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Abstract— This paper is aim at realizing control for sys-
tems described by Klein-Gordon-Maxwell (K-G-M) equation.
Theoretic approach will be formulated in the framework of
variational theory. On the other hand, computational insight
using semi-discrete numerical algorithm is consist of finite
element method. Lastly, numerical experiments are evident the
completely combination of theoretic and computation aspects.

I. INTRODUCTION
A. Physics background

Using the Klein-Gordon-Maxwell electrodynamics,
Schrodinger demonstrated that charged particles may be
described by real fields. The rationale are considered for
the Klein-Gordon-Maxwell electrodynamics, where the
sets of solutions with real-valued electron-positron fields.
Schrodinger considered interacting scalar charged field
and electromagnetic field, and the Klein-Gordon-Maxwell
equations of motion (cf. [3], [7], [16]).

B. Problem description

As is well known that the Klein-Gordon-Maxwell equa-
tions is extensively studied using numerous methodologies.
Such as assigned electromagnetic fields in [1], [2] and [6],
the interacting with an electromagnetic fields see references
[41, [5], [81, [9], [10], [11] and [13]. Literatures survey show
some formulations of K-G-M equation for physics consider-
ation. For example, here is the most common description:
D,D'¢ = c*¢,0"F,, = 1I(¢>D—M¢), where ¢ is light
speed, ¢ € C represents a f)article field and F, is the
electromagnetic field tensor, and 7 is the imaginary part.
For control problem, a new description will be adopted.

Let €2 be an open bounded set of R2. Set Q = (0,7) x .
The Klein-Gordon-Maxwell systems is described by

_wzz + €2¢2¢ = —ew¢2 + u,
B+ (M2 — (A e)2p= [P 2P+, (D)
¥(0) = o, ¢(0) = ¢,

where 1,¢ : R® — R. Here m > 0 and e > 0 are
the mass and the charge of the particle respectively, while
w > 0 denotes the phase, and % is the Planck’s constant.
The variables of the system are the field ¥, ¢ associated
to the particle and the electric potential. Here in (1), u
and v are control inputs, and it’s meaningful to make the
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assumption m > w > 0 and 2 < p < 6 for infinitely
many radially symmetric solutions having bounded energy.
The presence of the nonlinear term simulates the interaction
between particles or external nonlinear perturbations. In [8]
the regularity are v € H'(R?),¢ € DV2(R?), where
D'2(R?) is the completion of C§°(R? R) with respect to

1/2
the norm of [|¢||p1.> = (fR3 |V¢\2dm)
more common regularity is considered in our case.

This work is to explore the control problem for Klein-
Gordon-Maxwell equations using control theory based on
variational approach (cf. [15]). Furthermore, the computa-
tional issue is involved for one-dimensional case. The new
theoretical contribution of the paper will concrete on attempt-
ing of two-particles control and its numerical realization.

The contents of this paper is consist of several sections.
Section 1II is to establish the theoretic control theory for
Klein-Gordon-Maxwell system. Section III will explore the
numerical study of K-G-M equations using finite element
approximate. In section IV, the laboratory simulation is
carried out for interpreting the established control theory.
Section V give concluding remark and future work.

. However the

II. CONTROL THEORY For K-G-M SYSTEMS
A. Weak solution

Define two Hilbert spaces H = L?(Q2) and V = H}(Q)
with usual norm and inner products. Then the pairing (V, H)
is a Gelfand triple space, V < H — V', their embedding
are continuous, dense and compact.

Definition 2.1: The Hilbert space W(0,T) is solution
space defined by

w(o,7) = {(6,6) | & € L*(0,T; V), 4/ € L*(0,T; V"),

¢ € L*(0,T;V), ¢ € L*(0,T; v')}.
Definition 2.2: Let T > 0, the pairing (1, ¢) are weak
solutions of (1) when 1, ¢ € W(0,T) satisfy

T
//[1/}907790 +€2¢2¢77] dxdt
0JQ

T T
= —// ewd®n da:dt—{—// un dxdt
0/ 00 (2)

= /0 /Q Bapa + [m? — (w0 + ev)?]gp dudt

T T
:// [¥|P~2p da:dt—’r//vp dxdt
0J/Q 0JQ

for all n,p € C*(0,T;V) and such that n(T) = p(T) =0
ae. te€[0,T]




Theorem 2.3: Given g,¢9 € V, then there exists a
unique weak solution of system (1).

