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Abstract
The starting point of these lectures is an introduction to the weak interactions
of quarks and the Standard-Model description of CP violation, where the cen-
tral rôle is played by the Cabibbo–Kobayashi–Maskawa matrix and the corre-
sponding unitarity triangles. Since the B-meson system governs the stage of
(quark) flavour physics and CP violation, it is our main focus: we shall classify
B-meson decays, introduce the theoretical tools to deal with them, investigate
the requirements for non-vanishing CP-violating asymmetries, and discuss the
main strategies to explore CP violation and the preferred avenues for physics
beyond the Standard Model to enter. This formalism allows us then to discuss
important benchmark modes, where we shall also address the question of how
much space for new-physics effects in the B studies at the LHC is left by the
recent experimental results from the B factories and the Tevatron.

1 Introduction
The history of CP violation, i.e. the non-invariance of the weak interactions with respect to a com-
bined charge-conjugation (C) and parity (P) transformation, goes back to the year 1964, where this
phenomenon was discovered through the observation of KL → π+π− decays [1]. This surprising effect
is a manifestation of indirect CP violation, which arises from the fact that the mass eigenstates KL,S

of the neutral kaon system, which shows K0–K̄0 mixing, are not eigenstates of the CP operator. In
particular, the KL state is governed by the CP-odd eigenstate, but has also a tiny admixture of the CP-
even eigenstate, which may decay through CP-conserving interactions into the π+π− final state. These
CP-violating effects are described by the following observable:

εK = (2.280 ± 0.013) × 10−3 × eiπ/4. (1)

On the other hand, CP-violating effects may also arise directly at the decay-amplitude level, thereby
yielding direct CP violation. This phenomenon, which leads to a non-vanishing value of a quantity
Re(ε′K/εK), was eventually established in 1999 through the NA48 (CERN) and KTeV (FNAL) Collab-
orations [2]; the final results of the corresponding measurements are given by

Re(ε′K/εK) =
{

(14.7 ± 2.2) × 10−4 (NA48 [3])
(20.7 ± 2.8) × 10−4 (KTeV [4]). (2)

In this decade, there have been huge experimental efforts to further explore CP violation and the
quark-flavour sector of the Standard Model (SM). In these studies, the main actor is theB-meson system,
where we distinguish between charged and neutral B mesons, which are characterized by the following
valence-quark contents:

B+ ∼ ub̄, B+
c ∼ cb̄, B0

d ∼ db̄, B0
s ∼ sb̄,

B− ∼ ūb, B−c ∼ c̄b, B̄0
d ∼ d̄b, B̄0

s ∼ s̄b.
(3)

In contrast to the charged B mesons, their neutral counterparts Bq (q ∈ {d, s}) show — in analogy to
K0–K̄0 mixing — the phenomenon of B0

q–B̄0
q mixing. Decays of B mesons are studied at two kinds

of experimental facilities. The first are the ‘B factories’ at SLAC and KEK with the BaBar and Belle
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experiments, respectively. These machines are asymmetric e+e− colliders that have now produced alto-
gether O(109) BB̄ pairs, establishing CP violation in the B system through the ‘golden’ B 0

d → J/ψKS

channel in 2001 [5], and leading to many other interesting results. There are currently discussions of a
‘super-B factory’, with an increase of luminosity by two orders of magnitude with respect to the cur-
rent machines [6]. Since the B factories are operated at the Υ(4S) resonance, only B 0

dB̄
0
d and B+

u B
−
u

pairs are produced. On the other hand, hadron colliders produce, in addition to Bd and Bu, also Bs
mesons,1 as well as Bc and Λb hadrons, and the Tevatron experiments CDF and D0 have reported first
B(s)-decay results. The physics potential of the Bs-meson system can be fully exploited at the LHC,
starting operation in the summer of 2008. Here the general-purpose experiments ATLAS and CMS can
also address some B-physics topics. However, these studies are the main target of the dedicated LHCb
experiment [8], which will allow us to enter a new territory in the exploration of CP violation. Concern-
ing the kaon system, there are plans to measure the ‘rare’ kaon decays K+ → π+νν̄ and KL → π0νν̄,
which are absent at the tree level in the SM and exhibt extremely tiny branching ratios at the 10−10 level,
at CERN and J-PARC (for a recent overview, see Ref. [9]).

The main interest in the study of CP violation and flavour physics in general is due to the fact that
‘new physics’ (NP) typically leads to new patterns in the flavour sector [10]. This is actually the case in
several specific extensions of the SM, such as supersymmetry (SUSY) scenarios, left–right-symmetric
models, models with extra Z ′ bosons, scenarios with extra dimensions, or ‘little Higgs’ models. More-
over, also the evidence for non-zero neutrino masses points towards an origin lying beyond the SM [11],
raising questions of having CP violation in the neutrino sector and about connections between lepton-
and quark-flavour physics.

Interestingly, CP violation offers also a link to cosmology. One of the key features of our Universe
is the cosmological baryon asymmetry of O(10−10) [12]. As was pointed out by Sakharov [13], the nec-
essary conditions for the generation of such an asymmetry include also the requirement that elementary
interactions violate CP (and C). Model calculations of the baryon asymmetry indicate, however, that the
CP violation present in the SM seems to be too small to generate the observed asymmetry [14]. On the
one hand, the required new sources of CP violation could be associated with very high energy scales,
as in ‘leptogenesis’, where new CP-violating effects appear in decays of heavy Majorana neutrinos [15].
On the other hand, new sources of CP violation could also be accessible in the laboratory, as they arise
naturally when going beyond the SM, as we have noted above.

Before searching for NP at flavour factories, it is essential to understand first the picture of flavour
physics and CP violation arising in the framework of the SM, where the Cabibbo–Kobayashi–Maskawa
(CKM) matrix — the quark-mixing matrix — plays the central rôle [16, 17]. The corresponding phe-
nomenology is extremely rich [18]. In general, the key problem for the theoretical interpretation of
experimental results is related to strong interactions, i.e. to ‘hadronic’ uncertainties. A famous example
is the observable Re(ε′K/εK), where we have to deal with a subtle interplay between different contribu-
tions which largely cancel [19]. Although the non-vanishing value of this quantity has unambiguously
ruled out ‘superweak’ models of CP violation [20], it currently does not allow a stringent test of the SM.

In the B-meson system, there are various strategies to eliminate the hadronic uncertainties in the
exploration of CP violation. Moreover, we may also search for relations and/or correlations that hold
in the SM but could well be spoiled by NP contributions. These topics will be the focus of this lecture,
which is organized as follows: in Section 2, we discuss the quark mixing in the SM by having a closer
look at the CKM matrix and the associated unitarity triangles. In Section 3, we make first contact with
weak decays of B mesons, and introduce the theoretical tool of low-energy effective Hamiltonians that
is used for the analysis of non-leptonic B-meson decays, representing the key players for the exploration
of CP violation. We shall discuss the challenges in these studies, and classify the main strategies to deal
with them. Here we shall encounter two major avenues: the use of amplitude relations and the study of
CP violation through neutral B decays. In Section 4, we illustrate the former kind of methods, whereas

1Recently, data were taken by Belle at Υ(5S), allowing also access to Bs decays [7].
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we discuss the features of neutral Bq mesons and B0
q–B̄0

q mixing (q ∈ {d, s}) in Section 5. In Section 6,
we address the question of how NP could enter the B-physics landscape, while we turn to puzzling
patterns in the current B-factory data in Section 7. Finally, in Section 8, we have a detailed look at the
key targets of the B-physics programme at the LHC, which is characterized by high statistics and the
complementarity to the studies at the e+e− B factories. The conclusions and a brief outlook are given in
Section 9.

For more detailed discussions and textbooks dealing with flavour physics and CP violation, the
reader is referred to Refs. [21–24], alternative lecture notes can be found in Refs. [25–27], and a selection
of more compact recent reviews is given in Refs. [28–30].

2 CP violation in the Standard Model
2.1 Weak interactions of quarks and the quark-mixing matrix
In the framework of the Standard Model of electroweak interactions [31, 32], which is based on the
spontaneously broken gauge group

SU(2)L × U(1)Y
SSB−→ U(1)em, (4)

CP-violating effects may originate from the charged-current interactions of quarks, having the structure

D → UW−. (5)

Here D ∈ {d, s, b} and U ∈ {u, c, t} denote down- and up-type quark flavours, respectively, whereas
the W− is the usual SU(2)L gauge boson. From a phenomenological point of view, it is convenient to
collect the generic ‘coupling strengths’ VUD of the charged-current processes in (5) in the form of the
following matrix:

V̂CKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (6)

which is referred to as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [16, 17].
From a theoretical point of view, this matrix connects the electroweak states (d ′, s′, b′) of the

down, strange and bottom quarks with their mass eigenstates (d, s, b) through the following unitary
transformation [32]:  d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ·
 d

s
b

 . (7)

Consequently, V̂CKM is actually a unitary matrix. This feature ensures the absence of flavour-changing
neutral-current (FCNC) processes at the tree level in the SM, and is hence at the basis of the famous
Glashow–Iliopoulos–Maiani (GIM) mechanism [33]. We shall return to the unitarity of the CKM matrix
in Subsection 2.6, discussing the ‘unitarity triangles’. If we express the non-leptonic charged-current
interaction Lagrangian in terms of the mass eigenstates appearing in (7), we arrive at

LCC
int = − g2√

2

(
ūL, c̄L, t̄L

)
γµ V̂CKM

 dL
sL
bL

W †µ + h.c., (8)

where the gauge coupling g2 is related to the gauge group SU(2)L, and the W (†)
µ field corresponds to the

charged W bosons. Looking at the interaction vertices following from (8), we observe that the elements
of the CKM matrix describe in fact the generic strengths of the associated charged-current processes, as
we have noted above.
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Fig. 1: CP-conjugate charged-current quark-level interaction processes in the SM

In Fig. 1, we show the D → UW− vertex and its CP conjugate. Since the corresponding CP
transformation involves the replacement

VUD
CP−→ V ∗UD, (9)

CP violation could — in principle — be accommodated in the SM through complex phases in the CKM
matrix. The crucial question in this context is, of course, whether we may actually have physical complex
phases in that matrix.

2.2 Phase structure of the CKM matrix
We have the freedom of redefining the up- and down-type quark fields in the following way:

U → exp(iξU )U, D → exp(iξD)D. (10)

If we perform such transformations in (8), the invariance of the charged-current interaction Lagrangian
implies the following phase transformations of the CKM matrix elements:

VUD → exp(iξU )VUD exp(−iξD). (11)

Using these transformations to eliminate unphysical phases, it can be shown that the parametrization of
the general N ×N quark-mixing matrix, where N denotes the number of fermion generations, involves
the following parameters:

1
2
N(N − 1)︸ ︷︷ ︸

Euler angles

+
1
2

(N − 1)(N − 2)︸ ︷︷ ︸
complex phases

= (N − 1)2. (12)

If we apply this expression to the case of N = 2 generations, we observe that only one rotation
angle — the Cabibbo angle θC [16] — is required for the parametrization of the 2 × 2 quark-mixing
matrix, which can be written in the following form:

V̂C =
(

cos θC sin θC

− sin θC cos θC

)
, (13)

where sin θC = 0.22 can be determined from K → π`ν̄ decays. On the other hand, in the case of N = 3
generations, the parametrization of the corresponding 3 × 3 quark-mixing matrix involves three Euler-
type angles and a single complex phase. This complex phase allows us to accommodate CP violation
in the SM, as was pointed out by Kobayashi and Maskawa in 1973 [17]. The corresponding picture is
referred to as the Kobayashi–Maskawa (KM) mechanism of CP violation.

In the ‘standard parametrization’ advocated by the Particle Data Group (PDG) [34], the three-
generation CKM matrix takes the following form:

V̂CKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (14)
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where cij ≡ cos θij and sij ≡ sin θij . Performing appropriate redefinitions of the quark-field phases,
the real angles θ12, θ23 and θ13 can all be made to lie in the first quadrant. The advantage of this
parametrization is that the generation labels i, j = 1, 2, 3 are introduced in such a way that the mixing
between two chosen generations vanishes if the corresponding mixing angle θij is set to zero. In partic-
ular, for θ23 = θ13 = 0, the third generation decouples, and the 2 × 2 submatrix describing the mixing
between the first and second generations takes the same form as (13).

Let us finally note that physical observables, for instance CP-violating asymmetries, cannot de-
pend on the chosen parametrization of the CKM matrix, i.e., they have to be invariant under the phase
transformations specified in (11).

2.3 Further requirements for CP violation
As we have just seen, in order to be able to accommodate CP violation within the framework of the
SM through a complex phase in the CKM matrix, at least three generations are required. However, this
feature is not sufficient for observable CP-violating effects. To this end, further conditions have to be
satisfied, which can be summarized as follows [35, 36]:

(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP 6= 0 , (15)

where
JCP = |Im(ViαVjβV ∗iβV

∗
jα)| (i 6= j, α 6= β) . (16)

The mass factors in (15) are related to the fact that the CP-violating phase of the CKM matrix
could be eliminated through an appropriate unitary transformation of the quark fields if any two quarks
with the same charge had the same mass. Consequently, the origin of CP violation is closely related to
the ‘flavour problem’ in elementary particle physics, and cannot be understood in a deeper way, unless
we have fundamental insights into the hierarchy of quark masses and the number of fermion generations.

The second element of (15), the ‘Jarlskog parameter’ JCP [35], can be interpreted as a measure
of the strength of CP violation in the SM. It does not depend on the chosen quark-field parametriza-
tion, i.e. it is invariant under (11), and the unitarity of the CKM matrix implies that all combinations
|Im(ViαVjβV ∗iβV

∗
jα)| are equal to one another. Using the standard parametrization of the CKM matrix

introduced in (14), we obtain
JCP = s12s13s23c12c23c

2
13 sin δ13 . (17)

The experimental information on the CKM parameters implies JCP = O(10−5), so that CP-violating
phenomena are hard to observe.

2.4 Experimental information on |VCKM|
In order to determine the magnitudes |Vij | of the elements of the CKM matrix, we may use the following
tree-level processes:

– Nuclear beta decays, neutron decays⇒ |Vud|.
– K → π`ν̄ decays⇒ |Vus|.
– ν production of charm off valence d quarks⇒ |Vcd|.
– Charm-tagged W decays (as well as ν production and semileptonic D decays)⇒ |Vcs|.
– Exclusive and inclusive b→ c`ν̄ decays⇒ |Vcb|.
– Exclusive and inclusive b→ u`ν̄ decays⇒ |Vub|.
– t̄→ b̄`ν̄ processes⇒ (crude direct determination of) |Vtb|.
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Fig. 2: Hierarchy of the quark transitions mediated through charged-current processes

If we use the corresponding experimental information, together with the CKM unitarity condition, and
assume that there are only three generations, the following 90% C.L. limits for the |Vij| emerge [34,37]:

|V̂CKM| =
 0.9739–0.9751 0.221–0.227 0.0029–0.0045

0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992

 . (18)

In Fig. 2, we have illustrated the resulting hierarchy of the strengths of the charged-current quark-level
processes: transitions within the same generation are governed by CKM matrix elements of O(1), those
between the first and the second generation are suppressed by CKM factors of O(10−1), those between
the second and the third generation are suppressed by O(10−2), and the transitions between the first and
the third generation are even suppressed by CKM factors of O(10−3). In the standard parametrization
(14), this hierarchy is reflected by

s12 = 0.22 � s23 = O(10−2) � s13 = O(10−3). (19)

2.5 Wolfenstein parametrization of the CKM matrix
For phenomenological applications, it would be useful to have a parametrization of the CKM matrix
available that makes the hierarchy arising in (18) — and illustrated in Fig. 2 — explicit [38]. In order
to derive such a parametrization, we introduce a set of new parameters, λ, A, ρ and η, by imposing the
following relations [39]:

s12 ≡ λ = 0.22, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη). (20)

If we now go back to the standard parametrization (14), we obtain an exact parametrization of the CKM
matrix as a function of λ (and A, ρ, η), allowing us to expand each CKM element in powers of the small
parameter λ. If we neglect terms of O(λ4), we arrive at the famous ‘Wolfenstein parametrization’ [38]:

V̂CKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (21)

which makes the hierarchical structure of the CKM matrix very transparent and is an important tool for
phenomenological considerations, as we shall see throughout this lecture.

