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Abstract

In the course of computational experiments with Monte-Carlo events for ATLAS
Combined Test Beam 2004 setup Artificial Neural Networks (ANN) technique
was applied for reconstruction of energy losses in dead materials between barrel
LAr and Tile calorimeters (Edm). The constructed ANN procedures exploit
as their input vectors the information content of different sets of variables
(parameters) which describe particular features of the hadronic shower of an
event in ATLAS calorimeters. It was shown that application of ANN pro-
cedures allows one to reach 40% reduction of the Edm reconstruction error
compared to the conventional procedure used in ATLAS collaboration. Im-
pact of various features of a shower on the precision of Fdm reconstruction is
presented in detail. It was found that longitudinal shower profile information
brings greater improvement in Edm reconstruction accuracy than cell energies
information in LArs and T'ile; samplings.



1 Objectives of the present investigation

Procedures for energy reconstruction of a hadronic shower usually include an
additive term which gives an estimate of energy losses in dead materials be-
tween barrel LAr and Tile calorimeters (Edm) [1, 2, 3]. The error of energy
loss reconstruction affects directly the overall precision of hadronic energy re-
construction procedures. In the present investigation we intend to get answers
to the following questions:

1. How good is the conventional procedure for estimating the energy lost
in dead materials between barrel LAr and Tile calorimeters?

2. Is it possible to construct a procedure of appreciably higher precision?
3. How to realize such a procedure?

4. What gain in precision of such a procedure may be reached by exploiting
information content of different sets of additional variables (parameters)
which describe particular features of a calorimeter response?

2 Artificial Neural Networks

Artificial Neural Networks (ANN) in the form of Multi-Layer-Perceptrons
(MLP) with back-propagation updating were applied for function mapping
purpose. Generally the mapping is nonlinear. For example, in the case of
4-layered MLP the mapping may be written in the form:

F(X)=g (D woig Zwijg<zwjkwk+9j>+9¢ +0 |, (1)
; j B

where

g — neuron activation function (linear or sigmoidal),

xp — is the k-th element of the input vector X (activation value of
k-th neuron in the input layer of MLP),

wo; — weight (synaptic weight or strength) of the connection between
the single output neuron of MLP and the i-th neuron in the
second hidden layer,

w;i; — connection weight between i-th neuron in the second hidden
layer and j-th neuron in the first hidden layer,

wj — connection weight between j-th neuron in the first hidden layer

and k-th neuron in the input layer,
{6} — thresholds.



3 Some properties of MLPs and technological as-
pects of MLPs application in the present investi-
gation

The main properties of Multi-Layer-Perceptrons are:
e MLPs are universal function approximators [4, 5].

e MLP is fully defined by its structure and the whole set W of its synaptic
weights.

e There exists well elaborated technique for stochastic approximation of
unknown function with MLPs through so called ”learning” procedure
performed on a set of known examples (train set) to define the optimal
W set that minimizes the global approximation error for the train set.

e The trained MLP performs non-linear mapping from multidimensional
input space of the function arguments onto one-dimensional space of the
function value.

e Correctly trained MLPs demonstrate good generalization performance,
i.e. ability to model correct mapping of data it has "never seen” before.

e MLPs are computationally efficient, i.e. their computational complexity
(measured in number of operations) linearly depends on the number of
synaptic weights W in the net.

In the context of neural networks (NN) applications the complexity of the
dead matter (DM) energy reconstruction problem was practically tested in the
course of computational experiments with the use of a series of neural networks
of various topologies and number of nodes (neurons). The number of hidden
layers in NNs ranged from 1 to 4, and the number of nodes in a layer — from
2 to 40. The total number of tested networks is around 100. We found that
NNs with 2 hidden layers worked satisfactorily, and the use of greater number
of hidden layers did not bring better performance. On the other hand, single
hidden layer networks with increased number of nodes in a layer showed that
they were more likely to stuck at higher minima of NN cost function than
networks with 2 or more hidden layers.