The proof of Theorem 2.3 can be completed referring to
Faedo-Galerkin method in [12].

B. Control problem

Let u = (u,v), and U is control space of variables u,v €
U. The optimal criteria associated with (1) is given by

J(w= [[9(u, T) = zallt + l¢(u, T) = 23117 + (0, w)u, 3)

for all u € Uyq X Uaq, Where 21,22 € V are desired values
of ¢¥(u) and ¢(u), respectively. Let U,q be a closed and
convex subset of U/, which called the admissible set.

Suppose U = L?*(0,T), then Theorem 2.3 deduce that
there exists a unique weak solution ¥(u), ¢(u) € W(0,7)
for any u € U. Furthermore, by the analogs manipulation as
in [15] and [12] to prove Theorem 2.4 and 2.5.

Theorem 2.4: Let ¥y, ¢9 € V. If U,4 is bounded, then
there exists at least one optimal control u* = (u*,v*) for
cost (3) subject to systems (1).

Theorem 2.5: The optimal control u* for cost (3) is char-
acterized by optimality system consisting of state equation
(1), adjoint equation (4) and necessary condition (5):

~Pez + €207 (W )p

= 2w+ ep(u)]p(u*)g +uo in Q,

_%qgca: =+ [(m2 - (w + 6'()[1(11*))2](]

= 2w + ey (u)]p(u)p + [p(u*)[P2g + v in Q, 4)
p(T) = 1/)(U*7T) - Zé in (Oal)

¢(T) = p(u*,T) — z§ in (0,1).

p,q € W(0,T).

(u*,u—u*)u—i—(v*,v—v*)u—i—/ p(u)(u —u") dadt
Q

+/ q(u*)(v — v*)dzdt > 0 Yu = (u,v) € U2, %)

Q
The highlighted point in this section is attempting firstly to
seek theoretic control conclusions of quantum optimal con-
trol for two particles system described by KGM equations.

ITII. NUMERICAL STUDY

A. Numerical solution

Let0=2¢p <1 <+ <zny < xn+1 = [ be a partition
of the interval [0,!] into subintervals I, = [z._1,z) of
length h® = z, — Te—1,e = 1,2,---, N -+ 1. Let V}, be
a set of functions b¢ for ¢ = 1,2,3. ¢ = 1,2,---,N + 1)
such that b§ is quadratic function on each interval I, and
continuous on [0,1]. Then it’s clear that V;, ¢ H3(0,1)(cf.
[18]). The b§ € V4, is given by

= (1) 2o
bg(x) = 4(a:h—ea:e) (1 -z ;e%>7
b (z) — — (x ;exe) (1 3 2(:1:’;3 we))

Its interpolation properties see [17]. The total approximate
solution can be represented as

elzl

ZZ(@ H)bs(z) € V.

e=1¢=1

N

tm:ZZt;v Zde )b (z) € Vi,
N
2 4l

Thus by (2) to find ¢}, and ¢f, satisfy

3

Zee b, bS,) + e (Zcebe) >, b)

=1

=—wﬁ§¥ﬁ#ﬁﬂ+§]%@v

i=1
3

3
%Zg ELbE) H [mE = (wte > € debf,bj
=1

1

3
=l Zefbﬂf’*?,b;) + (0, 55).
=1

=1

\ (6)
with > €8 (5¢, %) ¢O,ZC6 b%,b%) = o and
=1

3

Z £)(bS,b%) = ¢ Set

((bis)) = (65,6911 55 € M3><3(R)

((di)) = (Vb5 Vbe)f 3% € Maxa(R),
651, 650, E5(0)]* € Mua (R),
(1), G (1), G5 ()] € Mzxa(R),

[
(151,1127113) € M3x1(R), where

= (Zg‘f ) £o(be,b9), 7 =1,2,3.
N]( ) = (n117n12an13) € M3><1(R)7 where
3
oty = (- weo ), =123
i=1

Ue(t) = [(u(t), b ) (u(t), b3), (u(t), b5)]" € Max1(R),
L5(t) = (151,150, 153) € M3X1(R) where

B =
De =
“(
(
(

—

o~

e
e
Ll

e N

)=
)=
)=

15, = (m? w+eZ§ )bf,bj)j=1,2,3.

