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1. Introduction

Supersym m etry playsa crucialrole in eld theories, supergravities and String/M theory. In
at spacetin e supersym m etry is characterized by the presence of odd spinor charges that

together w ith the generators of the Poincare group form the target space Super Poincare
group .

Stringsw ith the space-tin e supersym m etry are described by the G reen-Schw arz action
EI]. T he ferm jonic com ponents of the string are realized by spinorial elds in target space.
T he associated particle m odel (superparticle), that was introduced before E, E] has, fora
particular value of the two coe cients of the lJagrangian, ie., for the param eters of N am bu—
G oto and W essZum ino pieces, a ferm ionic gauge sym m etry called kappa sym m etry [E] E].
T he covariant quantization of thism odel is an unsolved issue.

T here is an altemative to the G S string known as spinning string, or N eveu-Schw arz—
R am ond string ]1 ,thathasworld "line" supersym m etry. T he ferm ionic com ponents of the
string are described by odd vector elds in target space. A truncation of this theory known
as G SO proEction ﬂ ]produces a spectrum that is spacetin e supersym m etric invariant.

T he corresponding particle m odel (spinning particle) was introduced in refs. [E,E, 1.
T he quantization of this m odel reproduces the four din ensionalD irac equation.

In this paper we w ill consider an odd vector extension of the Poincare group, to be
called the Vector Super Poincare group G, rst formulated in [E]. This symm etry was

! form ulated prior to the G S string
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introduced w ith the ain of obtaining a pseudo—<classical description of the D irac equation.
However this result was obtained by using a constraint breaking the symm etry itself. In
this paper we want to take full advantage of this new symm etry. W e will show that the
m assive spinning particle action of reference ] can be obtained by applying the m ethod
of non-linear realizations ] to this group. However, trying to preserve the target space
supersym m etry under quantization we will obtain two copies of the 4d D irac equation.
On the other hand, breaking the rigid supersymm etry by a suitable constraint on the
G rassn ann variables we w ill recover the 4d D irac equation of ,E, @].

T he lJagrangian w ill contain a D iracN am bu-G oto piece and two W essZum ino temm s.
By construction the action is invariant under rigid vector supersym m etry. For particular
values of the coe cients of the lagrangian, the m odel has world line gauge supersym m etry
which is analogous to the ferm ionic kappa sym m etry of the superparticle case. W hen we
require world-line supersym m etry the m odelhasbosonic BPS con gurations that preserve
1/5 of the vector supersymm etry. The BPS con gurations in ply second order equations
ofm otion.

T he organization ofthe paper isas follow s: In section 2 wew ill ntroduce the space-tim e
vector supersymm etry. In section 3 we w ill construct the m assive spinning particle action
using them ethod of non-linear realizations. Section 4 isdevoted to the canonical form aliam .
In section 5 we w ill quantize the m odel in term s of the unconstrained variables. In section
6 we w ill quantize the m odel in the C 1i ord representation. Section 7 w ill be devoted to
classical BPS con gurations and nally in section 8 we w ill give som e conclusions.

2. Space-tim e Vector Supersym m etry

Let us consider the Poincare algebra? w ith generators P ;M extended w ith odd graded
generators, supertranslations, belonging to a pseudoscalar (G s) and a pseudovector (G )
representation of the Lorentz group and two central charges Z and Z'. T hey satisfy

M ;M J]= i M i M +1 M +1i M (21)
M ;P ]=1i P i P ; M ;G ]1=1 G i G ; (2.2)
G G ) = Z; GsiGsk =775 (2.3)

G iGsk = P : (24)

W e rst consider a coset of the vector Super Poincare group, G =0 (3;1)° vector of super—
symm etry , and param eterize the group elem ent as

. . 5 . . .
g= eJP X elG5 elG elZCelzG: (25)

5

X ; and are the superspace coordinates and ¢ and e are coordinates associated to

the profctive representations of G . This is analogous to the ordinary case of the N=2

*W e consider a four din ensional space-tim e w ith m etric diag = ( 7+ + +):

N ote that the algebra of vector supersym m etry is a subalgebra of the N= 2 topological supersym m etry
algebra in four din ensions. T he topological algebra contains also an odd self dual tensor generator, see for
exam ple @] and the references there.
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Super Poincare group w ith central charges. N otice that we assum e the odd generators G
and G 5 anticom m ute w ith the G rassm ann coset param eters and °. Tt follow s that the
representation of the group is unitary if these generators are anti-hem itian.
TheM C l-form associated to this coset is
= igldg=P dx i d> +Gsd’>+G d +

i i 55
+ Z dc =d + 72 de =d : (2.6)
2 2
From thiswe get the even di erential 1-form s

i i
L,=dx i d°; Lz=dc+5d;L=de+E5d5 2.7)

and

i
5 _ 5; GZE 55: (2.10)

T hese vector supersym m etry transform ations are generated by G and G ° respectively and
were rstdiscussed in [E]. T he transform ations generated by P ;7 ;7" are the In nitesim al
translations of the coordinates x ;c and e,

X =a ; c= g ; e= ,: (211)

The vector elds generating the previous transform ations are

@ @ i @ @
X = 4 —4+i5— T =, x&- i - I5°
@ @x 2 Q@c @> 2 Qe
@ @ @
XxF = i—; Xg= i—; X,.= i—: 212
l@x ’ g l@c' z l@e ( )
T he algebra of these vector elds’ is
X®;x€) = Xz; K§XEL= Xp; KEXZL=XxF: (2.13)

W ith the Lorentz generators X M , these vector elds give a realization of the Vector Super
Poincare algebra’ The representations of this algebra will be studied in their general

aspects in ].