For several applications, next-to-leading order corrections in λ play an important rôle. Using
the exact parametrization following from (14) and (20), they can be calculated straightforwardly by
expanding each CKM element to the desired accuracy in λ [39, 40]:

Vud = 1− 1
2
λ2 − 1

8
λ4 +O(λ6), Vus = λ+O(λ7), Vub = Aλ3(ρ− i η),

6
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Vcd = −λ+
1
2
A2λ5 [1− 2(ρ+ iη)] +O(λ7),

Vcs = 1− 1
2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6), (22)

Vcb = Aλ2 +O(λ8), Vtd = Aλ3

[
1− (ρ+ iη)

(
1− 1

2
λ2

)]
+O(λ7),

Vts = −Aλ2 +
1
2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6), Vtb = 1− 1

2
A2λ4 +O(λ6).

It should be noted that
Vub ≡ Aλ3(ρ− iη) (23)

receives by definition no power corrections in λ within this prescription. If we follow Ref. [39] and
introduce the generalized Wolfenstein parameters

ρ̄ ≡ ρ
(

1− 1
2
λ2

)
, η̄ ≡ η

(
1− 1

2
λ2

)
, (24)

we may simply write, up to corrections of O(λ7),

Vtd = Aλ3(1− ρ̄− i η̄). (25)

Moreover, we have to an excellent accuracy

Vus = λ and Vcb = Aλ2, (26)

as these quantities receive only corrections at the λ7 and λ8 levels, respectively. In comparison with
other generalizations of the Wolfenstein parametrization found in the literature, the advantage of (22) is
the absence of relevant corrections to Vus and Vcb, and that Vub and Vtd take forms similar to those in
(21). As far as the Jarlskog parameter introduced in (16) is concerned, we obtain the simple expression

JCP = λ6A2η, (27)

which should be compared with (17).

2.6 Unitarity triangles of the CKM matrix
The unitarity of the CKM matrix, which is described by

V̂ †CKM · V̂CKM = 1̂ = V̂CKM · V̂ †CKM, (28)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality relations. The latter can
be represented as 6 triangles in the complex plane [41], all having the same area, 2A∆ = JCP [42]. Let
us now have a closer look at these relations: those describing the orthogonality of different columns of
the CKM matrix are given by

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 (29)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 (30)

VudV
∗
ub︸ ︷︷ ︸

(ρ+iη)Aλ3

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

(1−ρ−iη)Aλ3

= 0, (31)
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(a) (b)

Fig. 3: The two non-squashed unitarity triangles of the CKM matrix, as explained in the text: (a) and (b) correspond
to the orthogonality relations (31) and (34), respectively. In Asia, the notation φ1 ≡ β, φ2 ≡ α and φ3 ≡ γ is used
for the angles of the triangle shown in (a).

whereas those associated with the orthogonality of different rows take the following form:

V ∗udVcd︸ ︷︷ ︸
O(λ)

+V ∗usVcs︸ ︷︷ ︸
O(λ)

+V ∗ubVcb︸ ︷︷ ︸
O(λ5)

= 0 (32)

V ∗cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗csVts︸ ︷︷ ︸
O(λ2)

+V ∗cbVtb︸ ︷︷ ︸
O(λ2)

= 0 (33)

V ∗udVtd︸ ︷︷ ︸
(1−ρ−iη)Aλ3

+V ∗usVts︸ ︷︷ ︸
−Aλ3

+ V ∗ubVtb︸ ︷︷ ︸
(ρ+iη)Aλ3

= 0. (34)

Here we have also indicated the structures that arise if we apply the Wolfenstein parametrization by
keeping just the leading, non-vanishing terms. We observe that only in (31) and (34), which describe the
orthogonality of the first and third columns and of the first and third rows, respectively, are all three sides
of comparable magnitude, O(λ3), while in the remaining relations, one side is suppressed with respect
to the others by factors of O(λ2) or O(λ4). Consequently, we have to deal with only two non-squashed
unitarity triangles in the complex plane. However, as we have already indicated in (31) and (34), the
corresponding orthogonality relations agree with each other at the λ3 level, yielding

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0. (35)

Consequently, they describe the same triangle, which is usually referred to as the unitarity triangle of the
CKM matrix [42, 43].

Concerning theB-decay studies in the LHC era, we have to take the next-to-leading-order terms of
the Wolfenstein expansion into account, and have to distinguish between the unitarity triangles following
from (31) and (34). Let us first have a closer look at the former relation. Including terms of O(λ5), we
obtain the following generalization of (35):

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0, (36)

where ρ̄ and η̄ are as defined in (24). If we divide this relation by the overall normalization factor Aλ3,
and introduce

Rb ≡
√
ρ2 + η2 =

(
1− λ2

2

)
1
λ

∣∣∣∣VubVcb

∣∣∣∣ (37)

Rt ≡
√

(1− ρ)2 + η2 =
1
λ

∣∣∣∣VtdVcb
∣∣∣∣ , (38)
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Fig. 4: Analyses of the CKMfitter (left panel) and UTfit (right panel) Collaborations [44, 45]

we arrive at the unitarity triangle illustrated in Fig. 3 (a). It is a straightforward generalization of the
leading-order case described by (35): instead of (ρ, η), the apex is now simply given by (ρ̄, η̄) [39]. The
two UT sides Rb and Rt as well as the UT angles will show up at several places throughout this lecture.
Moreover, the relations

Vub = Aλ3

(
Rb

1− λ2/2

)
e−iγ , Vtd = Aλ3Rte

−iβ (39)

are also useful for phenomenological applications, since they make the dependences of γ and β explicit;
they correspond to the phase convention chosen both in the standard parametrization (14) and in the
generalized Wolfenstein parametrization (22). Finally, if we take also (20) into account, we obtain

δ13 = γ. (40)

Let us now turn to (34). Here we arrive at an expression that is more complicated than (36):[{
1− λ2

2
− (1− λ2)ρ− i(1− λ2)η

}
+
{
−1 +

(
1
2
− ρ
)
λ2 − iηλ2

}
+{ρ+ iη}

]
Aλ3+O(λ7) = 0.

(41)
If we divide again by Aλ3, we obtain the unitarity triangle sketched in Fig. 3 (b), where the apex is given
by (ρ, η) and not by (ρ̄, η̄). On the other hand, we encounter a tiny angle

δγ ≡ λ2η = O(1◦) (42)

between real axis and basis of the triangle, which satisfies

γ = γ′ + δγ, (43)

where γ coincides with the corresponding angle in Fig. 3 (a).
Whenever referring to a ‘unitarity triangle’ (UT) in the following discussion, we mean the one

illustrated in Fig. 3 (a), which is the generic generalization of the leading-order case described by (35).
The UT is a central target for the experimental testing of the SM description of CP violation. Inter-
estingly, also the tiny angle δγ can be probed directly through certain CP-violating effects that can be
explored at the LHCb experiment, as we shall see in Section 8.
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Fig. 5: Feynman diagrams contributing to the leptonic decay B− → `ν̄`

2.7 The determination of the unitarity triangle
The next obvious question is how the UT can be determined. There are two conceptually different
avenues that we may follow to this end:

(i) In the ‘CKM fits’, theory is used to convert experimental data into contours in the ρ̄–η̄ plane. In
particular, semileptonic b→ u`ν̄`, c`ν̄` decays and B0

q–B̄0
q mixing (q ∈ {d, s}) allow us to deter-

mine the UT sides Rb and Rt, respectively, i.e. to fix two circles in the ρ̄–η̄ plane. Furthermore,
the indirect CP violation in the neutral kaon system described by εK can be transformed into a
hyperbola.

(ii) Theoretical considerations allow us to convert measurements of CP-violating effects in B-meson
decays into direct information on the UT angles. The most prominent example is the determination
of sin 2β through CP violation in B0

d → J/ψKS decays, but several other strategies have been
proposed and can be confronted with the experimental data.

The goal is to ‘overconstrain’ the UT as much as possible. Additional contours can be fixed in the ρ̄–η̄
plane through the measurement of rare decays [21].

In Fig. 4, we show examples of the comprehensive analyses of the UT that are being performed
— and continuously updated — by the ‘CKM Fitter Group’ [44] and the ‘UTfit Collaboration’ [45]. In
these figures, we can see the circles that are determined through the semileptonic B decays and the εK
hyperbolas. Moreover, the straight lines following from the direct measurement of sin 2β with the help of
B0
d → J/ψKS modes are also shown. We observe that the global consistency is very good. However, on

looking closer, we also see that the average for (sin 2β)ψKS
is now on the lower side, so that the situation

in the ρ̄–η̄ plane is no longer fully ‘perfect’. Furthermore, as we shall discuss in detail in Section 7, there
are certain puzzling patterns in the B-factory data, and various key aspects have not yet been addressed
experimentally and are hence still essentially unexplored. Consequently, still a lot of space is left for the
detection of possible, unambiguous inconsistencies with respect to the SM picture of CP violation and
quark-flavour physics. Since weak decays of B mesons play a key rôle in this adventure, let us next have
a closer look at them.

3 Weak decays of B mesons
The B-meson system consists of charged and neutral B mesons, which are characterized by the valence
quark contents in (3). The characteristic feature of the neutral Bq (q ∈ {d, s}) mesons is the phenomenon
of B0

q–B̄0
q mixing, which will be discussed in Section 5. As far as the weak decays of B mesons are

concerned, we distinguish between leptonic, semileptonic, and non-leptonic transitions.

3.1 Leptonic decays
The simplest B-meson decay class is given by leptonic decays of the kind B− → `ν̄`, as illustrated
in Fig. 5. If we evaluate the corresponding Feynman diagram, we arrive at the following transition
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amplitude:

Tfi = − g
2
2

8
Vub [ū`γα(1− γ5)vν ]︸ ︷︷ ︸

Dirac spinors

[
gαβ

k2 −M2
W

]
〈0|ūγβ(1− γ5)b|B−〉︸ ︷︷ ︸

hadronic ME

, (44)

where g2 is the SU(2)L gauge coupling, Vub the corresponding element of the CKM matrix, α and β are
Lorentz indices, and MW denotes the mass of the W gauge boson. Since the four-momentum k that is
carried by the W satisfies k2 = M2

B �M2
W , we may write

gαβ
k2 −M2

W

−→ − gαβ
M2
W

≡ −
(

8GF√
2g2

2

)
gαβ , (45)

where GF is Fermi’s constant. Consequently, we may ‘integrate out’ the W boson in (44), which yields

Tfi =
GF√

2
Vub [ū`γα(1− γ5)vν ] 〈0|ūγα(1− γ5)b|B−〉. (46)

In this simple expression, all the hadronic physics is encoded in the hadronic matrix element

〈0|ūγα(1− γ5)b|B−〉,

i.e. there are no other strong-interaction QCD effects (for a detailed discussion of QCD, see Ref. [46]).
Since the B− meson is a pseudoscalar particle, we have

〈0|uγαb|B−〉 = 0, (47)

and may write
〈0|ūγαγ5b|B−(q)〉 = ifBqα, (48)

where fB is the B-meson decay constant, which is an important input for phenomenological studies. In
order to determine this quantity, which is a very challenging task, non-perturbative techniques, such as
QCD sum-rule analyses [47] or lattice studies, where a numerical evaluation of the QCD path integral is
performed with the help of a space-time lattice [48–50], are required. If we use (46) with (47) and (48),
and perform the corresponding phase-space integrations, we obtain the following decay rate:

Γ(B− → `ν̄`) =
G2

F

8π
MBm

2
`

(
1− m2

`

M2
B

)2

f2
B|Vub|2, (49)

where MB and m` denote the masses of the B− and `, respectively. Because of the tiny value of
|Vub| ∝ λ3 and a helicity-suppression mechanism, we obtain unfortunately very small branching ratios
of O(10−10) and O(10−7) for ` = e and ` = µ, respectively [51].

The helicity suppression is not effective for ` = τ , but — because of the required τ reconstruction
— these modes are also very challenging from an experimental point of view. Nevertheless, the Belle
experiment has recently reported the first evidence for the purely leptonic decay B− → τ−ν̄τ , with the
following branching ratio [52]:

BR(B− → τ−ν̄τ ) =
[
1.79+0.56

−0.49 (stat) +0.46
−0.51 (syst)

]× 10−4, (50)

which corresponds to a significance of about 3.5 standard deviations. On the other hand, BaBar gives an
upper limit of BR(B− → τ−ν̄τ ) < 1.8× 10−4 (90% C.L.), as well as the following value [53]:

BR(B− → τ−ν̄τ ) =
[
0.88+0.68

−0.67 (stat) ± 0.11 (syst)
]× 10−4. (51)

11

FLAVOUR PHYSICS AND CP VIOLATION: LOOKING FORWARD TO THE LHC

115



βtan 
0 20 40 60 80 100

)2
 M

as
s (

G
eV

/c
±

H
50

100

150

200

250

300

Tevatron Run I 

Excluded (95% C.L.)

LEP Excluded (95% C.L.)

 (9
5.5

%
 C

.L
.)

B
 B6

10×

Be
lle

 44
7

βtan 
0 20 40 60 80 100

)2
 M

as
s (

G
eV

/c
±

H
50

100

150

200

250

300

Fig. 6: Constrains on the charged Higgs parameter space [55]

Using the SM expression for this branching ratio and the measured values of GF,MB , mτ and the
B-meson lifetime, the product of the B-meson decay constant fB and the magnitude of the CKM matrix
element |Vub| is obtained as

fB|Vub| =
[
10.1+1.6

−1.4 (stat) +1.3
−1.4 (syst)

]× 10−4 GeV (52)

from the Belle result. The determination of this quantity is very interesting, as knowledge of |Vub| (see
Subsection 3.2) allows us to extract fB , thereby providing tests of non-perturbative calculations of this
important parameter. On the other hand, when going beyond the SM, the B− → τ−ν̄τ decay is a
sensitive probe of effects from charged Higgs bosons; the corresponding Feynman diagram can easily be
obtained from Fig. 5 by replacing the W boson through a charged Higgs H . The SM expression for the
branching ratio is then simply modified by the following factor [54]:

rH =

[
1−

(
MB

MH
tan β

)2
]2

Belle−→ 1.13 ± 0.53, (53)

where tan β ≡ v2/v1 is defined through the ratio of vacuum expectation values and does not involve the
UT angle β. Using information on fB and |Vub|, constraints on the charged Higgs parameter space can
be obtained from the measured B− → τ−ν̄τ branching ratio, as shown in Fig. 6.

