be found in [103], to which
we refer for more details. We just mention that the only infation needed by the code is the number
and type of contributing propagators and the numeratortiomal (g) (and its maximum rank). A
particularly interesting feature of the OPP techniquep atsplemented irCut Tool s, is that it allows

a natural numerical check of the accuracy of the whole praedGiven the paramount importance of
this issue in practical calculations, we describe it hersome detail.

During the fitting procedure to determine the coefficientenerical inaccuracies may occur due
to

1) appearance of Gram determinants in the solutions fortw#j@, 2 or 1 denominators vanish;
2) vanishing of some of the remaining denominators, whenpeted at a given solution;
3) instabilities occurring when solving systems of linequations;

In principle, each of these three sources of instabilites loe cured by performing a proper expansion
around the problematic (i.eexceptiondl Phase-Space point. However, this often results in a huge
amount of work that, in addition, spoils the generality of thigorithm. Furthermore, one is anyway
left with the problem of choosing a separation criterionderitify the region where applying the proper
expansion rather than the general algorithm.

The solution implemented iGut Tool s is, instead, of a purely numerical nature and relies on a
unique feature of the OPP method: the fact that the redudiparformed at the integral level. In detall,
the OPP reduction is obtained when, as in Edl (57), the nuordranctionN (q) is rewritten in terms of
denominators. Therefone (q) computed for some arbitrary value gby using the I. h. s. of EqL(57)
should always baumericallyequal to the result obtained by using the expansion in the s. This is
a very stringent test that is applied Gut Tool s for any Phase-Space point. When, inexteptional
Phase-Space point, these two numbers differ more than adefieed quantity, the coefficients of the
loop functionsfor that particular pointare recomputed by using multi-precision routines (with ap t
2000 digits) contained itut Tool s [173,174]. The only price to be payed by the user is writing,
beside the normal ones (namely written in double-prec)siammulti-precision version of the routines
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computingN (g). The described procedure ensures that the coefficienteafdhlar loop functions are
computed with a precision defined by the user. Finally, ormeighmention that, usually, only very few
points are potentially dangerous, hamekgceptional so that a limited fraction of addition&PUtime is
used to cure the numerical instabilities, therefore corspeng the fact that the multi-precision routines
are by far much slower than the normal ones. This procedusebkan shown to work rather well in
practice, as we shall see in the next section.

7.4 pp! 777 atone-loop

The calculation is composed of two parts: the evaluationiwfial corrections, namely one-loop con-
tributions obtained by adding a virtual particle to the toeder diagrams, and corrections from the real
emission of one additional massless particle from initiadl dinal states, which is necessary in order
to control and cancel infrared singularities. The virtuairections are computed using tBPP reduc-
tion [95,96]. In particular, we make use@fit Tool s [103]. Concerning the contributions coming from
real emission we used the dipole subtraction method [17&diate the soft and collinear divergences
and checked the results using the phase space slicing mgthépwith soft and collinear cutoffs, as
outlined in [177].

These results have also been recently presented, folloawmgy different approach, by Lazopou-
los et al in Ref. [8]. A more complete study, that will also include tteese ofv *w z,w 277z, and
w *w w production, will be presented in a forthcoming publicat[@@8].
Let us begin with the evaluation of the virtual QCD correnido the processg ! 727 7. We
consider the process
ale)+ alez) ! 2 @)+ Z (Pa)+ Z (ps) (66)

p
All momenta are chosen to be incoming, such thatp; = 0.

Pr——7----- Ps
A\
------ P4
A\

P2 ——----- Ps3

Fig. 10: Tree-level structure contributingdg ! 22z 7.

At the tree-level, there are six contributions to this pss;ebtained by the diagram illustrated in
Fig.[10 by permuting the final legs in all possible ways. Qwapl corrections are obtained by adding
a virtual gluon to the tree-level structures, as depicteBign[I1. Each of the eight diagram of Fig]11
should be evaluated for six permutations of the final pasicbverall this calculation involves the reduc-
tion of 48 diagrams.

We perform a reduction to scalar integrals using @ reduction method [95, 96]. As described
in Section[Z.R, we need to provide the numerical value of th@erator of the integrand in the loop
integrals. The numerator functiam (q) can be expressed in terms of 4-dimensional denominators
according to the decomposition of E§.(57). For the paréicuase of five denominators, that is the
relevant case for the process studied in this paper, we hawve 5 and the indices range fromto 4.
Next, simply by evaluating the numerator functi®n(q) for a given set of values af, we can extract all
the coefficients in Eq(57).

The coefficients determined in this manner should be midtipby the corresponding scalar in-
tegrals. Since, in the process that we are studyingg-dependent massive propagator appears, we
will only need massless scalar integrals. They are compusaty the packagénel Cop written by
A. van Hameren [122].
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Fig. 11: Diagrams contributing to virtual QCD correctionsty ! 727 2

As an example, let us consider the pentagon diagram (thdikgtam of FiglIll). In our notation,
the integrand will read

N s(q)

67
P+ p)?lia+ pr+ ps)lila » BBXIlA R)4°) 67)

As(Q)=

with
Ns@= u®2) Pq p)Vi P o p)Ve Parpros) Vs Prarp)  UP1) (68)

The functionp (q) is the numerator of the quark propagator
Pg=6a+m;

whilev? = v ;, namely the contraction between he polarization vectohef-th z boson ; and
the -matrix in the vertexz gg
vi=lde (g.! +9i!y) (69)

where

S
G = “Qf jg=—"T— ;! =( 7)=2: (70)
C SC

For any fixed valuey, of integration momentum, and for a given phase-space pointy ) is simply the
trace of a string of known matrices. After choosing a repmést@on for Dirac matrices and spinors, we
evaluatay (q) by performing a naive matrix multiplication. By providinis input to the reduction algo-
rithm, we can compute all the coefficients of the scalar irdksg(in other words, the “cut-constructible”
part of the calculation).

The last step is the calculation of Rational Terms. As exgldiin Sectiofi 7]2, part of this con-
tribution, that we calR 1, is automatically included by the to the reduction algarithThe second term
R ,, coming from the -dimensional part ofi5 (9), has been added by hand by looking at the Feynman
Diagram and turns out to be proportional to the tree-ordepleande.

In the same fashion, we can repeat the calculation for ther @&ven diagrams. However, our
method allows for a further simplification: for each fixed mpertation of the final legs, only the g-
dependent denominators of EQ.J(67) will appear in the remgidiagrams. Therefore, we can combine
all diagrams in a single numerator function and perform @auction directly for the sum of such dia-
grams, allowing for a one-shot evaluation of the resulticgia coefficients.

We checked that our results, both for poles and finite pagigeawith the results obtained by the
authors of Ref. [8].

In what concerns the real emission, we only have to deal witlal state singularities, where we
distinguishgg and gg initial states. For theyg initial state, no soft singularity is present because the
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corresponding tree-level contribution vanishes. We tetbalt the structure of the NLO partonic cross
sections is as follows:

Z h z i 2 n i
NLO _ B v c A R A
aq - dqq+dqq+dqq+ dqq+ dqq dqq
VVV g VVV
Z h z i 2 'n i
NLO _ C A R A,
99 - +d 99 d ga d 99 d gq (71)
VVV g VVVg

whered B;d V;d ©;d ® ;d ® arerespectively the Born cross section, the virtual, gireounterterm,
real and real-subtraction cross sections. Fordhdnitial state two dipoles are needed as subtraction
terms. Ifps is the momentum which can become soft or collinear, the dipgim for gluon emission off
the quark is given by
8 4C 1+ %?
DI prls F@ — ¥ 5 (fpa) (72)
PP ® R & R @

pr ®
where thefpg are redefined momentap;g = fpis ;02703 74 959, Which are again on-shell and go to

h i

11 1
Cr M gq(fpjg)f DE96 A2 D& A g ——

dg d& = 6N 250,
where the facton=6 accounts for the three identical bosons in the final stateeMetails can be found
in [175,178].
The hadronic differential cross section with hadron moraentandp, is the sum over all partonic

initial states convoluted with the parton distribution €tions

x 2

d (P1;Py)= dz1dzpfa (z17 ¢ Mp(z2; £ )d ap(zaP1;22P2) ; (73)
ab

where the sum runs over the partonic configuratig®nsig, gg, 9g, gg, 9g.

7.4.1 Numerical results

As an explicit example we present the numerical resultsterdaseau ! 77z 2z for P s= 14 TeV

and using CTEQG6L1 [28]. The tree-order cross section has lesaluated using thelELAC event

generator [179-181]. In the following table the resultskirafe presented for the tree-order cross section
0, the ratio of the virtual to the tree-level cross sectiond #me real contribution, combining and

6 point contributions, as described above, for all chanrigds,uu;ug;gu, for different values of the

factorization(renormalization) scale € » = ).

scale 0 V=0 R N LO

=M, | 1.481(5)| 0.536(1)| 0.238(2)| 2.512(2)
= 2M, | 1.487(5)| 0.481(1)| 0.232(2)| 2.434(2)
= 3M, | 1.477(5)| 0.452(1)| 0.232(2)| 2.376(2)
= 4M 5 | 1.479(5)| 0.436(1)| 0.232(2)| 2.355(2)
= 5M , | 1.479(5)| 0.424(1)| 0.237(2) | 2.343(2)

As it is evident from these results, the factor is quite sizable(l:58 1:69), whereas the
dependence on the scalas for both cases quite weak, due mainly to the electroweakader of the
process.
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7.5 Conclusions

We presented a new method for NLO processes (OPP), in wh&hettuction to known integrals is
performed at the integrand level. The method has been sfaiggested in a number of applications,
the latest being the production of three Z bosons at the LHC.

The efficiency of the method is quite good. It can be furthguriowed if the numerical evaluation
of the integrand in the one-loop amplitude, by means of ®oarrelations, without relying on Feynman
diagrams, is developed [67].

In general, the speed, the precision and the simplicity ef@ffP method, make it a very good
candidate for the construction of a universal NLO calcufat@nt-generator.

Part 11

IMPROVEMENTS ON STANDARD
TECHNIQUES

8. GOLEM: A SEMI-NUMERICAL APPROACH TO ONE-LOOP AMPLITUDES

8.1 Introduction

The first collision data from the Large Hadron Collider (LH&X) CERN are expected in a couple of
months, giving us the opportunity to explore unprecedemeergies and luminosities. However, in
order that a discovery of New Physics can be claimed, it isrofial importance to have the Standard
Model physics under control. This includes e.g. understandf the detectors, the underlying event,
the luminosity determination, the jet energy scale [182]r iRost of these issues, an interplay between
measurements and precise theory predictions is mandaborg. hadron collider environment, multi-
particle/jet final states will be produced in abundance. réfoee considerable effort needs to be spent
to make predictions for multi-particle processes beyordd¢lading order. While the calculation of one-
loop five-point amplitudes can be considered as the stateedrt at the moment, the first complete cross
section for six-point processes at hadron colliders siithiés its completion. Many different approaches
to multi-particle production have been developed in theflas years, most of them being described in
these proceedings. For other reviews and very recent davelots, see e.g. [103,132, 183].

Here we will focus on a method implemented in the prog@dh EM(General One-Loop Eval-
uator of Matrix elements), which is based on a semi-numkeealuation of building blocks stemming
from the reduction of one-loop Feynman diagrams [184]. Tlennfieatures of the formalism are the
following:

It is valid for massive and massless particles

Forn > 5external legs, the reduction of rarkN -point integrals is done algebraically, reducing
the rank and the number of propagators at the same time in redciction step. Fow 5
we worked out form factor representations which allow toidvioverse Gram determinants in
exceptional kinematic regions.

The infrared divergences are easily extracted analyicalterms of triangles.
The rational parts of the amplitudes are obtained as byymtsdand can be projected out.

The program has an analytic and a numerical branch: it caforpera complete reduction to
scalar integrals, represented in terms of analytic fumsticsuch a complete reduction introduces
inverse Gram determinants, but this branch can be chosely sapphase space regions where the
Gram determinants are sufficiently large (which is the bdlthe phase space). As the evaluation

¥Contributed by: C. Bernicot, T. Binoth, J.-Ph. Guillet, Geilrich, E. Pilon, T. Reiter
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of analytic functions is fast, this speeds up the progransiciemably as compared to a purely
numerical approach. Near exceptional phase space pdietpragram allows to stop the reduction
before dangerous denominators are produced. The building blarleyvdluate in this case are
finite three- and four-point functions with Feynman paraeretn the numerator. As a brute-
force numerical evaluation of the four-point functions &her slow, we have worked out one-
dimensional integral representations, whose numericaluation is extremely fast. Details will

be given in the following section.

We have implemented the reduction in algebraic manipulagimograms and have obtained fully an-
alytical results for several amplitudes using these metH8d94, 185-188]. Without having efficient

and automated simplification methods to reduce the sizegoabalytic expressions, the fully analytic

approach based on form factors suffers from factorial cexipt and therefore does not seem to be
appropriate for 6-point processes. The semi-numericalatoh is preferable in this case. For the cal-
culation of the rational terms alone the situation is ddfer as the form factor representations simplify
considerably when restricted to terms which can generaitenid parts [93].

8.2 Results

Below we will describe applications of our method to onegaix-point amplitudes and explain in detalil
certain features which guarantee a fast and numericallystodvaluation in all phase space regions.

8.2.1 The GOLEM numerical library

In the GOLEM library, the strategy is to evaluate numerically higher éitsional three- and four-point
functions in phase space regions where numerical indiabilarise due to spurious singularities. To be
specific, these integrals are six- and eight-dimensionat-foint functionsz, * 2;14D *4 and four- and
six-dimensional three-point functions ;1 * 2 with or without Feynman parameters in the numerator.
While the triangles are two-dimensional integrals in Fegnrparameter space, the boxes a priori involve
integration over three Feynman parameters. As numeritedjiations in multi-dimensional parameter
space are rather slow, we worked out one-dimensional iakegpresentations for these integrals, whose
evaluation is both fast and precise. In [184,189] we hawadly presented other methods for the numer-
ical evaluation of Feynman parameter integrals, but theddmensional representations discussed here
are preferable, as they are much faster.

As an example, let us consider the case where two massivelggagcatter into two light particles
via a fermion loop. The two ingoing particles have a smalbe#y. In this kinematic region, the Gram
determinant is small. In this case, we have to evaluate gourt functions with two adjacent massive
legs, and with Feynman parameters in the numerator. If_figvel Blot the six-dimensional four-point
function with two adjacent massive legds, ., against the absolute value of the coefficienwhich is
proportional to the ratialet(G )=det(s ), for a trajectory of points witio > R85 10°.

In the GOLEM ibrary, there is a cut which allows to split the phase space regions where the
four-point function is evaluated analytically from thoseerve it is evaluated numerically. The larger the
cut, the longer the evaluation takes, as more calls of theenigal integration routine are made. On the
other hand, if the cut is too small, the analytical evaluatiauses a loss of precision of several digits.

As an illustration, we compute; (z;z5) and we plot the real and imaginary parts for different
values of the cut: c= 10 * (Fig.[13),c= 10 ° (Fig.[13) andc= 10 ° (Fig.[I5).

In the case at hand, the CPU time does not vary very much wathut the evaluation time ranges
from 0.14s (on an Intel Pentium M 1.3 GHz) far= 10 ! to 0.10s forc = 10 °. However, this
statement is hard to generalise to all possible situaticoaroing in a calculation of a complex multi-leg
amplitude. In any case, the cuallows to adjust the trade-off between speed and precision.
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8.2.2 Theuu ! ddssamplitude
With our method we calculated the one-loop six-quark amgét

A@upr; 1)ulE; 2) ! dps; 3)id@Ea; a)isEs; 5)isPEs; 6)) (74)

in massless QCD. The calculation has been carried out upingrshelicity amplitudes in the 't Hooft-
Veltman scheme. We have chosen a convenient colour basishwahows to split the amplitude as
follows
X X6
CA; (Pri:::ips)i (75)
=1
wherea . are the helicity and colour subamplitudes. In particularclvese the colour structures
Chc?icichic C)=(Z 88,28 8iSaeisadiasdidsd (19
In our notation is the vector( ,;:::; ¢),and ;= 1is the helicity of the particle with momentum
p5 of which the colour index ig;. In the six-quark amplitude one can identify two independesiicites
&= (+;+;+;+;++)and 2= (+;+;+;+; ;) all other helicities are either identically zero or
related to = or by parity invariance, which is exploited in our calculation
We generated the Feynman diagrams for this process@@haf [165] and reduced the tensor
integrals usingrORM[166, 190] to form factors as defined in [184]. We deal with sh@or algebra by
completing spinor lines to traces, e.g. for an arbitrarydpici  of Dirac matrices we use

E
+ + 1

i i = o utd eP; g: 77
p; D ] 1+ 5066 9 (77)
With the help oFORMandJavacode the expressions for the diagrams are transformed Ficti@n90
program. TheGol enBO0 library is used for the numerical evaluation of the form @ast In this approach
we found it advantageous to treat the spinor traces nuniigrecswell, in order to keep the expressions
more compact.

The code returns the subamplitudes in the form

6

%é %+%+C+O(") (78)
for each of the six colour structures and for all non-zerdditeds, wherea, B andC are complex
coefficients. As an example we plot in Figliré 16 the quantity. . * for one colour structure * and
the two helicity configurations® and *. The initial state momenta are chosen to be alongzthgis
while the final state momenta have been rotated aboug-einas by an angle . For = 0the momenta
are chosen as in Ref. [191]:

B3 = (33:5;159;250)

Pa = ( 12:5;153;0:3)

s = ( 10:0; 180; 3:3)

Ps = ( 110; 132; 220) (79)

In the chosen units the renormalisation scale is 1. The amplitude has been evaluated at 50 successive
points between = 0Oand = 2 ( = 0;0:126;0:252;:::), which took 2.4 seconds per point and
helicity on an Intel Pentium 4 CPU (3.2 GHz). Table 3 showsinaerical values of all coefficients for
the point = 0.
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Table 3: Six-quark amplitude. Numerical values of the \zittpartAca (fP595=1::6 ) s

and

A

C

c

1 0:0029670  0:00360651
2 0:0042784 + 0:00494741
3 0:0123663  0:01869811
4 0:0051836 + 0:00664591
5 0:0143367  0:01376031
6 0:0083400 + 0:01004561

= 0.

B
0:0203701 + 0:02815101
0:0191448  0:04201201
0:1171088 + 0:1401148i
0:0462621  0:04774581
0:1282264 + 0:10498201
0:0745825  0:07301791

0:0659100  0:10579401
0:0338141 + 0:18207981
0:4902357  0:47546391
0:1803702 + 0:17062081
0:5199953  0:39724331
0:2929410 + 0224593171

* for the kinematics given in the text
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Fig. 12: Scale-dependence of the cross section, (solid line) compared with the tree-level cross sectigndashed line).
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Fig. 14: The six-dimensional four-point function with three Feynmparameters in the numeratar; (z; z3 ), with two adjacent
massive legs and the cut= 10 °.
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Fig. 15: The six-dimensional four-point function with three Feynmparameters in the numeratar; (z; z3 ), with two adjacent
massive legs and the cut= 10 °.
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0

Fig. 16: The six-quark amplitude. The finite parts of the lemirexpansion it of si, 5 . * (solid) ands 3 1bj .~ (dashed)
are plotted for a kinematic point defined in the text, wherefihal state momenta have been rotated abouttaris by an
angle .
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9. ISSUES WITH THE LANDAU SINGULARITIES
9.1 Introduction

Cross sections involving a large number of external pa&sidan contain numerical instabilities which
must be carefully located and controlled. At tree-level @a@ mention integration over achannel
pole if the integration variables are not properly choseme Erossing of a resonance might also be
problematic. Beside these physical situations there nghfake singularities specific to the way one
has set up the amplitude; one example is the singularityghioabout by an unlucky choice of a reference
vector at the helicity amplitude level. These problems a@cerbated at the loop level since the loop
integrals can also develop singularities. A prominent gxanis the occurrence of vanishing inverse
Gram determinants: see for example the contribution of @emmd Dittmaier. The latter is a fake
singularity that can be met for some special, and simplegrkitical conditions on the phase space
of the external particles having to do with how one has chas®is (independent) basis for the loop
integrals and how one has subsequently expressed the otemitegrals in this basis. Loop integrals
can also havérue singularities that have an underlying physical origin. {¥depend on the dynamics
of the problem. Thresholds are one example, though harnaleddrivial to locate. These types of
singularities belong to the general class of Landau sinmijigls. The physical singularity can be revealed
by studying the analytic properties of the scalar integkéére we study the case of one-loop integrals.
In particular we will review how the conditions for havingausingularities can be derived, especially
in a format that is conducive to an easy implementation inrapger code. When such a singularity
is present it is important to inquire whether this singuiais integrable or not. We rederive here the
singular part. We then consider two specific complementaayrples taken from the recent literature.
The first one, the electroweak correctionsto! Wi , reveals a Landau singularity having to do with
massive, indeed unstable, particles in the loop. In thie taes singularity is smoothed out by the width
of the unstable particles. The second is thghoton amplitude which involves massless states, both
internally and externally. In this case the Landau deteamiiris a quadratic function whose square root
is proportional to the Gram determinant.

9.2 Conditions for a Landau singularity and the nature of thesingularity

Consider the one-loop process (p; )+ F» (p2) +
:::+ Fy (py ) ! 0;whereF; stands for either a
scalar, fermion or vector field with momentum

as in the figure opposite. The internal momentum
for each propagator ig; with 1= 1;:::N . Each
momentumy; is associated with one Feynman pa-
rameterx; respectively. The scalar loop integral
reads

Z
N d’ g 1
TO D 2 14
(2 1D 1D, N D
D; = qf mi2+i,q=q+rl,
Xi
r, = py; i= 1;:::5N ; (80)

15Contributed by: C. Bernicot, F. Boudjema, J.P. Guillet, NLB, E. Pilon
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The Feynman parameter representation reads

Z h z D
d” g 1
TS = ) dx dx x; 1) , : 81
’ o 2 PiGuDi+ xD2+  nwDx N (1

Because of the Dirac delta function, the integration bounaethe Feynman parameter spaceare: 0,

given by the Landau conditions [123,192]

%i xi(@@ m?)= 0;
N
L1 %Xgi= 0:

on-shell then the integrat’)' has a leading Landau singularity (LLS). If a solution extsis with some
x; = 0 while the otherx,'s are positive, the Landau condition corresponds to a laweer Landau
singularity (LOLS).

By introducing the matrix , under the conditior = m ?,
)2

=mf+m2- (g rj)z; ;92 £1;2;:::5M g; (83)

Qij=2gmy=mi+mi @ g i

the conditions to have a Landau singularity in the physiegian are

det(Q )= 0; 84)

ForM = N one has a leading singularity, otherwisetif < N this is a subleading singularity. If some
internal (external) particles are massless, as in the dasg-photon scattering, then some; are zero,
and the above conditions can be easily checked. Howevéeg ihternal particles are massive then it is
difficult to check these conditions explicitly, especiailym is large. In this case, we can rewrite the
above conditions as follows

det(Q )= 0; (85)

whered ;5 is obtained fromo by discarding rowi and columnij from Q. Note thatdet(y v ) =
ddet©)FdQy v - If det@w w ) = 0 then the second condition iR (85) becomes(J 4, ) = 0
with § = 1;:::;M 1. There may be cases, as we will encounter in setidn 9.4,enther Landau
determinantiet(Q ) has a quadratic form. These special situations have to taidswith care.

The existence of a Landau singularity corresponds to ameggtor of 0 with zero eigenvalue. In
generalQ hasN real eigenvalues, ..., . Consider the case whegehas only onénon-degenerate)
very small eigenvaluey 1. To leading order

ap

w= i A= 12w 160;  ag=detQ): (86)
1

With v = £x{;x3;:::;x0 g the eigenvector corresponding t@ , we define 2 = v v. We will
assume that; > 0fori= 1;:::;K and ;< O0for j= K + 1;:::;N 1witho K N 1.1t
can then be shown that in dimensions,

TN B ( 1}Q§l N K 1)=2 (N D 1)=2 ((N D + 1):2)‘ (87)
0 N 23D=2 Ny( 1}\1 K la1 (N 2 j_n}N D+ 1)=2
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This result holds provided; 6§ 0OandN D + 1> 0. FortheboxN = 4,D = 4, ! Oanda; 6 0
we get

ei (3 K )=2

(T4)iv: P : 88
PV T 17 f detQa) 1 (88)

This shows thatT; )43, is integrable but its square is not
Inthe casal = 3 (the triangle)D = 4, itis possible to derive

2

é'(Z K )=2
Tg= —p—————I(3
8 ( 1% X 1,

T and its square are therefore integrable.

i) (89)

9.3 gg! BH

The first example we study is the electroweak correctiongrto! oH [193] where the one-loop
amplitude squared, which is all that remains in the limit afilshing bottom Yukawa coupling, develops
a Landau singularity which represents the rescattering@tap pair and their decay intora pair that
produces the Higgs through w fusion. As we will see, in this example, introducing the widtf the
internal top andi particles smoothes the singularity. There is a leading hargingularity present in
the box diagram shown in Fig. 117 that occurs for some spedifiges of the kinematic variables.

(t.q3)

(t,q1)

Fig. 17: A box diagram contributing tag ! H that can develop a Landau singularity fe@ry 2M and”s  2n t,
i.e. all the four particles in the loop can be simultaneoustyshell.

With g(p1 )+ g(p2) ! bles)+ blps)+ H (ps); s= (pr+p2)%7 s1= (P3+ Ps)’; S2 = (Pa+ ps)?,
and the on-shell conditions; = p5 = 0,p% = pf = m{ = 0,pZ = M ?, fixing sandM y , the scalar
box integral is a function of two variables

Tg(51752) = DoM § ;0;5;0;81752M f M 7 jmZmz): (90)
The kinematically allowed region is
S
MZ § s;MZ— g MZi+s s (91)

The reduced matrixs ), which is equivalent in this case to tlge matrix for studying the Landau
singularity, is given by

1
1 M2 M2 mi+M 2 5 MZ2+m?
B 2M 2 My m ¢ My me o
2 2 2 2 2 2
% oM 2 2MH 1 M2 +m? e o
(4) 2M 2M y m 2M i m (4) ij
S5 = E nzcu M2 +m? Y EAN AR — (92)
J B mi+M o sy g tme 1 2mi{ s 8 J Zmimj
@ 2M y m ¢ 2M y m ¢ ng A
MZ+m? mZ+M 2 s 2m? s 1
2M y m ¢ 2M oy m ¢ 2m 2
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The singularity corresponds toet(s *)) = 0. The determinant is a quadratic function ©f;s, when

s and all internal masses are fixed. The Landau determinaatiedd and imaginary parts af; are
displayed in Fig[[ 18 forpé = 353 GeV,My = 165 GeV,m. = 174 GeV,My = 803766 GeV.

We clearly see that the Landau determinant vanishes inbielphase space and leads to regions of
instability exhibiting leading and lower-order Landau giiharities in the real and imaginary parts of
the scalar integral. To investigate the structure of thgudarities in more detail let us fix s; =

det(s,)

O L. Wwhkh oo
T o Vool el e e

w
B

Fig. 18: The Landau determinant as a functionsafand s, (upper figure). The real and imaginary partsof, as a function
of s; and s;.

q_
2m i+ M2 ) 271:06 GeV, so that the properties are studied for the single virigb The results

are shown in Fid. 19.

From Fig.[I® we see that there are four discontinuities inftimetion representing the real part
of the scalar integral in the variabl%s_z. As s, increases we first encounter a discontinuity at the
normal threshold’ Ss;=m¢+ My = 254:38 GeV. This corresponds to the solution (for the Feynman
parametersk; s = 0 andx,, > 0 of the Landau equations. The second discontinuity occutseat
anomalous threshol%s_z = 257:09 GeV of a reduced triangle diagram. This corresponds to thaiso
x3 = 0andx; . > 0of the Landau equations. The condition of vanishing deteamidet(S5) = 0 for
this triangle has two solutions

1 ) !
oM

sy = MEZmei+Myg) Mg M2 4aM2 m? Mg) (93)

2
W
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Fig. 19: The imaginary, real parts af , and the Landau determinant as functionssof

which givesps_2 = 257:09 GeV(inside of phase space) and7:86 GeV(outside of phase space). We

can also check that the former value satisfies the sign dondit (83) while the latter does not. Note
that one of the conditions for this anomalous threshold o the physical region " y My ,
see EQ.[(93). The same phenomenon happens for the thirdntisgity atps_2 = 25958 GeV
which corresponds to the anomalous threshold of the redtioeg@ point function obtained from the
box diagram by contracting to a point tlke line. The last singular discontinuity is the leading Lan-
dau singularity. The conditiondet(S,) = 0 for the box has two solutions which numerically corre-
spond tops_z = 26388 GeV orps_2 = 27918 GeV. Both values are inside the phase space, see
Fig.[I9. However after inspection of the corresponding signdition onlyps_2 = 26388 GeV (with

x;  0533186;%  0:7748618;%  0:774941) qualifies as a Landau singularitys; = 279:18 GeV
hasx; 0:742921 ;% 0:748618;%  1:06537. The nature of the leading Landau singularity in
Fig.[19 can be extracted by using the general formula (88}h Ykie input parameters given above, the
Landau matrix has only one positive eigenvalue at the lgasimgular pointj.e. K = 1. The leading
singularity behaves as

1

div _ - .
D o - 2 Zy o’
16M gme det(S4) ki

(94)

When approaching the singularity from the leftgt(S,) > 0, the real part turns singular. When we
cross the leading singularity from the righiet(s,) < 0, the imaginary part of the singularity switches
on, while the real part vanishes. In this example, both théard imaginary parts are singular because
det(s,) changes sign when the leading singular point is crossed.