To achieve good generalization quality it is important that the number of
events for training NN well exceeds the number of weights in NN. During the
present investigation we had enough Monte Carlo events to reach the ratio
around 20 — 60 events per one connection weight of the NN. Files contain-
ing from 20000 to 25000 MC-events were generated for each beam energy of



CTBO04. In accordance with the standard procedure each file of MC-events
was split onto 2 sets: 1) the test set containing 6000 events and 2) the train
set containing the remaining events in the file. No preselection procedure was
applied to the events. Further on, we split the test set onto 3 subsets, each
subset of test events contains 2000 events.

In order to hold the problem of NN overtraining under control we do not
use the so called early stopping method of training. Instead, we preset the
length of train/test sessions to be big enough (10000 epochs) to assess asymp-
totical behavior of 5 train/test curves (train curve for the train set, 3 curves
for 3 subsets of test events and one curve for the full set of test events). To ad-
mit NN as normally trained network we require that after train curve reached
the plateau the following condition must be fulfilled: within the span of sub-
sequent several thousand epochs all 5 curves lie within certain limits C + 4.
The used values of § correspond to ~ 1.5% of the RMS value of DM energy
reconstruction by the ATLAS conventional method (see subsequent sections
of the present paper). The admitted parameters of the NN are those saved at
the beginning of the plateau.

The subdivision of test events onto 3 subsets was introduced in order to
facilitate location of rare MC-events (1 — 2 per thousand) which manifest very
big energy deposition in the dead matter (about 50% of the incident pion
energy). We did not eliminate such events from files but used them to explain
slightly different behavior of corresponding test curves for some subsets.

Investigation of the problem of DM energy reconstruction with NN ap-
proach was performed for each CTB04 energy independently. This was done
to avoid the influence of the properties of a more general NN on solving the
main task of the present work: to establish for each energy the limits of accu-
racy attainable in DM energy reconstruction with the use of certain features
of a hadron shower as procedure arguments.

In Section 4 the items of the pool of variables are expressed in natural
units. They need preprocessing before using them as components of NN input
vectors. Preprocessing of all items which are expressed in energy units (GeV)
consists in normalization by a constant equal to the nominal value of the
incident pion energy. Other items are normalized by constants which are
defined after analysis of their distributions in the files.

In the course of the present investigation we used the artificial neural
network package JETNET 3.0 [6] which consists of a set of subroutines that
realize a variety of minimization options.



4 Pool of Variables for ANN construction

Here we present the pool of variables which was used for ANN construction:

Sampling energies info:

ELArl, ELAr2, ELAr3 — Energies in LAr samplings
ETilel, ETile2, ETile3 — Energies in Tile samplings

LArs cell energies info:
EIMX_LAr3
E2MX_LAr3 — The largest 4 cell energies in LArs
E3MX _LAr3 sampling for the current event
E4AMX_LAr3

Tile; cell energies info:
E1IMX_Tilel
E2MX _Tilel — The largest 4 cell energies in Tileq
E3MX _Tilel sampling for the current event
E4AMX _Tilel

Active cells info:
FN2C_LAr3 — The number of cells in LArs with
Ecet > 3Un0ise,LAT3

FN2C_Tilel — The number of cells in Tile; with

Eeey > 30noise,Tile1

Energy spread factors in cell energies distribution:

F2LAr3 — Energy spread factor in LArs cell en-
ergies distribution
F2Tilel — Energy spread factor in T'ile; cell en-

ergies distribution

Energy spread factor is the function of cell energies:
2

F2 = Z€j2 . Zej 5 (2)

where e; is the energy of the j-th cell in a sampling.

5 Data of the computational experiment

The investigation was performed on the basis of MC events generated for 9
energies of the incident pions: 10, 20, 50, 100, 150, 180, 250, 320 and 350 GeV.



For events generation ATHENA, release 12.0.6 was used with QGSP_GN
physics list. Events were generated for ATLAS CTBO04 setup with beam di-
rection: n = 0.25, ¢ = 0.0. From 11000 to 25000 events were generated at
each beam energy.

As the first step we performed thorough investigations for 2 energies: 250
and 10 GeV. The obtained results for these 2 energies clarify well the main
aspects of the problem to be solved. In what follows we present distributions of
differences between true values of Edm (supplied by MC generator) and Edm
values reconstructed by procedures under consideration. The form of these
distributions is not Gaussian, and as a measure of widths of these distributions
we used RMS values.