Before discussing the determination of |Vub| from semileptonic B decays in the next subsection,
let us have a look at the leptonic D-meson decay D+ → µ+ν. It is governed by the CKM factor

|Vcd| = |Vus|+O(λ5) = λ[1 +O(λ4)], (54)

whereas B− → µ−ν̄ involves |Vub| = λ3Rb. Consequently, we win a factor of O(λ4) in the decay rate,
so that D+ → µ+ν is accessible at the CLEO-c experiment [56]. Since the corresponding CKM factor is
well known, the decay constant fD+ defined in analogy to (48) can be extracted, allowing another inter-
esting testing ground for lattice QCD calculations. Thanks to recent progress in these techniques [57], the
‘quenched’ approximation, which had to be applied for many many years and ignores quark loops, is no
longer required for the calculation of fD+ . In the summer of 2005, there was a first show-down between
the corresponding theoretical prediction and experiment: the lattice result of fD+ = (201±3±17)MeV
was reported [58], while CLEO-c announced the measurement of fD+ = (222.6 ± 16.7+2.8

−3.4) MeV [59].
Both numbers agree well within the uncertainties. For a review of recent developments and other results
on decay constants of pseudoscalar mesons, see Ref. [60].
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Fig. 7: Feynman diagrams contributing to semileptonic B̄0
d → D+(π+)`ν̄` decays

3.2 Semileptonic decays
3.2.1 General structure
Semileptonic B-meson decays of the kind shown in Fig. 7 have a structure that is more complicated than
the one of the leptonic transitions. If we evaluate the corresponding Feynman diagram for the b → c
case, we obtain

Tfi = − g
2
2

8
Vcb [ū`γα(1− γ5)vν ]︸ ︷︷ ︸

Dirac spinors

[
gαβ

k2 −M2
W

]
〈D+|c̄γβ(1− γ5)b|B̄0

d〉︸ ︷︷ ︸
hadronic ME

. (55)

Because of k2 ∼ M2
B � M2

W , we may again — as in (44) — integrate out the W boson with the help
of (45), which yields

Tfi =
GF√

2
Vcb [ū`γα(1− γ5)vν ] 〈D+|c̄γα(1− γ5)b|B̄0

d〉, (56)

where all the hadronic physics is encoded in the hadronic matrix element

〈D+|c̄γα(1− γ5)b|B̄0
d〉,

i.e. there are no other QCD effects. Since the B̄0
d and D+ are pseudoscalar mesons, we have

〈D+|c̄γαγ5b|B̄0
d〉 = 0, (57)

and may write

〈D+(k)|c̄γαb|B̄0
d(p)〉 = F1(q2)

[
(p+ k)α −

(
M2
B −M2

D

q2

)
qα

]
+ F0(q2)

(
M2
B −M2

D

q2

)
qα, (58)

where q ≡ p − k, and the F1,0(q2) denote the form factors of the B̄ → D transitions. Consequently,
in contrast to the simple case of the leptonic transitions, semileptonic decays involve two hadronic form
factors instead of the decay constant fB . In order to calculate these parameters, which depend on the
momentum transfer q, again non-perturbative techniques (QCD sum rules, lattice, etc.) are required.

3.2.2 Aspects of the heavy-quark effective theory
If the mass mQ of a quark Q is much larger than the QCD scale parameter ΛQCD = O(100 MeV), it
is referred to as a ‘heavy’ quark. Since the bottom and charm quarks have masses at the level of 5 GeV
and 1 GeV, respectively, they belong to this important category. As far as the extremely heavy top quark,
with mt ∼ 170 GeV is concerned, it decays unfortunately through weak interactions before a hadron can
be formed. Let us now consider a heavy quark that is bound inside a hadron, i.e. a bottom or a charm
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quark. The heavy quark then moves almost with the hadron’s four velocity v and is almost on-shell, so
that

pµQ = mQv
µ + kµ, (59)

where v2 = 1 and k � mQ is the ‘residual’ momentum. Owing to the interactions of the heavy
quark with the light degrees of freedom of the hadron, the residual momentum may only change by
∆k ∼ ΛQCD, and ∆v → 0 for ΛQCD/mQ → 0.

It is now instructive to have a look at the elastic scattering process B̄(v) → B̄(v′) in the limit of
ΛQCD/mb → 0, which is characterized by the following matrix element:

1
MB
〈B̄(v′)|b̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α. (60)

Since the contraction of this matrix element with (v − v ′)α has to vanish because of 6 vbv = bv and
bv′6v′ = bv′ , no (v − v′)α term arises in the parametrization in (60). On the other hand, the 1/MB factor
is related to the normalization of states, i.e. the right-hand side of(

1√
MB
〈B̄(p′)|

)(
|B̄(p)〉 1√

MB

)
= 2v0(2π)3δ3(~p− ~p′) (61)

does not depend on MB . Finally, current conservation implies the following normalization condition:

ξ(v′ · v = 1) = 1, (62)

where the ‘Isgur–Wise’ function ξ(v ′ ·v) does not depend on the flavour of the heavy quark (heavy-quark
symmetry) [61]. Consequently, for ΛQCD/mb,c → 0, we may write

1√
MDMB

〈D(v′)|c̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α, (63)

and observe that this transition amplitude is governed — in the heavy-quark limit — by one hadronic
form factor ξ(v′ · v), which satisfies ξ(1) = 1. If we now compare (63) with (58), we obtain

F1(q2) =
MD +MB

2
√
MDMB

ξ(w) (64)

F0(q2) =
2
√
MDMB

MD +MB

[
1 + w

2

]
ξ(w), (65)

with
w ≡ vD · vB =

M2
D +M2

B − q2

2MDMB
. (66)

Similar relations hold for the B̄ → D∗ form factors because of the heavy-quark spin symmetry, since the
D∗ is related to the D by a rotation of the heavy-quark spin. A detailed discussion of these interesting
features and the associated ‘heavy-quark effective theory’ (HQET) is beyond the scope of this lecture.
For a detailed overview, we refer the reader to Ref. [62], where a comprehensive list of original references
can also be found. For a more phenomenological discussion, Ref. [63] is very useful.

3.2.3 Applications
An important application of the formalism sketched above is the extraction of the CKM element |Vcb|.
To this end, B̄ → D∗`ν̄ decays are particularly promising. The corresponding rate can be written as

dΓ
dw

= G2
FK(MB ,MD∗ , w)F (w)2|Vcb|2, (67)
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where K(MB ,MD∗ , w) is a known kinematic function, and F (w) agrees with the Isgur–Wise function,
up to perturbative QCD corrections and ΛQCD/mb,c terms. The form factor F (w) is a non-perturbative
quantity. However, it satisfies the following normalization condition:

F (1) = ηA(αs)
[
1 +

0
mc

+
0
mb

+O(Λ2
QCD/m

2
b,c)
]
, (68)

where ηA(αs) is a perturbatively calculable short-distance QCD factor, and the ΛQCD/mb,c corrections
vanish [62, 64]. The important latter feature is an implication of Luke’s theorem [65]. Consequently, if
we extract F (w)|Vcb| from a measurement of (67) as a function of w and extrapolate to the ‘zero-recoil
point’ w = 1 (where the rate vanishes), we may determine |Vcb|. In the case of B̄ → D`ν̄ decays,
we have O(ΛQCD/mb,c) corrections to the corresponding rate dΓ/dw at w = 1. In order to determine
|Vcb|, inclusive B → Xc`ν̄ decays offer also very attractive avenues. As becomes obvious from (26)
and the considerations in Subsection 2.6, |Vcb| fixes the normalization of the UT. Moreover, this quantity
is an important input parameter for various theoretical calculations. The CKM matrix element |Vcb| is
currently known with about 2% precision; performing an analysis of leptonic and hadronic moments in
inclusive b→ c`ν̄ processes [66], the following value was extracted from the B-factory data [67]:

|Vcb| = (42.0 ± 0.7) × 10−3, (69)

which agrees with that from exclusive decays.
Let us now turn to B̄ → π`ν̄, ρ`ν̄ decays, which originate from b → u`ν̄ quark-level processes,

as can be seen in Fig. 7, and provide access to |Vub|. If we complement this CKM matrix element with
|Vcb|, we may determine the UT side Rb with the help of (37). The determination of |Vub| is hence a very
important aspect of flavour physics. Since the π and ρ are ‘light’ mesons, the HQET symmetry relations
cannot be applied to the B̄ → π`ν̄, ρ`ν̄ modes. Consequently, in order to determine |Vub| from these
exclusive channels, the corresponding heavy-to-light form factors have to be described by models. An
important alternative is provided by inclusive decays. The corresponding decay rate takes the following
form:

Γ(B̄ → Xu`ν̄) =
G2

F|Vub|2
192π3

m5
b

[
1− 2.41

αs
π

+
λ1 − 9λ2

2m2
b

+ . . .

]
, (70)

where λ1 and λ2 are non-perturbative parameters, which describe the hadronic matrix elements of cer-
tain ‘kinetic’ and ‘chromomagnetic’ operators appearing within the framework of the HQET. Using the
heavy-quark expansions

MB = mb + Λ̄− λ1 + 3λ2

2mb
+ . . . , MB∗ = mb + Λ̄− λ1 − λ2

2mb
+ . . . (71)

for the B(∗)-meson masses, where Λ̄ ∼ ΛQCD is another non-perturbative parameter that is related to the
light degrees of freedom, the parameter λ2 can be determined from the measured values of the MB(∗) .
The strong dependence of (70) on mb is a significant source of uncertainty. On the other hand, the
1/m2

b corrections can be better controlled than in the exclusive case (68), where we have, moreover,
to deal with 1/m2

c corrections. From an experimental point of view, we have to struggle with large
backgrounds, which originate from b → c`ν̄ processes and require also a model-dependent treatment.
The determination of |Vub| from B-meson decays caused by b→ u`ν̄ quark-level processes is therefore
a very challenging issue, and the situation is less favourable than with |Vcb| [68]. In particular, the values
from inclusive and exclusive transitions differ at the 1σ level [69]:

|Vub|incl = (4.4 ± 0.3)× 10−3 , |Vub|excl = (3.8± 0.6) × 10−3 , (72)

which has to be fully settled in the future. The error on |Vub|excl is dominated by the theoretical un-
certainty of lattice and light-cone sum rule calculations of B → π and B → ρ transition form fac-
tors [70,71], whereas for |Vub|incl experimental and theoretical errors are at par. Using the values of |Vcb|
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(a)

(b)

(c)

Fig. 8: Feynman diagrams of the topologies characterizing non-leptonicB-meson decays: trees (a), QCD penguins
(b), and electroweak penguins (c)

and |Vub| given above and λ = 0.225 ± 0.001 [72], we obtain

Rincl
b = 0.45± 0.03 , Rexcl

b = 0.39 ± 0.06 , (73)

where the labels ‘incl’ and ‘excl’ refer to the determinations of |Vub| through inclusive and exclusive
b→ u`ν̄` transitions, respectively.

For a much more detailed discussion of the determinations of |Vcb| and |Vub|, we refer the reader
to Refs. [9, 18, 63], where also the references to the vast original literature can be found.

3.3 Non-leptonic decays
3.3.1 Classification
The most complicated B decays are the non-leptonic transitions, which are mediated by b→ q1 q̄2 d (s)
quark-level processes, with q1, q2 ∈ {u, d, c, s}. There are two kinds of topologies contributing to such
decays: tree-diagram-like and ‘penguin’ topologies. The latter consist of gluonic (QCD) and electroweak
(EW) penguins. In Fig. 8, the corresponding leading-order Feynman diagrams are shown. Depending on
the flavour content of their final states, we may classify b→ q1 q̄2 d (s) decays as follows:

– q1 6= q2 ∈ {u, c}: only tree diagrams contribute.
– q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute.
– q1 = q2 ∈ {d, s}: only penguin diagrams contribute.

3.3.2 Low-energy effective Hamiltonians
In order to analyse non-leptonic B decays theoretically, we use low-energy effective Hamiltonians, which
are calculated by making use of the ‘operator product expansion’, yielding transition matrix elements of
the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑
k

Ck(µ)〈f |Qk(µ)|i〉 . (74)
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Fig. 9: Feynman diagrams contributing to the non-leptonic B̄0
d → D+K− decay

Fig. 10: The description of the b → dūs process through the four-quark operator O2 in the effective theory after
the W boson has been integrated out

The technique of the operator product expansion allows us to separate the short-distance contributions
to this transition amplitude from the long-distance ones, which are described by perturbative quantities
Ck(µ) (‘Wilson coefficient functions’) and non-perturbative quantities 〈f |Qk(µ)|i〉 (‘hadronic matrix
elements’), respectively. As before, GF is the Fermi constant, whereas λCKM is a CKM factor and µ
denotes an appropriate renormalization scale. The Qk are local operators, which are generated by elec-
troweak interactions and QCD, and govern ‘effectively’ the decay in question. The Wilson coefficients
Ck(µ) can be considered as scale-dependent couplings related to the vertices described by the Qk.

In order to illustrate this rather abstract formalism, let us consider the decay B̄0
d → D+K−, which

allows a transparent discussion of the evaluation of the corresponding low-energy effective Hamiltonian.
Since this transition originates from a b → cūs quark-level process, it is — as we have just seen —
a pure ‘tree’ decay, i.e. we do not have to deal with penguin topologies, which simplifies the analysis
considerably. The leading-order Feynman diagram contributing to B̄0

d → D+K− can straightforwardly
be obtained from Fig. 7 by substituting ` and ν` by s and u, respectively, as can be seen in Fig. 9. Conse-
quently, the lepton current is simply replaced by a quark current, which will have important implications
shown below. Evaluating the corresponding Feynman diagram yields

− g
2
2

8
V ∗usVcb [s̄γν(1− γ5)u]

[
gνµ

k2 −M2
W

]
[c̄γµ(1− γ5)b] . (75)

Because of k2 ∼ m2
b �M2

W , we may — as in (55) — ‘integrate out’ the W boson with the help of (45),
and arrive at

Heff =
GF√

2
V ∗usVcb [s̄αγµ(1− γ5)uα] [c̄βγµ(1− γ5)bβ]

=
GF√

2
V ∗usVcb(s̄αuα)V–A(c̄βbβ)V–A ≡ GF√

2
V ∗usVcbO2 , (76)

where α and β denote the colour indices of the SU(3)C gauge group of QCD. Effectively, our b→ cūs
decay process is now described by the ‘current–current’ operator O2, as is illustrated in Fig. 10.

So far, we have neglected QCD corrections. Their important impact is twofold: thanks to factor-
izable QCD corrections as shown in Fig. 11, the Wilson coefficient C2 acquires a renormalization-scale
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Fig. 11: Factorizable QCD corrections in the full (left panel) and effective (right panel) theories

Fig. 12: Non-factorizable QCD corrections in the full (left panel) and effective (right panel) theories

dependence, i.e. C2(µ) 6= 1. On the other hand, non-factorizable QCD corrections as illustrated in
Fig. 12 generate a second current–current operator through ‘operator mixing’, which is given by

O1 ≡ [s̄αγµ(1− γ5)uβ] [c̄βγµ(1− γ5)bα] . (77)

Consequently, we eventually arrive at a low-energy effective Hamiltonian of the following structure:

Heff =
GF√

2
V ∗usVcb [C1(µ)O1 + C2(µ)O2] . (78)

In order to evaluate the Wilson coefficients C1(µ) 6= 0 and C2(µ) 6= 1 [73], we must first calculate the
QCD corrections to the decay processes both in the full theory, i.e. with W exchange, and in the effective
theory, where the W is integrated out (see Figs. 11 and 12), and have then to express the QCD-corrected
transition amplitude in terms of QCD-corrected matrix elements and Wilson coefficients as in (74). This
procedure is called ‘matching’ between the full and the effective theory. The results for the Ck(µ) thus
obtained contain terms of log(µ/MW ), which become large for µ = O(mb), the scale governing the
hadronic matrix elements of the Ok. Making use of the renormalization group, which exploits the fact
that the transition amplitude (74) cannot depend on the chosen renormalization scale µ, we may sum up
the following terms of the Wilson coefficients:

αns

[
log
(

µ

MW

)]n
(LO), αns

[
log
(

µ

MW

)]n−1

(NLO), ... ; (79)

detailed discussions of these rather technical aspects can be found in Ref. [74].
For the exploration of CP violation, the class of non-leptonic B decays that receives contributions

both from tree and from penguin topologies plays a central rôle. In this important case, the operator
basis is much larger than in our example (78), where we considered a pure ‘tree’ decay. If we apply the
relation

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r ∈ {d, s}), (80)

which follows from the unitarity of the CKM matrix, and ‘integrate out’ the top quark (which enters
through the penguin loop processes) and the W boson, we may write

Heff =
GF√

2

∑
j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)Qjr
k +

10∑
k=3

Ck(µ)Qr
k

} . (81)

Here we have introduced another quark-flavour label j ∈ {u, c}, and the Qjr
k can be divided as follows:
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– Current–current operators:
Qjr1 = (r̄αjβ)V–A(j̄βbα)V–A
Qjr2 = (r̄αjα)V–A(j̄βbβ)V–A.