The instabilities of the integral and the singularities dwe to the unstable internal particles. The
problem can be remedied by introducing the finite width of theand top. As seen from Fif. PO,
introducing the finite width effect in the scalar box givesv@o®th behaviour.

9.4 The six photon amplitude

The second example concerns a case with massless interhialgsanvolving massless external parti-
cles: thes-photon amplitude [194], see also [94,96,191]. Althoughdhbalar integrals for the-photon
amplitude have a potential Landau singularity that lead®toe characteristic patterns of the amplitude,
direct calculations of the helicity amplitudes show thad fingularity is tamed by the dynamics of the
gauge interaction in a somehow unexpected way. This is wedcgince we would not able, in this case,
to revert to the trick of introducing a width for the partisleThis said, introducing non-zero (internal)
masses, as would be fit for the couplings of the massless mhotould regulate a vanishing Landau
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Fig. 20: Effect of the combined width of the, ,, and the top, t to the real and imaginary part of the scalar function.

determinant, but would of course still pose a considerablaerical problem if the singularity from the
vanishing Landau determinant is not counterbalanced bggheand gauge algebra.

To be able to see the cancellation at the level of the amglitacbnly possible if one has very
compact analytical expressions for these amplitudes. trinvestigation the expressions for the ampli-
tudes [194] are based on the unitarity-cut methods and ade perticularly simple thanks to the fact that
the six-photon amplitude has no IR/UV divergences and riorakterms. The six-photon amplitude was
calculated in three models: i) scatae D, A 522~ i) spinorQ E D : A £*™ " and iii) supersymmetric

QED N = 1: AY =1 The three amplitudes 5227 ;A L™ " anda Y = are in fact related through:

Agerm ion _ ZAanlar n Alg =1 (95)
Full compact expressions for the amplitudes can be founti9d][ The potential Landau singular-

ity in the 6-photon amplitude reveals itself in the so-called doubléguascattering configuration [191],
see Fig[21.

DPe Do

p3 Ps

Fig. 21: Double parton scattering configurationy; ;p, are incoming photons witk; + ps = 0, each splits into a fermion pair which
rescatters to give photon pairg; ;ps ); (s ;ps ) at very small, vanishing, transverse momentum.

The Landau conditions read
det(Q )= (s1355435 S5526)° ! 0 ; 35526 > 0 ; 513575435 < O (96)

wheres; = (pi+ py+ pe ), all theps's are taken as incoming. Note the specific natureief(Q )
which has a quadratitorm. This will lead to a double root (eigenvalue) at the silagity, or in other
words the derivative oflet(Q ) at the singularity is also vanishing. In fagtt(Q ) is proportional to the
square of the Gram determinafkt(G ). To wit

IS
det(G )= 234(s1355435 35526) / det(Q) (97)
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This property is due to the presence of many zeros, both fhenkinematics of the external photons and
the masslessness of the internal lines.

How does the singularity of the scalar integral transpir¢hatlevel of the amplitude? Let us turn to
the NMHV ( + ++ ) six-photon helicity amplitude and specialise to the king@§of the Nagy
and Soper configuration [191]. We start from a fixed point img# space in the centre of mass frame
p1 + ps = OWwith py along thez-axis:

P2 = ( 33:5; 159; 25:O)p:3= (11:0;13:2;22:0) 98)
s = (12:5; 153; 0:3) Bs = (10:0;18:0,;3:3)

One can generate new configurations by rotating the finad stadut they,-axis by an arbitrary angle.
We can then study the behaviour of the amplitude in this patamlt is illuminating to rewritelet(Q )
in terms of this parameter for this particular configuration

2 . .
det(Q)= suuki = withki = pjs, + (P5xC0S + Pz s f (99)
wherepss; = psi+ psi, i= x;y;z The minimum value ok is given byk?, ;. = o, .
The behaviour of the amplitude as a function ofor this particular configuration is shown in
Fig.[22. The important conclusion to draw from Hig] 22 is et structure of the amplitude, in particular

- 30000
30000 —A fermion

—kZx 10

s |A| Ja®
s |A] la®

25000 25000

20000 20000

15000 15000

10000 10000

5000 5000

Fig. 22: The NMHV amplitude as a function ofin the Nagy-Soper configuration in the case of QED (left) als agethe scalar andi = 1
SUSY(right). In the first panel we also show the dependenig which is a good measure akt(Q ).

the peculiar dips, is well tracked hiet(Q ). Indeed the dips that show in the amplitude occur exactly at
the points wherelet(Q ) is smallest. The dips occurat’ 2:32and ’ 232+ ' 5:46. These values
can be derived from Ed. (99) wheke = ki, 1.
One can ask what would happen in a configuration where,, and consequentlget(Q ) ! 0? One
can arrive at thiglet(Q ) ! 0 configuration by perturbing the original kinematics in E§. 9
( | |
B! B= ( 335 159 ,; 250) py! pf
| . | .
ps ! Pl

(11:0;132+ ,;220)

(100)
(100;180  ,;33)

(125; 153+ 4; 03) ps! po

The modulation is unchanged, such that the dips occur at the kaagon in . However now ., can
be chosen such that,, ;, = 0. This occurs for , = 1:05.

Figs[23 show how the pattern of the amplitude, as far as fhamdund the singularity at = 5:46
is concerned, evolves as, is varied from zero ta 05 wheredet(Q ) andk., 1, vanish. It can be seen

18The correspondance between the kinematical conventiolagy and Soper and the one used here are the following:
Nagy and Soper consider the reaction (p, ) + (pr) ! ( pe)+ " p)+ T p3)+ ( ps)i.e. theirk;'s and
ourp5 are such thatk1 = P4, k2 = p1,ks = P2, ks = Ps, ks = s andk6 = P3 SO thatkl + ks, = ks + kg + ks + Kke.
See [194] for more detalils.

52



40000 40000

— 0.

— =05

35000 35000

s |A] /o
s |A] Jad®

30000 30000

25000 25000

20000 20000

15000 15000

10000 10000

5000 5000

o

(=]
AT
o
i
o
N
o
w!
o
IS
of
o
o
o
o
B
o
0
o
©!

Fig. 23: The six-photon amplitude around the Landau singularityrahterised by around = 5:46 and for different values of the parameter

y that gives a measure @f ,, i, in spinor QED (left) and ilv = 1 susy QED (right).

that asdet(Q ) ! 0 with increasing ., the width of the dip decreases more and more so as to behave
as a sudden jump, with the oscillation pattern disappearampletely for , = 1:05. The numerators

of the six-photon amplitudes, reflecting the dynamics ofghege interaction, vanish fast enough as the
Landau singularity is approached. Therefore the singylagems to belynamically regulatedor the

three cases of the scalar, the fermion and the SUSY-amelitud

It is also revealing to investigate how the apparent Landzgusarity is approached from different
directions by considering a two-dimensional parametgasaof det(Q ) and the kinematics.

We therefore modify the original Nagy-Soper parameteigsasuch as to generate a Landau sin-
gularity and add & variable both along the andy direction to follow the approach to the singularity:

D= (335 ki 159 ky; 250) Pi= ( 125+ ky ;153 + key;220)

101
Ps = (125+ keyx; 153+ ky; 03)  Po= (335  kyi159  kyi33) (101)

erm ion=N =1

Figs.[24 show the six-photon amplitude§ as functions of the two variables . andk..
Up to an overall rotation, the analytic structure of thesghtodes near the Landau singularityiat, =

key = 0can be modelled as

Ag 7}2{“ ktyz - lane ) (102)
Kix + kiy 2
whereke, = kecos , key = kesin |, ke = (kf, + k{2

The amplitudes exhibit a valley and a ridge along mutuallperdicular axes crossing each other
atkex = key = 0. The various profiles shown in Fig. 123 are nothing but crossises at fixedk., of
Fig[24. In particular, the profiles for , = 1:05 correspond tc., = 0. More generally, when both
kex andke, approacho simultaneouslya s remains finite: the Landau singularity of the double parton
scattering type does not lead to a divergenca=«k as would have been naively expected from a general
power counting argument [192, 195]. Yet the limiting valdezo, depends on the direction along
which the origink., = k., = 0is approached.

9.5 Conclusions

We foresee that in the calculations of multi-leg one-loapcessses the study of the Landau conditions will
bring very useful, if not crucial, information. More invégitions of the properties of these singularities
need to be performed.
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Fig. 24: The six-photon amplitude in spinor QED (top) andkin= 1 QED (bottom) around the Landau singularity

10. TENSOR ONE-LOOP INTEGRALS IN EXCEPTIONAL PHASE-SPACE R EGIONS

10.1 Introduction

At the LHC and ILC, many interesting processes involve mbhentfour external particles. A thorough
description of such processes requires the evaluationrofgtand electroweak radiative corrections
at least in next-to-leading order (NLO). The most compbkdapart in such calculations concerns the
numerically stable evaluation of the one-loop tensor irgksgof the virtual corrections.

For processes with up to four external particles the clasft@ssarino—Veltman (PV) reduction
[167], which recursively reduces tensor to scalar integgréd sufficient in practically all cases. This
scheme, however, involves Gram determinants in the deraiorinwhich spoil the numerical stability
if they become small. With up to four external particles thégpens only near the edge of phase space
(forward scattering, thresholds). With more than four exé particles, Gram determinants also vanish
within phase space, and methods are needed where Gram oietetsrcan be small but still non-zero. In
this context it should be noticed that the described proldéimverse Gram (and related) determinants
occurs inall methods that reduce loop diagrams or amplitudes to the baistd standard scalar integrals.
This, in particular, also applies to unitarity-based ortstrap approaches that work at the analytical (see
e.g. Ref. [132] and references therein) or numerical [98,105,126,183] level. These methods certainly
mitigate the problem of cancellations, but cannot avoiaihpletely.

YContributed by: A. Denner, S. Dittmaier
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In this article we inspect two benchmark phase-space pthiatsare inspired from our calculation
of electroweak (EW) ( ) corrections toe*e ! 4fermions [196, 197@ One of the two points
involves a small Gram determinant, the other involves batmall Gram and a small “modified Cayley
determinant” at the same time. Although of course the redbpmance of proposed solutions can be
only be found out in full applications, i.e. when integratitbop corrections to complicated processes
over the whole phase space, a selection of such benchmants g®icertainly a useful testground in the
development of loop techniques.

Several solutions to the problem of numerical instab#itifie to inverse Gram determinants have
been proposed in recent years, but not many of them have mptibndr performance in complicated
applications yet. For references and descriptions of sorathoals alternative to ours, we refer to
Refs. [200, 201].

10.2 Tensor coefficients and their reduction

We consistently follow the notations and conventions faedacand tensor one-loop integrals introduced
in Refs. [200, 202]. Here we briefly repeat the conventionsAfpoint integrals as required in the con-
sidered examples. Tensor 4-point integrals of ranére defined as
A
@ »yr o, gt ! 2 2
D '"f = ——7o— d ; Ny = (g+ + 10; = 0; 103
T N NN, k= @+ p)” mg o (103)

whereD is the number of space—time dimensions antthe reference scale of dimensionional regular-
ization. The tensor integrals are decomposed into covarasfollows,

X3 X3
D = Py Dy ; D = Py Py, Dy, + 9 Dooi
=1 =1
X3 X3
D = Py Py, Py D i + (9 Py+9 Py +9 Py)Dook i (104)
i1 ;i2 ;i3: 1 i1: 1

and so on for higher rank. Up to rank 3, and only those are densd below, 4-point tensor integrals are
UV finite. The kinematical arguments of the coefficients., which comprise all scalar productsp;
and internal masses, are written as

D.. Du@i niip:s piphipiies Rp)mimimimi): (105)

Conventional PV reduction [167] expresses the rank-point coefficients in terms of lower-rank 4- and
3-point coefficients. Ineach step! (P 1)the inverse of the Gram matrix

1
2pp1r Z2PiP2 2Pips

z =0 200p1 20002 200p3 A (106)
2p3p1 2P3P2 2P3P3

occurs, which causes the above-mentioned numerical prabiethe determinantz jbecomes small.
The highest negative power gf joccurs in the calculation of tensor coefficients, i, ... without “0”
indices, rendering them numerically the most delicateh&nfollowing we also need the matrix

5 1
mi £, £, £
B f
X=g’ f; . Zg_\; fo=pf mi+m3: (207)
f3

8Meanwhile the same methods have been successfully appldd® EW and QCD corrections to the Higgs decay!
W W =zz ! 4f [198,199] and to Higgs production via vector-boson fusiotha LHC [6, 7].
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The vanishing of the modified Cayley determinaqt-corresponds to necessary conditions for true
(Landau) singularities in a Feynman diagram. The minoes {leterminants of submatrices where row
iand columnj are discarded) of the matrices and X , respectively, are called’;; and X5 in the
following.

10.3 The “DD” approach

One-loop tensor integrals can be naturally grouped inteetlwategories, which we have treated in com-
pletely different ways:

() For 1- and 2-point integral®f arbitrary tensor rank, numerically stable analyticapessions
are presented in Ref. [200] (see also Ref. [167]).

(ii) For 3- and 4-point tensor integrald?V reduction [167] is applied for “regular” phase-space
points where Gram determinants are not too small. For thair@ng problematic cases special reduction
techniques have been developed [200].

One of the techniques replaces the standard scalar integeatpecific tensor coefficient that can
be safely evaluated numerically and reduces the remaimingot coefficients as well as the standard
scalar integral to the new basis integrals. In this schem#angerous inverse Gram determinants occur,
but inverse modified Cayley determinants instead. We naiettie procedure is related to the fully
numerical method described in Ref. [203].

In a second class of techniques, the tensor coefficientseraively deduced up to terms that
are systematically suppressed by small Gram or other kitieah@aeterminants in specific kinematical
configurations. The numerical accuracy can be systemigtizaproved upon including higher tensor
ranks. In our previous applications the highest relevamgderank was improved only by one additional
iteration; in the results shown below we employ an new imgetation of the methods where more than
ten additional iterations are included if relevant. A semildea, where tensor coefficients are iteratively
determined from higher-rank tensors has been describe@fif®04] for the massless case.

(i) For 5- and 6-point integralsdirect reductions to 5- and 4-point integrals, respebfj\ae pos-
sible owing to the four-dimensionality of space-time. Fecalar integrals such a reduction was already
derived in the 1960s [205]. In Refs. [200, 202] we follow lwadly the same strategy to reduce tensor
integrals, which has the advantage that no inverse Gramndie@nts appear in the reduction. Instead
modified Cayley determinants occur in the denominator, beitid not find numerical problems with
these factors. A reduction similar to ours has been proposBef. [184].

We would like to stress two important features of our apphoac

(i) The methods are valid for massive and massless casedoifhelas given in Refs. [200, 202]
are valid without modifications if IR divergences are regukd with mass parameters or dimension-
aIIy Finite masses can be either real or complex.

(i) The infout structure of the methods is the same as foventional PV reduction, i.e. no specific
algebraic manipulations are needed in applications. Toerethe whole method can be (and in fact is)
organized as a numerical library for scalar integrals andde coefficients.

We conclude this overview with some comments resulting faamexperience collected in the
treatment of a fulb ! 4 scattering reaction.

(i) For a specific point in a multi-particle (multi-paramgt@hase space it is highly non-trivial to
figure out which of the various methods is the most preciseeéims hopeless to split the phase space
into regions that are dedicated to a given method. Therefeeeestimate the accuracy for the different
methods at each phase-space point and take the variantgimgnthe highest precision. The accuracy

9For the method of Ref. [202], this has been shown in Ref. [206]
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of the PV method is valued by checking symmetries and PVioglat and by estimating cancellations.

In the expansion approach, we estimate the number of vajilsddased on the expected accuracy of
the expansions and possible numerical cancellations édfar evaluation of the coefficients. In the

seminumerical approach, the integration error is proph&b the tensor coefficients, together with an
estimate of possible cancellations.

(i) In a complicated phase space it may happen that noneofahious methods is perfect or good
in some exceptional situations. Usually the correspondirents do not significantly contribute to cross
sections. This issue can only be fathomed in actual apgitat To be on the safe side, we employ the
two independent “rescue systems” with different advargaagel limitations.

(iii) In view of this, figures as shown below are nice illugioas, but should always be taken with
a grain of salt. No matter how many of such figures are shovay, #ill never be exhaustive, so that no
guantitative conclusions on the overall precision of mdghcan be drawn.

10.4 Two benchmark phase-space points

In the following two examples of exceptional phase-spaagfigarations are consider&d: one with
small Gram determinant § another with bothyz jand X jsmall. These two cases were already qual-
itatively illustrated in Ref. [207], but without providingxplicit numbers. We also note that a complex
Z-boson mass was used there. Here we switch to a real-valoesg to make it easier for other groups to
compare with our numbers. For the sake of brevity, no resifiiteie seminumerical method are included
below; such results are illustrated in Ref. [207].

10.4.1 A case with a small Gram determinant

Figure[2% defines the first benchmark point for a 4-point fiamctn which the Gram determinant 5
becomes small. We compare results of PV reduction with tesilthe expansion in the small Gram
determinant as described in Section 5.4 of Ref. [200]. Inugher half of the figure a hexagon diagram
is shown that contains a box subdiagram with the consideireehiatical configuration. The structural
diagram illustrates the kinematical assignment with ilmiémasses and squared external momenta given
at the respective lines. The invariants near the arcs arsqhares of the sum of momenta flowing into
the two neighbouring external lines. The explicit valueshe masses and invariants are given in the
figure. As indicated there, the Gram determinant vanishéseifinvariantt,, approaches the critical
value t_;, corresponding to an inner phase-space point. In the pfofsgo[23 we show results on a
few tensor coefficients whety, is varied while keeping all other invariants fixed. The vaoa in t_

is translated into a variation of the dimensionless vagabt t_=t.- 1 where the exceptional point
with # §= 0 corresponds t& = 0.

It is clearly seen in the plot on the I.h.s. that the tensofffaents calculated with PV reduction
show numerical instabilities for smail while the results of the expansion method behave smodthly.
PV instabilities increase with increasing tensor rank. plot on the r.h.s. shows the relative difference
between the PV results and the corresponding “best” piiedit which are either obtained with the
PV or the expansion method. With decreasinghis difference rises because of the PV instabilities,
and for a sufficiently highx the difference becomes zero (and falls out of the plot rgnigegause PV
reduction promises better accuracy there. It is essemtisbe a broad region i where the difference
is small for each tensor coefficient. This region corresgotadthe overlap in which both PV reduction
and the expansion method are trustworthy, the differenflecteng the uncertainty of the less precise
result. The plot suggests that both methods should be predthin a relative accuracy of about °
for the considered coefficients which go up to rank 3. As alyementioned for thex values of the
shown points, the error estimate of the expansion promis#ertprecision, otherwise (for large) PV

20We have to restrict the set of numerical results to a few setetensor coefficients; more results can be found under
http://wwt h. mppru. npg. de/ menber s/ dittmair/tensints/benchmarks. htm .
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Fig. 25: A typical example for 4-point integrals with smatl j(x ! 0). The full diagram and the relevant subdiagram are
given above; absolute predictions (in arbitrary units)§ome tensor coefficients, relative deviations from PV réida¢ and
the kinematic specifications are shown below. The preciserkatical assignmentis... (t., ;s .;0;0;t ;s ,;0;0;0;M 2).

Do[l0 °Gev ]

D10 °Gev *]

X
PV 10! 067882897158103+ 16:0180488033754  1:7886414145138 11:2549864424823
GE 067882877418780+ 16:0180477715020  1:7886420559893 i1:2549896774206
PV 10 ° 0:83672359694266+ 16:2756930854749  1:9379452063976 11:3078118992970
GE 0:83672359694268 + 16:2756930854749  1:9379452063946 1i1:3078118992992
PV 10 ° 0:83844622485772+ 162784151968393  1:9395624008169 11:3083604510334
GE 0:83844622485773+ 16:2784151968392  1:9395624003839 i1:3083604516556
PV 10 ° 0:83846346674121 + 16:2784424334401  1:9395786154611 11:3083659591802
GE 0:83846346674123+ 16:2784424334401  1:9395785857818  11:3083659392409

x D110 °Gev 4] D111 [10 °Gev *]
PV 10 I 1:1897035560343+ 10:24556726948834 0:78386334534494 + 10:015037069443873
GE 1:1897015303789 + i0:24555744219672 0:78386954016210+ i0:015008250147071
PV 10 3 12896489514112+ 10:24411794128315 0:85127803054027+ 10:030174795680439
GE 1:2896489629378+ 10:24411794473416 0:85127066041158+ i0:030177001227644
PV 10 ° 1:2906894073746+ 10:24417445247670  3:6185733047156+ 15:5143276069563
GE 1:2907326083248+ i0:24408881850424 0:85200224111245+ i0:030350914400978
PV 10 1:3307540613183 10:18321620694255 25622763578209 12736466 9255631
GE 1:2907434539101 + i0:24408852556218 0:85200956315901 + i0:030352656048116

Table 4: Numerical results corresponding to [Eid. 25.
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Full diagram:

S u

Subdiagram:

T~
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Fig. 26: An example for 4-point integrals with both jand % jsmall (x !
assignment i® ...(m 2 ;s

T

2 2
70isis wis q;0;m;;0;M ;).

Do[l0 8Gev *]

D;[10 8Gev *]

X
PV 10 2 8:3606217876308 13:0637590178519 36746526331008+ 10:92370985809148
GCE 8:3605751148559  13:0637472109275 36746146470383+ 10:92369999581248
PV 10 3 8:4400974376543 13:0949777817064 3:7124176130452+ 10:93444204630892
GCE 8:4400974331251  13:0949777805604 3:7124176082911 + 10:93444204697694
PV 10 ? 8:4481162422241 13:0981290348801 3162301181594+ 10:93552679201780
GCE 8:4481162422054 13:0981290348524 3:7162304755308 + 10:93552678170043
PV 10 ° 8:4489188416187 13:0984444568680 3:7165517842462+ 10:93563927582254
GCE 8:4489188413614 13:0984444566400 3:7166121290025+ 10:93563537143079

x D;;[10 8Gev “] D110 8Gev *]
PV 10 2 22302468112479 1i053202142768691  1:5782872266397+ 10:38602980478054
GCE 22297642816234 10:53189620367287  1:5778873843217+ 10:38592377802513
PV 10 3 22539023067993 1i0:53805321575089  1:5955732338585+ 10:38916806038788
GCE 2:2539023467387 10:53805185525506  1:5951976445129+ 10:39030849156415
PV 10 ¢ 22578016118662 1i0:53856637974433  19:161260651686+ il:6687070921546
GCE 22562925399069 10:53866164959083  1:5969069247380+ i0:39074113712771
PV 10 ° 1:8810483898149 1093548431089474  492069:51092499+ 167693:244541619
GCE 22565317562670 10:53872268382964  1:5970779937221+ i0:39078443860164

Table 5: Numerical results corresponding to IEig. 26.
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reduction seems to be better. Table 4 provides explicit rarmfor the considered tensor coefficients at
somex values. These numbers could serve as a benchmark also é&rmo#thods.

We recall that the expansion for smailis limited to the case whete; andz, are not too small
for at least one set of indices k, 1 If all X"o; are small, thenx jis small, too. Such a case is considered
in the next subsection. The case in whichzll are small is elaborated in Section 5.6 of Ref. [200].

10.4.2 A case with small Gram and modified Cayley determsnant

Figure[26 defines the second benchmark point for a 4-poirtifumin which both determinantg jand

K jbecome small. Here we compare results of PV reduction withlt® of a simultaneous expansion in
¥ jand X jas described in Section 5.5 of Ref. [200]. In the upper hatheffigure a pentagon diagram
is shown that contains a box subdiagram with the consideireehiatical configuration. The structural
diagram again illustrates the kinematical situation ah@arevious case and the explicit values of the
masses and invariants are given in the figure. The u-quarls mnass kept only as regulator of the
mass singularity, i.e. it is only kept non-zero in the logan Inm ,, but set to zero otherwise. The
two determinantsy jand X jvanish if the two conditions 4= sands ,= s are fulfilled. We
explore the neighbourhood of this exceptional configuratim the specific line parametrized by the
dimensionless variable = s 4=s 1= s ,=s 1, while keeping the internal masses and the
squares of the external momenta fixed.

The plot on the |.h.s. again illustrates the instabilitiesdmallx in the PV reduction that become
more serious for higher tensor ranks, while the results efekpansion method behave smoothly. The
relative difference between the PV and the correspondimgt*bprediction is shown on the r.h.s., re-
vealing the expected increase forl 0. For a sufficiently highx the difference becomes zero, because
PV reduction is more accurate than the expansion. In thdagveegion both methods should be pre-
cise within a relative accuracy of about ° for the considered coefficients. Talble 5 provides explicit
numbers for the considered tensor coefficients at sewedues.

The expansion method fails if either atl; or all X';; are small. Possible treatments of these
exceptional cases are also described in Ref. [200].
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11. SINGULARITIES IN ONE-LOOP AMPLITUDES FROM THE POINT OF V IEW OF RE-
DUCTION METHODS &

11.1 Introduction

Obtaining radiative corrections requires the evaluatibloop Feynman integrals. The simplest, but also
the most important, loop integrals are one-loop Feynmaggials. Considerable progress has recently
been made in developing various approaches for calculatiegloop integrals. Today, at least in prin-
ciple, it is possible to calculate any of them to arbitrarggision no matter how many external legs
the corresponding Feynman diagram has. Unfortunatelypiebuge development, for a practitioner,
the calculation of amplitudes up to one-loop contributiemstill a difficult task. With the increasing
complexity of the process under consideration, the numb&egnman diagrams whose contributions
have to be obtained rises very quickly, as does the complekithe corresponding one-loop Feynman
integrals which have to be calculated. Therefore, we areetbito automatize our calculations. Use of
available automatized algorithms helps tremendouslythmitmoment when calculations of physically
relevant processes will demand for practical use unacblEptmounts of computer time and memory

ZContributed by: G. Duplangic
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is not far away. To surpass this problem it is necessary tk foonew approaches for calculating one-
loop amplitudes, but also to implement algorithms in a ma@iputer friendly” way, which means less
computer algebra and more numerics. Unfortunately, nuraklyi oriented codes increase our chances
to face numerical instabilities. This problem is usuallywected with the presence of singularities in
the functions under consideration. It is known that looprizayn integrals have rich singularity struc-
tures. For that reason, it is important to summarize all th&nown about the problem as well as to
share experience from previously performed calculatiohanoplitudes. Since reduction to the set of
basic scalar Feynman integrals is at the heart of most metfavdtalculating Feynman integrals, here
we discuss singularities from that point of view. Despitedent approaches which can be taken, the
final decomposition of the given Feynman integral, in terrhpredefined set of basic integrals, should
be unique. Therefore, any approach taken to discuss thalaiity structure of the final decomposition
is equally valid. Here the reduction method based on Refd.,[153, 208, 209] is used.

11.2 Definitions and reduction method

In order to obtain one-loop amplitudes, integrals of théofeing type are required,
Z

daP 1 1 1
IN D ;f i9) (2)2 D =2 1 P _; 108
b I 2 P~ L@+ m)? mPedi (108)
Z
IN (D ;f g) ( 2)2 D=2 dD 1 1 (109)
0 T 2 P~ 1111 1+ r)? m?+ 1

Theintegralt™ (T3 )is arankp tensor (scalar) one-loap -point Feynman integral in -dimensi-
onal space-time, where are powers of propagators anéd r; (m ;) is the momentum (mass) of particle
propagating along the corresponding internal line. The mwtm 1is the loop momentum and the
are linear combinations of external momenta. The scakethe usual dimensional regularization scale
and the quantityy (> 0) represents an infinitesimal imaginary part which ensueesality and, after
the integration, determines the correct sign of the imagipart of the logarithms and dilogarithms. It is
customary to choose the loop momentum in such a way that otie shomentar; vanishes. However,
for general considerations, it is convenient to keep themsgiry of the integral with respect to the indices
1; ;N .