N3(t) = (n;l,nzz,n23) E M3y1(R), where

s~ (I &P 205). G- 1,28
i=1
X¢ = (%0, b5), (0, b5), (100, b5)] € Max1(R).

Ve(t) has the same structure with U¢(¢) just instead of u(t)
with v(¢). Y has the same structure with X§ just replace the
¥ with ¢o. The continuity of ££(¢), (f(¢) on [0, T] implies
that €5(t) = €51(8), G5(6) = G0 (6) for e = 1,2,...,N.



Let’s introduce the following matrixes and vectors.

Hence B has same structure as D with b;; instead of d;.

a1 & ] G T o]
& & G2 5
&3 &(=¢€7) (3 3(=¢)
&4 & Ca 5
e dace | o ¢ L aCe
§an—1 3 i=¢) Con—1 =)
& N Con &
Ean1 & [Cont1] | N
Ly 1 W] [ [ w ]
L} i Us uj
L} Uy +1% Us uj + u
L% Z%Q Uy “%
L= Ly || B+, U= Us |= u3 + ul
LNt 1y Usnor| |ud ! 4+ uff
L%N l{\g UQN Uév
23 I G S [Uznsr] | udf

Hence Ly has same structure as Ly with L% instead of L{
and [3; instead of [{;. V has same structure as U with V;
instead of U; and vj instead of uj. The matrix Ny, No have
the same configures with Lq, Lo, just their components is
composed of Ny, NS, respectively.

[ X&l 1 i Y011 1
Xo2 Yo
X03(: Xo1) Yols(: Y021)
.6 Y
X3(= X3) X33(= Y§)
Xo= 03 01 , Y= 03 01
Xoz~ (= Yol Yoy (= YeY)
P V3
Xo3 i Yis i

Hence Xy has same structure as Yo with X¢; instead of Y.
Then by (6), the overall equation in the vector form can be
expressed as

DE+ L1(E,X) =N, + U,

A

EDE-I—Lz(E,E) =Ny +V, @)
£(0) = Xo, £(0) = Y.

[di, di,  dis
dy dyy  di
dy diy diz+di 0
d2
21
D= d%,
0 d "t dd, 4y, dN,
d% d% d%,
L d31 d32 d33 _

As in [17], applying Gauss-Legendre integrate method to
the components of g;, divide the element interval [z, Zc 1]

into m = 6 points to obtain the abscissas p§,p5, -, p5,
on [Te,Tet1] and weights 71,79, +, 7. Thus S1,So are
approximated by the new function Sy, Sq, respectively. By
introducing
' D 0 -
Li(5,%) N

M= h , L= = , N= .

( 0 —D ) ( LQ(:’E) ) ( N2 >

m
[ E (U _{ E(0)
2= (5)0=(v) 2= (50)

with initial 3(0) = [Xo, Yp)’. Since the inverse of M is
exists, then (7) implies that

X =M!(-L+N+U). (8)

with initial guess 3(0). Therefore, the first order ODE (8)
can be solved using the 4th order Runge-Kutta method
(cf.[18]). Using &f and ¢£(i = 1,2, 3) to obtain the numerical
solution on domain [0, 7] x (0,1). The convergency of the
approach refer to [17].

B. Numerical control solution

Let up, = (up,v) be the approximate control of u =
(u,v). The formulation of finite element approximation is
by minimizing the approximate cost functions,

{ l
Jn = J(up) :/0 (n(T) — 23)%de + /0 (n(T) - 22)%da

T T
+/ (up, — u?)?dt +/ (v, — vH)2dt. (9)
0 0

Theorem 3.1: The existence theorem of optimal control in
[14] implies that there exists at least a minimizer to the finite
element problems (9).

Denote the Gateaux derivative of J; at any point up,
and given direction @, € V; by J}i(up)@n. The Gateaux
derivative for solution vy, at any direction @, € V}, denotes
as oy @y, satisfying (2). The discrete adjoint system and
necessary optimality condition (5) for u* = (uj,v}) €
Uaa X Ugq can be obtained easily.