6 Precision of the conventional procedure

How precise is the conventional procedure for estimating the energy Edm lost
in dead materials between barrel LAr and Tile calorimeters? In what follows
the variables and parameters of the conventional procedure we mark by ”calc”
label.

According to the conventional procedure [1, 2, 3] the Edm is estimated as
the mean geometric value of two sampling energies:

Edmcalc =C- \ ELATg : ETilel (3)

where Ep 4., and Erj., are energy depositions in the calorimeter samples
which are the nearest to the dead material.

Before estimating RMS of the distribution of differences (Edmyye —Edmicqic)
at 250 GeV the calibration constant C' in the above expression was adjusted
to fulfill the equality:

<Edmt7‘ue> - <Edmcalc> - C< \ ELArg : ETilel>7 (4)

The value of (Edmyy.) and RMS of (Edmyyye — Edme,q.) distribution were
evaluated over 25000 events. The obtained results are: (Edmype) = 19.53
GeV or 7.8% of the nominal beam energy, RM S(Edmyrye — Edmeq.) = 7.55
GeV or 3% of the beam energy.

A question arises: can other functions of the 2 arguments ELAr3 and
ETilel yield higher precision in reconstruction of Edmyye?

The answer to this question is given by the results of the following 2 com-
putational experiments.



6.1 Experiment 1.

Approximation of Edmye is done by the linear function
Edminear = A0+ Al - ELAr3 + A2 - ETilel. (5)

This function was realized with the use of the linear perceptron NN 28A whose
layers structure is 72 — 17:

e 2 neurons (nodes) in the input layer (for ELAr3 and ETilel values),
e No hidden layers,

e 1 output neuron (for Edmyipeqr value),

e Linear activation function in each neuron of NN 28A.

Files: NTRAIN = 19159 events, NTEST = 6000 events.

Training length — 500 epochs.

After performing NN 28A train and test sessions we get from (Edmygye —
Edmyineqr) distribution the following NN 28A result (see Fig. 1):

RMS (Edmyye — Edmyinear) = 8.76 GeV.

[ DM LAr-Tile |
= DMTruth - DMCa|c
10°
E  RMSC =7.55GeV =V =V
C RMSN=8.76 GeV Truth ~ Net
102 =
- 250 GeV
i NN 28A
10
e LT L,
-40 -20 0 20 40 60
E, GeV

Figure 1: Distribution of Edm reconstruction error for linear approximator
NN 28A at 250 GeV.

Compared to the conventional method of Edmy.,. reconstruction NN 28A
yields the following loss in precision:



Absolute loss in precision = 1.23 GeV,
Relative loss in precision = 16.3%,

were " Relative loss in precision” is 100%-(Abs.loss)/RM S(Edmrye—Edmeac)-
It is seen that the linear function of ELAr3 and ETilel arguments leads to
greater error in reconstruction of Edmy. than the conventional procedure.

6.2 Experiment 2.

The general case of Edmy. approximation was realized with the use of
NN 28B whose layers structure is 72 — 12 — 1”:

e two neurons (nodes) in the input layer (for ELAr3 and ETilel values),
e one hidden layer with 12 neurons,
e one output neuron (for Edm.; value),

e sigmoidal activation function g(z) = (1+e~2*)~! for hidden neurons and
linear activation function g(z) = z for the output neuron of NN 28B.

Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 1500 epochs.

[ DM LAr-Tile |
= DMTruth - DMCalc
10°%
E RMS C = 7.55 GeV DM DM
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Figure 2: Distribution of Fdm reconstruction error for general approximator
NN 28B of 2 variables ELAr3 and ETilel at 250 GeV.

Experiment 2 gave the following result (see Fig. 2):



RMS(Edm¢yye — Edmyet) = 7.24 GeV

Compared to the conventional method the use of NN 28B gives rather little
gain in precision:

Absolute gain = 0.31 GeV,
Relative gain = 4.1 %,

were ” Absolute gain” is RM S(Edmyyye—Edmeqre)—RMS(Edmiyye—Edmuet),
and "Relative gain” is 100% - (Abs.gain)/RM S(Edmrye — Edmeqc).

Results of these 2 experiments lead to the conclusion that among methods
using 2 variables (ELAr3, ETilel) as their arguments the conventional method
of Edmyyye reconstruction is a good one.