It can be shown that every tensor one-loop integral can beeegpd as a linear combination of
scalar one-loop integrals by the following equation,

n #
X n ¢ 2y kW .
: : (4 ) ( i+ Ji)
N D) = gfm P  w PE ]
kit w0 e (2F 1 (1)
B O+20°  k)fi+ Jg); (110)
wherefgf [ P! y Plg |, represents a symmetric (with respectto ) combination of

tensors, each term of which is composedahetric tensors and; momentar;. Therefore, the problem
of calculating tensor integrals has been reduced to thelledilcn of the general scalar integral, which is
the most convenient to evaluate from the following représstém,

Py D=2
i _ =1 1 = N
L 0itig)= @ oy A
=1 i
! ) 2 SRR
21 ¥ IR ¢ N , W
dyiy;* yi 1 4 vivi(ti  5)+  ym i5 1 (111)
0 =1 =1 =1 =1



Direct evaluation of the general scalar integral represamnton-trivial problem. However, with the help
of the recursion relations, the problem can be simplifiechngense that the calculation of the original
scalar integral can be reduced to the calculation of a certaimber of simpler basic integrals. All

relevant recursion relations for scalar integrals can hgewrin matrix notation as

0 10 P . 1
0 1 1 1 © 1 5, Iy O;f i9)
B 1 Ru+2i Rpp+2i w R2i & B LIV D f s+ 0n9) &
B 1 R+ 21 Ryp+2i o R2i % B IV (D GE i+ 129) % _
g : . K@ : &
1 RlN + 21 R2N + 21 NNRZi 0 N I(I)\] (D ,'f i+ lNg) 1
4 %) 'y ©  2;£i9)
B @ H''ifo 25 a9
B @ AT 2f1 9 & (112)
B . C
@ A

4 ' o 25 w9

wherer ;5= (i ) m? m? Inthe following we introduce the notatiasy for the (N + 1)

(N + 1) matrix in Eq. [I12). Making use of relations which follow froEq.[112), each scalar integral

1Y (D ;£ ;9)can be represented as a linear combination of integfal® °;f1g) and integrals with the

number of propagators which is less than(it has be understood thaf (© ;f 11705 11 g)
ﬁ‘ Yo ;£ 117 w1 g) ). For the dimensjoame usually chooses + 2", where " is

the infinitesimal parameter regulating the divergences.sigcessively applying the above mentioned

procedure to the remaining less-thanpoint integrals it is at the end possible to express thegmte

these basic integrals as

N o%flg) = ——
o ( g) a7

2y b
dy; yi 1 5 vi Rij+ 21 )y O ; (113)

0 41 =1 i=1

where the properties of the function were used.

11.3 Singularities

The necessary conditions for Feynman integrals to havelkirities are given by the Landau equations.
In the integral representations given by Ed¢s. {111) and)(1h& singularity conditions [192] are given

by

X
yi Ri5+ 21 )y =0 (114)
ij=1
and
X
either y;= 0 or R+ 21 )yy= 0 foreachi (115)
=1

Notice that condition[(114) is automatically satisfied wivenditions [11b) are. The singularity of the
given Feynman integral corresponding tosalle 0is called thdeading singularityof the integral, while
those corresponding to some = 0 are calledlower-order singularitiesof the integral. Lower-order
singularities are leading singularities of integrals whatl propagators associated with vanishing
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have been omitted. In the language of Feynman diagramsrémislates as contraction to a point of all
lines associated with; = 0.

Finding the general solution of the Landau equations istngral task. Here we consider only real
singularities. Real singularities are those occurringréal values of the invariants ;; on the physical
sheet. Notice that these real values of the invariants doex#ssarily correspond to a physically possible
kinematical configuration.

Due to presence of thi, no singularity appears along the real contour of integrain the para-
metric space in Eqs[_(1l11) arld (113). It should be underdfoatdsingularities appear only in the limit
it o0

In the previous section, it was described how to expresslatrany Feynman integral as a linear
combination of the basic scalar integrals. The questiogearif all singularities of the starting integral
correspond to singularities of the basic scalar integralsoone of them correspond to singularities of
coefficients of the decomposition. To answer that questiois, enough to check it appears in de-
nominators of the coefficients. That is, singularities agpanly in the limiti ! 0 and if some of
the coefficients diverge independently of that limit, thia torresponding singularity is artificial in the
sense that it is not a singularity of the starting Feynmaggral. Consequently, such a divergence should
cancel in sum of all terms in the decomposition.

The simplest way to see when appears in denominators is to invert Egq. {112) by multigdyin
by inverse ofsy . The resulting equation is

0 P 1

© 1 5, )W Of )
% 11§ Of i+ 19) § 4 2yt (116)
g : A Detsy ]

v Iy Of i+ w9)

0 _ - poms11 10 1

DetRy ] 2i Detls ] S N By Iy O  2;f£i9)
B 52 s2? ey e g% IO 2ifs ﬂg)g
B . . . B . ;
@ : : . : A : A

( 15\]+2S$N+1 ( 15\]+3S§N+1 2%\]+:€B§+1N+1 Iéﬂ (D 2;fi jNg)

whereséj is minor of sy obtained by removingth row andith column, andky isanN N matrix
with elements equal ta ;5. The matrixRy is sometimes called modified Cayley matrix and its deter-
minant the modified Cayley determinant. All minors appeziim Eq. [116) as well as Déty Jare i
independent. In all that determinants the first row or colwan be simply used to remove completely
thei dependance. Therefore, only the recursion relation fatigufrom the first row of Eq.[L16) will
have ani dependent coefficient. From the form of that relation itdals that real singularities can
appear in the coefficients of decomposition only if relasiaf that type are used during reduction to
increase dimension of integrals. In that case, a singylagh appear when Dty 1= 0. As expected,
the singularity is related to the same matrix which appeaatsandau equation§ (1114) aid (115).

What happens if we calculate the integral exactly for kingcahvariables and masses for which
DetRy Jvanishes? In that case the limit ! 0 should produce a divergence. But, from the beginning,
dimensional regularization was introduced exactly to dwiplicit appearance of divergences. Hence,
the limiti ! 0can be applied and divergences appear in the form of powelrs"oflt follows that the
term DetR ] 2i Det[g Jvanishes and the first row from Ed. (116) can be used to redigee {point
integral to a linear combination aft 1)-point integrals.

To complete the discussion, it is necessary to comment onradwction works for vanishing
Detisy 1 Let us first express Déty 1in a better known form. By subtracting the last column from
the second, third;:; andN th column, and then the last row from the second, third, andN th row,
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Det[sy Jis given by
Detlsy 1= Det[ 2 x) & %x); ;= 1;:::N 1: 217)

The determinant on the right hand side of Hg. {117) is knowthassram determinant. If Déty ] i.e.
the Gram determinant, vanishes, then the rows (columng)eofrtatrix in Eq. [(1IR) should be linearly

dependent. That is, there are real constants, z, ...,z , hot all of them equal zero, which satisfy the
equation
0 1 0 1 0 1
0 1 1 1 C 0
B1 Ruy+2i Rpp+2i 1N-R2i§ Bz g go§
E 1 R+ 21 Roo + 2i on R2i S E Zp S :E 08 . (118)
B B B
@ : : : . : A @ A @ A
1 R1N+2i R2N+2i NNRZi ZN 0
To see that the constantsc, =z, ...,z should be real, just remove the completedependance from
the system in Eq[(118) by subtracting the equation from tisé fow multiplied by2i from equations
in all other rows. After multiplying Eq(112) byrow C 2z =z, x  Zhe following relation
emerges,
X
C Ig (D 2;£,9)= Z5 Ig (D 2;f5  459): (119)
j=1

Itis easy to see that by using above relation it is alwaysiplest reduce relevamt -point scalar integral
to a linear combination aft  1-point scalar integrals. For details see [153].

From the considerations above, we can conclude that vagjstfithe Gram determinant is not
related to the singularities of Feynman integrals. It is am@nt to point out that the situation is not
so simple in the case of diagrams with more than one loop. e[l@ram determinants are related to
so-calledsecond-type singularities

11.4 Practice and problems

In practice we deal with 4-dimensional Minkowski space. Amriediate consequence of this is that,
for all integrals withy > 5, Det[Sy ]vanishes due to the linear dependence of the veectoasnd all
integrals withy > 5 can be reduced to the integrals with 5. In view of what has been said above,
all one-loop integrals are expressible in terms of the irstisg s (4+ 2";£1g) with nonvanishing Def ]

is reducible. That is because we are interested in caloakatiip too ("). Details can be found in the
literature [150, 152, 209].

For most practical calculations the starting Feynman nalegbtained from Feynman diagrams by
using Feynman rules are 4 2" dimensions and with; = 1. In the next step, tensor decomposition, Eq.
(I10), will produce scalar integrals with higher dimensi@nd powers of propagators. By successively
using all recursion relations following from Ed._(116), et the one coming from the first row, in the
cases of nonvanishing Gram determinants and recursiotiorgdafollowing from Eqgs. [(1118) and (1119)
in the cases of vanishing Gram determinants, it is possiblexpress an arbitrary Feynman integral
as a linear combination of integralg (2n + 2";£1g) with nonvanishing Des, Jand Detr . ] where
k = 1;:::;5. The possible values for parameterdepend on kinematics involved. If the kinematics
is such that during reduction no case appears where theartnstin Egs. [118) and {119) vanishes,
the parameten is an integer greater than 1. Now, the recursion from the fiastof Eq. [116) can be
successively used to lower all dimensions dowrite 2". Since in the above procedure that relation
was never used to increase dimension, from what has beernsidid previous section, it follows that
all singularities are in basic scalar integrals and divecgs appearing in coefficients should cancel in
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the sum. The cases with vanishingappear regularly when dealing with diagrams containindjrezsr
external lines, i.e. for exceptional kinematics.

Assuming the situation described in the previous paragnagamy Gram determinants to different
powers will appear in denominators of the coefficients whearaitrary Feynman integral is decomposed
into the basic integrals. The real problem in practice isnvbee has to calculate in a kinematical region
where some of those determinants are small. Since vanigifitice Gram determinant does not corre-
spond to a singularity, one faces cancellation of big nuslb@d consequently numerical instabilities.
In principle, if one is using methods where all Feynman irdaégare expressed as linear combinations
of basic integrals, this problem is unavoidable no mattavhich framework coefficients are calculated.
That is because the decomposition into the basic integralsique. However, there are some hints from
experience as to where one should look to soften this prablEhe main guideline is to try to avoid
separate calculation of diagrams contributing to the peaeder consideration. Namely, powers of
determinants in denominators tend to be smaller if a grougiagframs (for example, a gauge invariant
group) is calculated together. Additionally, one has toalseymmetries of the basic integrals to reduce
the basic set as much as possible. Of course, at the end, ogetprecision, it is always necessary
to make an expansion around a point where the Gram detertmmaaishes. However, if calculating
in the neighborhood of the point where both Gram and Caylégrdenants vanish simultaneously, the
expansion is problematic because the decomposition ismabytec at that point. One can hope that such
regions will not give sizable contribution to calculatedypital quantities.

11.5 Conclusion

Vanishing of various Gram and modified Cayley determinaritsalways produce numerical instabili-
ties if reduction methods are used to perform the calculatithe instabilities can be softened by using
various clever approaches but the question remains, vaithiork for all practical cases? One can also
doubt if reduction to basic integrals is the optimal applotperform calculations which, due to their
complexity, become more and more numerically oriented. IMasome kind of direct numerical inte-
gration of the Feynman integrals is more efficient. Surely tha more natural approach for numerical
calculations.
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CROSS SECTIONS

12. TUNED COMPARISON OF QCD CORRECTIONS TO pp ! W W + jet+ x AT THE
LHC[?

12.1 Introduction

The complicated hadron collider environment of the LHC iesginot only sufficiently precise predic-

tions for the expected signals, but also reliable ratesdormlicated background reactions, especially for
those that cannot be entirely measured from data. Among lsackground processes, several involve
three, four, or even more particles in the final state, rendeghe necessary next-to-leading-order (NLO)
calculations in QCD technically challenging. At the prexsd_es Houches workshop this problem lead
to the creation of a list of calculations that are a prioriy EHC analyses, the so called "experimenters’

2Contributed by: T. Binoth, J. Campbell, S. Dittmaier, R.Kl<€ J.-P. Guillet, S. Kallweit, S. Karg, N. Kauer, G. San-
guinetti, P. Uwer, G. Zanderighi
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wishlist for NLO calculations” [16,201]. The procegs ! W *W + jet+ X made it to the top of this
list.

The process of WW+jet production is an important source &mkiground to the production of a
Higgs boson that subsequently decays into a W-boson pagrenddditional jet activity might arise from
the production [210]. WWH+jet production delivers also ptigl background to new-physics searches,
such as the search for supersymmetric particles, becausptohs and missing transverse momentum
from the W decays. Last, but not least, the process is irttegei® its own right, since W-pair production
processes enable a direct precise analysis of the noraalmgdiuge-boson self-interactions, and a large
fraction of W pairs will show up with additional jet activigt the LHC.

First results on the calculation of NLO QCD corrections to Wjét production have been pre-
sented by two groups in Refs. [3,4]. A third calculation ispiogress [211]. In the following the key
features of these three independent calculations areided@nd results of an ongoing tuned comparison
are presented.

12.2 Descriptions of the various calculations

At leading order (LO), hadronic WW+jet production receigsitributions from the partonic processes
ag! W'W gagg! W*'W gandgg! W *W g, wheregstands for up- or down-type quarks.
All three channels are related by crossing symmetry.

The virtual corrections modify the partonic processes trat already present at LO. At NLO
these corrections are induced by self-energy, vertex, Bepo(nt), and pentagon (5-point) corrections,
the latter being the most complicated loop diagrams. Apanhfan efficient handling of the huge amount
of algebra, the most subtle point certainly is the numelsicstiable evaluation of the numerous tensor
loop integrals, in particular in the vicinity of exceptidrnghase-space points. The three calculations
described below employ completely different loop methdgisme of them are already briefly reviewed
in Ref. [201], where more details on problems in multi-legpacalculations and brief descriptions of
proposed solutions can be found.

The real corrections are induced by the large variety of @sses that result from crossing any
pair of QCD partons im0 ! W *W ggggand0 ! W "W qgog%into the initial state. Here the
main complication in the evaluation is connected to an efficphase-space integration with a proper
separation of soft and collinear singularities. For theasafion of singularities the three calculations
all employ the subtraction method [212] using the dipoletsdtion formalism of Catani and Seymour
[175].

The calculation of DKU [3]

This calculation is actually based on two completely inagejemnt evaluations of the virtual and real
corrections. The W bosons are taken to be on shell, but thétses cross sections presented in Ref. [3]
do not depend on the details of the W decays.

Both evaluations of loop diagrams start with an amplitudeegation byFeynArts using the two
independent versions 1.0 [213] and 3.2 [214]. One of theutations essentially follows the same
strategy already applied to the related processesidf[215] and tt+ Rt [216] production. Here the
amplitudes are further processed with in-holdathematicaroutines, which automatically create an
output inFortran The IR (soft and collinear) singularities are treated imelinsional regularization and
analytically separated from the finite remainder as deedriid Refs. [206, 215]. The pentagon tensor
integrals are directly reduced to box integrals followingfR202]. Box and lower-point integrals are
reduced a la Passarino—Veltman [167] to scalar integrdiish are either calculated analytically or using
the results of Refs. [148,217,218]. The second loop cdicmas based orfFormCalc5.2 [14], which
automatically producebkortrancode. The reduction of tensor to scalar integrals is donke thi¢ help of
the LoopToolslibrary [14], which also employs the method of Ref. [202] the 5-point tensor integrals,
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Passarino—\Veltman [167] reduction for the lower-pointstans, and thé=F package [219, 220] for the
evaluation of regular scalar integrals. The dimensionediyularized soft or collinear singular 3- and
4-point integrals had to be added to this library.

One calculation of the real corrections employs analytieaults for helicity amplitudes obtained
in a spinor formalism. The phase-space integration is padd by a multi-channel Monte Carlo integra-
tor [221] with weight optimization [222] written ii€++ The results for cross sections with two resolved
hard jets have been checked against results obtainedWifitzard1.50 [223] andSherpal.0.8 [224].
Details on this part of the calculation can be found in Re25]R2 The second evaluation of the real
corrections is based on scattering amplitudes calculatddMadgraph158] generated code. The code
has been modified to allow for a non-diagonal quark mixingrixand the extraction of the required
colour and spin structure. The latter enter the evaluatidh@dipoles in the Catani—-Seymour subtrac-
tion method. The evaluation of the individual dipoles wasfguened using aC++ library developed
during the calculation of the NLO corrections far £t[216]. For the phase-space integration a simple
mapping has been used where the phase space is generateideguential splitting.

The calculation of CEZ [4]

The method of choice for calculation of the virtual correns of Ref. [4] is similar to the techniques
adopted by the other groups and is based on the semi-nuinaetiaod of Ref. [226] augmented with a
mechanism to handle exceptional configurations [227]. Ti@thod has already been used for the NLO
calculation of Higgs plus dijet production via gluon-glutusion [5]. Tree-level matrix elements for real
radiation have been checked against the resultdadgraph228]. Soft and collinear singularities are
handled using the dipole subtraction scheme [175]. As pther authors, CEZ have performed several
checks to test the reliability of their code. These inclutleaks of Ward identities of the amplitudes
containing external gluons.

The calculation of Ref. [4] is however different from the ethtwo in that the decay of the
W bosons is included from the outset. Rather than summing tireepolarizations of a W boson of
momentumk with " #

Xn": g+kk
2
MW

; (120)

the authors of this paper project out the combination of qaéions which occurs in the physical decay
ofthe Wbosonyir (k) ! e (L)+ (&),

X 1
non T ; = (1 =2: 121

2% 1 ra & L] L ( 5) ( )
The inclusion of the decay is well-motivated from a physjmaiht of view, because it allows phenomeno-
logical analyses which include cuts on the decay leptons.

For the purposes of the comparison of virtual matrix elemdat a fixed phase-space point, the
results including the decays can be used to extract thet fesithe amplitude squared summed over the
polarization of the vector boson, as would be obtained uBipg{120). This is achieved by performing
6 6=36 evaluations of the amplitude squared [229] in whicthdapton is emitted along three orthog-
onal axes (in both positive and negative directions) in theesponding vector-boson center-of-mass
frame. The results of this comparison, with input paransetaned for the comparison, will be given
below.

The calculation of BGKKS [211]

This calculation is also done in two independent ways. Thelygeneration is based QGRAF[165]
and was cross checked by having two independent codes. agtains neglect the quarks of the 3rd
generation.
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Up to now the LO part and the virtual corrections are evaldiatBy using the spinor helicity
formalism, projectors on the different helicity amplitiedare defined. In this way all Lorentz indices can
be saturated such that the complexity of the one-loop 5tpeinsor reduction is such that at most rank-1
5-point integrals appear. For each helicity amplitude gelataic representation in terms of certain basis
functions is obtained by using the reduction methods d@eslan Refs. [152,184]. The whole algebra
is done in an automated way by usif@RM[166] and MAPLE. In both approaches the IR divergent
integrals are isolated by using 6-dimensional IR finite bamctions such that IR poles are in 3-point
functions only. One implementation uses the function sehdéd in Appendix C of Ref. [184], and uses
the implementation of thé&ortran 90codegol enB0. The other computation uses standard scalar 2-
and 3-point functions as a basis. The complete algebraicctieh to d=6 scalar box and d=n scalar 2-
and 3-point functions is largely equivalent to a standarssBano—Veltman reduction. Only the 5-point
functions are treated differently [184]. Tractable aniabitexpressions of the coefficients to the two sets
of basis functions are obtained for each independent hehonplitude.

Discrete symmetries (Bose,C,P) are used to check and redéitity amplitudes with each other.
The coefficients are exported tdrartrancode and used to evaluate the loop correction of the process.

For the treatment of 5 the 't Hooft—\eltman scheme is applied. Thealgebra and the loop
momenta are splitinta-and (0 4)-dimensional parts. Whereas theanti-commutes with the = 4
matrices, it commutes with the gamma matrices defined i D 4. As is well known the QCD
corrections of an axial vector current are different froma trector part and a finite renormalisation has
to be performed. The following gauge boson vertex whichudek a finite counterterm for the axial part
(see e.g. Refs. [230-232]) is used,

Vi @ *+25% 5 With z5=1 Cr —; (122)
to reinforce the correct chiral structure of the amplituddste that the 't Hooft—\eltman scheme treats
the observed particles in 4 dimensions but the soft/callirguons inD dimensions. This guarantees
that for the IR subtractions the same Catani—-Seymour dif@las as for conventional dimensional
regularisation can be used [233].

12.3 Tuned comparison of results

The following results essentially employ the setup of R8f. [The CTEQ®6 [28, 234] set of parton
distribution functions (PDFs) is used throughout, i.e. @BE1 PDFs with a 1-loop running are
taken in LO and CTEQ6M PDFs with a 2-loop runningin NLO. Bottom quarks in the initial or final
states are not included, because the bottom PDF is supgnesseto the others. Quark mixing between
the first two generations is introduced via a Cabibbo angle- 02227. In the strong coupling constant
the number of active flavours isx = 5, and the respective QCD parameters ak€ = 165 MeV and

15 = 226 MeV, leadingto ° M )= 0:13241687663294 and Y™ M )= 0:12026290039064.
The top-quark loop in the gluon self-energy is subtractedemd momentum. The running of; is,
thus, generated solely by the contributions of the lightrgand gluon loops. In all results shown in
the following, the renormalization and factorization gsahre set tol ; . The top-quark mass is . =
1743 GeV, the masses of all other quarks are neglected. The weaklmasses are;; = 80:425GeV,
M, = 91:1876 GeV, andv 5 = 150 GeV. The weak mixing angle is set to its on-shell value, ixadi
by =1 § =MZ2=M72, and the electromagn%ig coupling constanis derived from Fermi's

constantz = 1:16637 10° GeV “accordingto =~ 26 M 2 si= .

We apply the jet algorithm of Ref. [235] with = 1 for the definition of the tagged hard jet and
restrict the transverse momentum of the hardest jgtby.. > 100 GeV.
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1 Lo F=el=gflGev ?]
0:9963809154477200 10°

uu! W*W g

dd! W *w g 0:3676289952184384 10°
ug! W *W u 0:1544340549124799  10°
dg! W*tw d 0:1537758419168101 10°
gu! W'tW u 0:7491333451663728 10
gd! W*Ww d 02776156068243590 10°

Table 6: Results for squared LO matrix elements at the phpaee poin{{123).

12.4 Results for a single phase-space point
For the comparison the following set of four-momenta is @mys

p, = (7000;0;0;7000);  p, = (7000;0;0; 7000); (123)
p, = (6921:316234371218;3840:577592920205;0;5757:439881432096);

p, = (772:3825553565997; 67:12960601170266; 279:4421082776151; 712:3990141151700);
p. = (6306:301210272182; 3773:447986908503;279:4421082776151; 5045:040867316925);

where the momentum assignment is&ap; )b(po) | W ¥ (o)W (pa )c(ps3).

Table[® shows some results for the (spin- and colour-summegdred LO matrix elements, as
obtained withMadgrapH158]. The results of all three groups agree with these nuanéhin about 13
digits.

Because of the different treatment of the number of actiw@€les in the calculations of DKU and
CEZ and in order to be independent of the subtraction schereicel IR divergences, we found it useful
to compare virtual results prior to any subtraction. The ;) contribution to the virtual, renormalized
squared amplitude is given by the interference betweenrxes and one-loop virtual amplitude, which
we denote schematically as

1 1
2RefM, Mog= e4g§f( ren) C25+C1—+C (124)

Wit £( w)= 1+ )4 2. 2 ) and the number of space-time dimensions: 4 2 . Inthe
following we split the coefficients of the double and singtdepand for the constant pad, ,;c 1, and
¢, iNto bosonic contributions (*bos”) without closed fermitbops and the remaining fermionic parts.
The fermionic corrections are further split into contrilouis from the first two generations (“ferm1+2")
and from the third generation.

Table[T shows the results for the bosonic parts of the coeffist ,, ¢ ;, andc, (c , does not
receive fermion-loop corrections). The results @nobtained by the different groups typically agree
within 7 11 digits; the ones on , andc ; agree much better, because they are much easier to calculate
The results for the fermionic contributions of the first twengrations are given in Talilé 8. Compared to
the bosonic corrections these contributions are suppitdsgéhree orders of magnitude. Counting this
suppression factor, which results from cancellations,igsifecant digits, the finite parts agree within
6 9digits. The agreement is somewhat better in the coefficigfttse single pole, which entirely stems
from the counterterm of the fermion-loop part of the gluoif-seergy. The remaining contributions
from closed loops of the third quark generation are not caeghget. For future reference we show the
full corrections including all bosonic and fermionic cdbtrtions in TabléD.

ZNote that this factor differs from the overall facter extracted when quoting results for one phase-space poihei€EZ
paper.
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c lGev ?] FeEGev ?] E3Gev ?]

uu! W*W g

DKU 1:080699305508758 1§  7:842861905263072  10° 3:382910915425372 16

CEZ 1:080699305505865 16 7:842861905276719  10* 3:382910915464027 18
BGKKS 1:080699305508814 10 7:842861905263293  1(° 3:382910915616242 16
dd! W*w g

DKU 3:987394716797222 10 2893736116870099  1(° 1:252531649334637 10

CEZ 3:987394716665197 10  2:893736115389983  1(° 1:252531614999332 16
BGKKS 3:987394716798342 10  2:893736117550454  10° 1252531647620369 18
ug! W*W u

DKU 1675029833503229 10 1:236268430131559  10* 5:417120947927877 10

CEZ 1675029833501256 16 1236268430124113  10* 5:417120948004078 10
BGKKS 1675029833503285 10 1:236268430131930  10* 5:417120948184518 10
dg! w*w d

DKU 1667890693078443 10 1231000679615805  1(° 5:402644808236175 16

CEZ 1667890693268847 10 1:2230999331981130  1(° 5:402644353170802 16
BGKKS 1667890693077475 10  1230999333576065  1(° 5:402644211736123 16
gu! W*'W u

DKU 8:125284951799448 16 7:047108864062224  10° 3:525581727244482 16

CEZ 8:125284951286924 16 7:047108863931619 10° 3:525581728065669 10
BGKKS 8:125284951799859 16  7:047108864102780  10° 3:525581727287365 16
g! WwW*w d

DKU 3:011087314520321 16 2611534269956032  10° 1:326197552139531 10

CEZ 3:011087314528406 16 2:611534269870494  10° 1:326197549152728 10
BGKKS 3:011087314520429 16 2:611534269951226  10° 1:326197552106838 10

Table 7: Results for the bosonic virtual corrections at thege-space poirlf (IP3) with », ¢ 1 andc, are defined in Eq[{124).
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Cfe11m1+2[GeV 2] Cofennl+2[GeV 2]

uu! W*W g

DKU  2:542821895320379 10°  4:3372323372044527 10

CEZ  2:542821895311753 10°  4:3372790378087550 10’
BGKKS 2:542821895314862  10°  4:372324288356448 10/
dd! W*w g

DKU  9:382105211529244 10° 2:383985481697933  1¢°

CEZ  9:382105220158816 10°  2:381655056763332  10°
BGKKS 9:382105215996126 10°  2:383986138730693  1(°
ug! W*Ww u

DKU  3:941246664484964 10° 2:261655163318730 10

CEZ  3:941246667066658 10° 2:261900862449825 10
BGKKS 3:941246667066566 1(°  2:261651778836927 10/
dg! w*w d

DKU  3:924449049876280 1C° 3:340508442179341 16
CEZ  3:924448807787651 1C¢° 3:341842650545260 16
BGKKS 3:924448689594072  1(° 3:340505335889721 16

gu! W*W u
DKU  1:911831753319591  1(° 3:332688444715011 10
CEZ  1:911831753400357 1(° 3:332770821153847 10
BGKKS 1:2911831753364673  1(° 3:332688443882355 10
gd! W*w d
DKU  7:084911328500216 10 3:420298601940541 10
CEZ  7:084911328417316 10 3:419939732016338 10
BGKKS 7:084911328283340 10/ 3:420298578631734 10

Table 8: Results for the fermionic contributions of the ftegb quark generations to ; andc, at the phase-space poiht (123).

c ,[Gev 2] c 1[Gev 2] o Gev 2]
uu! W*W g
DKU 1:080699305508778 10 8:160714642177893  10¢ 3:382201173786996 16
dd! W W g
DKU 3:987394716797186 10  3:011012432041691 100 1:248828433702770 16

ug! W*W u
DKU 1:675029833503229 16 1:285534013444099 10t 5:413834847221341 16
dg! w*w d
DKU 1667890693078551 10 1:2280056291844283  1(° 5:452219162448072 16
gu! W W u
DKU 8:125284951799523 16 7:286087833227389 10 3:528788476602400 16
gd! W*w d
DKU 3:011087314520238 16 2:700095661561590  10° 1:331943241722592 16

Table 9: Results for the full bosonic+fermionic contrilmms toc ,, ¢ ; andc, at the phase-space poiht (123).

71



pp! W'W +jet+ X vo [fb] v 1o [fb] vires 10]
DKU 10371:7(12) 14677 6(98) 881:5(42)
CEZ 1037226(97)
BGKKS 10371:7(11)

Table 10: Results for contributions to the integrated psigections at the LHC in LO and NLO.