(82)

– QCD penguin operators:
Qr3 = (r̄αbα)V–A

∑
q′(q̄
′
βq
′
β)V–A

Qr4 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V–A

Qr5 = (r̄αbα)V–A
∑

q′(q̄
′
βq
′
β)V+A

Qr6 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V+A.

(83)

– EW penguin operators (the eq′ denote the electrical quark charges):

Qr7 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V+A

Qr8 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V+A

Qr9 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V–A

Qr10 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V–A.

(84)

The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Fig. 8. At a renormalization scale µ = O(mb), the Wilson coefficients of the current–
current operators are C1(µ) = O(10−1) and C2(µ) = O(1), whereas those of the penguin operators
are O(10−2) [74]. Note that penguin topologies with internal charm- and up-quark exchanges [75]
are described in this framework by penguin-like matrix elements of the corresponding current–current
operators [76], and may also have important phenomenological consequences [77, 78].

Since the ratio α/αs = O(10−2) of the QED and QCD couplings is very small, we would expect
naïvely that EW penguins should play a minor rôle in comparison with QCD penguins. This would
actually be the case if the top quark was not ‘heavy’. However, since the Wilson coefficient C9 increases
strongly with mt, we obtain interesting EW penguin effects in several B decays: B → Kφ modes are
affected significantly by EW penguins, whereas B → πφ and Bs → π0φ transitions are even dominated
by such topologies [79, 80]. As we shall see in Subsection 7.2, EW penguins have also an important
impact on the B → πK system [81, 82].

The low-energy effective Hamiltonians discussed above apply to all B decays that are caused by
the same quark-level transition, i.e. they are ‘universal’. Consequently, the differences between the vari-
ous exclusive modes of a given decay class arise within this formalism only through the hadronic matrix
elements of the relevant four-quark operators. Unfortunately, the evaluation of such matrix elements is
associated with large uncertainties and is a very challenging task. In this context, ‘factorization’ is a
widely used concept, which is our next topic.

3.3.3 Factorization of hadronic matrix elements
In order to discuss ‘factorization’, let us consider once more the decay B̄0

d → D+K−. Evaluating the
corresponding transition amplitude, we encounter the hadronic matrix elements of the O1,2 operators
between the 〈K−D+| final and the |B̄0

d〉 initial states. If we use the well-known SU(NC) colour-algebra
relation

T aαβT
a
γδ =

1
2

(
δαδδβγ − 1

NC
δαβδγδ

)
(85)

to rewrite the operator O1, we obtain

〈K−D+|Heff |B̄0
d〉 =

GF√
2
V ∗usVcb

[
a1〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0

d〉

+2C1〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T aγδ bδ)V–A|B̄0
d〉
]
,
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with
a1 = C1/NC + C2 ∼ 1. (86)

It is now straightforward to ‘factorize’ the hadronic matrix elements in (86):

〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0
d〉
∣∣
fact

= 〈K−| [s̄αγµ(1− γ5)uα] |0〉〈D+| [c̄βγµ(1− γ5)bβ ] |B̄0
d〉

= ifK︸︷︷︸
decay constant

× F
(BD)
0 (M2

K)︸ ︷︷ ︸
B → D form factor

× (M2
B −M2

D),︸ ︷︷ ︸
kinematical factor

(87)

〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T aγδ bδ)V–A|B̄0
d〉
∣∣
fact

= 0. (88)

The quantity a1 is a phenomenological ‘colour factor’, which governs ‘colour-allowed’ decays; the decay
B̄0
d → D+K− belongs to this category, since the colour indices of theK−meson and the B̄0

d–D+ system
run independently from each other in the corresponding leading-order diagram shown in Fig. 9. On the
other hand, in the case of “colour-suppressed” modes, for instance B̄0

d → π0D0, where only one colour
index runs through the whole diagram, we have to deal with the combination

a2 = C1 + C2/NC ∼ 0.25. (89)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [83], and can be justified, for example,
in the large-NC limit [84]. Interesting more recent developments are the following:

– ‘QCD factorization’ [85], which is in accordance with the old picture that factorization should
hold for certain decays in the limit of mb � ΛQCD [86], provides a formalism to calculate the
relevant amplitudes at the leading order of a ΛQCD/mb expansion. The resulting expression for
the transition amplitudes incorporates elements both of the naïve factorization approach sketched
above and of the hard-scattering picture. Let us consider a decay B̄ → M1M2, where M1 picks
up the spectator quark. If M1 is either a heavy (D) or a light (π, K) meson, and M2 a light (π, K)
meson, QCD factorization gives a transition amplitude of the following structure:

A(B̄ →M1M2) = [‘naïve factorization’]× [1 +O(αs) +O(ΛQCD/mb)] . (90)

While the O(αs) terms, i.e. the radiative non-factorizable corrections, can be calculated systemat-
ically, the main limitation of the theoretical accuracy originates from the O(ΛQCD/mb) terms.

– Another QCD approach to deal with non-leptonic B-meson decays — the ‘perturbative hard-
scattering approach’ (PQCD) — was developed independently in Ref. [87], and differs from the
QCD factorization formalism in some technical aspects.

– An interesting technique for ‘factorization proofs’ is provided by the framework of the ‘soft
collinear effective theory’ (SCET) [88], which led to various applications.

– Non-leptonic B decays can also be studied within QCD light-cone sum-rule approaches [89].

A detailed presentation of these topics would be very technical and is beyond the scope of this lecture.
However, for the discussion of the CP-violating effects in the B-meson system, we need only be familiar
with the general structure of the non-leptonic B decay amplitudes and not enter the details of the tech-
niques to deal with the corresponding hadronic matrix elements. Let us finally note that the B-decay data
will eventually decide how well factorization and the new concepts sketched above are actually working.
For example, data on the B → ππ system point towards large non-factorizable corrections [90–93].
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3.4 Towards studies of CP violation
As we have seen above, leptonic and semileptonic B-meson decays involve only a single weak (CKM)
amplitude. On the other hand, the structure of non-leptonic transitions is considerably more complicated.
Let us consider a non-leptonic decay B̄ → f̄ that is described by the low-energy effective Hamiltonian
in (81). The corresponding decay amplitude is then given as follows:

A(B̄ → f̄) = 〈f̄ |Heff|B̄〉

=
GF√

2

∑
j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑
k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

} . (91)

Concerning the CP-conjugate process B → f , we have

A(B → f) = 〈f |H†eff|B〉

=
GF√

2

∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f |Qjr†
k (µ)|B〉+

10∑
k=3

Ck(µ)〈f |Qr†
k (µ)|B〉

} . (92)

If we use now that strong interactions are invariant under CP transformations, insert (CP)†(CP) = 1̂
both after the 〈f | and in front of the |B〉, and take the relation

(CP)Qjr†
k (CP)† = Qjrk (93)

into account, we arrive at

A(B → f) = ei[φCP(B)−φCP(f)]

×GF√
2

∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑
k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

} , (94)

where the convention-dependent phases φCP(B) and φCP(f) are defined through

(CP)|B〉 = eiφCP(B)|B̄〉, (CP)|f〉 = eiφCP(f)|f̄〉. (95)

Consequently, we may write

A(B̄ → f̄) = e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2 (96)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
. (97)

Here the CP-violating phases ϕ1,2 originate from the CKM factors V ∗jrVjb, and the CP-conserving
‘strong’ amplitudes |A1,2|eiδ1,2 involve the hadronic matrix elements of the four-quark operators. In
fact, these expressions are the most general forms of any non-leptonic B-decay amplitude in the SM, i.e.
they do not only refer to the ∆C = ∆U = 0 case described by (81). Using (96) and (97), we obtain the
following CP asymmetry:

ACP ≡ Γ(B → f)− Γ(B̄ → f̄)
Γ(B → f) + Γ(B̄ → f̄)

=
|A(B → f)|2 − |A(B̄ → f̄)|2
|A(B → f)|2 + |A(B̄ → f̄)|2

=
2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)

|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2 , (98)

where the convention-dependent phase in (97) cancels. We observe that a non-vanishing value can be
generated through the interference between the two weak amplitudes, provided both a non-trivial weak
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Fig. 13: Feynman diagrams contributing to B+ → K+D̄0 and B+ → K+D0

Fig. 14: The extraction of γ from B± → K±{D0, D̄0, D0
+} decays

phase difference ϕ1 − ϕ2 and a non-trivial strong phase difference δ1 − δ2 are present. This kind of
CP violation is referred to as ‘direct’ CP violation, as it originates directly at the amplitude level of the
considered decay. It is the B-meson counterpart of the effects that are probed through Re(ε ′/ε) in the
neutral kaon system,2 and could first be established with the help of Bd → π∓K± decays [94].

Since ϕ1−ϕ2 is in general given by one of the UT angles — usually γ — the goal is to extract this
quantity from the measured value ofACP. Unfortunately, hadronic uncertainties affect this determination
through the poorly known hadronic matrix elements in (91). In order to deal with this problem, we may
proceed along one of the following two avenues:

(i) Amplitude relations can be used to eliminate the hadronic matrix elements. In these strategies, we
distinguish between exact relations, using pure ‘tree’ decays of the kind B± → K±D [95, 96] or
B±c → D±s D [97], and relations, which follow from the flavour symmetries of strong interactions,
i.e. isospin or SU(3)F, and involve B(s) → ππ, πK,KK modes [98].

(ii) In decays of neutral Bq mesons, interference effects between B0
q–B̄0

q mixing and decay processes
may induce ‘mixing-induced CP violation’. If a single CKM amplitude governs the decay, the
hadronic matrix elements cancel in the corresponding CP asymmetries (otherwise we have to use
again amplitude relations [99]). The most important example is the decay B 0

d → J/ψKS [100].

Before discussing the features of neutral Bq mesons and B0
q–B̄0

q mixing in detail in Section 5, let us
illustrate the use of amplitude relations for clean extractions of the UT angle γ from decays of charged
Bu and Bc mesons.

4 Amplitude relations
4.1 B± → K±D

The prototype of the strategies using theoretically clean amplitude relations is provided by B± → K±D
decays [95]. Looking at Fig. 13, we observe that B+ → K+D̄0 and B+ → K+D0 are pure ‘tree’

2In order to calculate this quantity, an approriate low-energy effective Hamiltonian having the same structure as (81) is used.
The large theoretical uncertainties mentioned in Section 1 originate from a strong cancellation between the contributions of the
QCD and EW penguins (caused by the large top-quark mass) and the associated hadronic matrix elements.
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decays. If we consider, in addition, the transition B+ → D0
+K

+, where D0
+ denotes the CP eigenstate

of the neutral D-meson system with eigenvalue +1,

|D0
+〉 =

1√
2

[|D0〉+ |D̄0〉] , (99)

we obtain interference effects, which are described by
√

2A(B+ → K+D0
+) = A(B+ → K+D0) +A(B+ → K+D̄0) (100)√

2A(B− → K−D0
+) = A(B− → K−D̄0) +A(B− → K−D0). (101)

These relations can be represented as two triangles in the complex plane. Since we have only to deal
with tree-diagram-like topologies, we have moreover

A(B+ → K+D̄0) = A(B− → K−D0) (102)
A(B+ → K+D0) = A(B− → K−D̄0)× e2iγ , (103)

allowing a theoretically clean extraction of γ, as shown in Fig. 14. Unfortunately, these triangles are
very squashed, since B+ → K+D0 is colour-suppressed with respect to B+ → K+D̄0:∣∣∣∣A(B+ → K+D0)

A(B+ → K+D̄0

∣∣∣∣ =
∣∣∣∣A(B− → K−D̄0)
A(B− → K−D0

∣∣∣∣ ≈ 1
λ

|Vub|
|Vcb| ×

a2

a1
≈ 0.4× 0.3 = O(0.1), (104)

where the phenomenological ‘colour’ factors were introduced in Subsection 3.3.3.
Another — more subtle — problem is related to the measurement of BR(B+ → K+D0). From

the theoretical point of view, D0 → K−`+ν would be ideal to measure this tiny branching ratio. How-
ever, because of the huge background from semileptonic B decays, we must rely on Cabibbo-allowed
hadronic D0 → fNE decays, such as fNE = π+K−, ρ+K−, . . ., i.e. have to measure

B+ → K+D0 [→ fNE]. (105)

Unfortunately, we then encounter another decay path into the same final state K+fNE through

B+ → K+D̄0 [→ fNE], (106)

where BR(B+ → K+D̄0) is larger than BR(B+ → K+D0) by a factor of O(102), while D̄0 → fNE is
doubly Cabibbo-suppressed, i.e. the corresponding branching ratio is suppressed with respect to the one
of D0 → fNE by a factor of O(10−2). Consequently, we obtain interference effects of O(1) between
the decay chains in (105) and (106). However, if two different final states fNE are considered, γ can
be extracted [96], although this determination is then more involved than the original triangle approach
presented in Ref. [95].

The angle γ can actually be determined in a variety of ways through CP-violating effects in pure
tree decays of type B → D(∗)K(∗) [101]. Using the present B-factory data, the following results were
obtained through a combination of various methods:

γ|D(∗)K(∗) =

{
(77+30
−32)◦ (CKMfitter [44]),

(88± 16)◦ (UTfit [45]).
(107)

Here we have discarded a second solution given by 180◦ + γ|D(∗)K(∗) in the third quadrant of the ρ̄–η̄
plane, as it is disfavoured by the global fits of the UT, and by the data for mixing-induced CP violation in
pure tree decays of type Bd → D±π∓, D∗±π∓, ... [102]. A similar comment applies to the information
from B → ππ, πK modes [103].
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Fig. 15: Feynman diagrams contributing to B+
c → D+

s D̄
0 and B+ → D+

s D
0

Fig. 16: The extraction of γ from B±c → D±s {D0, D̄0, D0
+} decays

4.2 B±c → D±s D

In addition to the ‘conventional’ B±u mesons, there is yet another species of charged B mesons, the Bc-
meson system, which consists of B+

c ∼ cb and B−c ∼ bc. These mesons were observed by the CDF
Collaboration through their decay B+

c → J/ψ`+ν, with the following mass and lifetime [104]:

MBc = (6.40 ± 0.39 ± 0.13) GeV, τBc = (0.46+0.18
−0.16 ± 0.03) ps. (108)

Meanwhile, the D0 Collaboration observed theB+
c → J/ψ µ+X mode [105], which led to the following

Bc mass and lifetime determinations:

MBc = (5.95+0.14
−0.13 ± 0.34) GeV, τBc = (0.448+0.123

−0.096 ± 0.121) ps, (109)

and CDF reported evidence for the B+
c → J/ψπ+ channel [106], implying

MBc = (6.2870 ± 0.0048 ± 0.0011) GeV. (110)

Since a huge number of Bc mesons will be produced at the LHC, the natural question of how to
explore CP violation with charged Bc decays arises, in particular whether an extraction of γ with the
help of the triangle approach is possible. Such a determination is actually offered by B±c → D±s D
decays, which are the Bc counterparts of the B±u → K±D modes (see Fig. 15), and satisfy the following
amplitude relations [107]:

√
2A(B+

c → D+
s D

0
+) = A(B+

c → D+
s D

0) +A(B+
c → D+

s D̄
0) (111)√

2A(B−c → D−s D
0
+) = A(B−c → D−s D̄

0) +A(B−c → D−s D
0), (112)

with

A(B+
c → D+

s D̄
0) = A(B−c → D−s D

0) (113)
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Fig. 17: Box diagrams contributing to B0
q–B̄0

q mixing in the SM (q ∈ {d, s})

A(B+
c → D+

s D
0) = A(B−c → D−s D̄

0)× e2iγ . (114)

At first sight, everything is completely analogous to the B±u → K±D case. However, there is an im-
portant difference [97], which becomes obvious by comparing the Feynman diagrams shown in Figs. 13
and 15: in the B±c → D±s D system, the amplitude with the rather small CKM matrix element Vub is not
colour-suppressed, while the larger element Vcb comes with a colour-suppression factor. Therefore, we
obtain ∣∣∣∣A(B+

c → D+
s D

0)
A(B+

c → D+
s D̄0)

∣∣∣∣ =
∣∣∣∣A(B−c → D−s D̄0)
A(B−c → D−s D0)

∣∣∣∣ ≈ 1
λ

|Vub|
|Vcb| ×

a1

a2
≈ 0.4× 3 = O(1), (115)

and conclude that the two amplitudes are similar in size. In contrast to this favourable situation, in the
decays B±u → K±D, the matrix element Vub comes with the colour-suppression factor, resulting in a
very stretched triangle. The extraction of γ from the B±c → D±s D triangles is illustrated in Fig. 16,
which should be compared with the squashed B±u → K±D triangles shown in Fig. 14. Another impor-
tant advantage is that the interference effects arising from D0, D̄0 → π+K− are practically unimportant
for the measurement of BR(B+

c → D+
s D

0) and BR(B+
c → D+

s D̄
0) since the Bc-decay amplitudes are

of the same order of magnitude. Consequently, the B±c → D±s D decays provide — from the theoretical
point of view — the ideal realization of the ‘triangle’ approach to determine γ. However, the practi-
cal implementation at LHCb still appears to be challenging. The corresponding branching ratios were
estimated in Ref. [108], with a pattern in accordance with (115).