Theorem 3.2: Let {u*} be a sequence of minimizer to
finite element problems (9). Then each subsequence of {u”}
has a sub-subsequence convergence in L?(0,1) minimizer of
the continuous problems (9).

C. Computational procedure

Suppose uf (t)= (uf(t),vE(t)) is available at iteration k,

u, = {uf},k = 1,2,--- are minimize sequence of {u}}
such that the cost function (9) achieve minimization.

Step 1 For given z¢ = (2}, 22) = and u(0) € U2,, using

construct approximate solution ¥y (z,t), ¢p(z, 1) to
solve the directly problems for state equation for 4.
Let P*(t) := — v J(u(0)); k := 0.

Step 2 Compute the search step size 3% such that

Jn(uf 4 BFuf) = min{J,(uf, + Buf); 8 > 0}



1
Given 0 < £ < -~ and 0 < 7 < 1. Let p° = 1, for
m=0,1,2,-- do, If

Tn(uy, = p" P) < Jn(uf) — €p™ Ty (uf)?,

then B" = p™; else p™t1 = 7p™.

Step 3uf Tt := uk 4 B* P*. The convergence of iteration
procedure in minimizing Jj, is guaranteed in [[4].

Step 4 The stopping criterion ¢ is a small specified num-
ber. If Jn(uf™) < e, then stop (uf™ is the
solution).

Step 5 Compute the gradient of J} (¢) to obtain J; (uf)ey,
for all pp € V},.

Step 6 Compute the updated conjugate coefficients

T ’
E_ €1 fO (Jhk)2dt

= T ,  with 4 =0.
E2 fOT(Jh(k 1))2dt

Using €1, &5 to get proper v*.

Step 7 Compute the directions of descent P¥(t) :=
JE(t) ++FP*Y(t). k := k 4 1; return to step
2, and so on.

D. Convergence of nonlinear algorithm

The convergency proof can be given as in [17], hence
Jr(uyp) can be minimized by sequence {uf}. Let uy, denotes
the solution of discrete problem such that up, — u*. It’s
clearly that uj, towards to u* in the order of O(h) as h — 0.

IV. LABORATORY EXPERIMENTS

Let Q = (0,1), to = 0.0,7 = 1.0,h = 5 and take € =
0.02 in Step 4 of part C in Section III. The desired state 2} =
255 sin(w(x — 0.5)) and 23 = 0.5sin(37z). Take
initial functions ¥(0)=e" 75 )" sin(w(z — 0.5)), $(0) =
sin(3wz). Set the physics constants m = 9.10938188 x
10731, w =9.10938188 x 10732, p = 5, ¢ = 1.602176462 x
107%° and h = 1.0545715964207855 x 10734, Let ¢; =
0.05,¢co = 0.5 x 107%, and experiment control inputs as
ciu and cov. The initial and desired states are shown in
Figures 1-2. The start controls functions wug(t) = 1 +
2sin(25t),vo(t) = 1 + 2cos(Zt), the desired controls
ur(t) = 1+ 0.0001sin(35t), vp(t) = 1 + 0.0002 cos(Zxt).
See Figures 3-4.

Initial state ¢(0) and desired state ¢(T)
0.00L A~ ~

Initial state ¢(0) and desired state ¥(TI)

Start Control u(0) and Desired Control u(T) Start Control v(l)
N

2

and Desired Control w(T)

2 1.5

=

4 0.2 0.4 0.6 0.8
Fig.3 u(0),u(T) Fig.d v(0),v(T)

Contour plots of solution at some iterations see Figures 5-16.
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Fig. 5 Contour plot of ¥
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Fig. 8 Contour plot of ¢
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Fig. 7 Contour plot of ¥
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Fig. 9 Contour plot of ¥
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Fig. 10 Contour plot of ¢
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Fig. 11 Contour plot of ¢
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Fig. 13 Contour plot of ¢

Fig. 15 Contour plot of ¢  Fig. 16 Contour plot of ¢
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Remark 4.1: The Maxwell equation express the electro-
magnetic phenomena, and the KG equation changes its state
from wave phenomena to electromagnetic phenomena in
control iterations.