12.5 Results for integrated cross sections

A tuned comparison of integrated cross sections is stillrogpess. Table_10 illustrates the agreement
in the LO cross section obtained by the different groups andiges the DKU result in NLO for future
comparisons. The subcontribution ., ; corresponds to the IR-finite sum of the virtual correctiond a
the contribution of ther operator that is extracted from the real corrections with dipole subtraction
formalism [175].

12.6 Conclusions

We have reported on an ongoing tuned comparison of NLO QC&utzlons to WW-+jet production at
the LHC. For a fixed phase-space point, the virtual correstiobtained by three different groups using
different calculational techniques agree within 6-9 digithe comparison of full NLO cross sections,
which involve the non-trivial integration of the virtual wections over the phase space, is still in progress.

The agreement found so far gives us confidence in the conalsigirawn for physical quantities,
which were reported in Refs. [3, 4].
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13. FROM THE HIGH ENERGY LIMIT OF MASSIVE QCD AMPLITUDES TO TH  E FULL
MASS DEPENDENCE%

13.1 Introduction

Itis clear that the physics program of the LHC poses new ehgbs to the theory. In fact, the description
of hadronic collisions involves several quantities, botimn4perturbative and perturbative, the determina-
tion of which is a highly non-trivial task. As far as the pelative part is concerned, we are still a
long way of having the partonic cross sections predictedsatitable level of accuracy. Whereas most
processes will have to be known to next-to-leading orderglare some for which the experimental pre-
cision grants a study going one order higher in the strongliog constant. Particularly interesting here
is the top quark pair production cross section. With staBsjoing into millions of events, a systematics
dominated error of under 10% is expected already in the firasp of the LHC. Despite years of efforts,
the appropriate complete NNLO prediction is not yet avddall he bottleneck, as in most such cases is
the evaluation of the two-loop virtual corrections.

Z4Contributed by: M. Czakon

72



Recently, the high energy limit of the amplitudes in the guamnihilation and gluon fusion chan-
nels has been derived [236, 237] by a mixture of direct evelnaf Feynman graphs and an approach
based on factorization properties of QCD (see A. Mitov’s &d/loch’s contribution). The knowledge
gained can already be used for the description of higlevents and as a test of a future complete pre-
diction. Clearly due to the behavior of the particle fluxefatvis needed is a calculation covering the
whole range of variation of the kinematical parameterss ihteresting that one can actually use the high
energy limit to deal with this problem. Unfortunately, itist enough to have the whole amplitude, but
it is rather necessary to know all of the master integralshénfollowing, | describe the steps that lead
to the complete result.

13.2 The high energy limit

By the high energy limit, | understand the limit where all theariants are much larger than the mass. A
direct approach to the evaluation of the amplitude underdssumption has been devised in [238, 239].
As a first step, one uses the Laporta algorithm to reduce dhenfntegrals occurring to a small set of
masters. In the case at hand, the number of integrals is 1dt82thfor the quark annihilation and gluon
fusion channels respectively.

Subsequently, Mellin-Barnes representations are cartetiufor all the integrals [240, 241]. This
can be done by an automatic package, here by one written b&utier and G. Chacha After
analytic continuation in the dimension of space-time paenfed with the MB package [243], the integrals
have the following general form

I= m?)y" ? dz — £ —;z ; (125)
S

where thef function contains, amongst others, a product,air possibly functions, which have poles

in z. The desired expansion is obtained by closing the contodrtaking residues. As a result, one
obtains integrals which have lower dimension and a simgheicire. These still require evaluation.
Due to the fact, that there is a relation between the masaiyélee massless cases, the result must have a
similar structure. In particular, it has to be given by haniegoolylogarithms, and therefore it should be
possible to resum the integrals by further closing conteund evaluating the resulting series. This can
again be achieved automatically with the help of the XSumpaekage [244].

What remains at the end are integrals, which are pure numbetglo not have a structure sug-
gesting a solution in terms of harmonic series. The sameamagtias before shows, however, that this
must be the case. Instead of working out specific methodsddicplar integrals, it turned out to be
possible to evaluate them to very high precision and sulesgtyuuse the PSLQ algorithm to reconstruct
the solution in terms of Riemann zeta values.

It has to be noted, that the procedure sketched above worlkkdamajority of cases, but some
remain at the end. For these, it is usually necessary to ehtlmgbasis of integrals, in order to obtain
expressions of suitable structure and/or size for evalnatht present this program has been completed
for the quark annihilation channel, and thus all the colaucttires given in [236] have been computed
directly with agreement with the factorization approacheluon fusion channel is still under way.

13.3 Power corrections

As explained in the introduction, the high energy limit bseif is not enough for practical applications.
To go one step further, it is possible to compute power ctioes in the mass. These will then cover
most of the range, apart from the threshold region and thdl smgle region, where the series is not
convergent any more.

There is a public package available [242] that construgisesentations for planar graphs. In the present case, afso n
planar graphs occur, however.
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Fig. 27: Bare leading color amplitude for top quark pair pratibn in the quark annihilation channel expanded in thesmas
The more divergent terms at threshold (left of the plotsyeswond to higher orders of expansion. The left panel cpords
to 90 degree scattering, whereas the right to forward soadgteThe variables are defined in the text.

The main idea is as follows. The derivative of any Feynmaggral with respect to any kinemat-
ical variable is again a Feynman integral with possibly kighowers of denominators or numerators.
These can, however, be reduced to the same master integhaéssmeans that one can construct a par-
tially triangular system of differential equations in th@ss [245,246], which can subsequently be solved
in the form of a power series.

In Fig.[Z1, | show the result of expansion for the leading ctdom. The kinematic variable is
t
x= —;t=( pf¥ mi; (126)

and its variation within the rangg=2(1 );1=2(1+ )lwhere =1 4m?Z=sis the velocity,
corresponds to angular variation between the forward aclivibard scattering.

The series appears to be asymptotic at the boundaries. tuné&bely, the behavior is worse for the
subleading color terms, as a consequence of the Coulomblaiity among others.

13.4 Numerical evaluation

Using the same system of differential equations one carirohtaull numerical solution to the problem.
The only requirement is to have the boundary conditions itakle accuracy. These are provided by
the series expansions of the previous section. It is cracigkrform the numerical integration along a
contour in the complex plane, since there are spurious kEnges along the real axis. Here, | chose
an ellipse, because of the improved control on the intemmatiror that one gets from the software used
(ODEPACK).

Fig.[28 shows the solution in the range, where the expanditimegorevious section starts to di-
verge. The achievable precision, if double precision arétic is used, is about 10 digits for most points,
with evaluation times of the order of a second. This is gombé substantially slower, when subleading
color terms will be added. However, the method is fast andipeeenough to be sufficient for practi-
cal applications. In particular it is possible to constrgatls of solutions, which will be subsequently
interpolated when implemented as part of a Monte Carlo piogr

It is clear that the method is suitable for problems, whicheharelatively small number of scales,
and seems to be perfect for! 2 QCD processes at the two-loop level. The main drawback isittee
of the expressions, and the difficulties connected to theaten of the boundary conditions.
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Fig. 28: Full mass dependence of the bare leading color &amlglin the quark annihilation channel.

13.5 Conclusions

| have described an approach for the evaluation of massive &fplitudes starting from the high energy
limit and its application to the NNLO corrections to the tapagk pair production cross section. Needless
to say, the same procedure can be applied to other problemteadst. At present the Author, together
with G. Chachamis and D. Eiras, is working on the correctiimngauge boson pair production.
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14. MUCH CAN BE SAID ABOUT MASSIVE AMPLITUDES JUST FROM KNOWI NG
THEIR MASSLESS LIMIT

14.1 The high-energy limit

For the precise evaluation of collider observables the Kkadge of the pure virtual correction to the
corresponding Born process is required. This is true at adgraNLO, NNLO, etc). In presence of
heavy flavors, and especially at higher orders, the problitineir evaluation becomes acute.

There are very important applications awaiting such resun example of central importance
is top production at LHC which is one of the few eagerly andjteecisionobservables at this collider.
One of the peculiar features of top production at LHC, andointi@ast to the situation at the Tevatron, is
that no specific kinematical region dominates the crostesecThis is due to the shape of the luminosity
function for LHC kinematics.

Direct calculation of the amplitudes is certainly a very @ewiing task and it seems that one can
hope that numerical results in some, hopefully easy to leafatin, will become available soon (see
the contribution by M. Czakon for progress in this direcjiollere we consider an alternative approach
which explores the special properties of the gauge theompliudes in the high-energy limit and easily
provides (partial) results for the heavy flavor amplitudesreat higher perturbative orders.

ZContributed by: A. Mitov, S. Moch
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In the following we start by introducing the concepthafh-energy limitwith the help of simple
and physically motivated arguments. By high-energy linmeaneans a kinematical situation where
the corresponding invariants are much larger than the rmasfséne heavy particles of interest. In the
following we will consider the case of a single massive fenmwith massn in presence of a typical
large kinematical invarianp . Specific examples are detailed in secfion 114.3. If the diyaoitinterest
(like total or differential cross-section, amplitude, .¢tes regular in the limitn =0 ! 0 then the high-
energy limit is quite trivial: it is am -independent function of the kinematical invariants whiomcides
with the one evaluated in the massless limit. Thereforentlmacomputed by setting the masgo zero
from the very beginning.

Such a situation is, however, relatively rare. In most giast of interest, like the differential
ones, the limitn =Q ! 0is singular. The obvious manifestation of that singulaiityhe results is the
presence of terms of the type Ii' m =Q ). When such contributions appear (and in fact this is the
typical situation) the high-energy limit is defined as thi fesult with all power corrections in the mass
neglected, i.e. it contains all logarithms (not multiplieg powers of the mass) as well as the so-called
“constant” or mass-independent terms. Clearly, in sucks#e high-energy limit is different from the
massless limit.

Before we detail the relation between these two limits, wellddirst like to clarify the origin
and meaning of the logarithmic terms mentioned above. Thases are known as (quasi-) collinear
logs since they originate from emissions of collinear rédia To be precise, the role of the mass is to
regulate small angle emissions that would otherwise devémga massless theory; see Ref. [247] for a
detailed exposition. In this regard, a parton’s mass geds significance, since one can take one of the
following two viewpoints:

small or large, the mass is nevertheless non-zero, therefa result is always (collinearly)
finite;

the small mass is just a formal regulator for collinear siagties much like dimensional regu-
larization in the purely massless case.

In this write-up we take the unifying viewpoint that both apgches are useful and do not have
to be considered as alternatives to each other. One candhihle mass as a regulator which is helpful
in deriving certain properties of the theory but it can alsotlvought of as an approximation to the full
massive result which is surprisingly good in many physiggileations.

The prominent role these logarithmic terms play in physa@lications has been acknowledged
long ago, and has been formalized in the so-called Pertuebatagmentation Function approach [248]
now known through two-loops [249, 250]; for a recent reviee §251]. The idea behind this formalism
is the fact that up to power corrections in the mass, a difiitak with respect to some kinematical
parameter cross-section for the production of a massive partpoan be written as:
dy X odn,

iz (z;Q m )= ) iz

(z;Q) Dain(zim)+ O @m): (127)

The functionD ., 1, (z;m ) does not depend on the hard scaland is thus a process independent
object that can be computed to any fixed order. It has the itapbproperty that it contains all the mass
dependence within the approximation indicated in Eq.J(1@#) the other side the partonic cross-section
d~, for the production of any partoais intrinsically massless, i.e. itis obtained from a cadtian where
m = 0is set from the very beginning. Of course, collinear singtiés are still present in a massless
calculation but they are regulated dimensionally, i.ey #ygpear as poles in, whered= 4 2 :

X N
(ziQ; )= 23(Z;Q ) pal(zi ) (128)

dz dz
b

The explicit expression for the collinear counterternaontains arbitrariness; the only condition on it
is that it contains all poles in. It has become a standard practice in recent years to wothein 5

a

76



scheme where contains only poles. The choice of a subtraction schemedswfe also implicit in the
definition of the functiorp in Eq. (I27).

From Eqgs.[(12I7)[{128) it is quite clear that one can obtainaasive cross-section in the small-
mass (or high-energy) limit by performing a purely massleakulation. The calculational simplifi-
cations following from this can be enormous, especially ighér orders. The usefulness of such an
approach has been appreciated in the past in many appfisattated to heavy quark production (typ-
ically bandc) at special kinematics like large; hadroproduction and* e annihilation at thez -pole
(see [252] for a review). In such kinematical configuratitims neglected power corrections can be as
low as a few percent effect and are often totally negligible.

A second virtue of EqQ[(127), and one that cannot be matchedriventional perturbation theory,
is that it allows resummation of large collinear logsQ =m ) to all perturbative orders. This feature
is due to the fact that the functiom satisfies the DGLAP evolution equation, or in other words one
achieves exponentiation of the (remnants of) soft andregdli singularities.

As we will demonstrate in the next section, all these featwkemassive cross-sections in the
small-mass limit can be translated to massive amplitudeaimge theories where similar properties can
be uncovered. Moreover, one can exploit these propertissizh the same way; this is illustrated by the
physical applications we consider in section 14.3.

14.2 Factorization in massive amplitudes

As was indicated above, in the following we will be concermgth the factorization properties of mas-
sive QCD amplitudes in the high-energy limit. Since one aof main objectives is to relate the small-
mass limit of an amplitude with its massless limit, we start discussion with a brief review of the
well-known factorization properties of massless ampkisid253, 254].

The scattering amplitude .

. Q*?
M i M fkigifmigifag;—; ( %) (129)

for a generab ! n scattering processes of on-shell partens

p: P+ ! p3+t nie P (130)

with a set of fixed external momenta;g, massesm ;gand color quantum numbefs;g, can be written

in the massless case; = 0 as a product of three functions™ ~*’, s = andn ¥/,

o = _ _ 02 .
¥ i =g 0 g (%) sITY fkigiT5i (%) i (131)

The decomposition Eql_(1B1) can be understood with simpjsiphl arguments. The jet func-

(m =

tion J, %) contains all collinearly sensitive contributions, is aettiagonal and depends only on the

external partons. On the other side the soft functigh™ °) contains all soft radiation interferences and
is therefore process specific. Finally, the short-distathagamics of the hard scattering is described by
the (infrared finite) hard functiom ,. To leading order this function is just proportional to therB
amplitude. More details about the above expressions caouralfin the review [255].

As was explained in [254], the decomposition Eq. {131) dostarbitrariness related to subleading
soft as well as finite contributions, which can be removed kindi a prescription. A convenient and
natural choice is to identify the jet function with the mass form factor for the flavor corresponding to
any particular leg, i.e.:

g m=0 _ J! = p =0 2 ; (132)
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wherei= g;g for quarks and gluonst [g“ =% s the individual jet function of each external parton. The
needed massless jet factors are known through three-loaptha soft functions through two-loops for
any2 ! n scattering process [256].

We are now ready to consider the massive case. Based on oussiign in the previous sections
in the small-mass limit one should expect a decompositiomagsive amplitudes similar to the one in
Eq. (I31). Let us be more specific: we know that in the massage collinear logs do appear but we
also know that they should be absorbed in a correspondirfgnetion. On the other side, up to power
corrections, the soft and hard functions in the massive sheald be the same as in the massless case
since, by construction, they are not sensitive to colliregarssions. With the exception of contributions
related to heavy quark loops (to be discussed below) in tesepice of a hard scafe we write for the
massive amplitude§ (1B0):

. ny Q2 . Q2 .
M i) =0 —ifmagi (%) 5P fkigi—5 o( ?); Hpi+ Om):  (133)

It is very easy to find out what the jet function in the massiasecshould be. Working in the
prescription chosen for the massless case, one can appypkude decomposition to the form factor
itself; the latter has no nontrivial soft or hard functiorigherefore, in the massive case the jet function
must be nothing but the massive form factor evaluated initiadlsmass limit.

Combining Eqs.[(131)[{I33) one gets the following very |siiye relation [257]:

Y 1
2 _
Mg“) = Z[(ir?j)) Mém Dy o mijii); (134)
i2 fall legsy
where,
(m ) m ? m) Q% m? m-0) Q7 !
Z[l] 2; s7 = F[l] _2; 2; s7 F[l] _2; s7 + R (135)

is a universal, process independent factor. It is senditithe definition of the mass as well as the
coupling constant (see [257] for details). The procesgemdence in EgL(IB5) is manifest because

7 [(E s only a function of the process-independent ratio of scatem 2. The process-dependent scale
0 cancels completely between the massive and the masslessafciors.

The last statement, however, requires one important datifin. From the explicit results for the
massive and massless form factors one can easily see thatgsfeom two loops the ratio indicated
above contains alsp -dependent logarithmic terms originating from diagramthwihe heavy parton in
loops. It is these terms that we have indicated with dots in(lE8B). Luckily, these terms are easy to
recognize and to separate since in the color decomposititre@amplitudes they are proportional to the
number of heavy flavors, . For that reason in the definition af-factor given originally in Ref. [257]
contributions proportional to the number of heavy flavorsehbaeen excluded, as indicated by the dots
in Eq. (134). A first step in the understanding of the loop dbations and their incorporation into
the factorization approach was made in Ref. [258] in the exdrf Bhabha scattering. We discuss this
process as well as other applications in the next section.

Comparing the results of this section with the ones in th&iptes section, we can clearly see the
similarities offered by QCD factorization between smaksa limits of amplitudes and cross-sections.
In both cases the small-mass results are proportional tedhesponding massless results. The pro-
portionality factors are process independent and unilieild@e proportionality is in the sense of usual
multiplication for amplitudes and convolution for crossetons, as usual. Moreover, it was explained in
Ref. [257] the so-called -factor in Eq. [13b) seems in fact to equal the pure virtualtgbutions to the
perturbative fragmentation functiam in Eq. (127).
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14.3 Applications

The results in the previous section have been cross-chextkbd amplitude level with the general-mass
predictions for the structure of thepoles andn (m ) terms of any one-loop amplitude [247]. Complete
agreement was found. We have also checked that for the groges hh the prediction based on
Eq. (I34) completely agrees with the results from the owg-lcalculation of Ref. [259]. We want to
stress that we have compared not only the singular termslémitadl terms that are finite in the limits

! 0andm ! 0. The agreement applies to all color structures of the aogitas well as for both its
real and imaginary parts.

In subsequent work [236, 237] a prediction for the small-srasit of all two-loop heavy quark
production squared amplitudes at hadron colliders has beste, while the terms proportional g
were obtained from a direct calculation. We will not go intails here (they can be found for example
in the recent review [255]) but will only summarize the ma@afures of the result: several of the color
structures were calculated both directly as well as predieind we observed full agreement between the
two approaches. Therefore, this is a first two-loop checkHerfactorization approach and represents a
direct confirmation of its validity.

Another obvious application where the small-mass limiyplemportant role is Bhabha scattering.
The knowledge of the two-loop QED massive amplitudes in thalkmass limit there is needed for
achieving the intended precision of the luminosity measiem; see for example [260]. Complete results
for the photonic corrections to large-angle Bhabha saatievere first obtained by Penin [261] and later
confirmed in Ref. [258] in the approach discussed in the pres/section. Therefore, this is yet another
example of its usefulness and power.

14.4 Conclusions

We have presented a newly developed relation between reagsty massless QCD amplitudes. We
have emphasized its relevance for physical applicatiodsitarability to seamlessly produce results for
processes that cannot be calculated currently by direchsea

The relation was introduced based on the idea for masshegsoli a massive amplitude and was
given in parallel to the much better known relation betweeassive and massless differential cross-
sections.

The new relation between massive and massless amplituplessents the proper generalization
of the naive textbook replacement relatioh ! I=n@m )+ :::to all perturbative orders and for any
process. Moreover, with the obvious identification of théocdactors, the relation is applicable to any
SU (N ) gauge theory, QCD being a prominent example. QCD and QEDcapphs like heavy quark
production at hadron colliders at two loops and two-looprections to Bhabha scattering were briefly
discussed.

15. NNLO PREDICTIONS FOR HADRONIC EVENT SHAPES IN e e ANNIHILATIONS
15.1 Introduction

For more than a decade experiments at LEP (CERN) and SLC (pbaAtbered a wealth of high pre-
cision high energy hadronic data from electron-positronilaitation at a range of centre-of-mass ener-
gies [262—-278]. This data provides one of the cleanest wigyobing our quantitative understanding of
QCD. This is particularly so because the strong interastioccur only in the final state and are not en-
tangled with the parton density functions associated watns of hadrons. As the understanding of the
strong interaction, and the capability of making more wedtheoretical predictions, develops, more and
more stringent comparisons of theory and experiment arsilples leading to improved measurements
of fundamental quantities such as the strong coupling eon$252, 279].

2IContributed by: G. Dissertori, A. Gehrmann-De Ridder, Th@@ann, E.W.N. Glover, G. Heinrich, H. Stenzel
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In addition to measuring multi-jet production rates, mopedfic information about the topol-
ogy of the events can be extracted. To this end, many vasdidge been introduced which charac-
terise the hadronic structure of an event. With the preniglata from LEP and SLC, experimental
distributions for such event shape variables have beem&xtdy studied and have been compared
with theoretical calculations based on next-to-leadindeor(NLO) parton-level event generator pro-
grams [212,280-285], improved by resumming kinematiedtyninant leading and next-to-leading log-
arithms (NLO+NLL) [286—291] and by the inclusion of non-pebative models of power-suppressed
hadronisation effects [292—295].

Comparing the different sources of error in the extractibn ofrom hadronic data, one finds that
the purely experimental error is negligible compared toth@oretical uncertainty. There are two sources
of theoretical uncertainty: the theoretical descriptidrth® parton-to-hadron transition (hadronisation
uncertainty) and the uncertainty stemming from the truncabf the perturbative series at a certain
order, as estimated by scale variations (perturbative alesencertainty). Although the precise size
of the hadronisation uncertainty is debatable and perhéfips anderestimated, it is conventional to
consider the scale uncertainty as the dominant source ofdtieal error on the precise determination
of  from three-jet observables. This scale uncertainty carolerded only by including perturbative
QCD corrections beyond NLO.

We report here on the computation of NNLO corrections to egbape distributions, and discuss
the impact of these corrections on the extraction ofrom LEP data.

15.2 Event shape variables

In order to characterise hadronic final states in electrmsitppn annihilation, a variety of event shape
variables have been proposed in the literature, for a regiesve.g. [291, 296]. These variables can be
categorised into different classes, according to the mahimumber of final-state particles required for
them to be non-vanishing: In the following we shall only ddes three patrticle final states which are
thus closely related to three-jet final states.

Among those shape variables, six variables were studiedeit gletail: the thrust [297, 298],
the normalised heavy jet mass[299], the wide and total jet broadenings; andB . [300], thec -
parameter [301, 302] and the transition from three-jet to-jet final states in the Durham jet algorithm
Y5 [303-307].

The perturbative expansion for the distribution of a gemefiservabley up to NNLO ate’ e
centre-of-mass energy's, for a renormalisation scal€?, is given by

Ld L A () A
haa dy ,y 2 dy 2 dy dy ’ ¥
. N dC+2dB . 2
2 dy  “dy °777s
|
+ o ke’ —+ 1bg—  +0({): (136)
y s s

The dimensionless perturbative coefficientss andc depend only on the event shape variahld hey
are computed by a fixed-order parton-level calculation,clwhincludes final states with three partons at
LO, up to four partons at NLO and up to five partons at NNLO. L@ &a.O corrections to event shapes
have been available already for a long time [212, 280—-285].

The calculation of the NNLO corrections is carried out usimgewly developed parton-level event
generator programm&ERAD3 which contains the relevant matrix elements with up to fiveeeal
partons [139, 160, 308-315]. Besides explicit infrarededyences from the loop integrals, the four-
parton and five-parton contributions yield infrared divemgycontributions if one or two of the final state
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partons become collinear or soft. In order to extract theBared divergences and combine them with the
virtual corrections, the antenna subtraction method [318} was extended to NNLO level [319-322]
and implemented fog" e | 3 gtsand related event-shape variables [323]. The analyticadeifation

of all infrared divergences serves as a very strong checkenmplementation.EERAD3 yields the
perturbativer , B andcC coefficientgd as histograms for all infrared-safe event-shape variatdiesed

to three-patrticle final states at leading order. As a croglchthea and B coefficients have also
been obtained from an independent integration [283—-28H@NLO matrix elements [212], showing
excellent agreement.

For small values of the event shape variapléhe fixed-order expansion, ef. (136), fails to con-
verge, because the fixed-order coefficients are enhanceadvisgre of In(1=y). In order to obtain reliable
predictions in the region of 1 itis necessary to resum entire sets of logarithmic term4 atders in

.- A detailed description of the predictions at next-to-legelogarithmic approximation (NLLA) can
be found in Ref. [325].

15.3 Generic features of the NNLO corrections

The precise size and shape of the NNLO corrections depenldeonliservable in question. Common to
all observables is the divergent behaviour of the fixed-optediction in the two-jet limit, where soft-
gluon effects at all orders become important, and wheramesation is needed. For several event shape
variables (especially andc ) the full kinematical range is not yet covered for three past but attained
only in the multi-jet limit. In this case, the fixed-order degtion is also not applicable since it is limited
to a fixed multiplicity (five partons at NNLO). Consequentiye fixed-order description is expected to
be reliable in a restricted interval bounded by the twoijgitlon one side and the multi-jet limit on the
other side.

In this intermediate region, we observe that inclusion ofLlKINcorrections (evaluated at thre-
boson mass, and for a fixed value of the strong coupling cot)stgpically increases the previously
available NLO prediction. The magnitude of this increadtedi considerably between different observ-
ables [324, 326], it is substantial far (18%),B; (17%) andC (15%), moderate for andB;; (both
10%) and small fory; (6%). For all shape variables, we observe that the renosatadin scale uncer-
tainty of the NNLO prediction is reduced by a factor of two ocoma compared to the NLO prediction.
Inclusion of the NNLO corrections also modifies the shapéhefdvent shape distributions. We observe
that the NNLO prediction describes the shape of the measewedt shape distributions over a wider
kinematical range than the NLO prediction, both towardstiie-jet and the multi-jet limit. To illus-
trate the impact of the NNLO corrections, we compare the fiowter predictions foly; to LEP2-data
obtained by the ALPEH experiment in Figurel 29, which illasts especially the improvement when
approaching the two-jet region, corresponding to large (Y3 ).

15.4 Determination of the strong coupling constant

Event shape data from LEP and LEP2 were used in the past facsprdetermination of the strong
coupling constant ;. These studies were based on the previously available NE@tsg improved by
NLLA resummation; the resulting error ons was completely dominated by the renormalisation scale
uncertainty inherent to the NLO calculation. Using the neabdmputed NNLO corrections to event
shape variables, we performed a new extraction ofrom data on the standard set of six event shape
variables, measured by theLEPH collaboration [263] at centre-of-mass energies of 91.3, 1I%1,
172, 183, 189, 200 and 2@6ev . The event-shape distributions were obtained using thenstaucted
momenta and energies of charged and neutral particles. Hasurements have been corrected for
detector effects, ie., the final distributions correspondatso-called particle (or hadron) level (stable
hadrons and leptons after hadronisation).

25 B andc differ from A, B andc in their normalisation to , instead of 1.4 [324].
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Fig. 29: Perturbative fixed-order predictions for thie-distribution.

The coupling constant, is determined from a fit of the perturbative QCD predictiomsteasured
event-shape distributions. The procedure adopted hdmwi®iclosely the one described in Ref. [263].
Event-shape distributions are fitted in a central regiorhefthree-jet production, where a good pertur-
bative description is available. The fit range is placedd@she region where hadronisation and detector
corrections are below 25 and the signal-to-background ratio at LEP2 is above onehéhigher LEP2
energies the good perturbative description extends furtite the two-jet region, while in the four-jet
region the background becomes large. Thus the fit rangeéstsel as a result of an iterative procedure
balancing theoretical, experimental and statistical tag#ies.

Here we concentrate on fits of NNLO predictions [327] and camapthem to pure NLO and
matched NLO+NLLA predictions as used in the analysis of R83]. Results from individual event
shapes are displayed in Figlird 30. The combination of all ®Mketerminations from all shape variables
yields

<M 2)= 01240 00008 (stat) 00010 (exp)  0:0011 (had)  0:0029 (theo); (137)

which is indicated by the error band on Figlird 30. We obserekear improvement in the fit quality
when going to NNLO accuracy. Compared to NLO the value ofs lowered by about 10%, but still
higher than for NLO+NLLA [263], which shows the obvious nefed a matching of NNLO+NLLA
for a fully reliable result. The scatter among the-values extracted from different shape variables is
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Fig. 30: The measurements of the strong coupling constarfor the six event shapes, Bs=u 2, when using
QCD predictions at different approximations in perturbatiheory.

lowered considerably, and the theoretical uncertaintyeisrelased by a factor 2 (1.3) compared to NLO
(NLO+NLLA).