5 The neutral B-meson system
5.1 Schrödinger equation for B0

q–B̄0
q mixing

Within the SM, B0
q–B̄0

q mixing arises from the box diagrams shown in Fig. 17. Thanks to this phe-
nomenon, an initially, i.e. at time t = 0, present B0

q -meson state evolves into a time-dependent linear
combination of B0

q and B̄0
q states:

|Bq(t)〉 = a(t)|B0
q 〉+ b(t)|B̄0

q 〉, (116)

where a(t) and b(t) are governed by a Schrödinger equation of the following form:

i
d
dt

(
a(t)
b(t)

)
= H ·

(
a(t)
b(t)

)
≡
[(

M
(q)
0 M

(q)
12

M
(q)∗
12 M

(q)
0

)
︸ ︷︷ ︸

mass matrix

− i
2

(
Γ(q)

0 Γ(q)
12

Γ(q)∗
12 Γ(q)

0

)
︸ ︷︷ ︸

decay matrix

]
·
(
a(t)
b(t)

)
.

The special form H11 = H22 of the Hamiltonian H is an implication of the CPT theorem, i.e. of the
invariance under combined CP and time-reversal (T) transformations.

It is straightforward to calculate the eigenstates |B (q)
± 〉 and eigenvalues λ(q)

± of (117):

|B(q)
± 〉 =

1√
1 + |αq|2

(|B0
q 〉 ± αq|B̄0

q 〉
)

(117)
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λ
(q)
± =

(
M

(q)
0 − i

2
Γ(q)

0

)
±
(
M

(q)
12 −

i

2
Γ(q)

12

)
αq, (118)

where

αqe
+i
“

Θ
(q)
Γ12

+n′π
”

=

√√√√√ 4|M (q)
12 |2e−i2δΘ

(q)
M/Γ + |Γ(q)

12 |2
4|M (q)

12 |2 + |Γ(q)
12 |2 − 4|M (q)

12 ||Γ(q)
12 | sin δΘ(q)

M/Γ

. (119)

Here we have written

M
(q)
12 ≡ eiΘ

(q)
M12 |M (q)

12 |, Γ(q)
12 ≡ eiΘ

(q)
Γ12 |Γ(q)

12 |, δΘ(q)
M/Γ ≡ Θ(q)

M12
−Θ(q)

Γ12
, (120)

and have introduced the quantity n′ ∈ {0, 1} to parametrize the sign of the square root in (119).
Evaluating the dispersive parts of the box diagrams shown in Fig. 17, which are dominated by

internal top-quark exchanges, yields (for a more detailed discussion, see Ref. [21]):

M
(q)
12 =

G2
FM

2
W

12π2
ηBMBqf

2
Bq B̂Bq

(
V ∗tqVtb

)2
S0(xt)ei(π−φCP(Bq)), (121)

where φCP(Bq) is a convention-dependent phase, which is defined in analogy to (95). The short-distance
physics is encoded in the ‘Inami–Lim’ function S0(xt ≡ m2

t /M
2
W ) [109], and in the perturbative QCD

correction factor ηB , which does not depend on q ∈ {d, s}, i.e. is the same for Bd and Bs mesons. On the
other hand, the non-perturbative physics is described by the quantities fBqB̂

1/2
Bq

, involving — in addition
to theBq decay constant fBq — the ‘bag’ parameter B̂Bq , which is related to the hadronic matrix element
〈B̄0

q |(b̄q)V−A(b̄q)V−A|B0
q 〉. These non-perturbative parameters can be determined through QCD sum-

rule calculations or lattice studies.
If we calculate also the absorptive parts of the box diagrams in Fig. 17, we obtain

Γ(q)
12

M
(q)
12

≈ − 3π
2S0(xt)

(
m2
b

M2
W

)
= O(m2

b/m
2
t )� 1. (122)

Consequently, we may expand (119) in Γ(q)
12 /M

(q)
12 . Neglecting second-order terms, we arrive at

αq =

[
1 +

1
2

∣∣∣∣∣ Γ(q)
12

M
(q)
12

∣∣∣∣∣ sin δΘ(q)
M/Γ

]
e
−i
“

Θ
(q)
M12

+n′π
”
. (123)

The deviation of |αq| from 1 measures CP violation in B0
q–B̄0

q oscillations, and can be probed
through the following ‘wrong-charge’ lepton asymmetries:

A(q)
SL ≡

Γ(B0
q (t)→ `−ν̄X)− Γ(B̄0

q (t)→ `+νX)
Γ(B0

q (t)→ `−ν̄X) + Γ(B̄0
q (t)→ `+νX)

=
|αq|4 − 1
|αq|4 + 1

≈
∣∣∣∣∣ Γ(q)

12

M
(q)
12

∣∣∣∣∣ sin δΘ(q)
M/Γ. (124)

Because of |Γ(q)
12 |/|M (q)

12 | ∝ m2
b/m

2
t and sin δΘ(q)

M/Γ ∝ m2
c/m

2
b , the asymmetry A(q)

SL is suppressed by a
factor of m2

c/m
2
t = O(10−4) and is hence tiny in the SM. However, this observable may be enhanced

through NP effects, thereby representing an interesing probe for physics beyond the SM [110, 111].
The current experimental average for the Bd-meson system compiled by the ‘Heavy Flavour Averaging
Group’ [69] reads as follows:

A(d)
SL = 0.0005 ± 0.0056, (125)

and does not indicate any non-vanishing effect.
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5.2 Mixing parameters
Let us denote the masses of the eigenstates of (117) by M (q)

H (‘heavy’) and M (q)
L (‘light’). It is then

useful to introduce

Mq ≡ M
(q)
H +M

(q)
L

2
= M

(q)
0 , (126)

as well as the mass difference

∆Mq ≡M (q)
H −M (q)

L = 2|M (q)
12 | > 0, (127)

which is by definition positive. While B0
d–B̄0

d mixing is well established and

∆Md = (0.507 ± 0.005) ps−1 (128)

known with impressive experimental accuracy [69], only lower bounds on ∆Ms were available, for many
years, from the LEP (CERN) experiments and SLD (SLAC) [112]. In 2006, the value of ∆Ms was finally
pinned down at the Tevatron [113]. The most recent results read as follows:

∆Ms =
{

(18.56 ± 0.87)ps−1 (D0 [114])
(17.77 ± 0.10 ± 0.07)ps−1 (CDF [115]). (129)

We shall return to the theoretical interpretation of these measurements in Subsection 8.1.
The decay widths Γ(q)

H and Γ(q)
L of the mass eigenstates, which correspond to M (q)

H and M (q)
L ,

respectively, satisfy

∆Γq ≡ Γ(q)
H − Γ(q)

L =
4 Re

[
M

(q)
12 Γ(q)∗

12

]
∆Mq

, (130)

whereas

Γq ≡ Γ(q)
H + Γ(q)

L

2
= Γ(q)

0 . (131)

There is the following interesting relation:

∆Γq
Γq
≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
xq = −O(10−2)× xq, (132)

where
xq ≡ ∆Mq

Γq
=
{

0.776 ± 0.008 (q = d)
O(20) (q = s)

(133)

is often referred to as the B0
q–B̄0

q ‘mixing parameter’.3 Consequently, we observe that ∆Γd/Γd ∼
10−2 is negligibly small, while ∆Γs/Γs ∼ 10−1 may be sizeable. In fact, the current state-of-the-art
calculations of these quantities give the following numbers [116]:

|∆Γd|
Γd

= (3± 1.2)× 10−3,
|∆Γs|

Γs
= 0.147 ± 0.060. (134)

Recently, results for ∆Γs were reported from the Tevatron, using the B0
s → J/ψφ channel [117]:

∆Γs =
{

(0.17 ± 0.09 ± 0.02)ps−1 (D0 [118])
(0.076+0.059

−0.063 ± 0.006)ps−1 (CDF [119]). (135)

It will be interesting to follow the evolution of these data. At LHCb, we expect a precision of σ(∆Γs) =
0.027ps−1 already with 0.5 fb−1 data, which is expected to be available by the end of 2009 [8]; ATLAS
expects a relative accuracy of 13% with 30 fb−1 of data taken at low luminosity [120].

3Note that ∆Γq/Γq is negative in the SM because of the minus sign in (132).
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5.3 Time-dependent decay rates
The time evolution of initially, i.e. at t = 0, pure B0

q - and B̄0
q -meson states is given by

|B0
q (t)〉 = f

(q)
+ (t)|B0

q 〉+ αqf
(q)
− (t)|B̄0

q 〉 (136)

and
|B̄0

q (t)〉 =
1
αq
f

(q)
− (t)|B0

q 〉+ f
(q)
+ (t)|B̄0

q 〉, (137)

respectively, with
f

(q)
± (t) =

1
2

[
e−iλ

(q)
+ t ± e−iλ(q)

− t
]
. (138)

These time-dependent state vectors allow the calculation of the corresponding transition rates. To this
end, it is useful to introduce

|g(q)
± (t)|2 =

1
4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2 e−Γq t cos(∆Mqt)

]
(139)

g
(q)
− (t) g(q)

+ (t)∗ =
1
4

[
e−Γ

(q)
L t − e−Γ

(q)
H t + 2 i e−Γq t sin(∆Mqt)

]
, (140)

as well as
ξ

(q)
f = e

−iΘ(q)
M12

A(B̄0
q → f)

A(B0
q → f)

, ξ
(q)

f̄
= e
−iΘ(q)

M12
A(B̄0

q → f̄)
A(B0

q → f̄)
. (141)

Looking at (121), we find
Θ(q)
M12

= π + 2arg(V ∗tqVtb)− φCP(Bq), (142)

and observe that this phase depends on the chosen CKM and CP phase conventions specified in (11)
and (95), respectively. However, these dependences are cancelled through the amplitude ratios in (141),
so that ξ(q)

f and ξ(q)

f̄
are convention-independent observables. Whereas n′ enters the functions in (138)

through (118), the dependence on this parameter is cancelled in (139) and (140) through the introduction
of the positive mass difference ∆Mq (see (127)). Combining the formulae listed above, we eventually
arrive at the following transition rates for decays of initially, i.e. at t = 0, present B 0

q or B̄0
q mesons:

Γ(
(—)

B0
q (t)→ f) =

[
|g(q)
∓ (t)|2 + |ξ(q)

f |2|g(q)
± (t)|2 − 2 Re

{
ξ

(q)
f g

(q)
± (t)g(q)

∓ (t)∗
}]

Γ̃f , (143)

where the time-independent rate Γ̃f corresponds to the ‘unevolved’ decay amplitude A(B0
q → f), and

can be calculated by performing the usual phase-space integrations. The rates into the CP-conjugate final
state f̄ can straightforwardly be obtained from (143) by making the substitutions

Γ̃f → Γ̃f̄ , ξ
(q)
f → ξ

(q)

f̄
. (144)

5.4 ‘Untagged’ rates
The expected sizeable width difference ∆Γs may provide interesting studies of CP violation through
‘untagged’ Bs rates (see Refs. [117] and [121–124]), which are defined as

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f), (145)

and are characterized by the feature that we do not distinguish between initially, i.e. at time t = 0, present
B0
s or B̄0

s mesons. If we consider a final state f to which both a B0
s and a B̄0

s may decay, and use the
expressions in (143), we find

〈Γ(Bs(t)→ f)〉 ∝ [cosh(∆Γst/2)−A∆Γ(Bs → f) sinh(∆Γst/2)] e−Γst, (146)
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with

A∆Γ(Bs → f) ≡ 2 Re ξ(s)
f

1 +
∣∣ξ(s)
f

∣∣2 . (147)

We observe that the rapidly oscillating ∆Mst terms cancel, and that we may obtain information about
the phase structure of the observable ξ(s)

f , thereby providing valuable insights into CP violation.
Following these lines, for instance, the untagged observables offered by the angular distribution of

the Bs → K∗+K∗−,K∗0K̄∗0 decay products allow a determination of the UT angle γ, provided ∆Γs is
actually sizeable [122]. Untagged Bs-decay rates are interesting in terms of efficiency, acceptance and
purity, and are already applied for the physics analyses at the Tevatron [118,119]. Soon they will help us
to fully exploit the physics potential of the Bs-meson system at the LHC.

5.5 CP asymmetries
A particularly simple — but also very interesting — situation arises if we restrict ourselves to decays of
neutral Bq mesons into final states f that are eigenstates of the CP operator, i.e. satisfy the relation

(CP)|f〉 = ±|f〉. (148)

Consequently, we have ξ(q)
f = ξ

(q)

f̄
in this case, as can be seen in (141). Using the decay rates in (143),

we find that the corresponding time-dependent CP asymmetry is given by

ACP(t) ≡ Γ(B0
q (t)→ f)− Γ(B̄0

q (t)→ f)
Γ(B0

q (t)→ f) + Γ(B̄0
q (t)→ f)

=
[Adir

CP(Bq → f) cos(∆Mqt) +Amix
CP (Bq → f) sin(∆Mqt)

cosh(∆Γqt/2) −A∆Γ(Bq → f) sinh(∆Γqt/2)

]
, (149)

with

Adir
CP(Bq → f) ≡ 1− ∣∣ξ(q)

f

∣∣2
1 +

∣∣ξ(q)
f

∣∣2 , Amix
CP (Bq → f) ≡ 2 Im ξ

(q)
f

1 +
∣∣ξ(q)
f

∣∣2 . (150)

Because of the relation

Adir
CP(Bq → f) =

|A(B0
q → f)|2 − |A(B̄0

q → f̄)|2
|A(B0

q → f)|2 + |A(B̄0
q → f̄)|2 , (151)

this observable measures the direct CP violation in the decay Bq → f , which originates from the inter-
ference between different weak amplitudes, as we have seen in (98). On the other hand, the interesting
new aspect of (149) is due toAmix

CP (Bq → f), which originates from interference effects between B0
q–B̄0

q

mixing and decay processes, and describes ‘mixing-induced’ CP violation. Finally, the width difference
∆Γq, which may be sizeable in the Bs-meson system, provides access to A∆Γ(Bq → f) introduced in
(147). However, this observable is not independent from Adir

CP(Bq → f) and Amix
CP (Bq → f), satisfying[

Adir
CP(Bq → f)

]2
+
[
Amix

CP (Bq → f)
]2

+
[
A∆Γ(Bq → f)

]2
= 1. (152)

In order to calculate ξ(q)
f , we use the general expressions (96) and (97), where e−iφCP(f) = ±1

because of (148), and φCP(B) = φCP(Bq). If we insert these amplitude parametrizations into (141) and
take (142) into account, we observe that the phase-convention-dependent quantity φCP(Bq) cancels, and
finally arrive at

ξ
(q)
f = ∓ e−iφq

[
e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
, (153)
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Fig. 18: Feynman diagrams contributing to the B0
d → J/ψK0 decay

where
φq ≡ 2 arg(V ∗tqVtb) =

{
+2β (q = d)
−2δγ (q = s) (154)

is associated with the CP-violating weak B0
q–B̄0

q mixing phase arising in the SM; β and δγ refer to the
corresponding angles in the unitarity triangles shown in Fig. 3.