7 Exploration Strategy

To reach higher precision of Edmy.. reconstruction in comparison with the
conventional method, it is necessary to utilize additional information on hadron
showers of events. In the computational experiments described below we ap-
plied neural nets of various structures with ever growing dimension of NN
input vector. Input vectors were constructed as subsets of items from the
"Pool of variables” described above. Our strategy was like this:

1. First we perform detailed exploration of the problem at one fixed value
of beam energy (250 GeV).

2. Performing the first group of experiments we restricted ourselves to using
only data on 2 samplings — LArs and Tile;. From one experiment to
another we step by step added info on energy distribution among cells
of these 2 samplings.

3. Performing the second group of subsequent experiments we step by step
increased dimension of the NN input vector by adding info on energies
of other samplings.

4. In the third group of experiments we explored several NNs which use only
sampling energies which represent the longitudinal profile of a shower.

5. Finally the best NN versions were applied to events of some other beam
energies (10, 50 and 350 GeV ).

In total about 100 versions of NN procedures were tested in the present
exploration. A group of most informative NN versions is considered in the
current paper.



8 First group of experiments

Performing experiments of this group we restricted ourselves to using only data
on 2 samplings — LArs and Tile;. Apart from sampling energies ELAr3 and
ETilel we have at our disposal (ref. ”Pool of Variables for ANN construction”)
additional data which relates to cell energies distributions in LArg and T'ile;.

For convenience’ sake the cell energies data from the ”Pool” was grouped
into 3 sets (Levels).

Level 1. In total 8 items for NN input vector. Included are:

LArs cell energies info
e The largest 4 cell energies in LArg sampling for the current event.
Tile; cell energies info
e The largest 4 cell energies in Tile; sampling for the current event.
Level 2. In total 10 items for NN input vector Included are:

LArs cell energies info
e The largest 4 cell energies in LArs sampling for the current event.
e The number of cells in LArz with E.c; > 30n0ise, Ary for the current
event.

Tile; cell energies info
e The largest 4 cell energies in T'le; sampling for the current event.
e The number of cells in T'ile; with Egcyp > 30n0ise, Tile, for the current
event.

Level 3. In total 12 items for NN input vector Included are:

LArj cell energies info
e The largest 4 cell energies in LArg sampling for the current event.
e The number of cells in LArs with E.ey > 30n0ise, LArs for the current
event.
e Energy spread factor in LArg cell energies distribution for the current
event.

Tile; cell energies info
e The largest 4 cell energies in T'ile; sampling for the current event.
e The number of cells in T'ile; with E.cyp > 30n0ise, Tile, for the current
event.
e Energy spread factor in T'ile; cell energies distribution for the current
event.

Among results obtained in the 1-st group of experiments we present here
those obtained with NN 18, NN 19A and NN 29 networks.

10



8.1 NN 18 at 250 GeV

In the input vector of NN 18 the cell information is represented by the largest
4 cell energies in each sampling of the central pair (LArs and Tiley).

NN 18 structure: 10 — 20 — 20 — 1.

1. ELAr3,
NN 18 Inputs: 2. ETilel,
3 —10. Level 1 info on cell energies distribution.
Activation function: g(x) = tanh ().
Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2000 epochs.
NN 18 results (see Fig. 3):

[ DM LAr-Tile |
= — DMTruth - DMCaIc
F RMSC=7.53GeV oM oM
T RMS N =6.04 GeV — Truth ~ Net
10? =
- 250 GeV
NN 18
10
= Il
-40 -20 (o] 20 40 60
E, GeV

Figure 3: Distribution of Edm reconstruction error for NN 18 approximator
at 250 GeV.
RMS(Edm¢yye — Edmyet) = 6.04 GeV

Compared to the conventional method of Edmyye reconstruction NN 18 yields
the following gain in precision:

Absolute gain = 1.49 GeV,

Relative gain = 19.7%.
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8.2 NN 19A at 250 GeV

For NN 19A the input vector is further augmented by adding info on the
number of active cells in LArs and Tile; for the current event.

NN 19A structure: 12 — 24 — 20 — 1.