These observations visibly illustrate the improvementsiegh from the inclusion of the NNLO
corrections, and highlight the need for further studies los rnatching of NNLO+NLLA, and on the
derivation of NNLLA resummation terms.
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Part IV
PARTON SHOWERS

16. DEVELOPMENTS IN LEADING ORDER PARTON SHOWERS

At the Les Houches workshop, there was lively discussionaofgm showers as represented in Monte
Carlo event generators. One of the main current issues $nfiggld is the problem of matrix-element

2Contributed by: D.E. Soper, P.Z. Skands
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/ parton-shower matching, and the workshop saw severaltepo ways of (re-)formulating parton
showers that could make this problem easier to deal witheradtone might denote with a fancy word
as “designer showers”. In this section, we review the pathaf discussion that relates to how a leading
order parton shower can be organized. Despite the appaiféaredces, all the new approaches can be
discussed at a common footing if we adopt a little bit of Hotatadapted from [328]).

A typical parton shower algorithm for hadron-hadron catliss works with states with two ini-
tial state partonsa andb, and some numbet of final state partons that we can label with integers

Each parton also carries a flavbr2 fg;u;u;d;d;:::qg, so that the momenta and flavors can be speci-
fied with fp;fqg, . Typically, we also keep track of color connections (theelatof one or two partons
to which partoniis connected in the leading-color limit). We may therefoemate the complete set of
m + 2 partons byfp;f ;cog, , wherecdenotes the color connections.

We can now consider the state®o;f ;og, to form a basis for a vector space in the sense of
statistical mechanics. After some amount of shower ewmtusitarting from a basis statép;f ;a9
with two final state partons, one reaches a statethat is a linear combination of basis states, so that
;£ ;09 represents the probability, in the shower model, for théesta to consist ofm + 2
partons with momenta, flavors, and coldgs; f ;g .

As the state develops, partons split. The evolution of th&ess tracked with a shower “time”
twhich can be interpreted as (the logarithm of) a typical tiiorea quantum process such as a parton
splitting. In most of the current algorithms, the showerdiimthe logarithm of the virtuality or transverse
momentum in a splitting. (In BRWIG, the shower time represents the energy of the mother panmst
the square of the splitting angle. In order to casiRwIG into the form presented here, one also needs
a cut on virtuality such that splittings with too small viality are not allowed. In other parton shower
algorithms, there is also a smallest virtuality allowedt that can be obtained by simply stopping the
shower evolution at some point.)

The evolution starts with the hard process and works fonimghysical time for final state evo-
lution and backwards in physical time for the evolution df thitial state. Thus we take the shower time
for a splitting fp; £ jogm | £P;f ;00m + 1 10 bet= t(Ep;f ;6qm - 1) Where, for instance if and 5 are the
daughter partons ang represents the virtuality scale for the hard process tlaatssthe shower,

Q 2
s + P5)?

It can, and should, be debated whether there is a prefer@decfor the shower evolution variable and,
if so, what it is.

t(EP;f ;60m + 1) = log (138)

Using this notation, we can represent what a typical parmwsgr Monte Carlo does. This repre-
sentation is an approximation to what real computer codes/massume that each stage of evolution
is independent of what happened at previous stages, degeimditead only on the shower timeand
the partonic state at that stage. This is not the case if n&tance, we do not exactly conserve four-
momentum at each stage and then adjust the parton four-ntaraetne end.

If we start with a particular basis statép;f ;cg, at shower timegy, then at a later time”’we get
a state related tofp;f ;oy, by an evolution operatar (t%;t;). In the notation of conventional parton
showers, based on collinear DGLAP splitting kernels, thienfof the evolution operator would be

U () foifiogm = (£%t:fpif o0 ) £oif i
X Z to Z Zm ax (1) Z d s 0 N (139)
+ dy (t1;%;fp;fi00 ) dz — — Py x(@)U(;8) f0;£;80+1
i;j;k to Zm in (tl ) 2 2

wheredt; = do ?=0 ? is the differential of the evolution variable, is an energy-momentum sharing
fraction,P (z) are the DGLAP splitting kernels, and we include an integvar@ngle that is usually uni-
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formly distributed. Once the algorithm picks which partgaiits, the flavors, and the splitting variables
t;z; , the new statep;f ;6 + 1 IS known. Reformulating Eq_{I89) in the notation outlindmbee, the
second term changes appearance slightly,

U () foifiogm = (t%t;fpif oo ) £oif i0n
Z 0
t
+ dg (t1;%;fp;f;00. )
t
Z .
Afp;L;0m +1

Y £0;£ 760 + 1 H1(t) £p;f;00n U (Eta) £0;€ ;600 +1

(140)

In either notation, the second term represents that at aeshtimve ; > tg, the first splitting occurs.
This splitting time is determined on a probabilistic basisf; is integrated over. The probability to get
a particular statep;f ;éq, - 1 iS given by

f0;£560, +1 H () fp;fiag (141)

whereH - is the splitting operator, analogous to the interaction iltamian in quantum mechanics. There
is an integration over the possible outconfgsft ;&g . 1. The requirement that the splitting at shower
time t; be the first aftery means that we must include the probability that there is meeaplitting.
This “no-branching” probability is given by a function (tisadakov form factor)

(t1itoifpificom ) = (142)

In a lowest order shower, this function is fixed so that thebpholity not to split in shower time interval
dt is 1 minus the probability to split,

(E1itodpificg, )=
=

1 PAY AN
exp d ——— Afpit;0m +1 f0;£;00m +1 H1( ) Ep;fiao,
to m + 1)!

(143)

The last ingredient in line two of Eq_{IK0) is the evolutiopeaatoru (t%t; ). This says that further
splittings can happen, in the same way, once the first gigities occurred. It can also happen that there
is nosplitting generated between shower timgandt,. This is represented in the first term of Hg. (1.40).

Evidently, the main content of a parton shower resides ingdgeratort ;(t) of the evolution.
This has two main parts: a splitting function and a momentuasppng.

Consider first the splitting functions, functions of the dater parton momenta that give the prob-
ability to split. If a parton splits into two nearly collinepartons, then the splitting function must match
the probability given by Feynman graphs in the collinearitlim~or the moment, we discuss a spin
averaged, leading color shower. Then the splitting fumctivatches the result from Feynman graphs
averaged over the mother parton spin and summed over thén@agpins in the approximation of ne-
glecting contributions that are suppressediy 2, wheren .. is the number of colors. When the emitted
parton is a soft gluon, the splitting function should matieé probability given by Feynman graphs in
the limitp, ,; ! 0. Away from the soft and collinear limits, however, one cana$e what functional
form to use and one can debate the merits of different choices

This can be illustrated by the case ofN\¢1A [329], which represents a new development and is
discussed in more detail later in this section. In a leadirtgioshower in the leading color limit, the
fundamental object that emits gluons is a color dipole, ihatwo partons, sayandk, that are color-
connected (i.e., adjoining on a color string). The basi@aibere goes back to the Lund dipole [330],
implemented in RIADNE [331]. (We shall henceforth refer to such showersligsle-antennahowers,
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in order to disambiguate them from what we shall galftitioned-dipoleshowers below.) The relevant
Feynman graphs in the amplitude are those in which the gtuer is emitted from partoriand those in
which it is emitted from partorx. In the squared amplitude, one has a contributiancorresponding to
the square of the graph for emission frana similar contributiork-k, and two interference contributions
Ik andk-1 The approximation of keeping only the leading color cdnttion restricts us to the case that
landk are color-connected. In dipole-antenna showers, eachediptreated as a unit, an antenna that
radiates gluons, and the splitting functions can be choseh as to match the perturbative result in all
the relevant limits, i.e. gluom + 1 collinear to], collinear tok, or soft. There are two main differences
between \UNCIA and ARIADNE (and also a recentt&RPA implementation [332]). The first is that an
explicit possibility to vary the shower ambiguities awagrfr the singular regions is retained inNCIA,
and the second is that it combines the original dipole shawirthe antenna subtraction formalism of
Refs. [316, 318, 319] to match to fixed-order matrix elements

Another new development is what we can call gatitioned-dipoleshower [333, 334], which is
discussed in more detail later in this section. Here onetjmens the splitting function into two parts. One
part contains the singularity corresponding to partor 1 being collinear with partonand part of the
soft singularity. The other part contains the singularilyresponding to partoin + 1 being collinear with
partonk, along with the remaining part of the soft singularity. Awagm these singularities, one has a
choice. A sensible choice (as suggested in Ref. [335]) iake the splitting functions to be precisely
those defined by the Catani-Seymour dipole subtractionnseH&75] that is widely used for next-to-
leading order perturbative calculations. This has the athge that it should be fairly straightforward
to match these NLO calculations to a Catani-Seymour dipotever. It has the disadvantage that the
splitting of the emission probability from a dipole anternint two parts is perhaps a bit artificial. There
is more than one way to accomplish this splitting.

The second part of the generator (t) of shower evolution is the specification of the momentum
mapping. In Eq.[(140), there is a nominal integration over mhomenta of all the partons after the
splitting. However the matrix element af; (t) contains delta functions that, for given starting momenta
fpg. , restrict the new momentgpg,, , 1 to lie on a three dimensional surface. This surface could be
parametrized by splitting variablesz; , as in Eq.[(I30). In the case of the timelike dipole-antenna
showers in RRIADNE, VINCIA, and SHERPA, the momenta of all of the partons not part of the dipole
remain the same before and after the parton emission. Fguatttens1andk that form the dipole, the
momentap, andp, plus three splitting variables are mapped reversibly tatloenenta of three daughter
partons py, B, andp, . 1 after the splitting, with all of the parton momenta beinggrell. This mapping
is symmetric under label interchange k. In the special case tha, . , is collinear withp,, we have
pL= D1+ Pur1andp. = pr. Similarly, if g, 1 is collinear withp,, we havep, = ¥« + o1
andp, = p. In the soft limit,p, , 1 = 0, we havep, = pandp, = p.. Away from these limits,
the mapping is necessarily not so trivial, leading to a frthon-singular ambiguity which Mcia
attempts to explore. For the partioned-dipole showergtler similar but simpler mapping, this time
not symmetric undet $ k. The splitting function that includes the singularity fr . ; collinear with
p1, comes with a momentum mapping for whigh= p;+ ¥, 1 andp, = ¥ whenp, , 1 is collinear
with p, or soft. Away from these limits, the mapping takes some mduorarfrom partonk in order
to keep momentum conserved and all partons on shell. Theelare is to use the same momentum
mapping as was defined by Catani and Seymour for the sulainadth next-to-leading order calculations.
In the case of splittings involving an initial state splitii (spacelike showers), the momentum mappings
are a little more complicated than sketched here. We shoelation that it is also possible to take the
momentum needed to keep all partons on-shell fatinof the final state partons in what might be called
a democratic way [328].

We hope that this comparative discussion may be useful agda ¢mthe more detailed presen-
tations later in this section. We may also mention the phbliswork [328] that was discussed at Les
Houches but is not separately presented in this documem.idea here is to extend the idea of a lead-
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ing order parton shower so that one does average over spins or take just the leading color limit. In
this case, there is an evolution equation similar to Eq.)(bt@ with spin indices and a more detailed
specification of the color state. The solution of the evolutequation yields integrals that could, in
principle, be computed numerically. However, an algorittiat is likely to be usefully convergent with
finite computer resources is still under development [336].

17. TIME-LIKE SHOWERS BASED ON DIPOLE-ANTENNA RADIATION FU NCTIONS
17.1 Introduction

In this report we take the next step in the development of thec\A shower towards a full-fledged parton
shower, embedded into therPHIA 8 generator [329, 337]. Previously, we included only theogia
time-like shower [329]. By including massless quarks westant making comparisons at LEP energies
and make quantitative studies for future linear collidefss the VINCIA shower is a dipole-antenna
shower, we can make direct comparisons with the dipoleraratéunctions used in RIADNE [331].

We also make a phenomenological comparison with theHPa 8 shower. For this purpose, we
choose the evolution variable, the hadronization boundady other parameters iniNCIA as close as
possible to the default YAHIA 8 settings. In this emulation mode we compare a few repraseat
distributions, both infrared safe and_infrared regulatedesvables, such as jet rates, thrust, and parton
multiplicities for hadronicz decays at s= m ;.

17.2 Dipole-antenna functions

The most general form for a leading-log antenna functiomfiassless parton splittingd ! arb can
be represented by a double Laurent series in the two brag@mmariants,

1 %
&(Var i¥rois) = < C; YarYp s (144)
;= 1
where

S= S,n = Samp aNd yij= 5 (145)
s

ab

are the invariant mass squared of the antenna and the sgaleching invariants, respectively. In prin-

ciple, eq.[(14#%) could also be multiplied by an overall phgs&ce veto function, restricting the radiation
to specific “sectors” of phase space, but we shall here usmltsd “global” antenna functions which

are summed together without such cuts. Note that we havenréten the antenna function stripped of
color factors, to emphasize that this part of the discussiamt limited to the leading-color limit.

The coefficient of the most singular term, ,, ;, controls the strength of the double (soft) sin-
gularity (the “double log” term) and the coefficients ,,; ( andC; ,; 1 govern the single (collinear)
singularities (“single log” terms). These, in parton showerminology collectively labeled “leading
log” terms, are universal, whereas the polynomial coeffitsie ; ,; o are arbitrary, corresponding to
beyond-leading-log ambiguities in the shower or, equividye different NLO subtraction terms in the
fixed-order expansion.

We take the Gehrmann-de-Ridder-Glover (“GGG”) antenna&tions [319] as our starting point.
The corresponding coefficients ; for the the five antennae that occur in massless QCD at LL are
collected in tab[_I1. For reference, we also compare to thmtian functions [330, 338, 339] used
in the ARIADNE dipole shower [331], which are also the ones used in a redady y the SHIERPA
group [332]. Note that the single log terms have a slight guiby when gluons are involved, arising
from the arbitrary choice of how to decompose the radiatiffnttee gluon into the two antennae it
participates in. Nominally, the ALADNE single log coefficients therefore look different from the GG

%0Contributed by: R. Frederix, W.T. Giele, D.A. Kosower, PSkands
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GGG

qa ! ggq 2 -2 -2 1 1 0 0 0 0 0
qg ! ggg 2 -2 -2 1 1 0 -1 g -1 %
gg ! ggg 2 -2 -2 1 1 -1 -1 2 o |
a ! aqly® 0 0 % 0 -1 0 1 —% 1 0
gg ! ggg 0 0 % 0 -1 0 1 -1 1 %
ARIADNE

gg ! ggq 2 -2 -2 1 1 0 0 0 0 0
qg ! qgg 2 -2 -3 1 3 0 -1 0 0 0
gg ! ggg 2 -3 -3 3 3 -1 -1 0 0 0
ag ! ag’ 0 0 % 0 -1 0 1 -1 1 %
gg ! gqg 0 0 % 0 -1 0 1 -1 1 %
ARIADNEZ2 (re-parameterization of AADNE functions a la GGG, for comparison)

qa ! ggq 2 -2 -2 1 1 0 0 0 0

qg ! ggg 2 -2 -2 1 1 0 -1 -1 0 0
gg ! ggg 2 -2 -2 1 1 -1 -1 -% -1 -1

Table 11: Laurent coefficients for massless LL QCD antenaée ( ark). The coefficients with at least one negative index
are universal (apart from a re-parameterization ambigfaitygluons). For “GGG” (the defaults in McIA), the finite terms
correspond to the specific matrix elements considered i8][3h particular, thegg antenna absorbs the tree-level! qgg
matrix element [320] and thgg antennae absorb the tree-levél ! gg ! gggandh’ ! gg ! gggmatrix elements [322].
Thegg antennae are derived from a neutralino decay process [321].

ones. However, a re-parameterization of the total gluomtiah, which we label &RIADNE2, reveals
that the only real difference lies in the choice of finite terminterestingly, while all the AIADNE
radiation functions are positive definite, the equivalemiADNE2 one forgg ! ggg is not and hence
could not be used as a basis for a shower Monte Carlo.

In modern versions of RIADNE, gluon splitting to quarks has an additional pre-facterl +
s.=5p. ), Wherec is the neighbor on the other side of the splitting gluon. Tigilsased on comparisons
toe'e ! agg%gmatrix elements and implies that the smaller dipole takedatyer part of they ! og
branching. Such effects are not included inNZIA at this point.

Our convention for color factors is that they count color g of freedom. Their normalization
should therefore be such that, in the latge-limit, they tend toN . raised to the power of the number
of new color lines created in the splitting. In particular,

C =

Cr
CA = NC =

(146)

=z
(@}

W wloo
~

For gluon splitting to quarks, the antenna shower expjigtims over each flavor separately, hence the
relevant antenna functions should be normalized to onerflayo= 1. (We use the hatted symbafs:
andTy to distinguish this normalization from the conventionattpa-shower one in whicki; = 4=3
andTy = 1=2.)

The complete antenna functions, in the notation of [329, &)sand (11)], are then

Algu! agq) = 4 Cralga! agq);

Ag! qgg) = 4 sCralag! 999);

A(gg ! ggg) = 4  Ncalg! 999); (147)
Al@! ag”) = 4 sal@g! g ;

A(g! ggg) = 4 sal@g! gq);



where ¢ = ( g ) may depend on the branching kinematics. If so, we use a nbmina 1 for
generating trial branchings, which are then accepted withability . ( ) at the point when the full
kinematics have been constructed (see below). The passibibr  currently implemented in \WCIA

are 3
< typeO : Ky 2p;

R = . typel : KR QE (148)

type2 : Ky ©

Sapy 7

wherex ; is an arbitrary constanty; is defined as in RIADNE with p§ = SarSp=S,p [331], O IS

the evolution variable, anfl Sab is the invariant mass of the mother dipole-antenna. Theuttefaa
1-loop running five-flavor s with z = p, (i.e., Type 0 above, witk z = %) and smy )= 0:137
(the default in RTHIA 8, making comparisons simpler). Alternatively, both fixedl&-loop running
options are available as well [337]. For the pure showerggq@endence on the renormalization scheme
of . is beyond the required precision and hence we do not insiahons definition here. Indeed, the
default value of ;(m , )in PYTHIA 8 is determined from tuning to LEP event shapes. Though likyon
the scope of the present paper, we note that in the contexgbéhorder matching, one should settle
on a specific scheme, and should then see the dependencendhdestheme and scale choices start to
cancel as successive orders are included.

17.3 Shower implementation

Brief descriptions of the WCIA switches and parameters are contained in the program’s Xian-
ual”, by default calledvi nci a. xm , which is included together with the code. This file also earg
the default values and ranges for all adjustable parametéish may subsequently be changed by the
user in exactly the same way as for a standaratHrA 8 run [337].

The default antenna functions are contained in a separate f{®) Ant ennae- GGG. xmi . An-
tennae that are related by charge conjugation to the orted liab[IlL are obtained by simple swapping
of invariants (e.g.gg antennae are obtained from thg ones). Similarly, antenna functions that are
permutations of the ones in tdbJ]11, suchygs! ggg, are obtained by swapping. In view of the prob-
abilistic nature of the shower, all antenna functions areckbd for positivity during initialization. If
negative regions are found, the constant termy is increased to offset the difference and a warning is
given, stating the new value af; ;.

We use the PTHIA 8 event record [337], which includes Les Houches color t849[341] for
representing color connections. At every point during thieng¢ evolution, leading-color antennae are
spanned between all pairs of (non-decayed) partons forhithie color tag of one matches the anti-color
tag of the other.

Shower generation proceeds largely as for the pure-glusa dascribed in [329], including the
choice between two evolution variables

8
2
2 type I (o, -ordering) c Y2 = Q—SI = 4Sa;23rb = 4YarVrb
Ve = 5 : (149)
? Q IT

type Il (dipole-mass-ordering) : v,

2m N (Yar ;¥rb)

“|

Note that we do not include an “angular-ordering” option.cbmventional parton showers, which use
collinear splitting functions, angular ordering gives ad@pproximation of the coherent dipole radiation
patterns we here describe by the antenna functionsSince dipole-antenna showers usedirectly,
coherence is thus independent of the choice of evolutioiavarto first order in this formulation (see,
e.g., [330]).

For the phase space map an optimal choice for the functiamed bf the “recoil angle” 4.
(see [329, 331]) away from the soft and collinear limit exi&ir gq antennae [342]. However, we have
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not yet implemented this particular subtlety in thent¢1A code. The default choice for all antennae is
thus currently the same as for thg ! ggg splitting in ARIADNE [331]

2
Eb

m ab) 7 (150)

ARIADNE

with alternative choices listed in [329].

Trial branchings are generated by numerically solvingsfet,; in the equatiorR = Oy 1),
wherer is a random number uniformly distributed between zero arej and the trial Sudakov is [329,
eq. (51)] ) .

Z Z Z A
! ! 1 Yar A (Yar i¥rb)

By 1) = exp dye  dvar  d¥m (B ¥ WeriVe)) o5
Ytrial 0 0

i (151

with A an overestimate of the “true” antenna function such that

K (Var i¥Yeb) %rbAA (Yar i¥ebiSarbil) > SarpA (Var iVebiSarbil) (152)

only depends on the rescaled invariants (for instance mgusfixed overestimate df; = 1 here). Once
the full kinematics are known (see below) the trial branghian be vetoed with probability A=,
which by the veto algorithm changes the resulting distrdsuback to that of, as desired.

During program execution, cubic splines Band © ' are used for the actual trial generation.
These splines are constructed on the fly, with the 2-dimeasjohase space integrals in éqg. (151) carried
out either by 2-dimensional adaptive Gaussian quadraf@®)) on 2" directly or (substantially faster)
by 1-dimensional AGQ on the primitive function along a camtof fixedy.., defined by

2 K (Yar i¥eb)
T (Yariviive) = dyrp —

16 2
o 2 3
A C e e +1 +1
= S v..%C ;1h Y2 oo, c . Y2 ¥ 5 ; (153)
4 - Y1 “0 + 1

where ., is the overestimate of, discussed earliec;; represents the color factors appearing inleq.}(147),
and the phase space limits, depend on the choice of evolution variable, see below. Quritializa-
tion, the program checks for consistency between the aoayid numeric integrals and a warning is
issued if the numerical precision test fails.

The antenna with the largest trial scale is then selectefifthrer inspection. A angle distributed
uniformly in [0;2 ]is generated, and a complementary phase space invazjasizhosen according to
the probability distribution

Z A
. A (Yar i¥rp)

Liysiz) =  d2'Fyg ;21— 0"
Zn in (YE ) 6

; (154)

where s (vz ;z)jis the Jacobian arising from translatifig. . ;v,.,gto fyvz ;zgandz, i, (vg )is the small-
est valuez attains inside the physical phase space for a gixenDepending on the type of evolution
variable, as defined in eq._(149), we choase ;zg (yar ;v.») @S

typel : ve = 4VarVmiZ= Y
) F1j= 1=(42) ; Znaxmin (Y& ) = %(1 P V)i (155)
typell :  yg = 2yariz=ymforz 1 Zve
Ve = 2¥rpiZ= Yar+ (1 2wp)forz> 1 iy
) Td= 1=2; zain(ye ) = %YE P Znax (Ve )= 2 SYE (156)
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where, for type Il, we have arranged the two separate branghe< v, andy,, < y.. one after
the other by a trivial parallel displacement in theoordinate. Using the Laurent representation of the
antenna functions, the analytical formsmfbecome

2 3
A »® X
Ci in

type | : —° Vo4 2 2 anle) 5 (q57)

e 4 Zn i (YE ) .

Asci 1 R
type Il L S¥eiZane)min(Eil  zn(s))

;1
+ I S¥E il Zn(e)max(z;1  zZnlye) 7 (158)

where thet, is defined in eq[([I83) and is the primitive along a direction of fixed.,,

" #
ha ha +1 +1
Y2 Yy
I (Veoiviive) = Voo C 1; b — + C ; 2 4 (159)
Y1 + 1
- 1 =0
17.4 Numerical results
\éVe now turn to a quantitative comparison betweerTfPA 8 and MNCIA for e"e | 7z ! ggat

s=m . Weuse a l-loop running; with ;(m ;)= 0:137 (the default in RTHIA 8), with a 5-flavor
running matched to 4 and 3 flavors at thand c thresholds, but to eliminate the question of explicit
quark mass effects we only allow and u quarks in thez decay and subsequent shower evolution.
The evolution is terminated at. ;.. = 0:5GeV, and we have switched off hadronization so as not to
unintentionally obscure the differences between the partevolutions. Likewise, photon radiation is
switched off in all cases, and inyPHIA 8 we further switch off gluon polarization effects. FOMNCIA,
we use three different settings: transverse-momentunriaglevith “GGG” antenna functions, dipole-
mass ordering with “GGG” antenna functions, and transvarsenentum ordering with the “AIADNE”
antenna functions.

Fig.[31 shows the 3-, 4-, and 5-jet inclusive fractions agfions of the logarithm of Durhar; ,
using the default PTHIA 8 Durham clustering algorithm [337]. InYRHIA 8, the 3-jet rate (the set of
curves furthest to the right) is matched to the tree-levphon matrix element, whereas the GGG and
ARIADNE antenna functions in MiCIA reproduce it by construction. The general agreement on-jae 3
rate is therefore a basic validation of the ! gggantenna implementation. Higher-order effects appear
to make the mass-orderedNCIA slightly softer, which we tentatively conclude is due tcsthariable
favoring soft wide-angle radiation over high- collinear radiation (as illustrated by fig. 2 in [329]).

Similarly, the 4-jet fractions (the middle set of curves ig.[81) test theyg antennae in WWCIA,
with the GGG showers here slightly higher and theiADNE one slightly lower, in agreement with the
differences ingg antenna finite terms, cf. tab.J11. This trend becomes momeopiced in the 5-jet
fraction, since also theg ! ggg function in ARIADNE is softer than GGG.

We may now study further distributions, as a representagx@mple of which we take thrust,
illustrated asl T in the top row of fig.3R. The full distribution is shown to theftl with a closeup
of the regionl T < 0: to the right. The regioma1 < 1 T <% is dominated by well-separated
three-jet configurations. In the tail, T > % a matching toe* e ! 4 jets would be required to
improve the accuracy. In the region below T = 0:, however, this would not help. These are three-
jet configurations which are “nearly two-jet”. Here, the ¢ypnd size of the Sudakov suppression is
essential, the first fixed order of which could be accessed-lopd matching, but since the fixed-order
expansion is poorly convergent in this region anyway, tlsagiieement is more likely to be cured by a
systematic inclusion of higher-logarithmic effects in gteowers (either implicitly, by “clever choices”
of evolution, renormalization, and kinematic variableghiie LL shower, or explicitly, by a systematic

o1



=

T
Z-qQ i
Vincia 1.005 + Pythia 8.100 : -

o
0

o
o))

o
~

Inclusive 3-, 4-, and 5-jet fractions

—— Pythia ;

0.2 IR SRECEEt vincia (p¥corderin )
IR Vincia (massg-orderirt i
L Vincia (Atiadn i
O ! ! ! ! ! I {.‘M |
0 0.5 1 15
log(kT/GeV)

Fig. 31: Inclusive 3-, 4-, and 5-jet fractions.

inclusion of NLL splittings). It should be noted, howevdrat hadronization and hadron decay effects
are important in the region below

@ few GeV)?

2
Z

1 T 1 max(=mi(yiy) < < 001 ; (160)

m

where thex andy fractions pertain to 3-jet configurations. This complicatke separation of genuine
non-trivial higher-log effects from non-perturbative exdfts when comparing to experimental data at cur-
rently accessible collider energies.

Finally, as illustration of an infrared sensitive quantity the bottom row of figl 32 we plot the
probability distribution of the number of partons producaidthe shower termination for each of the
four models. The total number of partons is shown to the left tae number of quarks (not counting
anti-quarks) to the right. The definitions pf in PYTHIA and in VINCIA/ARIADNE, respectively, are
not exactly identical, but they have the same infrared Imgitbehavior [343], and hence a comparison
of the number of resolved partons with a cutoffrat,.y = 0:5GeV should be meaningful. Since we
have also chosen the sameg values etc., the basic agreement between the models inwe left-
hand plot in fig[3R reconfirms that there are no large diffeesnbetween the showers, even at the
infrared sensitive level. AIADNE produces somewhat fewer partons, consistent with tReABNE
radiation functions being slightly softer. On the rightaldaplot, however, it is interesting to note the
first substantial difference betweery™41A 8 and the \INCIA showers. The PTHIA shower produces
significantly fewer quarks than any of theNEIA showers, despite its being higher or comparable on
the total number of partons (cf. the left-hand plot). A samitlifference between parton and dipole-
antenna showers was observed in an earlirradNE study [339], in which a comparison was made to
the virtuality-ordering of traditional parton showersidtinteresting that we here observe the same trend
when comparing to theyrHiA 8 shower which is ordered i, . Finally, we note that this difference will
also have practical consequences; in the context of turfingdronization models, theMCIA showers
will presumably need a stronger suppression of non-peativd strangeness production to make up for
the larger perturbative production rate, as comparedvto-HPa 8.
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Fig. 32: Top row: Thrustl  T. Bottom row: Number of partons (left) and number of quarkght) at shower termination,
with 2 massless quark flavors.