In analogy to (98), the caclulation of ξ(q)
f is — in general — also affected by large hadronic

uncertainties. However, if one CKM amplitude plays the dominant rôle in the Bq → f transition, we
obtain

ξ
(q)
f = ∓ e−iφq

[
e+iφf/2|Mf |eiδf
e−iφf/2|Mf |eiδf

]
= ∓ e−i(φq−φf ), (155)

and observe that the hadronic matrix element |Mf |eiδf cancels in this expression. Since the requirements
for direct CP violation discussed above are then no longer satisfied, direct CP violation vanishes in this
important special case, i.e. Adir

CP(Bq → f) = 0. On the other hand, this is not the case for the mixing-
induced CP asymmetry. In particular,

Amix
CP (Bq → f) = ± sinφ (156)

is now governed by the CP-violating weak phase difference φ ≡ φq −φf and is not affected by hadronic
uncertainties. The corresponding time-dependent CP asymmetry takes then the simple form

Γ(B0
q (t)→ f)− Γ(B̄0

q (t)→ f̄)
Γ(B0

q (t)→ f) + Γ(B̄0
q (t)→ f̄)

∣∣∣∣∣
∆Γq=0

= ± sinφ sin(∆Mqt), (157)

and allows an elegant determination of sinφ.

5.6 Key application: B0
d → J/ψKS

This decay has a CP-odd final state, and originates from b̄ → c̄cs̄ quark-level transitions, as can be
seen in Fig. 18. Consequently, it receives contributions both from tree and from penguin topologies (see
Subsection 3.3.1). In the SM, the decay amplitude can hence be written as follows [125]:

A(B0
d → J/ψKS) = λ(s)

c

(
Ac
′

T +Ac
′

P

)
+ λ(s)

u Au
′

P + λ
(s)
t At

′
P. (158)

Here the
λ(s)
q ≡ VqsV ∗qb (159)

are CKM factors, Ac′T is the CP-conserving strong tree amplitude, while the Aq′
P describe the penguin

topologies with internal q quarks (q ∈ {u, c, t}), including QCD and EW penguins; the primes remind
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us that we are dealing with a b̄ → s̄ transition. If we eliminate now λ
(s)
t through (80) and apply the

Wolfenstein parametrization, we obtain

A(B0
d → J/ψKS) ∝

[
1 + λ2aeiθeiγ

]
, (160)

where

aeiϑ ≡
(

Rb
1− λ2

)[
Au
′

P −At
′

P

Ac
′

T +Ac
′

P −At
′

P

]
(161)

is a hadronic parameter. Using now the formalism discussed in Subsection 5.5 yields

ξ
(d)
ψKS

= +e−iφd
[

1 + λ2aeiϑe−iγ

1 + λ2aeiϑe+iγ

]
. (162)

Unfortunately, aeiϑ, which is a measure for the ratio of the B0
d → J/ψKS penguin to tree contributions,

can only be estimated with large hadronic uncertainties. However, since this parameter enters (162) in
a doubly Cabibbo-suppressed way, its impact on the CP-violating observables is practically negligible.
We can put this important statement on a more quantitative basis by making the plausible assumption
that a = O(λ̄) = O(0.2) = O(λ), where λ̄ is a ‘generic’ expansion parameter [126]:

Adir
CP(Bd → J/ψKS) = 0 +O(λ3) (163)

Amix
CP (Bd → J/ψKS) = − sinφd +O(λ3) SM= − sin 2β +O(λ3). (164)

Consequently, (164) allows an essentially clean determination of sin 2β [100].
Since the CKM fits performed within the SM pointed to a large value of sin 2β, B 0

d → J/ψKS

offered the exciting perspective of exhibiting large mixing-induced CP violation. In 2001, the measure-
ment of Amix

CP (Bd → J/ψKS) allowed indeed the first observation of CP violation outside the K-meson
system [5]. The most recent data are still not showing any signal for direct CP violation inB 0

d → J/ψKS

within the current uncertainties, as is expected from (163), and the world average reads [69]

Adir
CP(Bd → J/ψKS) = 0.002 ± 0.021. (165)

As far as (164) is concerned, we have

(sin 2β)ψKS
≡ −Amix

CP (Bd → J/ψKS) =
{

0.714 ± 0.032 ± 0.018 (BaBar)
0.651 ± 0.034 (Belle), (166)

where also other final states similar to J/ψKS were included [69]; the corresponding world average is
then given as follows:

(sin 2β)ψKS
= 0.681 ± 0.025. (167)

In the SM, the theoretical uncertainties are generically expected to be below the 0.01 level [126]; signif-
icantly smaller effects are found in Ref. [127], whereas a fit performed in Ref. [128] yields a theoretical
penguin uncertainty comparable to the present experimental systematic error. A possibility to control
these uncertainties is provided by B0

s → J/ψKS [125], which can be explored at the LHC [129].
The average in (167) yields a twofold solution for the phase (2β)ψKS

itself:

(2β)ψKS
= (43 ± 2)◦ ∨ (137 ± 2)◦. (168)

Here the latter solution would be in dramatic conflict with the CKM fits, and would require a large NP
contribution toB0

d–B̄0
d mixing [130,131]. However, experimental information on the sign of cos 2β rules

out a negative value of this quantity with more than 95% C.L. [101], so that we are left with the solution
around 43◦.
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Fig. 19: A brief roadmap of B-decay strategies for the exploration of CP violation

6 Impact of new physics
6.1 General remarks
Using the concept of the low-energy effective Hamiltonians introduced in Subsection 3.3.2, we may
address this important question in a systematic way [132]:

– NP may modify the ‘strength’ of the SM operators through new short-distance functions which
depend on the NP parameters, such as the masses of charginos, squarks, charged Higgs particles
and tanβ ≡ v2/v1 in the ‘minimal supersymmetric SM’ (MSSM). The NP particles may enter
in box and penguin topologies, and are ‘integrated out’ as the W boson and top quark in the SM.
Consequently, the initial conditions for the renormalization-group evolution take the following
form:

Ck → CSM
k + CNP

k . (169)

It should be emphasized that the NP pieces CNP
k may also involve new CP-violating phases which

are not related to the CKM matrix.
– NP may enhance the operator basis:

{Qk} → {QSM
k , QNP

l }, (170)

so that operators which are not present (or strongly suppressed) in the SM may actually play
an important rôle. In this case, we encounter, in general, also new sources for flavour and CP
violation.

Concerning model-dependent NP analyses, SUSY scenarios in particular have received a lot of
attention. Examples of other fashionable NP frameworks are left–right-symmetric models, scenarios with
extra dimensions, models with an extra Z ′, ‘little Higgs’ scenarios, and models with a fourth generation.
For a recent overview and a guide to the literature, we refer the reader to Ref. [9].

The simplest extension of the SM is given by models with ‘minimal flavour violation’ (MFV) [133,
134]. Simply speaking, in this class of models, there are no new sources of flavour and CP violation, i.e.
these phenomena are still governed by the CKM matrix. On account of their simplicity, the extensions of
the SM with MFV show several correlations between various observables, thereby allowing for powerful
tests of this scenario. A comprehensive recent discussion can be found in Ref. [9].

TheB-meson system offers a variety of processes and strategies for the exploration of CP violation
[18,135], as we have illustrated in Fig. 19 through a collection of prominent examples. We see that there
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Fig. 20: Left panel: dependence of κq on σq for values of ρq varied in steps of 0.1 between 1.4 (upper) and 0.6
(inner curve). Right panel: dependence of κq on σq for values of φNP

q varied in steps of 10◦ between ±10◦ (lower
curves) and ±170◦; the curves for 0◦ < σq < 180◦ and 180◦ < σq < 360◦ correspond to positive and negative
values of φNP

q , respectively.
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Fig. 21: Left panel: allowed region (yellow/grey) in the σd–κd plane in a scenario with the JLQCD lattice results
and the ‘exclusive’ value of Rb in (73). Right panel: ditto for the scenario with the (HP+JL)QCD lattice results
and the ‘inclusive’ value of Rb in (73), as discussed in the text.

are processes with a very different dynamics that are — in the SM — sensitive to the same angles of
the UT. Moreover, rare B- and K-meson decays [136], which originate from loop effects in the SM,
provide complementary insights into flavour physics and interesting correlations with the CP-B sector;
key examples are B → Xsγ and the exclusive modes B → K∗γ, B → ργ, as well as Bs,d → µ+µ−

and K+ → π+νν̄, KL → π0νν̄. In the presence of NP in the TeV regime, discrepancies with respect
to the SM picture should emerge at some level of accuracy. There are two promising avenues for NP to
enter B-physics observables, as we shall discuss in the remainder of this section.

6.2 New physics in B-decay amplitudes
NP has typically a small effect if SM tree processes play the dominant rôle. However, NP could well
have a significant impact on the FCNC sector: new particles may enter in penguin or box diagrams, or
new FCNC contributions may even be generated at the tree level. In fact, sizeable contributions arise
generically in field-theoretical estimates with ΛNP ∼ TeV [137], as well as in specific NP models. In
Section 7, we shall have a closer look at B decays that may actually indicate NP effects at the decay-
amplitude level.

In the case of the ‘golden’ decay B0
d → J/ψKS, NP effects have to compete with a tree con-

tribution and are hence not expected to play a significant rôle. This is indeed signalled by a set of
observables that were introduced in Ref. [126] to search for NP contributions to the B → J/ψK de-
cay amplitudes [138]. In the following discussion, we shall therefore assume that these NP effects are
negligible.

33

FLAVOUR PHYSICS AND CP VIOLATION: LOOKING FORWARD TO THE LHC

137



Fig. 22: Feynman diagrams contributing to the B0
d → φK0 decay

6.3 New physics in B0
q–B̄0

q mixing
Another attractive mechanism for NP to manifest itself in the B-physics landscape is offered by B 0

q–B̄0
q

mixing. Here NP could enter through the exchange of new particles in box diagrams, or through new
contributions at the tree level. In general, we may write

M
(q)
12 = M q,SM

12

(
1 + κqe

iσq
)
, (171)

where the expression for M q,SM
12 can be found in (121). Consequently, we obtain

∆Mq = ∆MSM
q + ∆MNP

q = ∆MSM
q

∣∣1 + κqe
iσq
∣∣ , (172)

φq = φSM
q + φNP

q = φSM
q + arg(1 + κqe

iσq ), (173)

with ∆MSM
q and φSM

q given in (127) and (154), respectively. Using dimensional arguments borrowed
from effective field theory [126, 131], it can be shown that ∆MNP

q /∆MSM
q ∼ 1 and φNP

q /φSM
q ∼ 1

could — in principle — be possible for a NP scale ΛNP in the TeV regime; such a pattern may also arise
in specific NP scenarios.

Introducing

ρq ≡
∣∣∣∣ ∆Mq

∆MSM
q

∣∣∣∣ =
√

1 + 2κq cos σq + κ2
q , (174)

the measured values of the mass differences ∆Mq can be converted into constraints in NP parameter
space through the contours shown in the left panel of Fig. 20. Further constraints are implied by the NP
phases φNP

q , which can be probed by means of mixing-induced CP asymmetries, through the curves in the
right panel of Fig. 20. Interestingly, κq is bounded from below for any value of φNP

q 6= 0. For example,
even a small phase |φNP

q | = 10◦ implies a clean lower bound of κq ≥ 0.17, i.e. NP contributions of at
most 17% [68].

Consequently, using the B-factory data to measure ∆Md and to extract the NP phase φNP
d , two

sets of contours can be fixed in the σd–κd plane. In the former case, the SM value ∆M SM
d is required. It

involves the CKM parameter |V ∗tdVtb|, which is governed by γ in the corresponding numerical analysis if
the unitarity of the CKM matrix is used. Moreover, information about the hadronic parameter fBdB̂

1/2
Bd

which we encountered in Subsection 5.1 is needed. For the purpose of comparison, we use two bench-
mark sets of such results for these quantities [68]: the JLQCD results for two flavours of dynamical light
Wilson quarks [139], and a combination of fBd as determined by the HPQCD Collaboration [140] for
three dynamical flavours with the JLQCD result for B̂Bd [(HP+JL)QCD] [141]. For the determination of
the NP phase φNP

d = φd−φSM
d , we use φd = (43±2)◦ (see (168)), and fix the ‘true’ value of φSM

d = 2β
with the help of the data for tree processes. This can simply be done through the relations

sinβ =
Rb sin γ√

1− 2Rb cos γ +R2
b

, cos β =
1−Rb cos γ√

1− 2Rb cos γ +R2
b

(175)
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Fig. 23: Compilation of the CP violation measurements in B decays that are dominated by b → s penguin
processes [69]: mixing-induced CP asymmetries (left panel), and direct CP asymmetries, where C = Adir

CP (right
panel).

between the side Rb ∝ |Vub/Vcb| of the UT and its angle γ, which are determined through semileptonic
b→ u`ν̄` decays andB → DK modes, respectively. A numerical analysis shows that the value of φNP

d is
actually governed by Rb ∝ |Vub/Vcb|, while γ|D(∗)K(∗) , which suffers currently from large uncertainties
as we saw in (107), plays only a minor rôle, in contrast to the SM analysis of ∆Md [68]. However, the
values of Rb in (73) following from the analyses of inclusive and exclusive decays differ at the 1σ level.
We show the resulting situation in the σd–κd plane in Fig. 21, and observe that the measurement of CP
violation in B0

d → J/ψKS and similar decays has a dramatic impact on the allowed region in the NP
parameter space; the right panel may indicate the presence of NP, although no definite conclusions can
be drawn at the moment. It will be interesting to monitor this effect in the future. In order to detect such
CP-violating NP contributions, which would immediately rule out MFV scenarios, things are much more
promising in the Bs system, as we shall see in Subsection 8.2.

7 Puzzling patterns in the B-factory data
7.1 CP violation in b→ s penguin modes
A particularly interesting probe of NP is offered by the decay B0

d → φKS. As can be seen in Fig. 22,
it originates from b̄ → s̄ss̄ transitions and is, therefore, a pure penguin mode. This decay is described
by the low-energy effective Hamiltonian in (81) with r = s, where the current–current operators may
only contribute through penguin-like contractions, which describe penguin topologies with internal up-
and charm-quark exchanges [76, 79]. The dominant rôle is played by the QCD penguin operators [142].
However, thanks to the large top-quark mass, EW penguins have a sizeable impact as well [79, 143]. In
the SM, we may write

A(B0
d → φKS) = λ(s)

u Ãu
′

P + λ(s)
c Ãc

′
P + λ

(s)
t Ãt

′
P, (176)
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where we have applied the same notation as in Subsection 5.6. Eliminating the CKM factor λ(s)
t with the

help of (80) yields
A(B0

d → φKS) ∝ [1 + λ2beiΘeiγ
]
, (177)

where

beiΘ ≡
(

Rb
1− λ2

)[
Ãu
′

P − Ãt
′

P

Ãc
′

P − Ãt′P

]
. (178)

Consequently, we obtain

ξ
(d)
φKS

= +e−iφd
[

1 + λ2beiΘe−iγ

1 + λ2beiΘe+iγ

]
. (179)

The theoretical estimates of beiΘ suffer from large hadronic uncertainties. However, since this parameter
enters (179) in a doubly Cabibbo-suppressed way, we obtain the following expressions [144]:

Adir
CP(Bd → φKS) = 0 +O(λ2) (180)
Amix

CP (Bd → φKS) = − sinφd +O(λ2), (181)

where we made the plausible assumption that b = O(1). On the other hand, the mixing-induced CP
asymmetry of Bd → J/ψKS measures also − sinφd, as we saw in (164). We arrive therefore at the
following relation [144, 145]:

−(sin 2β)φKS
≡ Amix

CP (Bd → φKS) = Amix
CP (Bd → J/ψKS) +O(λ2), (182)

which offers an interesting test of the SM. SinceBd → φKS is governed by penguin processes in the SM,
this decay may well be affected by NP. In fact, if we assume that NP arises generically in the TeV regime,
it can be shown through field-theoretical estimates that the NP contributions to b→ ss̄s transitions may
well lead to sizeable violations of (180) and (182) [135, 137]. Moreover, this is also the case for several
specific NP scenarios.