1. ELAr3,
NN 19A Inputs: 2. ETilel,
3 —12. Level 2 info on cell energies distribution.

Activation function: g(x) = tanh ().

Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2000 epochs.

NN 19A results (see Fig. 4):

[ DM LAr-Tile |
= - DMTruth - DMCaIc
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Figure 4: Distribution of Edm reconstruction error for NN 19A approximator
at 250 GeV.
RMS(Edm¢yye — Edmyet) = 6.00 GeV.

Compared to the conventional method of Edmy,e reconstruction NN 19A
yields the following gain in precision:

Absolute gain = 1.53 GeV,

Relative gain = 20.3%.
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8.3 NN 29 at 250 GeV

For NN 29 the input vector is further augmented by adding values of cell
energies spread factors (in LArs and Tiley) for the current event.

NN 29 structure: 14 — 28 — 20 — 1.

1. ELAr3,
NN 29 Inputs: 2. ETilel,
3 —14. Level 3 info on cell energies distribution.
Activation function: g(x) = tanh (x).
Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2500 epochs.
NN 29 results (see Fig. 5):

[ DM LAr-Tile |
= — - DMTruth - DMCaIc
- RMSC=7.53GeV oM oM
T RMS N =5.95 GeV — Truth Net
102 =
C 250 GeV
NN 29
10
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E, GeV

Figure 5: Distribution of Edm reconstruction error for NN 29 approximator
at 250 GeV.

RMS(Edm¢yye — Edmyet) = 5.95 GeV.

Compared to the conventional method of Edmye reconstruction NN 29 yields
the following gain in precision:

Absolute gain = 1.58 GeV,
Relative gain = 21.0%.

We shall see later that this 21.0% gain in precision is half the maximum
gain attained with the use of artificial neural networks in the course of the
present investigation.
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9 Second group of experiments

In the just considered first group of computational experiments the input vec-
tors were constructed of data retrieved from calorimeter response in 2 central
samplings (LArs and T'ile;). Now in the following series of 4 experiments the
input vector will be gradually augmented by adding energies of other sam-
plings of the ATLAS calorimeter. These 4 experiments were performed with
the use of NN 21, NN 20, NN 22 and NN 24 networks.

9.1 NN 21 at 250 GeV

The input vector of this network is augmented by ETile2 sampling energy.

NN 21 structure: 13 — 26 — 20 — 1.
ELAr3,
ETilel,

Level 2 info on cell energies distributions in LArs and Tileq,
ETile2.

NN 21 Inputs:

W=

Activation function: g(x) = tanh (x).
Files: NTRAIN = 19159 events, NT EST = 6000 events.
Training length — 2500 epochs.

NN 21 results (see Fig. 6):

[ DM LAr-Tile |
= — - DMTruth - DMCaIc
- RMSC = 7.53 GeV B =
| RMS N=5.78GeV Truth ~ Net
102 =
- 250 GeV
NN 21
10
il WL
40 60

A
o
U

N
o
o
N
o

E, GeVv

Figure 6: Distribution of Edm reconstruction error for NN 21 approximator
at 250 GeV.

RMS(Edmyrue — Edmyet) = 5.78 GeV.
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Compared to the conventional method of Edmy; reconstruction NN 21 yields
the follow-ing gain in precision:

Absolute gain = 1.75 GeV,

Relative gain = 23.2%.

9.2 NN 20 at 250 GeV

The input vector of this network is augmented by ELAr2 sampling energy.
NN 20 structure: 13 — 26 — 20 — 1.

1. ELAr3,
2. ETilel,

NN 20 Input: 3. Level 2 info on cell energies distributions in LArs and T'ileq,
4. ELAr2.

Activation function: g(z) = tanh (z).
Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2500 epochs.

NN 20 results (see Fig. 7):

[ DM LAr-Tile |
= - - DMTruth - DMCaIc
F  RMS C=7.53GeV oM oM
| RMS N =5.52 GeV - Truth ~ Net
10% -
C 250 GeV
NN 20
10
S | el 1l Nilin
-40 -20 0 20 40 60
E, GeV

Figure 7: Distribution of Edm reconstruction error for NN 20 approximator

at 250 GeV.

RMS(Edm¢yye — Edmyet) = 5.52 GeV.