17.5 Conclusions

We have presented the inclusion of massless quarks intoitiel ¥ shower algorithm, implemented as a
plug-in to the R THIA 8 event generator. The dipole-antenna radiation functtme®xpressed as double
Laurent series in the branching invariants, with user-digdde coefficients. At the analytical level,
we compare the coefficients of the “GGG” antenna functiori®]3ised by default in \WcCIA to the
ARIADNE ones [331]. Modulo a re-parameterization of emissions fghnons, we find the double and
single log coefficients to be identical, as expected. Theefit@rms, however, are generally somewhat
smaller for the ARIADNE functions. This represents a genuine shower ambiguity wban only be
systematically addressed by matching to fixed-order materents.

At the phenomenological level, we have also compared to yieidh parton-dipole shower in
PYTHIA 8[337]fore"e ! 2z ! ggat” s= m ;. We find a good overall agreement, even at the level
of an infrared sensitive quantity such as the final numbeadioms. For the number of quarks produced,
however, RTHIA 8 is markedly lower than any of theINCiA showers we have compared to here.
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Fig. 33: Factorization-scale { ) dependence of the total cross section for theboson production at LHC. An apparent
» dependence of the inclusive (W + O jet) production cross section (open circles) is greatiyuced when we add the
LLL-subtracteds + 1 jet production cross section. The summed cross sectrershawn with filled circles.
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18. LLL SUBTRACTION AND PS KINEMATICS
18.1 Introduction

We are developing NLO event generators for hadron colligiteractions based on GRACE [344], using
the Limited Leading-Log (LLL) subtraction technique [34f)r the parton radiation matching. The
matching technique is crucial since the contributions oédditional QCD parton radiation in NLO are
also involved in the evolution of Parton Distribution Fupas (PDFs) in a collinear approximation. A
naive application of a PDF to NLO calculations results in ppaaent double-counting. We avoid the
double-counting by subtracting Leading-Log (LL) collineantributions from the matrix element (ME)
of radiative processes. The subtraction is stopped (‘@diit at the factorization scale {) since PDFs
do not involve any radiation harder than this energy scale OL contribution of the radiation is easy
to calculate [346], though an appropriate care is necessahe kinematical mapping to non-radiative
processes [345]. The subtracted LL terms are formally mdeedon-radiative processes and to be
cancelled with divergences in virtual corrections.

Figure[33 shows the sum of the total cross sections for iin&us -boson production and LLL-
subtractedi + 1 jet production evaluated for the LHC condition (protaetpn collisions at s= 14
TeV). Here, "jet” denotes a gluon or a light quark in the finite. The cross sections are calculated
using the tree-level MEs far production andi + 1 jet production, respectively, convoluted with the
CTEQSL PDF [347]. Results are shown as a function of the feazttion scale (). We can see a strong

¢ dependence of the inclusive production cross section (open circles) is greatly reduneddding
the LLL-subtracted radiative cross section. This showsa@lguoatching between the ME and PDIJg;,
the LL contents in ME and PDF are nearly the same.

3lContributed by: S. Odaka
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The virtual corrections are yet to be included in the ressittswn in Fig.[3B. They can also be
evaluated automatically in the framework of GRACE [346]v&gent terms in these corrections are to be
cancelled with those moved from radiative processes. Rentgfinite terms will alter the normalization
of non-radiative processes, and will result in a substamiiamatch since there is no such correction
in radiative processes. However, this mismatch is at thel le/NNLO. It will be possible to restore
the matching within the accuracy of NLO. The simplest way lddue to change the normalization of
LL components of the hard radiation remaining in radiativecesses by the same amount as applied to
non-radiative processes. This is actually a modificatiath@NNLO ( 2) level.

So far we have discussed the matching in the integrated sex$®n. We have to achieve a good
matching in differential cross sections, as well, in oraecanstruct practical event generators. The QCD
evolution evaluated in PDFs is simulated by means of a pattower (PS) in event generators for hadron
collisions. PS and PDF are based on the same factorizatgamythHowever, since theoretical arguments
are given only at the collinear limit, the theory gives usditéons only at the first-order approximation
for the transverse behavior. It is necessary to introduceodeainof 3-dimensional kinematics in order
to construct a practical PS conserving the energy and ma@néihie introduction of a suitable model is
crucial for achieving a good matching in differential cregstions. We discuss about such models in the
following sections.

18.2 Initial-state PS kinematics

We have constructed an initial-state Leading-Log (LL) P&pam for the use in NLO event generation.
The program is based on the simplest expression of the LL Kwd@rm factor employing ¢ as the
evolving parameter,

nw #
Z Z .

5 5 Q§ do 2

07

The details are described in our paper [345]. We stay in aenldivimplementation without introducing
corrections partially incorporating higher order effectach as the angular ordering, because we plan to
extend our PS to a true Next-to-Leading-Log (NLL) approxima [348].

We first tested the kinematics model employed in the "old” AYAPS [349, 350], since the
theoretical bases is nearly the same. We found this mode$s giwery soft transverse activity. It results
in an apparent mismatch in the transverse momenth distribution ofw bosons, when we tried to
merge the inclusiver production with the LLL-subtracted + 1 jet production by applying this PS to
both processes. The starting assumptions of the "old” PYHFE kinematics are that theparameter
of a branch is the ratio of squared cm energies after and éefach branch instead of the fraction of
light-cone momenta, and that the? is identical to the virtuality of the evolving partons. Thesfi
assumption requires the definition of a "target” parton;sthii is model dependent. However, this
definition ensures a simple relation between squared cnygieseof a hard interaction and the beam
collision; sy = x1X2S,eam Wherex,; andx, are given by the product of all values in each beam.
From a simple kinematical argument we found this model gavesation,

P = (1 zjo?; (162)

for each branch at the soft limit [345].

On the other hand, ordinary arguments based on the masplassanation give a slightly differ-
ent relation,
pr = (1 z)Q° (163)

at the soft limit. Apparently Eq[{162) gives a smalter value than Eq.[{183) for a given setof and
z. The relation[(1683) must be better for the matching sinceres partons are nearly massless in ME
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Fig. 34: Sum of the simulated; spectra ofw bosons for the inclusivel production and the LLL-subtracted + 1 jet
production at LHC. The new; -prefixed PS described in the text is applied to both prosesBesults are plotted for three
different choices of - : ¢ =m 4 = 0.5 (open circles), 1.0 (filled circles) and 1.5 (open sgsjpr

calculations. We have introduced a new kinematics modeteuhe of each branch is given ("prefixed”)

by Eq. [163). We keep the definition of tagparameter. The momenta of evolving partons are calculated
from thispr value and the: value. Thus, the virtuality is not necessarily equal togheof a branch. This
new PS gives a harder -bosonp; spectrum than the "old” PYTHIA-PS in the inclusive production
simulation, showing a better matching to the LLL-subtrdate + 1 jet simulation. The sum of the two
simulations gives a smooth spectrum stable against a variation of the factorizatiaies€ r ) [345].

After the submission of the paper [345] we tried another dkidim of the "prefixed’pr,
pi=(1 z =8)0°%: (164)

The parametes is the squared cm energy before the branch. This is the rektile massless approxi-
mation of branching kinematics before taking the soft lifpit=¢ ! 0). This definition is ugly in some
sense since is model dependent, but gives us a better matching thari Bg).(We plot the summeg:
spectra ofw -bosons for three different; values (y=m, =0.5, 1.0 and 1.5) in Fig._34. We can see
almost no variation of the spectrum except for a small diffee aroungb; = m; inthis  range.

18.3 Prospects for the final-state PS matching

It is enough to consider the initial-state matching if we smirate ourselves to NLO corrections for
color singlet or heavy particle productions. However, omeego to NLO for those processes having a
gluon or a light quark ("jet”) in the final state, we also needccbnsider the matching in the final state.

We plan to use a simple LL parton shower employing as the evolving parameter also for the
final state. We need to introduce an appropriate kinemataseito this PS, too. In the initial-state PS,
models in which the definition qf: precedes that af ° give us a better matching as we have discussed in
the previous section. This is becauseis in principle an observable quantity white’ is not physically
well-defined for initial-state partons. Similar argumesi®uld be done also for the final state.

In the final state, the virtuality is in principle an obserkahs an invariant mass of particles even
after the hadronization and decays. Therefore, it must bheraiato identify 0  as the virtuality of the
evolving partons. The transverse momentusa)(is also an observable in principle. Thusshould
be treated as an unphysical parameter. It should be usediddentparameter only to give: values
according to the relation,

pf = z(1 z)Q’: (165)
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In this kinematics model, PS is a process to give final-stattops additional masses equal to theof
their first branches. The invariant mass of the hard intemadystem should be unchanged even after
the application of PS, since it is a very fundamental paranfet the evaluation of matrix elements. We
also want to keep the production angles in the cm frame umg@wanT hese requirements can be fulfilled
by introducing a common multiplication factor to the moneeaf all final-state particles.

We need to apply a proper mapping of non-radiative subsystenradiative event to an on-shell
non-radiative event in the LL subtraction. A mapping usingnnenta of the branched parton and the
target parton works well for the initial-state radiatiomf3. The subsystem is boosted and rotated to its
cm frame where the momenta of two incoming partons are aligiheng thez axis. This is the process
exactly reversing the kinematical rearrangement in ouiallstate PS.

The mapping should be done in the same concept also in thestizmi@, exactly reversing the
rearrangement in PS. It can be done as follows: pick up atrampipair of final-state partons. If they
can be considered as products of a PS branch, replace théntheiparent parton having the invariant
mass of the pair as its virtualityo). If not, skip this pair. Rescale the momenta of all particie
the cm frame with a common factor to make the replaced pam@momp become on-shell. Evaluate the
matrix element of the non-radiative process based on tleeseanged momenta, multiply it with the LL
radiation factor proportional ta=0 2, then we get an LL approximation of a final-state radiatiohisT
procedure should be applied to all possible combinatiomgeihave more than two partons in the final
State.

We expect that the LL contribution can be evaluated in sugfs@matic way, including the initial-
state contributions, as well. All contributions should bengned to evaluate the total LL contribution. A
program is under development based on these concepts.

18.4 Conclusions

We have achieved a good matching between PDF and matrixeatefilE) evaluations for the parton
radiation in NLO QCD corrections, by using the Limited LaagliLog (LLL) subtraction technique. It
has been demonstrated as a good stability ofsth@roduction cross section against a variation of the
factorization scale (=), where the total cross section is evaluated by the sum ofribes sections for
inclusivew production and the LLL-subtracted + 1 jet production.

We have to achieve a good matching between the parton sh&&raphd ME, as well, in order
to construct practical NLO event generators. The transvacsivity of PS depends on the applied kine-
matics model of parton branches. We have successfully dsilitable model for our Leading-Log (LL)
initial-state PS, where: is prefixed according to the relation in the massless appration of branch-
ing kinematics. The simulation employing this PS shows adgmatching between the inclusive
production and the LLL-subtracted + 1 jet production in the; spectrum ofv bosons. The spectrum
is stable against the variation of in a wide range.

It is necessary to achieve a good PS-ME matching for the §itzdé radiation, as well, when we
construct NLO event generators for those processes imgutet(s)” in the final state. A study is in
progress for the final state based on the experience on tied-state radiation.
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19. A PAI;FON-SHOWER MODEL BASED ON CATANI-SEYMOUR DIPOLE FA CTORISA-
TIONPS

19.1 Introduction

Parton-shower models form an indispensable building blafickionte Carlo event generators, such as
Herwig [351], Pythia [352] and Sherpa [224], that aim at tealistic description of multi-particle final
states as they are observed in high-energy collider exgatisn By accounting for QCD bremsstrahlung
processes, parton showers relate a small number of partoaggag from a hard interaction, defined
at scaleQ 1., and theoretically described through a fixed order calonfgtio a larger set of partons
at scalesp ,, Qunara- The parton-shower approach relies on the universal patEQCD emission
processes once soft or collinear parton kinematics areideresl. The soft and collinear phase-space
regions are singular and obtain large corrections orderridgroin perturbation theory what makes an
all-orders resummation of the associated kinematicalridgas essential. Most shower algorithms rely
on collinear factorisation of QCD matrix elements and auaate to the leading-logarithmic level. The
Ariadne approach, however, is based around the soft lifB8&][

The parton-shower approach being perturbative it cannabended to arbitrary small scales but has

to be stopped at some infrared cut-off scalg ocp- Below that scale event generators model the
transition of QCD partons into the experimentally obserfradrons through non-perturbative hadronisa-

tion models. In fact, only through the incorporation of parshowers these hadronisation models can be
made universal or independent of the underlying hard pscEBis, however, assumes that perturbative

QCD between scales,,..4 andQ . is appropriately described by the parton-shower model.used

In the past few years there have been lots of major improveswelated to parton-shower Monte Carlos.
This includes the incorporation of exact multi-leg treeelematrix elements for the description of the
first few hardest emissions from a given hard process, kndmasrix element parton shower merging”,
see e.g. [353,354], or the consistent matching of nexéaalihg order calculations with parton showers,
know as “Monte Carlo at NLO”, see for instance [45, 355]. Imnliéidn the available shower algorithms
of Herwig and Pythia have been revised and improved [343, 356

Only very recently new shower algorithms emerged that asedé@an formalisms used to construct sub-
traction terms that allow for a humerical cancellation diraned singularities in NLO QCD calcula-
tions [329, 332-335, 357]. There exist now implementatiohsuch shower algorithms for two com-
monly used subtraction schemes, the antenna subtractittochE816] and the Catani—Seymour dipole
formalism [175, 358]. Besides incorporating the last kremlge on the infrared behaviour of QCD ma-
trix elements, these models should largely facilitate tteamng with NLO calculations carried out in
the respective scheme. In this note we briefly report on tmstcaction of a parton-shower algorithm
relying on Catani—-Seymour subtraction that has more exielgsoeen presented in [333].

19.2 The shower model

The Catani—Seymour formalism provides all the ingredigatsonstruct a local approximation to the
real-correction matrix element imny QCD NLO calculation. These subtraction terms, that can loe co
structed in a process-independent way, possess exacHgitineinfrared divergences as the real-emission
correction, such that the difference of the two is infrareitdl and can safely be (numerically) integrated
in four dimensions. In addition, the subtraction terms dresen such, that they can be analytically inte-
gratedind= 4 2 dimensions over the phase space of the produced soft aneatlparton that causes
the divergences. The occurring 2 and1= poles exactly cancel the ones from the loop integration in
the virtual part when adding the two pieces. Such, the CaBesymour method provides a way to con-
struct a parton-level Monte Carlo program for a NLO caldolas once the one-loop and real-emission
corrections to the Born process are known.

%2Contributed by: S. Schumann, F. Krauss
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In the Catani—Seymour approach the additional soft or roedli parton is emitted from an emitter-
spectator pair (called dipole). Considering both the emiéind the spectator to be either in the final
or initial state, four configurations have to be considenmaresenting the singularities associated to
emissions from the final or initial state. Labelling finadtst particles byi;j andk and initial-state par-
tons bya andbthe real-emission matrix element can always be approxignbyethe sum over all the
possible dipoles,

2 3

X X X X X X

Mo = Dijx+ 4 D+ p2t+ D4 @s Db)S (166)

i k6 ij i i k61 i

Hereby,D ;5 describe splittings of a final-state part@hinto the pairi; j accompanied by a spectator
k. Due to the presence of the spectator, four-momentum ceatsam and on-shell momenta can be
accomplished locally for each individual splitting. Thens D ¢, represent final-state splittings with an
initial-state spectator, while 2+ andD #** correspond to a splitting initial-state line accompanigcab
final- and initial-state parton, respectively. The indivad dipole terms are constructed from the Born
matrix element by inserting colour- and spin-dependentaipes that describe the actual splitting. For
massless final-state emitters and final-state spectatworinistance, the dipole contributions read

1 . Ty T . .
Dijx = mhl,‘:::;fj:::,‘ﬁ,‘:::jiz jVij,.kjl;:::;fj:::;K;:::lm : (167)
2pipP; T

TheT ;;andT . thereby denote the colour charge operators of the emittespectator, respectively, they
lead to colour correlations in the full amplitude. Ttig;; ared-dimensional matrices in the emitter’s
spin space that induce spin correlations.

For the construction of a parton-shower algorithm from thl formula Eq.[(166) certain approxima-
tions are needed that finally allow for an exponentiationhefsplitting operators to derive the Sudakov
form factors central for a shower implementation. In adudifithe splitting kinematics, choices on scale
settings and the actual shower-ordering parameter have ficdx.

19.2.1 Shower construction criteria

The full colour correlations present in thig , , 1 ¥ matrix element have to be discarded in the shower
picture, instead the leading termsieN . are considered on. In this approximation a colour flow
can be assigned to each parton configuration. Motivated bgiderations on the colour dynamics for
soft emissions, we choose the emitter and spectator to barcobnnected in the shower formalism. The
colour-charge operators simplify to

Ty T, 1
! ; (168)
2 spec
T N

with N 7°° = 1;21in case the emitter has one|( (3) (anti-)triplet) or two U (3) octet) possible spec-
tators. The four-dimensional dipole functiovisare used as the shower sitting functions. Furthermore,
we neglect spin correlations by using spin-averaged spifunctionshvy iP4.

As shower evolution variable we choose the transverse mumehbetween the splitting products for
branching final-state partons and the transverse momenitimregpect to the beam for emissions from
the initial state, collectively denoted By, . This scale is also employed as the scale of the running
coupling and the parton distributions, once initial-staéstons are present.

#Although formally subleading, we consider splittings of tiypeg ! gq as well
%4Some of the dipole functions can become negative in norufnghase-space region, prohibiting a simple probatilist
interpretation. We choose to set them to zero in these cases.
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Based on the above approximations and choices Sudakov fmtar$ corresponding to the different
types of Catani—Seymour dipoles can be derived, that deterthe probability for a certain branching
not to occur for a given range of the evolution variable. Thwe fgeneric cases are briefly reviewed in the
following. For simplicity, here we consider massless pastonly, the massive case is discussed in [333].

19.2.2 Final-state emitter — final-state spectator

Consider the final-state splitting®j;kg ! £i;j;kg with the four-momentum constrain;; + p, =
pi+ ps+ ox  Q and all momenta being on their mass-shell. The branchindpeataracterised by the
Lorentz invariant variables

= ;om=1 m= PP (169)
PiPj + PiPx + P3Pk PiPx + PPk

Yijk =

The factorised form of the fully differentialm + 1)-parton cross section that exactly reproduces the
corresponding soft and collinear divergences of the reakgion process reads

X X inj;ded s 1

d g = dn R
m+ 1 m Yij;k 12 2 ijpec

(1 ¥ya )WV 45 (BY5x)1: (170)
ij k6 i

The spin-averaged splitting kernets ;5 ifor the branchings; ! qg, g ! ggandg! ggread

2
W x(Zviax)i = Cp —m——— 1+ ; 171
ags & (7 Yisx) S E— 1+ 7) (171)
1 1
W g x (Zi;Visx )i = 2Ca + 2+ =z(1 =) ;(172)
g9y & T 1 z+ Zyi5x  Zt Vigx  BVijk ’
Wagr(@E)i = Trfl 2z  z)g: 173)

In terms of the splitting variables the transverse momernetween the splitting productsand 5 (our
shower evolution variable) can then be written as

K2 = 2ppc yixm (1 2); (174)
and accordingly
dyii  dk?2
kT (175)
Yijk k3
Setting the infrared shower cut-off equal &g o and the upper limit tok 2 max the =z integration is
constrained to
0 4 1
1 s k3
2 0
z (K3 qaxiks o) = 5@1 ta = A (176)
? max

The kinematics of the splitting are fixed through

k2
pi = Eipiyt —————— P+ Ko ; (177)
Z; 2Pi5Px
k2
= 0 mpst ——2 bk 178
P3 P T T  a) 2eee (178)
Px = (1 Wx)pks (179)
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with k, the spacelike transverse-momentum vector perpendiautas andp, andk, x= . The
Sudakov form factor for having no final-state splitting wiéltfinal-state spectator betweeél . and

kZ ,reads

FF (kv ’m6X,k§ ;0)

1
k%Z’m ax Z+
B X X 1 T Ugg? s(k2) C
= exp}é) NT,pec kz' de_ 2 - (1 NSER v ijk (leYljk (180)
ij k6ij 1 2 7,

? ;0

19.2.3 Final-state emitter — initial-state spectator

In the presence of initial-state partons a final-stateteplibay be colour connected to one of the incoming
lines. We consider the splittingSj;ag ! fi;jjag, Withp;; ®=pi+p; r Q. Thistime the
branching is parameterised by the quantities

xpo PPt PPa BB, P2 (181)
PiPs + PiPa PiPs + PiPa

The relative transverse momentum of the new emerging fiiadéd-partons is given by
1 x4
k3 = 2papyy—— L2z (1 7): (182)
Xija

The derived Sudakov form factor for this splitting type read

K3 1 oax K5
ez 0) 2 1
k
Y,m ax Z+
B X x 1 dk? s(k?) fal a=%ijaik?)
? ? ja iXs . -
= exp]é’ N Spec K2 dzi > £ K2 ) h ?j (Zirxj_j;a )lA
17 2 a ar™s

ij a 1J [
k % ;0 z

(183)

Here, . is the momentum fraction of the spectator partoand £, ( .;k2 )the corresponding hadronic
PDF evaluated at some scal@ = k§ . The parton-distribution functiom, ( . xlja,k )y accounts for
the new incoming momentum. The integration boundaries are given by Elq. (1L76) and the comcre
splitting functions 1V §; (2 ;%15 )i, can be found in Ref. [333]. The branching kinematics aredfixe

k2
pi = 7 Pij + - Pat+ ke ; (184)
Zi 2PijPa
k2
pj = (1 =Z)py+ —————pa k ; 185
) Y1 m)2pipa (185)

with k, perpendicular to both the emitter and the spectator momanithe new spectator momentum
is given by
1
pa = Pa (186)

Xija

19.2.4 Initial-state emitter — final-state spectator

Once a final-state line is colour connected to the initiakestdoesides the situation discussed in
Sec[19.23, the reversed case occurs as well. Namely, itha-gtate line can split and emit a new
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final-state parton while the spectator is in the final statee lomentum-conservation condition for such
a branchinge®i;Rg | faj;i;kgreadsp, mi= pi+ o« R Q . The splitting variables are defined
as

PiPa * PxPa  BFx | PiPa

Xika = Poui= —————— (187)
DiPa + PxPa PiPa + PxPa
and the transverse-momentum squared of patteith respect to the beam becomes
1 xy,
ki = 2paipy —— = ui(l w): (188)
Xik;a
The Sudakov form factor associated with this splitting tygeds
2 1,2
¥ (k? m a@( ,k? 0 ) 1
k% m ax Z<+
E X X 1 B dk% s(k% =4) 2 ai 8
= &Xpgq N % k2' Oxg n ———— T (R 5 7uisks YV (Xika 7Ui)IK 5
ai k ai 2 ?
k? ;0 ®
(189)
withx = _jandx, = Q%=+ 4k? ,)and

1 . 1 fa( ai=Xuaik?
T (Rix U1 7K5 ) = = 2l KA ), (190)
1 2u xixa  fail aisky)

accounting for a possible flavour change of the incomingtlimeugh the backward-evolution step. The
complete list of splitting kernels can again be found in R&33]. The branching kinematics are given

by

1
Pa = ——Pai; (191)
Xik;a
1 e
pp = (@1 Q)ﬂpai"' uipx + ke ; (192)
Xik;a
1 e
P = B FPee 1w ko (193)
Xjk;a

19.2.5 Initial-state emitter — initial-state spectator
The last case to be considered is the splitting of an intiate line that is colour connected to the second
incoming parton. The branching is parametrised through

Xip = PaPo  BEPa E_pb; v = PiPa | (194)

Pabs PaPo |
such that the transverse-momentum squared of the new fatal{gzarton becomes

1 .
k2 = Zpaipbviw: (195)
Xiab
The Sudakov form factor of this configuration reads
(k3 1 axik5 o)
1T ? ma6 20 1
k%Z;m ax Z§+
B X X 1 dic? s(k3=4) 2 \1qr aib .
= expg ~ Spec ) O > T (Rigpivisks )WV T (Ripp)ix 7
ai bai .

(196)
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with

1 . 1 fal ai=Xiapik?)
T (Rizpiviiks ) = Hep 28 Gabte (197)
1 Rap 2% Xigp  fail aiik?)

andx = . andx, = 2pap=(2pap, + 4k3 o). For the kinematics of the emission process it is
convenient to keep the spectator momentum fixed and to digmeéw incoming partoa with the old
incoming momentum according t§ = 1=x;., 4. The momentum of the newly emerged final-state
partoni, is given by
1 .
pi = Mpaff ViPp + ko : (198)
Xiab

Its transverse momentum has to be balanced by the entird fieabstate particles of then -parton
process (including all non-QCD particles).

19.2.6 The algorithm

Having at hand factorised expressions for all possible sionisprocesses and corresponding Sudakov
form factors a probabilistic shower algorithm of indepemidemissions can be formulated. The start
seed forms @ ! 2 core event with fixed colour flow and a process dependent sheta scalex 2

? max*t
1. The scale of the next emission is chosen according to tdakew form factors of all contributing
emitter—spectator pairs. The dipole that yields the higtrtassverse momentum is picked to split.
2. The value of the second splitting variable is chosen aiagrto the splitting kernel.
3. The splitting kinematics are determined, the new partislinserted and the colour flow gets
adapted.
4. Start from step 1 as long & > k3 , and replacex?
last splitting.
This yields a chain of subsequent emissions strictly odlerdransverse momenta. There is no formal
subdivision of initial and final state evolution, instealll dipoles are treated on equal footing.

by the transverse momentum of the

max

19.3 Comparison with experimental data

The ultimate test of a theoretical model is a direct compariwith experimental measurements. Here
we compare the newly developed and implemented partoneshalgorithm (called CS shower in the
following) with some experimental data on hadron produtiive” e annihilation, and Drell-Yan and
jet production inpp collisions. Therefore the shower simulation has been supphted with the string
fragmentation routines of Pythia-6.2 [359] to account fadfonisation.

We begin with some of the most precisely measured quantigéeésnt-shape observablesdéhe an-
nihilation at thez ° pole. Fig.[19.B contains a comparison for the normalisechisdt 1 T) and
C-parameterd) distributions with LEP1 Delphi data [360]. Both obsenedbbbtain large higher-order
corrections for two-jet like events that appearias T 0andc 0. In addition, there is a singularity
in the C-parameter also in the regian  0:75 that requires a resummation of large kinematical loga-
rithms [324,361]. The CS shower yields a good agreementtivélexperimental data. Only very pencil
like events, that are sensitive to hadronisation corresti@re overestimated in the Monte Carlo. We
believe that this can be improved through a more detailemhd¢uof the hadronisation model parameters.

In Fig.[19.3 we present the predictions of our model for thetda-pair transverse-momentum distri-
bution in Drell-Yan production and for the azimuthal deetation of inclusive dijet events igp colli-
sions. Both observables are nontrivial only if addition& @radiation is produced and thereby test the
emission pattern of the shower ansatz. We observe a goodragre with data for both observables in
phase-space regions dominated by rather soft or collimaastons but the agreement outside this range,
i.e. largeps orsmall 44, is also very satisfactory.
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19.4 Conclusions

We have presented a new parton-shower algorithm that udlgsfdatorised versions of the Catani—
Seymour dipole functions to describe multi-parton produciprocesses in a probabilistic manner. The
model encodes exact four-momentum conservation on thé déeach individual splitting due to the
notion of splitting emitter—spectator pairs. Subsequemssions are ordered in transverse momenta and
the evolution of initial- and final-state partons is done iargfied way. Comparison with experimental
data yields very encouraging results. In a next step we wittlgine this new shower approach with exact
multi-leg tree-level matrix elements. Moreover, this miosleould facilitate a matching with exact NLO
QCD calculations.

Acknowledgements

We would like to thank Zoltan Nagy and Davison Soper for frdidiscussions. S. Schumann would like
to thank the organisers of the Les Houches workshop.

105



References
[1] A. Bredenstein, K. Hagiwara, and B. Jager,Xi v: 0801. 4231 | hep- ph].

[2] J. R. Andersen, T. Binoth, G. Heinrich, and J. M. Smilke,Xi v: 0709. 3513 | hep- ph].

[3] S. Dittmaier, S. Kallweit, and P. UweRhys. Rev. Lettl00(2008) 062003,
[ar Xi v: 0710. 1577 [ hep- ph]].

[4] J. M. Campbell, R. K. Ellis, and G. ZanderigBtHEP 12 (2007) 056,
[ar Xiv: 0710. 1832 | hep- ph]].

[5] J. M. Campbell, R. K. Ellis, and G. ZanderigBiHEP 10 (2006) 028, hep- ph/ 0608194].

[6] M. Ciccolini, A. Denner, and S. DittmaieRPhys. Rev. Let®9 (2007) 161803,
[ar Xiv: 0707. 0381 | hep-ph]].