The experimental status can be summarized through the following averages [69]:

(sin 2β)φKS
= 0.39 ± 0.17, Adir

CP(Bd → φKS) = −0.01± 0.12. (183)

During recent years, the Belle results for (sin 2β)φKS
[146] have moved quite a bit towards the SM

reference value of (sin 2β)ψKS
given in (167), and are now, within the errors, in agreement with the

BaBar findings [147]. Interestingly, the mixing-induced CP asymmetries of other b→ s penguin modes
show the same trend of having central values that are smaller than 0.681, as can be seen in Fig. 23
[69]. This feature may in fact be due to the presence of NP contributions to the corresponding decay
amplitudes. However, the large uncertainties do not yet allow us to draw definite conclusions.

7.2 TheB → πK puzzle
Another hot topic is the exploration of B → πK decays, which are also b → s transitions. Since tree
amplitudes are suppressed by a CKM factor λ2Rb ∼ 0.02 with respect to the penguin amplitudes, these
decays are actually dominated by QCD penguins. A classification of the B → πK system is offered by
their EW penguin contributions (see Fig. 24):

(a) In the B0
d → π−K+ and B+ → π+K0 decays, EW penguins contribute in colour-suppressed

form and are hence expected to play a minor rôle.
(b) In the B0

d → π0K0 and B+ → π0K+ decays, EW penguins contribute in colour-allowed form
and have therefore a significant impact on the decay amplitude, entering at the same order of
magnitude as the tree contributions, i.e. at the 20% level.
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(a)

(b)

Fig. 24: Examples of the colour-suppressed (a) and colour-allowed (b) EW penguin contributions to the B → πK

system

Interestingly, EW penguins offer an attractive avenue for NP to enter the B → πK system [148], and the
B-factory data for decays of class (b) raise indeed the possibility of having a modified EW penguin sector
through the impact of NP, which has received a lot of attention in the literature (see, e.g., Ref. [149]).

Here we shall discuss key results of the recent analysis performed in Ref. [150], following closely
the strategy developed in Refs. [90, 91, 103]. The starting point is given by B → ππ modes. Using the
SU(3) flavour symmetry of strong interactions and another plausible dynamical assumption,4 the data
for the B → ππ system can be converted into the hadronic parameters of the B → πK modes, thereby
allowing us to calculate their observables in the SM. Moreover, also γ can be extracted, with the result

γ =
(
70.0+3.8

−4.3

)◦
, (184)

which is in agreement with the SM fits of the UT [44, 45].
As far as the B → πK observables with tiny EW penguin contributions are concerned, perfect

agreement between the SM expectation and the experimental data is found. Concerning the B → πK
observables receiving sizeable contributions from EW penguins, we distinguish between CP-conserving
and CP-violating observables. In the former case, the key quantities are given by the following ratios of
CP-averaged B → πK branching ratios [151]:

Rc ≡ 2
[

BR(B+ → π0K+) + BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K̄0)

]
= 1.11 ± 0.07 (185)

Rn ≡ 1
2

[
BR(B0

d → π−K+) + BR(B̄0
d → π+K−)

BR(B0
d → π0K0) + BR(B̄0

d → π0K̄0)

]
= 0.99 ± 0.07, (186)

where also the experimental averages are indicated [69]. In these quantities, the EW penguin effects enter
in colour-allowed form through the modes involving neutral pions, and are theoretically described by a

4Consistency checks of these working assumptions can be performed, which are all supported by the current data.
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Fig. 25: The situation in the Rn–Rc plane, as discussed in the text

parameter q, which measures the ‘strength’ of the EW penguin with respect to the tree contributions, and
a CP-violating phase φ. In the SM, the SU(3) flavour symmetry allows a prediction of q = 0.60 [152],
and φ vanishes. However, in the case of CP-violating NP effects in the EW penguin sector, φ would
take a value different from zero. In Fig. 25, we show the situation in the Rn–Rc plane. Here the various
contours correspond to different values of q, and the position on the contour is parametrized through the
CP-violating phase φ. We observe that the SM prediction (on the right-hand side) is very stable in time,
having now significantly reduced errors. On the other hand, the B-factory data have moved quite a bit
towards the SM, thereby reducing the ‘B → πK puzzle’ for the CP-averaged branching ratios, which
emerged already in 2000 [153]. In comparison with the situation of the B → πK observables with tiny
EW penguin contributions, the agreement between the new data for the Rc,n and their SM predictions
is not as perfect. However, a case for a modified EW penguin sector cannot be made through the new
measurements of these quantities.

Let us now have a closer look at the CP asymmetries of the B0
d → π0KS and B± → π0K±

channels. As can be seen in Fig. 26, SM predictions for the CP-violating observables of B 0
d → π0KS

are obtained that are much sharper than the current B-factory data. In particular Amix
CP (Bd → π0KS)

offers a very interesting quantity. We also see that the experimental central values can be reached for
large positive values of φ. For the new input data, the non-vanishing difference

∆A ≡ Adir
CP(B± → π0K±)−Adir

CP(Bd → π∓K±)
exp
= −0.140 ± 0.030 (187)

is likely to be generated through hadronic effects, i.e. not through the impact of physics beyond the SM.
A similar conclusion was drawn in Ref. [154], where it was also noted that the measured values of Rc

and Rn are now in accordance with the SM.
Performing, finally, a simultaneous fit to Rn, Rc and the CP-violating Bd → π0KS asymmetries

yields the following result:
q = 1.7+0.5

−1.3, φ = +
(
73+6
−18

)◦
. (188)

Interestingly, these parameters — in particular the large positive phase — would also allow us to ac-
commodate the experimental values of (sin 2β)φKS

and the CP asymmetries of other b → s penguin
modes with central values smaller than (sin 2β)ψKS

. The large central value of q would be excluded by
constraints from rare decays in simple scenarios where NP enters only through Z penguins, but could
still be accommodated in other scenarios, e.g. in models with leptophobic Z ′ bosons.

7.3 Prospects for LHCb
Unfortunately, it is unlikely that the current B factories will allow us to establish — or rule out — the
tantalizing option of having NP in the b → s penguin processes. However, at LHCb, this exciting topic
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Fig. 27: The allowed region in the σs–κs plane of NP parameters for B0
s–B̄0

s mixing

can be explored with the help of the decay B0
s → φφ [155]. A handful of events were observed in this

mode a few years ago by the CDF Collaboration at the Tevatron, corresponding to a branching ratio of
(14+6
−5 ± 6)× 10−6 [156]. A proposal for studying time and angular dependence in this decay mode has

been made by the LHCb Collaboration [157]. The proposal is based on an estimated sample of about
3100 events collected in one year of running. In order to control hadronic uncertainties, the decay mode
Bs → φφ may be related through the SU(3) flavour symmetry to Bs → φK̄∗0 and plausible dynamical
assumptions, which can be checked through experimental control channels [155]. The current B-factory
data on the CP asymmetries of the b → s penguin modes leave ample space for NP phenomena in the
B0
s → φφ decay to be discovered at LHCb. Let us next have a closer look at other key targets of the

physics programme of this experiment.

8 Highlights of B-physics at the LHC
Since the current e+e− B factories run at the Υ(4S) resonance, which decays into Bu,d, but not into
Bs mesons, the Bs system cannot be explored by the BaBar and Belle experiments.5 However, plenty
of Bs mesons are produced at hadron colliders, i.e. at the Tevatron and soon at the LHC. The B-decay
programme at the LHC is characterized by its high statistics and the complementarity to the studies at
the e+e− B factories; in particular, the physics potential of the Bs-meson system, which offers various
powerful strategies for the exploration of CP violation, can be fully exploited.

5The asymmetric e+e− KEKB collider was recently also operated at the Υ(5S) resonance, allowing the Belle experiment
to take first Bs data [7].
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8.1 In Pursuit of new physics with ∆Ms

As we discussed in Subsection 5.2, the mass difference ∆Ms of the Bs-meson system was recently mea-
sured at the Tevatron, with the results summarized in (129). On the other hand, the HPQCD Collaboration
has reported the following lattice QCD prediction [158]:

∆MSM
s = 20.3(3.0)(0.8) ps−1. (189)

In contrast to the case of ∆Md discussed in Subsection 6.3, the CKM factor entering this SM value does
not require information on γ and |Vub/Vcb|, as

|V ∗tsVtb| = |Vcb|
[
1 +O(λ2)

]
, (190)

which is an important advantage. Using (174), we may convert the experimental value of ∆Ms into the
allowed region in the σs–κs plane shown in Fig. 27 [68]. We see that the measurement of ∆Ms leaves
ample space for the NP parameters σs and κs, which can also be accommodated in specific scenarios
(e.g. SUSY, extra Z ′ and little Higgs models). It should be noted that the experimental errors are already
significantly smaller than the theoretical lattice QCD uncertainties. The experimental results on ∆Ms

have immediately triggered a lot of theoretical activity (see, e.g., [68, 159, 160]).
As in the case of the Bd-meson system, the allowed region in the σs–κs plane will be dramati-

cally reduced as soon as measurements of CP violation in the Bs-meson system become available. The
‘golden’ channel in this respect is B0

s → J/ψφ, our next topic.

8.2 The decay B0
s → J/ψφ

This mode is the counterpart of the B0
d → J/ψKS transition, where we have just to replace the down

quark by a strange quark. The structures of the corresponding decay amplitudes are completely analogous
to each other. However, there is also an important difference with respect to B 0

d → J/ψKS, since the
final state of B0

s → J/ψφ contains two vector mesons and is, hence, an admixture of different CP
eigenstates. Using the angular distribution of the J/ψ[→ `+`−]φ[→ K+K−] decay products, the CP
eigenstates can be disentangled [161] and the time-dependent decay rates calculated [117, 124]. As in
the case of B0

d → J/ψKS, the hadronic matrix elements cancel then in the mixing-induced observables.
For the practical implementation, a set of three linear polarization amplitudes is usually used: A0(t) and
A‖(t) correspond to CP-even final-state configurations, whereas A⊥(t) describes a CP-odd final-state
configuration.

It is instructive to illustrate how this works by having a closer look at the one-angle distribution,
which takes the following form [117, 124]:

dΓ(B0
s (t)→ J/ψφ)
d cos Θ

∝ (|A0(t)|2 + |A‖(t)|2
) 3

8
(
1 + cos2 Θ

)
+ |A⊥(t)|2 3

4
sin2 Θ. (191)

Here Θ is defined as the angle between the momentum of the `+ and the normal to the decay plane of
the K+K− system in the J/ψ rest frame. The time-dependent measurement of the angular dependence
allows us to extract the following observables:

P+(t) ≡ |A0(t)|2 + |A‖(t)|2, P−(t) ≡ |A⊥(t)|2, (192)

where P+(t) and P−(t) refer to the CP-even and CP-odd final-state configurations, respectively. If we
consider the case of having an initially, i.e. at time t = 0, present B̄0

s meson, the CP-conjugate quantities
P̄±(t) can be extracted as well. Using an untagged data sample, the untagged rates

P±(t) + P±(t) ∝ [(1± cosφs)e−ΓLt + (1∓ cosφs)e−ΓHt
]

(193)
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can be determined, while a tagged data sample allows us to measure the CP-violating asymmetries

P±(t)− P±(t)
P±(t) + P±(t)

= ±
[

2 sin(∆Mst) sinφs
(1± cosφs)e+∆Γst/2 + (1∓ cosφs)e−∆Γst/2

]
. (194)

In the presence of CP-violating NP contributions to B0
s–B̄0

s mixing, we obtain

φs = −2λ2η + φNP
s ≈ −2◦ + φNP

s ≈ φNP
s . (195)

Consequently, NP of this kind would be indicated by the following features:

– The untagged observables depend on two exponentials;
– sizeable values of the CP-violating asymmetries.

These general features hold also for the full three-angle distribution [117, 124]: it is much more
involved than the one-angle case, but provides also additional information through interference terms of
the form

Re{A∗0(t)A‖(t)}, Im{A∗f (t)A⊥(t)} (f ∈ {0, ‖}). (196)
From an experimental point of view, there is no experimental draw-back with respect to the one-angle
case. Following these lines, ∆Γs (see (135)) and φs can be extracted. Recently, the D0 Collaboration
reported first results for the measurement of φs through the untagged, time-dependent three-angle B0

s →
J/ψφ distribution [162]:

φs = −0.79± 0.56 (stat.)+0.14
−0.01 (syst.) = −(45± 32+1

−8)◦, (197)

which is complemented by three additional mirror solutions. This phase is therefore not yet stringently
constrained. Using (173), we then obtain the curves in the σs–κs plane shown in the left panel of Fig. 28.
Very recently, CDF reported first bounds on φs from flavour-tagged B0

s → J/ψφ decays [163].
Fortunately, φs will be very accessible at LHCb, where already the initial 0.5 fb−1 of data will give

an uncertainty of σ(φs) = 0.046 = 2.6◦ by the end of 2009, which will be significantly improved further
thanks to the 2 fb−1 that should be available by the end of 2010 [8]. At some point, also in view of LHCb
upgrade plans [164], we have to include hadronic penguin uncertainties. This can be done with the help
of the B0

d → J/ψρ0 decay [165]. In order to illustrate the impact of the measurement of CP violation in
B0
s → J/ψφ, we show in the right panel of Fig. 28 the case corresponding to (sinφs)exp = −0.20±0.02.

Such a measurement would give a NP signal at the 10σ level, which would immediately rule out MFV
models, and demonstrates the power of the Bs system to search for NP [68]. It should be emphasized
that the contour following from the measurement of φs would be essentially clean, in contrast to the
shaded region representing the constraint from the measured value of ∆Ms, which suffers from lattice
QCD uncertainties.

8.3 Further benchmark decays for LHCb
This experiment has a very rich physics programme. Besides many other interesting aspects, there are
two major lines of research:

1. Precision measurements of γ:
On the one hand, there are strategies using tree decays: B0

s → D∓s K± [σγ ∼ 5◦], B0
d → D0K∗

[σγ ∼ 8◦], B± → D0K± [σγ ∼ 5◦], where we have also indicated the expected sensitivities for
10 fb−1; by 2013, a LHCb tree determination of γ with σγ = 2◦ ∼ 3◦ should be available [8]. This
very impressive situation should be compared with the current B-factory data, yielding the results
summarized in (107). These extractions are essentially unaffected by NP effects. On the other
hand, γ can also be determined through B decays with penguin contributions: B 0

s → K+K−

and B0
d → π+π− [σγ ∼ 5◦], B0

s → D+
s D
−
s and B0

d → D+
d D
−
d . The key question is whether

discrepancies will arise in these determinations.
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Fig. 28: Impact of the measurement of CP violation in B0
s → J/ψφ: current D0 data (left panel), and a NP

scenario with (sinφs)exp = −0.20± 0.02 (right panel)

Fig. 29: Feynman diagrams contributing to B0
q → Dqūq and B̄0

q → Dqūq decays

Fig. 30: Interference effects between B0
q → Dqūq and B̄0

q → Dqūq decays

2. Analyses of rare decays, which are absent at the SM tree level:
prominent examples are B0

s,d → µ+µ−, B0
d → K∗0µ+µ− and B0

s → φµ+µ−. In order to
complement the studies of CP violation in b→ s penguin modes at the B factories, B 0

s → φφ is a
very interesting mode for LHCb, as we noted in Subsection 7.3.

Let us next have a closer look at some of these decays.