Compared to the conventional method of Edmye reconstruction NN 20 yields
the following gain in precision:
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Absolute gain = 2.01 GeV,

Relative gain = 27.0%.

9.3 NN 22 at 250 GeV

The input vector of this network is augmented by ELAr2 and ETile2 sampling
energies. The input vector includes:

1. items on cell energies in LArs, Tile; samplings and

2. info on the central fragment of longitudinal profile in terms of 4 sampling
energies.

NN 22 structure: 14 — 26 — 20 — 1.

ELAr3,
ETilel,
Level 2 info on cell energies distributions in LArs and Tiley,
ELAr2.
ETile2.

NN 22 Inputs:

AR .

Activation function: g(z) = tanh (z).
Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2500 epochs.

NN 22 results (see Fig. 8):

[ DM LAr-Tile |
= = DMTruth - DMCaIc
F  RMS C=7.53GeV oM oM
[ RMS N =4.58 GeV — Truth ~ Net
10? =
- 250 GeV
NN 22
10
i e
-40 -20 0 20 40 60
E, GeV

Figure 8: Distribution of Edm reconstruction error for NN 22 approximator
at 250 GeV.
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RMS(Edm¢yye — Edmyet) = 4.58 GeV.

Compared to the conventional method of Edmye reconstruction NN 22 yields
the following gain in precision:

Absolute gain = 2.95 GeV,

Relative gain = 39.2%.

9.4 NN 24 at 250 GeV

Information on full longitudinal profile of a shower (in terms of 6 sampling
energies) together with cell information from LArs, T'ile; is used as input for
this neural network procedure.

NN 24 structure: 16 — 28 — 20 — 1.

1-3. ELArl, ELAr2, ELAr3,
4—-6. ETilel, ETile2, ETile3,
7 —16. Level 2 info on the cell energies distributions
in LArs and T'ile;.
Activation function: g(x) = tanh (z).
Files: NTRAIN = 19159 events, NTEST = 6000 events.
Training length — 2500 epochs.
NN 24 results (see Fig. 9):

NN 24 Inputs:

[ DM LAr-Tile |
=102 &= - DMTruth - DMCaIc
E  RMS C=7.53GeV oM OM
-~ RMS N = 4.25 GeV . Truth ~ Net
10% -
- 250 GeV
I NN 24
10
e, L i
-40 -20 0 20 40 60
E, GeV

Figure 9: Distribution of Edm reconstruction error for NN 24 approximator
at 250 GeV.
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RMS(Edm¢yye — Edmyet) = 4.25 GeV.

Compared to the conventional method of Edmy; reconstruction NN 24 yields
the following gain in precision:

Absolute gain = 3.28 GeV,
Relative gain = 43.6%.

10 Third group of experiments

In this group of experiments only sampling energies of LAr and Tile
calorimeters were used as components of NN input vector. We present here
results of 3 experiments realized with the use of NN 28B, NN 10 and NN 12

networks.

e NN 28B uses energies of 2 central samplings (ELAr3, ETilel) as its
input vector.

e NN 10 uses energies of 4 central samplings (ELAr2, ELAr3, ETilel,
ETile2).

e NN 12 uses full longitudinal profile of a hadronic shower in LAr and Tile
calorimeters as its input vector (6 sampling energies: ELArl, ELAr2,
ELAr3, ETilel, ETile2, ETile3).

10.1 NN 28B at 250 GeV

NN 28B uses energies of 2 central samplings (ELAr3, ETilel). This network
results were presented earlier in the section 6. We remind NN 28B results at
250 GeV:

Absolute gain = 0.31 GeV,

Relative gain = 4.1%.

10.2 NN 10 at 250 GeV

NN 10 structure: 4 — 10 — 10 — 1.
— 2. ELAr2, ELAr3,
3 —4. ETilel, ETile2.
Activation function: g(z) = (14 e=2%)~1,
Files: NTRAIN = 19159 events, NTEST = 6000 events.

Training length — 5000 epochs.
NN 10 results (see Fig. 10):

NN 10 Inputs:

18
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Figure 10: Distribution of Edm reconstruction error for NN 10 approximator
at 250 GeV.

RMS(Edm¢yye — Edmyet) = 4.94 GeV.