[7] M. Ciccolini, A. Denner, and S. DittmaieRhys. RevD77 (2008) 013002,
[ar Xi v: 0710. 4749 | hep- ph]].

[8] A. Lazopoulos, K. Melnikov, and F. Petriell®hys. RevD76 (2007) 014001,
[nep-ph/ 0703273].

[9] V. Hankele and D. Zeppenfelar Xi v: 0712. 3544 | hep- ph].
[10] B. Jager, C. Oleari, and D. ZeppenfeldJEP 07 (2006) 015,[hep- ph/ 0603177].
[11] B. Jager, C. Oleari, and D. ZeppenfeRhys. RevD73 (2006) 113006, iep- ph/ 0604200].

[12] G. Bozzi, B. Jager, C. Oleari, and D. Zeppenféttys. RevD75 (2007) 073004,
[hep- ph/ 0701105].

[13] G. J.van OldenborgtComput. Phys. Commu@6 (1991) 1-15.

[14] T. Hahn and M. Perez-Victorig&zomput. Phys. Commuh18(1999) 153-165,
[hep- ph/ 9807565].

[15] R. K. Ellis and G. Zanderighgr Xi v: 0712. 1851 | hep- ph|!

[16] J. M. Campbell, J. W. Huston, and W. J. StirlirRgpt. Prog. PhysZ0 (2007) 89,
[hep-ph/ 0611144].

[17] G. L. Bayatiaret. al,, CMS Collaboration. CERN-LHCC-2006-001.

[18] D. Froidevaux and P. Sphicasnn. Rev. Nucl. Part. Scb6 (2006) 375-440.
[19] F. Gianotti and M. L. Mangan@ep- ph/ 0504221l

[20] ATLAS Collaboration,. CERN-LHCC-99-14/15, 1999.

[21] G. L. Bayatiaret. al,, CMS CollaborationJ. Phys.G34 (2007) 995-1579.
[22] G. Dissertori,PoOSHEP2005(2006) 401, hep- ex/ 0512007].

[23] M. Dittmar, in proceedings of the 21st Les RencontresPbgsique De La Vallee D’Aoste, Italy,
2007.

[24] P. SphicasNucl. Phys. Proc. Suppl17(2003) 298-317.

106


http://xxx.lanl.gov/abs/arXiv:0801.4231 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0709.3513 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0710.1577 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0710.1832 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0608194
http://xxx.lanl.gov/abs/arXiv:0707.0381 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0710.4749 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0703273
http://xxx.lanl.gov/abs/arXiv:0712.3544 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0603177
http://xxx.lanl.gov/abs/hep-ph/0604200
http://xxx.lanl.gov/abs/hep-ph/0701105
http://xxx.lanl.gov/abs/hep-ph/9807565
http://xxx.lanl.gov/abs/arXiv:0712.1851 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0611148
http://xxx.lanl.gov/abs/hep-ph/0504221
http://xxx.lanl.gov/abs/hep-ex/0512007

[25] G. P. Salam and G. SoyeHHEP 05 (2007) 086, /&r Xi v: 0704. 0292 [ hep- ph][].
[26] G. P. Salamar Xi v: 0801. 0070 | hep- ph]

[27] S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, and M.nf@smann,
ar Xi v: 0712. 2447 [ hep- phl.

[28] J. Pumplinet. al, JHEP07 (2002) 012,[hep- ph/ 020119Y5].
[29] CMS Collaboration. CMS PAS SBM-07-001.
[30] A. Bhattiet. al, Nucl. Instrum. MethA566 (2006) 375-412Hep- ex/ 0510047].

[31] B. Abbottet. al,, DO CollaborationNucl. Instrum. MethA424 (1999) 352-394,
[hep- ex/ 9805009].

[32] R. M. Harris, private communication, 2007.

[33] F. Behner and M. Dittmar, contributed paper at the Ebggics Conference on High-Energy
Physics (HEP 97), Jerusalem, Israel, 19-26 Aug 1997.

[34] M. Dittmar, F. Pauss, and D. Zurch@&hys. RevD56 (1997) 7284—7290hep- ex/ 9705004].
[35] K. Melnikov and F. PetrielloPhys. RevD74 (2006) 114017,iep- ph/ 0609070].
[36] M. Dittmar et. al,lhep-ph/ 05111109.

[37] W.-K. Tung, H. L. Lai, J. Pumplin, P. Nadolsky, and C. Ra,
ar Xiv: 0707. 0275 | hep- ph].

[38] S. Dittmaier and M. KrameRhys. RevD65 (2002) 073007,Hep- ph/ 0109062].
[39] U. Baur, S. Keller, and D. WackerotRhys. RevD59(1999) 013002,hep- ph/ 9807417].

[40] J. H. Kuhn, A. Kulesza, S. Pozzorini, and M. SchuRhys. LettB651(2007) 160-165,
[hep- ph/ 0703283].

[41] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. PetrielPhys. RevD69 (2004) 094008,
[hep- ph/ 03122686].

[42] J. D’Hondtjar Xi v: 0707. 1247 | hep- ph]l
[43] N. Kauer,Phys. RevD70(2004) 014020,iep- ph/ 0404045].

[44] G. Davatz, A. S. Giolo-Nicollerat, and M. ZanefipSTOP2006(2006) 027,
[hep- ex/ 0604041].

[45] S. Frixione and B. R. WebbelHEP06 (2002) 029, lhep- ph/ 0204244].

[46] S. Frixione, P. Nason, and B. R. Webb@#iEP 08 (2003) 007, hep- ph/ 0305252].

[47] E. Witten,Commun. Math. Phy252(2004) 189-258,jep-t h/ 0312171].

[48] F. Cachazo, P. Svrcek, and E. WittdijEP 09 (2004) 006, hep-t h/ 0403047/].

[49] S.J. Parke and T. R. TayldPhys. Rev. Letb6 (1986) 2459.

[50] R. Britto, F. Cachazo, and B. Fengucl. PhysB715(2005) 499-522 {ep-t h/ 0412308].

107


http://xxx.lanl.gov/abs/arXiv:0704.0292 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0801.0070 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0712.2447 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0201195
http://xxx.lanl.gov/abs/hep-ex/0510047
http://xxx.lanl.gov/abs/hep-ex/9805009
http://xxx.lanl.gov/abs/hep-ex/9705004
http://xxx.lanl.gov/abs/hep-ph/0609070
http://xxx.lanl.gov/abs/hep-ph/0511119
http://xxx.lanl.gov/abs/arXiv:0707.0275 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0109062
http://xxx.lanl.gov/abs/hep-ph/9807417
http://xxx.lanl.gov/abs/hep-ph/0703283
http://xxx.lanl.gov/abs/hep-ph/0312266
http://xxx.lanl.gov/abs/arXiv:0707.1247 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0404045
http://xxx.lanl.gov/abs/hep-ex/0604041
http://xxx.lanl.gov/abs/hep-ph/0204244
http://xxx.lanl.gov/abs/hep-ph/0305252
http://xxx.lanl.gov/abs/hep-th/0312171
http://xxx.lanl.gov/abs/hep-th/0403047
http://xxx.lanl.gov/abs/hep-th/0412308

[51] F. Britto, R.and Cachazo, B. Feng, and E. Wittehys. Rev. Letf4 (2005) 181602,
[hep-t h/ 0501052].

[52] M.-x. Luo and C.-k. WenJHEP03 (2005) 004, lhep-t h/ 0501121].
[53] M.-x. Luo and C.-k. WenPhys. Re\D71 (2005) 091501 Jhep-t h/ 0502009].

[54] R.Britto, B. Feng, R. Roiban, M. Spradlin, and A. Voloki Phys. RevD71 (2005) 105017,
[hep-t h/ 0503198].

[55] S. D. Badger, E. W. N. Glover, V. V. Khoze, and P. Svrc#{EP07 (2005) 025,
[hep-t h/ 0504159).

[56] S.D. Badger, E. W. N. Glover, and V. V. KhozHEP 01 (2006) 066, hep-t h/ 0507161].
[57] D. Forde and D. A. KosowePRhys. RevD73 (2006) 065007 iep-t h/ 0507292].

[58] C. Quigley and M. RozaliJHEP 03 (2006) 004, hep- ph/ 0510148].

[59] K. RisagerJHEP 12 (2005) 003,lhep-t h/ 0508206].

[60] P.D. Draggiotis, R. H. P. Kleiss, A. Lazopoulos, and CP@padopoulogkur. Phys. JC46
(2006) 741, lhep- ph/ 0511288].

[61] D. Vaman and Y.-P. YagJHEP 04 (2006) 030, hep-t h/ 0512031].

[62] K. J. Ozeren and W. J. Stirlingur. Phys. JC48(2006) 159-168]Hep- ph/ 0603071].
[63] C. Schwinn and S. WeinzietJHEP 05 (2005) 006, hep-t h/ 0503015].

[64] C. Schwinn and S. WeinzietdHEP 03 (2006) 030, hep-th/ 0602012].

[65] M. Dinsdale, M. Ternick, and S. WeinziedHEP 03 (2006) 056, hep- ph/ 0602204].
[66] C. Duhr, S. Hoche, and F. MaltoriIHEP 08 (2006) 062, lhep- ph/ 0607057].

[67] P. Draggiotiset. al, Nucl. Phys. Proc. Suppl60(2006) 255-260/Hep- ph/ 0607034].
[68] D. de Florian and J. Zurita] HEP 05 (2006) 073,[lhep- ph/ 0605291].

[69] D. de Florian and J. Zurita]HEP 11 (2006) 080, hep- ph/ 0609099].

[70] G. Rodrigo,JHEPQ9 (2005) 079, hep- ph/ 0508138].

[71] P. Ferrario, G. Rodrigo, and P. TalaveRhys. Rev. Let®6 (2006) 182001,
[hep-t h/ 0602043].

[72] C. Schwinn and S. WeinzietJHEP 04 (2007) 072,lhep- ph/ 0703021].
[73] A. Hall,jar Xi v: 0710. 1300 [ hep- ph].

[74] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. KosowBicl. PhysB425(1994) 217-260,
[hep- ph/ 9403228].

[75] Z.Bern, L. Dixon, D. C. Dunbar, and D. A. Kosow&tucl. PhysB435(1995) 59-101,
[hep- ph/ 9409265].

[76] S. J. Bidder, N. E. J. Bjerrum-Bohr, L. J. Dixon, and D.[Munbar,Phys. LettB606 (2005)
189-201,lhep- t h/ 0410298).

108


http://xxx.lanl.gov/abs/hep-th/0501052
http://xxx.lanl.gov/abs/hep-th/0501121
http://xxx.lanl.gov/abs/hep-th/0502009
http://xxx.lanl.gov/abs/hep-th/0503198
http://xxx.lanl.gov/abs/hep-th/0504159
http://xxx.lanl.gov/abs/hep-th/0507161
http://xxx.lanl.gov/abs/hep-th/0507292
http://xxx.lanl.gov/abs/hep-ph/0510148
http://xxx.lanl.gov/abs/hep-th/0508206
http://xxx.lanl.gov/abs/hep-ph/0511288
http://xxx.lanl.gov/abs/hep-th/0512031
http://xxx.lanl.gov/abs/hep-ph/0603071
http://xxx.lanl.gov/abs/hep-th/0503015
http://xxx.lanl.gov/abs/hep-th/0602012
http://xxx.lanl.gov/abs/hep-ph/0602204
http://xxx.lanl.gov/abs/hep-ph/0607057
http://xxx.lanl.gov/abs/hep-ph/0607034
http://xxx.lanl.gov/abs/hep-ph/0605291
http://xxx.lanl.gov/abs/hep-ph/0609099
http://xxx.lanl.gov/abs/hep-ph/0508138
http://xxx.lanl.gov/abs/hep-th/0602043
http://xxx.lanl.gov/abs/hep-ph/0703021
http://xxx.lanl.gov/abs/arXiv:0710.1300 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/9403226
http://xxx.lanl.gov/abs/hep-ph/9409265
http://xxx.lanl.gov/abs/hep-th/0410296

[77] S.J.Bidder, N. E. J. Bjerrum-Bohr, D. C. Dunbar, and WPRrkins,Phys. LettB608(2005)
151-163,hep-t h/ 0412023].

[78] S.J.Bidder, N. E. J. Bjerrum-Bohr, D. C. Dunbar, and WPRrkins,Phys. LettB612(2005)
75-88, |hep-t h/ 0502028].

[79] J. Bedford, A. Brandhuber, B. J. Spence, and G. Tramadliucl. PhysB712(2005) 59-85,
[hep-th/ 0412108].

[80] R. Britto, E. Buchbinder, F. Cachazo, and B. FelRbys. RevD72 (2005) 065012,
[hep- ph/ 0503132].

[81] Z. Bern, L. J. Dixon, and D. A. KosowelRhys. RevD71 (2005) 105013,hep-t h/ 0501240].
[82] Z.Bern, L. J. Dixon, and D. A. KosoweRhys. RevD72 (2005) 125003 iep- ph/ 0505055].
[83] Z. Bern, L. J. Dixon, and D. A. KosowelRhys. RevD73(2006) 065013,hep- ph/ 0507005].

[84] Z.Bern, N. E. J. Bjerrum-Bohr, D. C. Dunbar, and H. li&dlEP 11 (2005) 027,
[hep- ph/ 0507019].

[85] D. Forde and D. A. KosoweRhys. RevD73(2006) 061701,hep- ph/ 0509358].

[86] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kaso, Phys. RevD74 (2006) 036009,
[hep- ph/ 0604195].

[87] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kaso, Phys. RevD75 (2007) 016006,
[hep- ph/ 0607014].

[88] C. F. Berger, V. Del Duca, and L. J. DixoRhys. RevD74 (2006) 094021,
[hep- ph/ 0608180].

[89] R. Britto, B. Feng, and P. Mastroli&hys. RevD73 (2006) 105004 iep- ph/ 060217/8].
[90] Z. Xiao, G. Yang, and C.-J. ZhiNucl. PhysB758(2006) 1-34,fiep- ph/ 0607015].

[91] X. Su, Z. Xiao, G. Yang, and C.-J. ZhdNucl. PhysB758(2006) 35-52,iep- ph/ 0607016].
[92] Z. Xiao, G. Yang, and C.-J. ZhiNucl. PhysB758(2006) 53—89,lhep- ph/ 0607017].

[93] T. Binoth, J. P. Guillet, and G. HeinricAHEP 02 (2007) 013,/lhep- ph/ 0609054].

[94] T. Binoth, G. Heinrich, T. Gehrmann, and P. Mastrokdys. LettB649(2007) 422-426,
[hep- ph/ 0703311].

[95] G. Ossola, C. G. Papadopoulos, and R. Pittucgl. PhysB763(2007) 147-169,
[hep- ph/ 0609007].

[96] G. Ossola, C. G. Papadopoulos, and R. PitialEP 07 (2007) 085,
[ar Xi v: 0704. 1271 [ hep- phJ].

[97] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Magt, Phys. LettB645(2007) 213-216,
[hep- ph/ 0609191].

[98] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mag&t, JHEP 03 (2007) 111,
[hep-ph/ 0612277].

[99] P. Mastrolia,Phys. LettB644(2007) 272-283){ep-t h/ 0611097].

109


http://xxx.lanl.gov/abs/hep-th/0412023
http://xxx.lanl.gov/abs/hep-th/0502028
http://xxx.lanl.gov/abs/hep-th/0412108
http://xxx.lanl.gov/abs/hep-ph/0503132
http://xxx.lanl.gov/abs/hep-th/0501240
http://xxx.lanl.gov/abs/hep-ph/0505055
http://xxx.lanl.gov/abs/hep-ph/0507005
http://xxx.lanl.gov/abs/hep-ph/0507019
http://xxx.lanl.gov/abs/hep-ph/0509358
http://xxx.lanl.gov/abs/hep-ph/0604195
http://xxx.lanl.gov/abs/hep-ph/0607014
http://xxx.lanl.gov/abs/hep-ph/0608180
http://xxx.lanl.gov/abs/hep-ph/0602178
http://xxx.lanl.gov/abs/hep-ph/0607015
http://xxx.lanl.gov/abs/hep-ph/0607016
http://xxx.lanl.gov/abs/hep-ph/0607017
http://xxx.lanl.gov/abs/hep-ph/0609054
http://xxx.lanl.gov/abs/hep-ph/0703311
http://xxx.lanl.gov/abs/hep-ph/0609007
http://xxx.lanl.gov/abs/arXiv:0704.1271 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0609191
http://xxx.lanl.gov/abs/hep-ph/0612277
http://xxx.lanl.gov/abs/hep-th/0611091

[100] R. Britto and B. FengPhys. RevD75(2007) 105006 /fiep- ph/ 0612089].

[101] S. D. Badger, E. W. N. Glover, and K. Risag#iEP 07 (2007) 066,
[ar Xiv: 0704. 3914 | hep- ph]].

[102] D. FordePhys. RevD75 (2007) 125019/4r Xi v: 0704. 1835 [ hep- ph]].
[103] G. Ossola, C. G. Papadopoulos, and R. Pigawxi v: 0711. 3596 [ hep- ph].
[104] R. Britto and B. Fenggr Xi v: 0711. 4284 | hep- ph| |

[105] W. B. Kilgore,ar Xi v: 0711. 5015 | hep- ph|!

[106] F. A. Berends, R. Kleiss, P. De Causmaecker, R. Gasthaaud T. T. WuPhys. LettB103
(1981) 124.

[107] P. De Causmaecker, R. Gastmans, W. Troost, and T. TN¥i, PhysB206(1982) 53.
[108] J. F. Gunion and Z. KunsZ®hys. LettB161(1985) 333.

[109] R. Kleiss and W. J. Stirling\lucl. PhysB262(1985) 235—-262.

[110] R. Kleiss and W. J. Stirling?hys. LettB179(1986) 159.

[111] Z. Xu, D.-H. Zhang, and L. Chandlucl. PhysB291(1987) 392.

[112] R. Gastmans and T. T. Wu,. Oxford, UK: Clarendon (19908 p. (International series of
monographs on physics, 80).

[113] P. Cvitanovic, P. G. Lauwers, and P. N. Scharbaticl. PhysB186(1981) 165.
[114] F. A. Berends and W. Giel&lucl. PhysB294(1987) 700.

[115] M. L. Mangano, S. J. Parke, and Z. Xyucl. PhysB298(1988) 653.

[116] D. Kosower, B.-H. Lee, and V. P. NalPhys. LettB201(1988) 85.

[117] Z. Bern and D. A. KosoweNucl. PhysB362(1991) 389-448.

[118] V. Del Duca, L. J. Dixon, and F. MaltonNucl. PhysB571(2000) 51-70,
[hep- ph/ 9910563.

[119] F. Maltoni, K. Paul, T. Stelzer, and S. Willenbroékyys. RevD67 (2003) 014026,
[hep- ph/ 0209271].

[120] S. Weinzierl,Eur. Phys. JC45 (2006) 745-757ep- ph/ 0510157].
[121] F. del Aguila and R. PittalHEP 07 (2004) 017,lhep- ph/ 0404120].

[122] A.van Hameren, J. Vollinga, and S. Weinzié&tlr. Phys. JC41 (2005) 361-375,
[hep- ph/ 0502165].

[123] L. D. LandauNucl. Phys13(1959) 181-192.
[124] R. E. Cutkosky,). Math. Phys1 (1960) 429-433.

[125] A. Brandhuber, B. Spence, G. Travaglini, and K. Zoyl3ét=EP 07 (2007) 002,
[ar Xiv: 0704. 0245 | hep-th]].

110


http://xxx.lanl.gov/abs/hep-ph/0612089
http://xxx.lanl.gov/abs/arXiv:0704.3914 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0704.1835 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0711.3596 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0711.4284 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0711.5015 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/9910563
http://xxx.lanl.gov/abs/hep-ph/0209271
http://xxx.lanl.gov/abs/hep-ph/0510157
http://xxx.lanl.gov/abs/hep-ph/0404120
http://xxx.lanl.gov/abs/hep-ph/0502165
http://xxx.lanl.gov/abs/arXiv:0704.0245 [hep-th]

[126] R. K. Ellis, W. T. Giele, and Z. Kunszar Xi v: 0708. 2398 | hep- ph] !
[127] N. E. J. Bjerrum-Bohr, D. C. Dunbar, and W. B. PerklasXi v: 0709. 2086 | hep- ph].

[128] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosownlcl. PhysB435(1995) 59-101,
[hep- ph/ 9409265].

[129] R. Britto, F. Cachazo, and B. Fergucl. PhysB725(2005) 275-305/fjep-t h/ 0412103].

[130] Z. Bern, L. J. Dixon, and D. A. Kosowefnn. Rev. Nucl. Part. Sc#6 (1996) 109-148,
[hep- ph/ 9602280].

[131] F. Cachazo and P. SvrcdkpSRTN2005(2005) 004, hep-t h/ 0504194].

[132] Z. Bern, L. J. Dixon, and D. A. Kosoweinnals Phys322(2007) 1587-1634,
[ar Xiv:0704. 2798 | hep- ph]].

[133] M. L. Mangano and S. J. Parkehys. Rept200(1991) 301-367/fep- t h/ 0509223].

[134] L. J. Dixon/hep- ph/ 9601359.

[135] Z.Bern and A. G. Morgaucl. PhysB467(1996) 479-509/fep- ph/ 9511336].

[136] S.MandelstanPhys. Rev112(1958) 1344—1360.

[137] S. MandelstamPhys. Rev115(1959) 1741-1751.

[138] W. L. van NeervenNucl. PhysB268(1986) 453.

[139] Z.Bern, L. J. Dixon, and D. A. KosoweXucl. PhysB513(1998) 3—-86,/hep- ph/ 9708239].
[140] Z. Bern and G. Chalmerslucl. PhysB447(1995) 465-518/fjep- ph/ 9503236].

[141] J. M. Campbell, E. W. N. Glover, and D. J. Milléfucl. PhysB498(1997) 397—442,
[hep- ph7 9612413).

[142] C. F. Berger et alto appear

[143] Z. Bern, L. J. Dixon, and D. A. Kosowdphys. Rev. LetZ0(1993) 2677-2680,
[hep- ph/ 9302280].

[144] L. D. LandauNucl. Phys13(1959) 181.
[145] S. MandelstanRPhys. Rev115(1959) 1741.
[146] R. E. Cutkosky,). Math. Phys1 (1960) 429.

[147] R.J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Pdikiarne,Cambridge University Press
(1966).

[148] G. 't Hooft and M. J. G. Veltmar\ucl. PhysB153(1979) 365-401.

[149] Z. Bern, L. J. Dixon, and D. A. Kosowdphys. LettB302(1993) 299-308,
[hep- ph/ 9212308].

[150] Z.Bern, L. J. Dixon, and D. A. KosoweNucl. PhysB412(1994) 751-816,
[hep- ph/ 9306240Q].

[151] O. V. TarasovPhys. RevD54 (1996) 6479—6490ep-t h/ 9606018].

111


http://xxx.lanl.gov/abs/arXiv:0708.2398 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0709.2086 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/9409265
http://xxx.lanl.gov/abs/hep-th/0412103
http://xxx.lanl.gov/abs/hep-ph/9602280
http://xxx.lanl.gov/abs/hep-th/0504194
http://xxx.lanl.gov/abs/arXiv:0704.2798 [hep-ph]
http://xxx.lanl.gov/abs/hep-th/0509223
http://xxx.lanl.gov/abs/hep-ph/9601359
http://xxx.lanl.gov/abs/hep-ph/9511336
http://xxx.lanl.gov/abs/hep-ph/9708239
http://xxx.lanl.gov/abs/hep-ph/9503236
http://xxx.lanl.gov/abs/hep-ph/9612413
http://xxx.lanl.gov/abs/hep-ph/9302280
http://xxx.lanl.gov/abs/hep-ph/9212308
http://xxx.lanl.gov/abs/hep-ph/9306240
http://xxx.lanl.gov/abs/hep-th/9606018

[152] T. Binoth, J. P. Guillet, and G. Heinrichlucl. PhysB572(2000) 361-386,
[hep- ph/ 9911342).

[153] G. Duplancic and B. Nizid:ur. Phys. JC35(2004) 105-118)fjep- ph/ 0303184].

[154] A. Brandhuber, S. McNamara, B. J. Spence, and G. ThawvagdHEP 10 (2005) 011,
[hep-t h/ 0506068].

[155] D. Maitre and P. Mastroliagr Xi v: 0710. 5559 | hep- ph].

[156] M. Sipser,Introduction to the theory of computatiomhomson Course Technology, 2006.
[157] R. Kleiss and H. KuijfNucl. PhysB312(1989) 616.

[158] T. Stelzer and W. F. Long;omput. Phys. Commu@l (1994) 357-371/fep- ph/ 9401258].
[159] F. A. Berends and W. T. Giel&lucl. PhysB306(1988) 759.

[160] F. A. Berends, W. T. Giele, and H. Kuij§ucl. PhysB321(1989) 39.

[161] F. A. Berends, H. Kuijf, B. Tausk, and W. T. Gielycl. PhysB357(1991) 32-64.

[162] F. A. Berends, W. T. Giele, and H. Kuij§ucl. PhysB333(1990) 120.

[163] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, aidd D. PolosaJHEP 07 (2003) 001,
[hep- ph/ 0206293].

[164] R. K. Ellis and J. C. SextoNucl. PhysB269(1986) 445.

[165] P. Nogueira,). Comput. Physl05(1993) 279-289.

[166] J. A. M. Vermaseremat h- ph/ 0010025.

[167] G. Passarino and M. J. G. Veltmaicl. PhysB160(1979) 151.

[168] R. K. Ellis, W. T. Giele, and G. ZanderigiliHEP 05 (2006) 027,lhep- ph/ 0602185].
[169] W. L. van NeervenNucl. PhysB268(1986) 453.

[170] G. Ossola, C. G. Papadopoulos, and R. Piaawi v: 0802. 1876 [ hep- ph].
[171] R. PittauComput. Phys. Commuh11(1998) 48-52 hep- ph/ 9712418].

[172] R. PittauComput. Phys. Commuh04 (1997) 23-36,hep- ph/ 9607309].

[173] D. H. Bailey, ARPREC (C++/Fortran-90 arbitrary preioin package),
http://crd.Ibl.gov/ dhbailey/mpdist/.

[174] D. H. Bailey, A Fortran-90 Based Multiprecision SysteACM Transactions on Mathematical
Software, vol. 21, no. 4 (Dec 1995), pg. 379-387.

[175] S. Catani and M. H. Seymowducl. PhysB485(1997) 291-419/Hep- ph/ 9605323].

[176] W.T. Giele, E. W. N. Glover, and D. A. Kosowétucl. PhysB403(1993) 633670,
[hep- ph/ 9302225).

[177] B. W. Harris and J. F. OwenBhys. RevD65 (2002) 094032,jep- ph/ 0102128].

[178] G. Ossola, C. G. Papadopoulos, R. Pittau, T. Binotd,@nHeinrich, in preparation.

112


http://xxx.lanl.gov/abs/hep-ph/9911342
http://xxx.lanl.gov/abs/hep-ph/0303184
http://xxx.lanl.gov/abs/hep-th/0506068
http://xxx.lanl.gov/abs/arXiv:0710.5559 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/9401258
http://xxx.lanl.gov/abs/hep-ph/0206293
http://xxx.lanl.gov/abs/math-ph/0010025
http://xxx.lanl.gov/abs/hep-ph/0602185
http://xxx.lanl.gov/abs/arXiv:0802.1876 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/9712418
http://xxx.lanl.gov/abs/hep-ph/9607309
http://xxx.lanl.gov/abs/hep-ph/9605323
http://xxx.lanl.gov/abs/hep-ph/9302225
http://xxx.lanl.gov/abs/hep-ph/0102128

[179] A. Kanaki and C. G. Papadopoul&pmput. Phys. Commuh32(2000) 306-315,
[hep- ph/ 0002082].

[180] A. Kanaki and C. G. Papadopoultsp- ph/ 0012004.

[181] A. Cafarella, C. G. Papadopoulos, and M. Wo@kXi v: 0710. 2427 | hep- ph].
[182] G. Dissertorift hese proceedi ngs.

[183] W.T. Giele, Z. Kunszt, and K. Melnikoar Xi v: 0801. 2237 [ hep- ph].

[184] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and Ghaibert JHEP 10 (2005) 015,
[hep- ph/ 0504267/].

[185] T. Binoth, M. Ciccolini, N. Kauer, and M. KramelHEP 12 (2006) 046, lhep- ph/ 0611170Q].

[186] T. Binoth, S. Karg, N. Kauer, and R. RucRhys. RevD74 (2006) 113008,
[hep- ph/ 0608057].

[187] T. Binoth, J. P. Guillet, and F. MahmoudHEP 02 (2004) 057,lhep- ph/ 0312334].

[188] T. Binoth, J. P. Guillet, G. Heinrich, and C. Schubélticl. PhysB615(2001) 385—401,
[hep- ph/ 0106243).