8.3.1 Bs → D±s K
∓ and Bd → D±π∓

The decays Bs → D±s K∓ [166] and Bd → D±π∓ [167] can be treated on the same theoretical basis,
and provide new strategies to determine γ [102]. Following this paper, we write these modes, which are
pure ‘tree’ decays according to the classification of Subsection 3.3.1, generically as Bq → Dqūq. As
can be seen from the Feynman diagrams in Fig. 29, their characteristic feature is that both a B 0

q and a
B̄0
q meson may decay into the same final state Dqūq. Consequently, as illustrated in Fig. 30, interference

effects between B0
q–B̄0

q mixing and decay processes arise, which allow us to probe the weak phase φq+γ
through measurements of the corresponding time-dependent decay rates.

In the case of q = s, i.e.Ds ∈ {D+
s , D

∗+
s , ...} and us ∈ {K+,K∗+, ...}, these interference effects

are governed by a hadronic parameter Xse
iδs ∝ Rb ≈ 0.4, where Rb ∝ |Vub/Vcb| is the usual UT side,

and hence are large. On the other hand, for q = d, i.e. Dd ∈ {D+, D∗+, ...} and ud ∈ {π+, ρ+, ...}, the
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interference effects are described by Xde
iδd ∝ −λ2Rb ≈ −0.02, and hence are tiny.

Measuring the cos(∆Mqt) and sin(∆Mqt) terms of the time-dependent Bq → Dqūq rates, a
theoretically clean determination of φq + γ is possible [166, 167]. Since the φq can be determined
separately, as we saw above, γ can be extracted. However, in the practical implementation, there are
problems: we encounter an eightfold discrete ambiguity for φq + γ, which is very disturbing for the
search of NP, and in the q = d case, an additional input is required to extractXd sinceO(X2

d ) interference
effects would otherwise have to be resolved, which is impossible. Performing a combined analysis of the
B0
s → D+

s K
− and B0

d → D+π− decays, these problems can be solved [102]. This strategy exploits the
fact that these transitions are related to each other through the U -spin symmetry of strong interactions,6

allowing us to simplify the hadronic sector. Following these lines, an unambiguous value of γ can be
extracted from the observables. To this end, Xd has actually not to be fixed, and Xs may only enter
through a 1 +X2

s correction, which is determined through untagged Bs rates. The first studies for LHCb
are very promising, and are currently being further refined [168].

8.3.2 TheBs → K+K−,Bd → π+π− system
As can be seen in Fig. 31, the decay B0

s → K+K− is a b̄ → s̄ transition that involves tree and penguin
contributions. In analogy to the B → πK case discussed in Subsection 7.2, the latter topologies actually
play the dominant rôle in B0

s → K+K−. If we replace the strange quarks in Fig. 31 through down
quarks, we obtain the decay topologies for the B0

d → π+π− channel shown in Fig. 32. However, because
of the different CKM structure, the tree topologies play the dominant rôle in B 0

d → π+π−, although the
QCD penguins have an important impact as well. Following the discussion of Subsections 5.6 and 7.1,
we may write the corresponding decay amplitudes in the SM as follows [99]:

A(B0
d → π+π−) ∝

[
eiγ − deiθ

]
(198)

A(B0
s → K+K−) ∝

[
eiγ +

(
1− λ2

λ2

)
d′eiθ

′
]
, (199)

where the CP-conserving hadronic parameters deiθ and d′eiθ′ describe — sloppily speaking — the ratios
of penguin to tree contributions. The direct and mixing-induced CP asymmetries take then the following
general form:

Adir
CP(Bd → π+π−) = G1(d, θ; γ), Amix

CP (Bd → π+π−) = G2(d, θ; γ, φd) (200)

Adir
CP(Bs → K+K−) = G′1(d′, θ′; γ), Amix

CP (Bs → K+K−) = G′2(d′, θ′; γ, φs). (201)

Since φd is already known and φs is negligibly small in the SM — or can be determined with the help
of B0

s → J/ψφ should CP-violating NP contributions to B0
s–B̄0

s mixing make it sizeable — we may
convert the measured values of Adir

CP(Bd → π+π−), Amix
CP (Bd → π+π−) and Adir

CP(Bs → K+K−),
Amix

CP (Bs → K+K−) into theoretically clean contours in the γ–d and γ–d′ planes, respectively. In
Fig. 33, we show these contours (solid and dot-dashed) for an example, which is inspired by the current
B-factory data.

Looking at the Feynman diagrams shown in Figs. 31 and 32, we see that B0
d → π+π− is actually

related to B0
s → K+K− through the interchange of all down and strange quarks. Consequently, each

decay topology contributing to B0
d → π+π− has a counterpart in B0

s → K+K− and vice versa, and
the corresponding hadronic parameters can be related to each other with the help of the U -spin flavour
symmetry of strong interactions, implying the following relations [99]:

d′ = d, θ′ = θ. (202)
6The U -spin symmerty is an SU(2) subgroup of the SU(3)F flavour-symmetry group of QCD, connecting d and s quarks

in analogy to the isospin symmetry, which relates d and u quarks to each other.
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Fig. 31: Feynman diagrams contributing to the B0
s → K+K− decay

Fig. 32: Feynman diagrams contributing to the B0
d → π+π− decay

Applying the former, we may extract γ and d through the intersections of the theoretically clean γ–d
and γ–d′ contours. In the example of Fig. 33, a twofold ambiguity arises from the solid and dot-dashed
curves. However, as discussed in Ref. [99], it can be resolved with the help of the dotted contour, thereby
leaving us with the ‘true’ solution of γ = 70◦ in this case. Moreover, we may determine θ and θ ′, which
allow an interesting internal consistency check of the second U -spin relation in (202).

This strategy is very promising from an experimental point of view for LHCb, where an accuracy
for γ of a few degrees can be achieved [169]. As far as possible U -spin-breaking corrections to d ′ = d
are concerned, they enter the determination of γ through a relative shift of the γ–d and γ–d ′ contours;
their impact on the extracted value of γ therefore depends on the form of these curves, which is fixed
through the measured observables. In the examples discussed in Ref. [99] and Fig. 33, the extracted
value of γ would be very stable with respect to such effects. It should also be noted that the U -spin
relations in (202) are particularly robust since they involve only ratios of hadronic amplitudes, where
all SU(3)-breaking decay constants and form factors cancel in factorization and also chirally enhanced
terms would not lead to U -spin-breaking corrections [99].

A detailed analysis of the status and prospects of the Bs,d → ππ, πK,KK system in view of the
first results on the Bs modes from the Tevatron [170] was recently performed in Ref. [171]. Interestingly,
the data for the Bd → π+π−, Bs → K+K− system favour the BaBar measurement of the direct
CP violation in Bd → π+π−, which results in a fortunate situation for the extraction of γ, yielding
γ = (66.6+4.3+4.0

−5.0−3.0)◦, where the latter errors correspond to an estimate of U -spin-breaking effects. An
important further step will be the measurement of the mixing-induced CP violation in Bs → K+K−,
which is predicted in the SM as Amix

CP (Bs → K+K−) = −0.246+0.036+0.052
−0.030−0.024 , where the second errors

illustrate the impact of large non-factorizable U -spin-breaking corrections. In the case of CP-violating
NP contributions to B0

s–B̄0
s mixing also this observable would be sensitively affected, as can be seen

in Fig. 34, and allows an unambiguous determination of the B0
s–B̄0

s mixing phase with the help of
Bs → J/ψφ at LHCb. Finally, the measurement of the direct CP violation in the Bs → K+K− channel
will make the full exploitation of the physics potential of the Bs,d → ππ, πK,KK modes possible.
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Fig. 33: The contours in the γ–d(′) plane for an example corresponding to the CP asymmetries Adir
CP(Bd →

π+π−) = −0.24 and Amix
CP (Bd → π+π−) = +0.59, as well as Adir

CP(Bs → K+K−) = +0.09 and Amix
CP (Bs →

K+K−) = −0.23

Fig. 34: The correlation between sinφs, which can be determined through mixing-induced CP violation in B0
s →

J/ψφ, and Amix
CP (Bs → K+K−). Each point on the curve corresponds to a given value of φs, as indicated by the

numerical values [171].

8.3.3 The rare decays B0
s → µ+µ− and B0

d → µ+µ−

As can be seen in Fig. 35, these decays originate from Z 0-penguin and box diagrams in the SM. The
corresponding low-energy effective Hamiltonian is given as follows [74]:

Heff = −GF√
2

[
α

2π sin2 ΘW

]
V ∗tbVtqηY Y0(xt)(b̄q)V−A(µ̄µ)V−A + h.c., (203)

where α denotes the QED coupling and ΘW is the Weinberg angle. The short-distance physics is de-
scribed by Y (xt) ≡ ηY Y0(xt), where ηY = 1.012 is a perturbative QCD correction, and the Inami–Lim
function Y0(xt) describes the top-quark mass dependence. We observe that only the matrix element
〈0|(b̄q)V−A|B0

q 〉 is required. Since here the vector-current piece vanishes, as the B0
q is a pseudoscalar

meson, this matrix element is simply given by the decay constant fBq . Consequently, we arrive at a very
favourable situation with respect to the hadronic matrix elements. Since, moreover, NLO QCD correc-
tions were calculated, and long-distance contributions are expected to play a negligible rôle [172], the
B0
q → µ+µ− modes belong to the cleanest rare B decays.

Using also the data for the mass differences ∆Mq to reduce the hadronic uncertainties,7 the fol-
lowing SM predictions were obtained in Ref. [160]:

BR(Bs → µ+µ−) = (3.35 ± 0.32) × 10−9 (204)
7This input allows us to replace the decay constants fBq through the bag parameters B̂Bq .

45

FLAVOUR PHYSICS AND CP VIOLATION: LOOKING FORWARD TO THE LHC

149



Fig. 35: Feynman diagrams contributing to B0
q → µ+µ− (q ∈ {s, d}) decays

BR(Bd → µ+µ−) = (1.03 ± 0.09) × 10−10. (205)

Consequently, these branching ratios are extremely tiny. But things could actually be much more excit-
ing, as NP effects may significantly enhance BR(Bs → µ+µ−) [9]. The current upper bounds (95%
C.L.) from the CDF Collaboration read as follows [173]:

BR(Bs → µ+µ−) < 5.8 × 10−8, BR(Bd → µ+µ−) < 1.8× 10−8, (206)

while the D0 Collaboration finds the following 90% C.L. (95% C.L.) upper limit [174]:

BR(Bs → µ+µ−) < 7.5 (9.3) × 10−8. (207)

Consequently, there is still a long way to go within the SM. However, by the end of 2009, with 0.5 fb−1

data, LHCb can exclude or discover a NP contribution to Bs → µ+µ− at the level of the SM [8]. This
decay is also very interesting for ATLAS and CMS, where detailed signal and background studies are
currently in progress [120].

8.3.4 The rare decay B0
d → K∗0µ+µ−

The key observable for NP searches through this channel is the following forward–backward asymmetry:

AFB(ŝ) =
1

dΓ/dŝ

[∫ +1

0
d(cos θ)

d2Γ
dŝd(cos θ)

−
∫ 0

−1
d(cos θ)

d2Γ
dŝd(cos θ)

]
. (208)

Here θ is the angle between the B0
d momentum and that of the µ+ in the dilepton centre-of-mass system,

and ŝ ≡ s/M 2
B with s = (pµ+ + pµ−)2. A particularly interesting kinematical point is characterized by

AFB(ŝ0)|SM = 0, (209)

as ŝ0 is quite robust with respect to hadronic uncertainties (see, e.g., Ref. [175]). In SUSY extensions
of the SM, AFB(ŝ) could take opposite sign or take a dependence on ŝ without a zero point [176].
The current B-factory data for the inclusive b → s`+`− branching ratios and the integrated forward–
backward asymmetries are in accordance with the SM, but suffer still from large uncertainties. This
situation will improve dramatically at the LHC. Here LHCb will measure the zero crossing point by ∼
2013 with 10 fb−1 with σ(s0) = 0.27(GeV/c2)2, corresponding to 19k events [8]. For other interesting
observables provided by B0

d → K∗0µ+µ−, see Ref. [177]. Also alternative b → sµ+µ− modes are
currently under study, such as B0

s → φµ+µ− and Λb → Λµ+µ− [8, 120].

9 Conclusions and outlook
In this decade, we have seen tremendous progress in the exploration of the phenomenology of flavour
physics and CP violation that was made possible through a fruitful interplay between theory and ex-
periment. Altogether, the e+e− B factories have already produced O(109) BB̄ pairs, and the Tevatron
has recently succeeded in observing B0

s–B̄0
s mixing. Thanks to these efforts, CP violation is now well
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established in the B-meson system, thereby complementing the neutral K-meson system, where this
unexpected effect was discovered almost 45 years ago. The B-factory data agree globally with the KM
mechanism of CP violation in an impressive way, but we have also hints for possible discrepancies,
which could be the first footprints of NP in the quark-flavour sector. Unfortunately, definite conclusions
cannot yet be drawn as the uncertainties are still too large.

Exciting new perspectives for B physics and the exploration of CP violation will arise in the
summer of 2008 through the start of the LHC, with its dedicated B-decay experiment LHCb. Thanks
to the large statistics that can be collected there and the full exploitation of the physics potential of the
Bs-meson system, we shall be able to enter a new territory in the investigation of CP violation. The
golden channel for the search of CP-violating NP contributions to B0

s–B̄0
s mixing is B0

s → J/ψφ, where
the recent measurement of ∆Ms still leaves ample space for such effects both in terms of the general NP
parameters and in specific extensions of the SM. In contrast to the theoretical interpretation of ∆Ms, the
corresponding CP asymmetries have not to rely on non-perturbative lattice QCD calculations. Moreover,
it will be very interesting to search for CP-violating NP effects in b → s penguin processes through the
B0
s → φφ channel. These measurements will be complemented by other key ingredients for the search

of NP: precision measurements of the UT angle γ by means of various processes with a very different
dynamics, and powerful analyses of rare B decays.

In addition to B physics, which was the focus of this lecture, there are other important flavour
probes. An outstanding example is charm physics, where evidence for D0–D̄0 mixing was found at the
B factories in the spring of 2007 [178], and very recently also at CDF [179]. The mixing parameters are
measured in the ball park of the SM predictions, which are unfortunately affected by large long-distance
effects. A striking NP signal would be given by CP-violating effects (for recent theoretical analyses, see,
e.g. Ref. [180]). There is also a powerful charm-physics programme at LHCb. As far as kaon physics
is concerned, the future lies on the extremely rare decays K+ → π+νν̄ and KL → π0νν̄: these are
very clean from the theoretical point of view, but unfortunately hard to measure. Nevertheless, there is
a proposal to take this challenge and to measure the former channel at the CERN SPS, and efforts to
explore the latter — even more difficult decay — at J-PARC in Japan. Moreover, interesting flavour
probes are offered by top physics and the flavour violation in the neutrino and charged lepton sectors;
regarding the latter (for a recent overview, see Ref. [181]), an experimental investigation of the lepton
flavour violating decay µ → eγ is the target of the MEG experiment at PSI, and studies of µ → e
conversion are proposed at FNAL and J-PARC. Further studies in this direction using τ decays at the
LHC and at a possible future super-B factory will be important. Finally, continued searches of electric
dipole moments and measurements of the anomalous magnetic moment of the muon are essential parts
of the future experimental programme, providing also a strong interplay with theory.

In view of the quickly approaching start of the LHC, there is a burning question: what is the
synergy between the plenty of information following from analyses of the flavour sector with the high-
Q2 programme of ATLAS and CMS? The main goal of these experiments is to explore electroweak
symmetry breaking, in particular the question of whether this is actually caused by the Higgs mechanism,
to produce and observe new particles, which could themselves be the mediators of new flavour- and CP-
violating interactions, and then to go back to the deep questions of particle physics, such as the origin
of dark matter and the baryon asymmetry of the Universe. It is obvious that there should be a very
fruitful interplay between these ‘direct’ studies of NP and the ‘indirect’ information provided by flavour
physics [182]. I have no doubts that the next few years will be extremely exciting!
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