Compared to the conventional method of Edmye reconstruction NN 10 yields
the following gain in precision:

Absolute gain = 2.59 GeV,
Relative gain = 34.3%.

10.3 NN 12 at 250 GeV

NN 12 structure: 6 — 15 — 15 — 1.

1-3. ELArl, ELAr2, ELAr3,

4 6. ETilel, ETile2, ETile3.
Activation function: g(z) = (14 e=2%)~1,

Files: NTRAIN = 19159 events, NTEST = 6000 events.

Training length — 3000 epochs.
NN 12 results (see Fig. 11):

RMS(Edmtme — Edmnet) = 4.65 GeV.

NN 12 Inputs:

Compared to the conventional method of Edmy; reconstruction NN 10 yields
the following gain in precision:

Absolute gain = 2.85 GeV,
Relative gain = 37.8%.
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Figure 11: Distribution of Edm reconstruction error for NN 12 approximator
at 250 GeV.

11 Edm reconstruction for 10 GeV pions

The 20000 MC events were generated for 10 GeV pions. The conventional
method of Edmy,e reconstruction resulted into:

RMS(Edm¢yye — Edmeyie) = 1.12 GeV.

The precision attainable at 10 GeV with the use of neural networks is mani-
fested by NN 8 network.

11.1 NN 8 at 10 GeV
NN 8 structure: 11 — 11 — 11 — 1.

1-3. ELArl, ELAr2, ELAr3
4—-6. ETilel, ETile2, ETile3
7 —11. Partial info on the cell energies spectrum
in LArs and T'ileq:
1. Energies of 2 leading cells in LArs,
2. Number of active cells in LArs,
3. Number of active cells in T'ileq,
4. energy spread factor in T'ile;.

Activation function: g(z) = (14 e=2%)~1,
Files: NTRAIN = 14000 events, NTEST = 6000 events.

NN 8 Inputs:

20



Training length — 2000 epochs.
NN 8 results (see Fig. 12):

DM LAr-Tile |
~. — DMTruth - DMCaIc
10°
F RMSC=1.12 GeV
L RMS N=0.65GeVv DMy = DMyer
10% -
- 10 GeV
B NN 8
10
1 M
; (RN -
-6 6 8 10
E, GeV

Figure 12: Distribution of Edm reconstruction error for NN 8 approximator
at 10 GeV.

RMS (Edmy;ye — Edmpet) = 0.65 GeV.

Compared to the conventional method of Edmyqe reconstruction NN 8 yields
the following gain in precision:

Absolute gain = 0.47 GeV,

Relative gain = 42.0%.

11.2 NN 12 at 10 GeV

NN 12 structure: 6 — 11 — 11 — 1.

1-3. ELArl, ELAr2, ELAr3

4 —-6. ETilel, ETile2, ETile3
Activation function: g(x) = (1 + e~2%)71.

Files: NTRAIN = 14000 events, NT EST = 6000 events.
Training length — 2000 epochs.

NN 12 Inputs:

NN 12 results at 10 GeV (see Fig. 13):

RMS(Edm¢yye — Edmyet) = 0.70 GeV.
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Absolute gain = 0.42 GeV,
Relative gain = 37.5%.

[ DM LAr-Tile |
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10? =
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=
: 1N
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Figure 13: Distribution of Edm reconstruction error for NN 12 approximator
at 10 GeV.

12 Edm reconstruction for 50 (GeV pions

NN 12 at 50 GeV

The conventional procedure at 50 GeV has
RMS(Edm¢yye — Edmeaic) = 2.62 GeV.

NN 12 structure: 6 — 15 — 15 — 1.

1-3. ELArl, ELAr2, ELAr3

4 - 6. ETilel, ETile2, ETile3
Activation function: g(x) = (1 + e~2%)71.

Files: NTRAIN = 14000 events, NT EST = 6000 events.
Training length — 3000 epochs.

NN 12 Inputs:

NN 12 results at 50 GeV:
RMS(Edm¢yye — Edmyet) = 1.69 GeV.

Absolute gain = 0.93 GeV,
Relative gain = 35.5%.
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13 FEdm reconstruction for 350 GeV pions

NN 12 at 350 GeV
The conventional procedure at 350 GeV has

RMS(Edm¢yye — Edmeaic) = 9.50 GeV.