[189] T. Binoth, G. Heinrich, and N. Kauducl. PhysB654(2003) 277-300/fep- ph/ 0210023].
[190] J. A. M. Vermaseren and M. Tentyukadvucl. Phys. Proc. Suppl60(2006) 38—43.
[191] Z. Nagy and D. E. SopeRhys. RevD74 (2006) 093006, iep- ph/ 0610028].

[192] R. Eden, P. Landshoff, D. Olive, and J. Polkinghorniee Rnalytic S-matrix Cambridge
University Pres$1966).

[193] F. Boudjema and L. D. Ninh,
arXiv:0711. 2005 [ hep-ph], Phys. Rev. D, in Press.

[194] C. Bernicot and J. P. GuilleiHEP01 (2008) 059, /ar Xi v: 0711. 4713 | hep- ph]].

[195] C. Itzykson and J. B. Zuber, Quantum Field Thedtew York, USA Mcgraw-Hill (1980) 705
P.(International Series In Pure and Applied Physics)

[196] A. Denner, S. Dittmaier, M. Roth, and L. H. WiedeRhys. LettB612(2005) 223-232,
[hep- ph/ 0502063.

[197] A. Denner, S. Dittmaier, M. Roth, and L. H. Wiedelcl. PhysB724(2005) 247-294,
[hep- ph/ 05050472].

[198] A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Welsthys. RevD74 (2006) 013004,
[hep- ph/ 0604011].

[199] A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weld¢lEP 02 (2007) 080,
[hep- ph/ 0611234].

[200] A. Denner and S. DittmaieNucl. PhysB734(2006) 62—-115hep- ph/ 0509141].
[201] C. Buttaret. al,|hep-ph/ 0604120,

[202] A. Denner and S. DittmaieNucl. PhysB658(2003) 175-202/fep- ph/ 0212259].

113


http://xxx.lanl.gov/abs/hep-ph/0002082
http://xxx.lanl.gov/abs/hep-ph/0012004
http://xxx.lanl.gov/abs/arXiv:0710.2427 [hep-ph]
http://xxx.lanl.gov/abs/these proceedings
http://xxx.lanl.gov/abs/arXiv:0801.2237 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0504267
http://xxx.lanl.gov/abs/hep-ph/0611170
http://xxx.lanl.gov/abs/hep-ph/0608057
http://xxx.lanl.gov/abs/hep-ph/0312334
http://xxx.lanl.gov/abs/hep-ph/0106243
http://xxx.lanl.gov/abs/hep-ph/0210023
http://xxx.lanl.gov/abs/hep-ph/0610028
http://xxx.lanl.gov/abs/arXiv:0711.2005 [hep-ph], Phys. Rev. D, in Press
http://xxx.lanl.gov/abs/arXiv:0711.4713 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0502063
http://xxx.lanl.gov/abs/hep-ph/0505042
http://xxx.lanl.gov/abs/hep-ph/0604011
http://xxx.lanl.gov/abs/hep-ph/0611234
http://xxx.lanl.gov/abs/hep-ph/0509141
http://xxx.lanl.gov/abs/hep-ph/0604120
http://xxx.lanl.gov/abs/hep-ph/0212259

[203] A. Ferroglia, M. Passera, G. Passarino, and S. Ucchaicl. PhysB650(2003) 162228,
[hep- ph/ 0209219].

[204] W. Giele, E. W. N. Glover, and G. Zanderighucl. Phys. Proc. Suppl35(2004) 275-279,
[hep- ph/ 0407018].

[205] D. B. MelroseNuovo Cim40(1965) 181-213.

[206] S. Dittmaier,Nucl. PhysB675(2003) 447-466,fjep- ph/ 0308246].

[207] A. Denner and S. DittmaieNucl. Phys. Proc. Suppl57(2006) 53-57,hep- ph/ 0601085].
[208] A.I. DavydychevPhys. LettB263(1991) 107-111.

[209] J. Fleischer, F. Jegerlehner, and O. V. Tarabgl. PhysB566 (2000) 423-440,
[hep- ph/ 9907327).

[210] B. Mellado, W. Quayle, and S. L. W&hys. RevD76 (2007) 093007,
[ar Xi v: 0708. 2507 | hep- ph]].

[211] T. Binoth, J.-P. Guillet, S. Karg, N. Kauer, and G. Sangtti, n pr epar ati on.
[212] R. K. Ellis, D. A. Ross, and A. E. TerranNlucl. PhysB178(1981) 421.

[213] J. Kublbeck, M. Bohm, and A. Denné&2pomput. Phys. Commu@0 (1990) 165-180.
[214] T. Hahn,Comput. Phys. Commuh40(2001) 418-431Hep- ph/ 0012260].

[215] W. Beenakkeet. al, Nucl. PhysB653(2003) 151-203/fjep- ph/ 0211352].

[216] S. Dittmaier, P. Uwer, and S. WeinzieRhys. Rev. LetB8 (2007) 262002,
[hep- ph/ 0703120].

[217] W. Beenakker and A. Dennéucl. PhysB338(1990) 349-370.

[218] A. Denner, U. Nierste, and R. Schaxucl. PhysB367(1991) 637—-656.
[219] G. J. van Oldenborgh and J. A. M. VermaseZznPhys.C46 (1990) 425-438.
[220] G. J. van OldenborglGomput. Phys. Commué6 (1991) 1-15.

[221] F. A. Berends, R. Pittau, and R. Kleidicl. PhysB424(1994) 308—-342,
[hep- ph/ 9404313).

[222] R. Kleiss and R. Pittatzomput. Phys. Commu@3 (1994) 141-146/fjep- ph/ 9405257].
[223] W. Kilian, T. Ohl, and J. Reutear Xi v: 0708. 4233 | hep- ph].

[224] T. Gleisberget. al, JHEP02 (2004) 056, hep- ph/ 0311263].

[225] S. Kallweit,diploma thesis (in German), LMU Muni¢R006).

[226] W. T. Giele and E. W. N. GlovedHEP 04 (2004) 029, hep- ph/ 0402152].

[227] R. K. Ellis, W. T. Giele, and G. Zanderighthys. RevD73 (2006) 014027,
[hep- ph/ 0508308].

[228] F. Maltoni and T. StelzedHEP 02 (2003) 027,/hep- ph/ 0208156].

114


http://xxx.lanl.gov/abs/hep-ph/0209219
http://xxx.lanl.gov/abs/hep-ph/0407016
http://xxx.lanl.gov/abs/hep-ph/0308246
http://xxx.lanl.gov/abs/hep-ph/0601085
http://xxx.lanl.gov/abs/hep-ph/9907327
http://xxx.lanl.gov/abs/arXiv:0708.2507 [hep-ph]
http://xxx.lanl.gov/abs/in preparation
http://xxx.lanl.gov/abs/hep-ph/0012260
http://xxx.lanl.gov/abs/hep-ph/0211352
http://xxx.lanl.gov/abs/hep-ph/0703120
http://xxx.lanl.gov/abs/hep-ph/9404313
http://xxx.lanl.gov/abs/hep-ph/9405257
http://xxx.lanl.gov/abs/arXiv:0708.4233 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0311263
http://xxx.lanl.gov/abs/hep-ph/0402152
http://xxx.lanl.gov/abs/hep-ph/0508308
http://xxx.lanl.gov/abs/hep-ph/0208156

[229] L. J. Dixon, Z. Kunszt, and A. Signeducl. PhysB531(1998) 3-23,lhep- ph/ 9803250].
[230] S. A. Larin,Phys. LettB303(1993) 113-118/Hep- ph/ 9302240].
[231] T. L. TruemanZ. PhysC69 (1996) 525-536/fep- ph/ 9504315].

[232] B. W. Hatrris, E. Laenen, L. Phaf, Z. Sullivan, and S. kigerl, Phys. RevD66 (2002) 054024,
[hep-ph/ 020705Y5].

[233] S. Catani, M. H. Seymour, and Z. Trocsarighys. RevD55 (1997) 6819-6829,
[hep- ph/ 9610553].

[234] D. Stumpet. al, JHEP 10 (2003) 046, hep- ph/ 0303013].
[235] S.D. Ellis and D. E. SopePhys. RevD48(1993) 3160-3166/hHep- ph/ 9305266].

[236] M. Czakon, A. Mitov, and S. Moctrhys. LettB651(2007) 147-159,
[ar Xi v: 0705. 1975 [ hep- ph]].

[237] M. Czakon, A. Mitov, and S. Moclar Xi v: 0707. 4139 [ hep- ph].

[238] M. Czakon, J. Gluza, and T. Riemarhys. RevD71 (2005) 073009 iep- ph/ 0412164].
[239] M. Czakon, J. Gluza, and T. Riemamcl. PhysB751(2006) 1-17,lhep- ph/ 0604107].
[240] V. A. Smirnov,Phys. LettB460(1999) 397-404/fep- ph/ 9905323].

[241] J. B. TauskPhys. LettB469(1999) 225-234 fjep- ph/ 9909506].

[242] J. Gluza, K. Kajda, and T. Riemar@omput. Phys. Commuh77 (2007) 879-893,
[ar Xiv:0704. 2423 | hep- ph]].

[243] M. CzakonComput. Phys. Commuh75(2006) 559-571,Hep- ph/ 0511200].

[244] S. Moch and P. UweComput. Phys. Commuh74(2006) 759—770/at h- ph/ 0508008].
[245] A. V. Kotikov, Phys. LettB254(1991) 158-164.

[246] E. RemiddiNuovo CimA110(1997) 1435-1452/hHep-th/ 9711188§].

[247] S. Catani, S. Dittmaier, and Z. Trocsanghys. LettB500(2001) 149-160,
[hep- ph/ 0011227].

[248] B. Mele and P. Nasomucl. PhysB361(1991) 626—644.
[249] K. Melnikov and A. Mitov,Phys. RevD70 (2004) 034027 iep- ph/ 0404143].
[250] A. Mitov, Phys. RevD71(2005) 054021,ijep- ph/ 0410205].
[251] A. Mitov, ECONFC050318(2005) 0608, fiep- ph/ 0510263
[252] S. Kluth,Rept. Prog. Phys$9 (2006) 1771-1846/nep- ex/ 0603011].
[253] S. CataniPhys. LettB427(1998) 161-171]H{ep- ph/ 9802439].
[254] G. Sterman and M. E. Tejeda-YeomaRsys. LettB552(2003) 48-56,hep- ph/ 0210130].
[255] S. Moch and A. MitovActa Phys. PolonB38(2007) 3507-3515,
[ar Xi v: 0711.1121 | hep-ph]].

115


http://xxx.lanl.gov/abs/hep-ph/9803250
http://xxx.lanl.gov/abs/hep-ph/9302240
http://xxx.lanl.gov/abs/hep-ph/9504315
http://xxx.lanl.gov/abs/hep-ph/0207055
http://xxx.lanl.gov/abs/hep-ph/9610553
http://xxx.lanl.gov/abs/hep-ph/0303013
http://xxx.lanl.gov/abs/hep-ph/9305266
http://xxx.lanl.gov/abs/arXiv:0705.1975 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0707.4139 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0412164
http://xxx.lanl.gov/abs/hep-ph/0604101
http://xxx.lanl.gov/abs/hep-ph/9905323
http://xxx.lanl.gov/abs/hep-ph/9909506
http://xxx.lanl.gov/abs/arXiv:0704.2423 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0511200
http://xxx.lanl.gov/abs/math-ph/0508008
http://xxx.lanl.gov/abs/hep-th/9711188
http://xxx.lanl.gov/abs/hep-ph/0011222
http://xxx.lanl.gov/abs/hep-ph/0404143
http://xxx.lanl.gov/abs/hep-ph/0410205
http://xxx.lanl.gov/abs/hep-ph/0510263
http://xxx.lanl.gov/abs/hep-ex/0603011
http://xxx.lanl.gov/abs/hep-ph/9802439
http://xxx.lanl.gov/abs/hep-ph/0210130
http://xxx.lanl.gov/abs/arXiv:0711.1121 [hep-ph]

[256] S. Mert Aybat, L. J. Dixon, and G. StermdPhys. RevD74 (2006) 074004,
[hep- ph/ 0607309].

[257] A. Mitov and S. Moch,JHEPO05 (2007) 001, hep- ph/ 0612149].
[258] T.Becher and K. MelnikoW)JHEP 06 (2007) 084,/ar Xi v: 0704. 3582 [ hep- ph]].
[259] J. G. Korner and Z. Merebashvikhys. RevD66 (2002) 054023,fjep- ph/ 0207054].

[260] G. Balossini, C. M. Carloni Calame, G. Montagna, O.rdgini, and F. PiccininiNucl. Phys.
Proc. Suppl162(2006) 59-62,hep- ph/ 0610022].

[261] A. A. Penin,Phys. Rev. LetB5 (2005) 010408 iep- ph/ 0501120].

[262] D. Buskulicet. al,, ALEPH CollaborationZ. Phys.C73(1997) 409-420.
[263] A. Heisteret. al,, ALEPH CollaborationEur. Phys. JC35 (2004) 457-486.
[264] P. D. Actonet. al,, OPAL CollaborationZ. Phys.C59 (1993) 1-20.

[265] G. Alexandeeet. al,, OPAL CollaborationZ. Phys.C72(1996) 191-206.
[266] K. Ackerstaffet. al,, OPAL CollaborationZ. Phys.C75(1997) 193-207.

[267] G. Abbiendiet. al,, OPAL CollaborationEur. Phys. JC16 (2000) 185-210,
[hep-ex/ 0002012].

[268] G. Abbiendiet. al,, OPAL CollaborationEur. Phys. JC40 (2005) 287-316,
[hep- ex/ 0503051].

[269] M. Acciarriet. al,, L3 CollaborationPhys. LettB371(1996) 137-148.

[270] M. Acciarriet. al,, L3 CollaborationPhys. LettB404(1997) 390—402.

[271] M. Acciarriet. al,, L3 CollaborationPhys. LettB444(1998) 569-582.

[272] M. Acciarriet. al,, L3 CollaborationPhys. LettB489(2000) 65—80,hep- ex/ 0005045].
[273] P. Achardet. al,, L3 CollaborationPhys. LettB536(2002) 217-228|fep- ex/ 0206052].
[274] P. Acharcet. al,, L3 CollaborationPhys. Rept399(2004) 71-174iiep- ex/ 0406049].
[275] P. Abreuet. al,, DELPHI CollaborationPhys. LettB456(1999) 322—-340.

[276] J. Abdallahet. al,, DELPHI CollaborationEur. Phys. JC29 (2003) 285-312,
[hep-ex/ 0307049].

[277] J. Abdallahet. al,, DELPHI CollaborationEur. Phys. JC37 (2004) 1-23,
[hep- ex/ 0406011].

[278] K. Abeet. al,, SLD CollaborationPhys. RevD51 (1995) 962—-984fjep- ex/ 9501003].
[279] O. Biebel Phys. Rept340(2001) 165—289.

[280] Z. KunsztPhys. LettB99 (1981) 429.

[281] J. A. M. Vermaseren, K. J. F. Gaemers, and S. J. Oldiharal. PhysB187(1981) 301.
[282] K. Fabricius, I. Schmitt, G. Kramer, and G. Schierhdeit. PhysC11(1981) 315.

116


http://xxx.lanl.gov/abs/hep-ph/0607309
http://xxx.lanl.gov/abs/hep-ph/0612149
http://xxx.lanl.gov/abs/arXiv:0704.3582 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0207054
http://xxx.lanl.gov/abs/hep-ph/0610022
http://xxx.lanl.gov/abs/hep-ph/0501120
http://xxx.lanl.gov/abs/hep-ex/0002012
http://xxx.lanl.gov/abs/hep-ex/0503051
http://xxx.lanl.gov/abs/hep-ex/0005045
http://xxx.lanl.gov/abs/hep-ex/0206052
http://xxx.lanl.gov/abs/hep-ex/0406049
http://xxx.lanl.gov/abs/hep-ex/0307048
http://xxx.lanl.gov/abs/hep-ex/0406011
http://xxx.lanl.gov/abs/hep-ex/9501003

[283] Z. Kunszt and P. Nason,. Z Physics at LEP 1, CERN Yell@pdt 89-08, Vol. 1, p. 373.
[284] W.T. Giele and E. W. N. GloveRhys. RevD46 (1992) 1980-2010.

[285] S. Catani and M. H. Seymourhys. LettB378(1996) 287-301/fjep- ph/ 9602277].
[286] S. Catani, L. Trentadue, G. Turnock, and B. R. WebRel. PhysB407(1993) 3—-42.
[287] S. Catani, G. Turnock, B. R. Webber, and L. TrentadRlgys. LettB263(1991) 491-497.
[288] S. Catani, G. Turnock, and B. R. Webbehys. LettB295(1992) 269-276.

[289] Y. L. Dokshitzer, A. Lucenti, G. Marchesini, and G. Rl&n,JHEP 01 (1998) 011,
[hep- ph/ 9801324].

[290] A. Banfi, G. P. Salam, and G. ZanderighiHEP 01 (2002) 018,lhep- ph/ 0112156].

[291] G. Dissertori, I. G. Knowles, and M. Schmelling,. OsdpUK: Clarendon (2003) 538 p.
[292] G. P. Korchemsky and G. Stermaycl. PhysB437(1995) 415-432Hep- ph/ 9411211].
[293] Y. L. Dokshitzer and B. R. Webbdphys. LettB404(1997) 321-327/Hep- ph/ 9704299].
[294] Y. L. Dokshitzer and B. R. Webbdphys. LettB352(1995) 451-455/Hep- ph/ 9504219].

[295] Y. L. Dokshitzer, A. Lucenti, G. Marchesini, and G. Rl&n,JHEP 05 (1998) 003,
[hep- ph/ 9802381].

[296] R. K. Ellis, W. J. Stirling, and B. R. WebbeZamb. Monogr. Part. Phys. Nucl. Phys. Cosngol.
(1996) 1-435.

[297] S. Brandt, C. Peyrou, R. Sosnowski, and A. WroblewBkiys. Lett12 (1964) 57—-61.
[298] E. Farhi,Phys. Rev. LetB9 (1977) 1587—1588.

[299] L. Clavelliand D. WylerPhys. LettB103(1981) 383.

[300] P. E.L.Rakow and B. R. Webbétucl. PhysB191(1981) 63.

[301] G. ParisiPhys. LettB74(1978) 65.

[302] J. F. Donoghue, F. E. Low, and S.-Y. Phys. RevD20 (1979) 2759.

[303] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock, &dr. WebberPhys. LettB269(1991)
432-438.

[304] N.Brown and W. J. StirlingPhys. LettB252(1990) 657—662.

[305] W. J. Stirling,J. PhysG17(1991) 1567—-1574.

[306] S. Bethke, Z. Kunszt, D. E. Soper, and W. J. StirliNgcl. PhysB370(1992) 310-334.
[307] S. Bethke, Z. Kunszt, D. E. Soper, and W. J. Stirlingp- ph/ 9803267,

[308] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukaks, and E. RemiddNucl. Phys.
B642(2002) 227-262)fep- ph/ 0206067].

[309] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukaks, and E. RemiddNucl. Phys.
B627(2002) 107-188)fep- ph/ 0112087].

117


http://xxx.lanl.gov/abs/hep-ph/9602277
http://xxx.lanl.gov/abs/hep-ph/9801324
http://xxx.lanl.gov/abs/hep-ph/0112156
http://xxx.lanl.gov/abs/hep-ph/9411211
http://xxx.lanl.gov/abs/hep-ph/9704298
http://xxx.lanl.gov/abs/hep-ph/9504219
http://xxx.lanl.gov/abs/hep-ph/9802381
http://xxx.lanl.gov/abs/hep-ph/9803267
http://xxx.lanl.gov/abs/hep-ph/0206067
http://xxx.lanl.gov/abs/hep-ph/0112081

[310] S. Moch, P. Uwer, and S. WeinzieRhys. RevD66 (2002) 114001 [iep- ph/ 0207043].
[311] E. W. N. Glover and D. J. MilleiPhys. LettB396(1997) 257-263Hep- ph/ 96094 74].

[312] Z. Bern, L. J. Dixon, D. A. Kosower, and S. Weinziedycl. PhysB489(1997) 3-23,
[hep- ph/ 9610370].

[313] J. M. Campbell, E. W. N. Glover, and D. J. Milléthys. LettB409(1997) 503-508,
[hep- ph/ 9706297].

[314] K. Hagiwara and D. Zeppenfeldlucl. PhysB313(1989) 560.

[315] N. K. Falck, D. Graudenz, and G. KramBiicl. PhysB328(1989) 317.
[316] D. A. KosowerPhys. RevD57 (1998) 5410-5416/hep- ph/ 9710213].
[317] D. A. KosowerPhys. RevD71 (2005) 045016,ep- ph/ 0311272].

[318] J. M. Campbell, M. A. Cullen, and E. W. N. Glové&ur. Phys. JC9 (1999) 245-265,
[hep- ph/ 9809429].

[319] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. GlaW#dEP 09 (2005) 056,
[hep- ph/ 0505111].

[320] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. GloMeicl. PhysB691 (2004) 195-222,
[hep- ph/ 0403057].

[321] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. GloRéys. LettB612(2005) 3648,
[hep- ph/ 0501291].

[322] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. GloRéys. LettB612(2005) 49-60,
[hep- ph/ 0502110].

[323] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Gloved én Heinrich,JHEP 11 (2007) 058,
[ar Xi v: 0710. 0346 [ hep-ph]].

[324] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Gloved én Heinrich,
ar Xiv:0711. 4711 | hep-ph|l

[325] R.W. L. Jones, M. Ford, G. P. Salam, H. Stenzel, and K&/UHEP 12 (2003) 007,
[hep- ph/ 0312018].

[326] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Gloved &n Heinrich,Phys. Rev. LetB9
(2007) 132002,/dr Xi v: 0707. 1285 [ hep- ph]].

[327] G. Dissertoriet. al,jar Xi v: 0712. 0327 [ hep- ph].

[328] Z. Nagy and D. E. SopelHEP 09 (2007) 114, &r Xi v: 0706. 0017 | hep- ph]].
[329] W.T. Giele, D. A. Kosower, and P. Z. Skands, Xi v: 0707. 3652 | hep- ph] !
[330] G. GustafsonPhys. LettB175(1986) 453.

[331] L. Lonnblad,Comput. Phys. Commuiil (1992) 15-31.

[332] J.-C. Winter and F. Krausay Xi v: 0712. 3913 | hep- ph].

[333] S. Schumann and F. Krauss, Xi v: 0709. 1027 [ hep- ph].

118


http://xxx.lanl.gov/abs/hep-ph/0207043
http://xxx.lanl.gov/abs/hep-ph/9609474
http://xxx.lanl.gov/abs/hep-ph/9610370
http://xxx.lanl.gov/abs/hep-ph/9706297
http://xxx.lanl.gov/abs/hep-ph/9710213
http://xxx.lanl.gov/abs/hep-ph/0311272
http://xxx.lanl.gov/abs/hep-ph/9809429
http://xxx.lanl.gov/abs/hep-ph/0505111
http://xxx.lanl.gov/abs/hep-ph/0403057
http://xxx.lanl.gov/abs/hep-ph/0501291
http://xxx.lanl.gov/abs/hep-ph/0502110
http://xxx.lanl.gov/abs/arXiv:0710.0346 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0711.4711 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0312016
http://xxx.lanl.gov/abs/arXiv:0707.1285 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0712.0327 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0706.0017 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0707.3652 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0712.3913 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0709.1027 [hep-ph]

[334] M. Dinsdale, M. Ternick, and S. WeinzieRhys. RevD76 (2007) 094003,
[ar Xiv: 0709. 1026 | hep- ph]].

[335] Z. Nagy and D. E. Sopeiep- ph/ 0601021

[336] Z. Nagy and D. E. Sopear Xi v: 0801. 1917 | hep- ph].

[337] T. Sjostrand, S. Mrenna, and P. SkaraisXi v: 0710. 3820 [ hep- ph|

[338] G. Gustafson and U. Petterssdhycl. PhysB306(1988) 746.

[339] B. Andersson, G. Gustafson, and L. Lonnblsdgcl. PhysB339(1990) 393—-406.
[340] E. Booset. al,lhep- ph/ 0109068.

[341] J. Alwall et. al, Comput. Phys. Commuh76(2007) 300-304/Hep- ph/ 0609017].
[342] R. Kleiss,Phys. LettB180(1986) 400.

[343] T. Sjostrand and P. Z. Skandg,r. Phys. JC39 (2005) 129-154/Hep- ph/ 0408302].
[344] T. Ishikawaet. al,, MINAMI-TATEYA group Collaboration. KEK-92-19.

[345] S. Odaka and Y. Kurihar&ur. Phys. JC51 (2007) 867-873)fjep- ph/ 0702138].
[346] Y. Kuriharaet. al,, Nucl. Phys. Proc. Suppl57(2006) 231-235.

[347] H. L. Laiet. al,, CTEQ CollaborationEur. Phys. JC12(2000) 375-392,
[hep- ph/ 99032872].

[348] H. TanakaProg. Theor. Physl10(2003) 963—-973.

[349] T. SjostrandPhys. LettB157(1985) 321.

[350] M. Bengtsson, T. Sjostrand, and M. van Zjl,Phys.C32(1986) 67.

[351] G. Corcellaet. al, JHEP01(2001) 010, hep- ph/ 0011363].

[352] T. Sjostrancet. al, Comput. Phys. Commuh35(2001) 238-259/fep- ph/ 0010017].

[353] S. Catani, F. Krauss, R. Kuhn, and B. R. WebBEIEP 11 (2001) 063,lhep- ph/ 0109231].
[354] J. Alwallet. al,jar Xi v: 0706. 2569 [ hep- ph].

[355] S. Frixione, P. Nason, and C. OlealjEP 11 (2007) 070, /&r Xi v: 0709. 2092 [ hep- ph]].
[356] S. Gieseke, P. Stephens, and B. WeblidEP 12 (2003) 045, hep- ph/ 0310083].

[357] Z. Nagy and D. E. SopedHEP 10 (2005) 024, hep- ph/ 0503053].

[358] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trocsalycl. PhysB627 (2002) 189-265,
[hep- ph/ 0201036].

[359] T. Sjostrand, L. Lonnblad, and S. Mrenimep- ph/ 0108264.
[360] P. Abreuet. al,, DELPHI CollaborationZ. Phys.C73(1996) 11-60.
[361] S. Catani and B. R. WebbedHEP 10(1997) 005, hep- ph/ 9710333].

119


http://xxx.lanl.gov/abs/arXiv:0709.1026 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0601021
http://xxx.lanl.gov/abs/arXiv:0801.1917 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0710.3820 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0109068
http://xxx.lanl.gov/abs/hep-ph/0609017
http://xxx.lanl.gov/abs/hep-ph/0408302
http://xxx.lanl.gov/abs/hep-ph/0702138
http://xxx.lanl.gov/abs/hep-ph/9903282
http://xxx.lanl.gov/abs/hep-ph/0011363
http://xxx.lanl.gov/abs/hep-ph/0010017
http://xxx.lanl.gov/abs/hep-ph/0109231
http://xxx.lanl.gov/abs/arXiv:0706.2569 [hep-ph]
http://xxx.lanl.gov/abs/arXiv:0709.2092 [hep-ph]
http://xxx.lanl.gov/abs/hep-ph/0310083
http://xxx.lanl.gov/abs/hep-ph/0503053
http://xxx.lanl.gov/abs/hep-ph/0201036
http://xxx.lanl.gov/abs/hep-ph/0108264
http://xxx.lanl.gov/abs/hep-ph/9710333

[362] A. A. Affolder et. al,, CDF CollaborationPhys. Rev. LetB4 (2000) 845—-850,
[hep-ex/ 0001021].

[363] V. M. Abazovet. al,, DO CollaborationPhys. Rev. Let®4 (2005) 221801,
[hep- ex/ 0409040].

120


http://xxx.lanl.gov/abs/hep-ex/0001021
http://xxx.lanl.gov/abs/hep-ex/0409040

	Introduction
	Measurements of hard processes at the LHC
	I NEW APPROACHES
	On-shell recursion relations
	On-shell recursion to determine rational terms
	Four- and D-dimensional unitarity cuts
	Comments on unitarity based one-loop algorithms
	Physical applications of the OPP method to compute one-loop amplitudes

	II IMPROVEMENTS ON STANDARD TECHNIQUES
	GOLEM: a semi-numerical approach to one-loop amplitudes
	Issues with the Landau singularities
	Tensor one-loop integrals in exceptional phase-space regions
	Singularities in one-loop amplitudes from the point of view of reduction methods

	III CROSS SECTIONS
	Tuned comparison of QCD corrections to ppWW+jet+X at the LHC
	From the high energy limit of massive QCD amplitudes to the full mass dependence
	Much can be said about massive amplitudes just from knowing their massless limit
	NNLO predictions for hadronic event shapes in e+e- annihilations

	IV PARTON SHOWERS
	Developments in leading order parton showers
	Time-like showers based on dipole-antenna radiation functions
	LLL subtraction and PS kinematics
	A parton-shower model based on Catani–Seymour dipole factorisation