The vector plots of electromagnetic field for Maxwell equa-
tions in first and last iterations are shown in Figures 17-18.
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Fig. 17 4 in first step

Fig. 18 4 in last step

Optimal control functions obtained as

u*=0.999933 + 0.000199858 cos(5mt)
+0.00128123 sin(57t);

v*=0.95173 — 0.822073 cos(7t)
+0.00021738 sin(7xt).

Optimal control graphics of two systems in Figures 19-20.

Fig. 19 Optimal control «*

Fig. 20 Optimal control v*

Controls functions iteration are listed in Figures 21-22.

Control Function I

Fig. 21 Controls iteration »* Fig. 22 Control iterations v

Optimal cost function value calculated as:

The cost functions is shown in Figure 23.

terations u(n)

J(u*) = 0.461625.

Control Function

Iterations v(n

k

Cost Function Iterations

Zfve
1.8 "'.
.

1.6 *e,

*s,

*
1.4 .
‘e,
1.2 *o,
*e
e
*o,

10 20 = 40
0.8 ey
0.6l oee

Fig. 23 Cost iterations J(u")

For u = (u,v), the cost iterations are calculated in below.
J(1) = 2.00002; J(2) = 1.97408;  J(3) = 1.85106;
J(4) = 1.76527;  J(5) = 1.69754;  J(6) = 1.64626;
J(7) = 1.60478; J(8)=1.5686;  J(9) = 1.53517;
J(10) = 1.50280; J(11) = 1.47076; J(12) = 1.43814;
J(13) = 1.40472; J(14) = 1.37041; J(15) = 1.33534;
J(16) = 1.20977; J(17) = 1.26400; J(18) = 1.22832;
J(19) = 1.19209; J(20) = 1.15818;  J(21) = 1.12405;
J(22) = 1.00067; J(23) = 1.05811; J(24) = 1.0264;
J(25) = 0.965562; J(26) = 0.965562; J(27) = 0.936434;
J(28) = 0.908152; J(29) = 0.880701; J(30) = 0.854062;
J(31) = 0.828218; J(32) = 0.803147; J(33) = 0.778828;
J(34) = 0.755241; J(35) = 0.732365 J(36) = 0.71018;
J(37) = 0.688665; J(38) = 0.66780; J(39) = 0.647567;
J(40) = 0.627946; J(41) = 0.608919; J(42) = 0.590469;
J(43) = 0.572577; J(44) = 0.555227; J(45) = 0.538402;
J(46) = 0.522088; J(47) = 0.506267; J(48) = 0.490926;
J(49) = 0.47605; J(50) = 0.461625.



Error estimates for cost functions at each listed as follows.

elll]= ——; el[2]= 0.0259364;  eJ[3]= 0.123026;

el[4]= 0.0857827; el[5]= 0.0677341; eJ[6]= 0.0512748;
el[7]= 0.0414829; el[8]= 0.0361784; eJ[9] = 0.0334364;
el[10]= 0.322785; el[11]= 0.321319; eJ[12]= 0.0326146;
el[13]= 0.0334246; eJ[14]= 0.0343081; eJ[L5] = 0.0770371.
el[16]= 0.0355712; el[17]= 0.0357717; eJ[18]= 0.035678;

eI[19]= 0.035336; eJ[20]= 0.0348034; eJ[21] = 0.034135;
el[22]= 0.0333758; el[23]= 0.03256;  eJ[24]= 0.0317124;
el[25]= 0.0299864; eJ[26]= 0.0299864; eJ[27]= 0.0291284;
eJ[28]= 0.0282821; eJ[29]= 0.0274512; eJ[30]= 0.0266382;
el[31]= 0.0258446; eJ[32]= 0.0250713; eJ[33]= 0.0243187;
el[34]= 0.0235868; J[35]= 0.0228758; eJ[36]= 0.0221854;
el[37]= 0.021515;  eJ[38]= 0.0208645; eJ[39]= 0.0202333;
eJ[40]= 0.0196209; el[41]= 0.0190269; eJ[42]= 0.0184507;
eJ[43]= 0.0178919; eJ[44]= 0.0173499; eJ[45]= 0.0168243;
el[46]= 0.0163146; eJ[47]= 0.0158203; eJ[48]= 0.015341;
el[49]= 0.0148762; eJ[50]= 0.0144254.

Let n; represents the left hand of necessary condition (5) at
ith iteration, then
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