NN 12 structure: 6 — 15 — 15 — 1.

1-3. ELArl, ELAr2, ELAr3
4-6. ETilel, ETile2, ETile3
—1

NN 12 Inputs:

Activation function: g(x) = (1 + e2%)
Files: NTRAIN = 16154 events, NTEST = 6000 events.
Training length — 6000 epochs.

NN 12 results at 350 GeV:
RMS(Edm¢yye — Edmyet) = 5.59 GeV.
Absolute gain = 3.91 GeV,

Relative gain = 41.2%.

14 Summary

The computational experiments performed with MC events ( pions at 10, 50,
250 and 350 GeV, n = 0.25, ¢ = 0.) allowed to estimate precision of different
procedures for reconstruction of energy losses in the dead material between

barrel LAr and Tile calorimeters.
For 250 GeV the results may be summarized as follows:

1. In a general class of procedures that use LArs and Tile; sampling ener-
gies as their arguments the conventional method of Fdm reconstruction
proved good precision. Its RMS in (Edmyyye — Edmeeny) distribution
is only slightly (~ 4%) greater than corresponding RMS of the neural

network procedure with the same 2 inputs.

2. At 250 GeV RMS in (Edmyyye — Edmeony) distribution amounts to 7.53

GeV (3% of the beam energy).

3. It was shown that application of neural network procedures for Edm
reconstruction may substantially reduce RMS of (Edmyrye — Edmye.)

distribution.
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. Among Edm reconstruction procedures which use as their arguments

2 central sampling energies (ELAr3, ETilel) together with data on cell
energies distributions in LArs and Tile; the lowest RMS attained is 5.95
GeV. Compared to the conventional procedure the attained reduction of
RMS amounts to 21%.

. A level of 4.25 GeV in RMS may be reached by the neural network

procedure which uses full longitudinal profile of a hadronic shower in LAr
and Tile calorimeters together with data on cell energies distributions in
LArs and Tile;. Compared to the conventional procedure the RMS of
the neural network procedure is 43% less.

. The use of only a central fragment (4 samplings) of longitudinal pro-

file data of a hadronic shower in LAr and Tile calorimeters (sampling
energies in LAry, LArs, Tiley, Tiley) allows to reach the RMS at a
level of 4.95 GeV. Compared to the conventional procedure the attained
reduction of RMS amounts to 34%.

Procedures that use only full longitudinal profile of a hadronic shower in
LAr and Tile calorimeters (6 sampling energies without cells info) may
reach the RMS at a level of 4.65 GeV. Compared to the conventional
procedure the attained reduction of RMS amounts to 38%.

Results for other beam energies may be summarized as follows:

8

10

For the conventional procedure of Edm reconstruction at 10 GeV the
RMS value of (Edmyrye — Edmeony) distribution amounts to 1.12 GeV
(11.2% of the beam energy).

At 10 GeV a level of 0.65 GeV for RMS in (Edmyye — Edmpe) dis-
tribution may be reached by a neural network procedure which uses
full longitudinal profile of a hadronic shower in LAr and Tile calorime-
ters together with data on cell energies distributions in LArs and T'ile;.
Compared to the conventional procedure the RMS of the neural network
procedure is 42% less.

In a wide range of beam energies (10, 50, 250 and 350 GeV) neural
network procedures which use only full longitudinal profile of a hadronic
shower as their inputs reveal 35 — 41% reduction in Edm reconstruction
error in comparison with the conventional procedure.
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15 Conclusion

The computational experiments performed with MC events for CTB04 setup
showed that application of ANN technique for reconstruction of energy losses
in dead materials between barrel LAr and Tile calorimeters allows one to reach
40% reduction of the energy reconstruction error compared to the conventional
procedure used in the ATLAS collaboration.

Contrary to initial expectations it was found that the use of information
on longitudinal profile of a hadronic shower brings greater improvement in
DM energy reconstruction accuracy than the use of cell energies information
in LArg and Tile; samplings.

Application of ANN technique for evaluation of energy losses in dead ma-
terials between barrel LAr and Tile calorimeters should increase the accuracy
of pion energy reconstruction in the ATLAS calorimeter.
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