4Remember@L and @@;5 are herm itian and X ¢ and X ° are antihem itian.

T he reason for the overall sign di erence from the starting algebra is that now the generators are active
operators.
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3. M assive Spinning Particle Lagrangian

In this section we w ill study how to construct the m assive spinning particle action from
a non-linear realization ] of the Vector Super Poincare group G . T he relevant coset is
G /0 (3) de ned by the little group of a m assive particle O (3) as the unbroken (stability)
group of the coset. W e w rite the elam ents of the coset as

g=q U; U=e"ou"; (3.1)
where g, is the same as in )
P x _iGs ° _iG i7 c_iZe

g, = € e e e” “e (3.2)

and U representsa nite Lorentz boost w ith param eters v*.
TheM aurer< artan 1-form is now

= igldg=Uu?! LU U ‘du; L ig, ' day, : (3.3)

U sing the com m utation relations of the Lorentz generators w ith the foursrectors P and
G (24)we nd

ulpu=rp v); ulcu=c¢ v); (34)
w here (v) isa nite Lorentz boost
cosh v isihv q
= . , i Y ; v (wvh)2: (3.5)
Sy, i+ H(coshv 1)
It follow s
5 i, 1 i
=P L,+G L +GsL”+ 2Ly + ZL, + M oiLy + EMijL"; (3.6)
w here
L, = (V)L L = (V)L (3.7)

and the 1-form s L 's are given in (@) and @). L\i, and Lij are given by

. ) . . vVt sinhv
Ly = dv +dv’ 5 5 1
A% v
I dvivl  dvivt
LY = —Z(coshv 1): (3.8)
v

T he invariant action for the particle isa sum of them anifest O (3) invariant one fomm s.

By taking the pullback, the (G odstone) super-coordinates becom e finctions of the pa-

ram eter that param eterizes the worldline of the particle, see for exam ple [14]. T he action
is Z Z

Sk( ) ( )v()]= Ly Lz L, = 1Ld; (3.9)
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where * m eans pullloack on theworld Ineand ; and arerealconstantsto be identi ed
w ith the m ass and the central charges, m ;2 and Z° respectively. T he action is invariant
under global Vector Super Poincare transform ations. In addition it is invariant under a
Jocal supersym m etry transform ation if the param eters satisfy

= 2 (3.10)

In this paper we w ill study the case in which this condition is satis ed. If we use the
explicit form of the nite Lorentz boost (E) the action is
Z .
.sinhv

Sk( ) ( )v( )= Llcoshv LivieV—— L Ly : (311)
\4

T he explicit form of the local supersym m etry transform ation is

O~ _—cshv °(); *= ——sinhv °(); °= °() (312)
v
and

x =i °(); c= 2 ; c= 515 (); ¢ = 0: (3.13)

Now wew ill see how one elin fnates the boost param eters v from the theory. T his can
be done by using their equations of m otion

S OVi_ . ;-sihhv v sinh v
— =0=L"—sihhv L7 Y + —— coshv (3.14)
W v v 2 v
By solving this equation we get
4 —
vt L (L7)? L0
— = = sinhv = G coshv = S e (3.15)
M (L7)2 Lo)2 (L7) (LO)2  (LI)
where L is the pulltback of the Ly
L =x i -s: (3.16)
U sing them in ()weget
7 r !
2 i i
Sk(); ()= d x i 2 ct = — et = 02
2 2
(3.17)
T he local super transform ation for the action () is
b
= =20 = 20 (3.18)

where p is the mom entum conjigate to x whereas the transform ations for the other
variables rem ain the sam e as in (8.13). Note that this transform ation is analogous to the
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kappa sym m etry transform ation of the m assive superparticle action [E]. In the literature
it is known as gauge world-line supersym m etry.

T he action ) coincides w ith the action origihally proposed in [E] afterwem ake a
suitable rescaling of the coordinates

0 p_—. 0 p_ . . 0
= JJ 7 > = 5; = i o e= e (3.19)

C orrespondingly the local super transform ation becom es

i IS
=00 0 Cer = POy (3.20)
w here the param eter has also been rescaled as =

4. Canonical Form alism

T he canonicalm om entum conjigate to x de ned by the lagrangian B9) is

QL
p =— = O (v): (41)
@x

2

0 (v) isa tin e-lke vector, them om entum veri es them ass—she]lconstrajntp2+ =

Since
0. T herefore the param eter is denti ed w ith them ass of the particle and the lagrangian
(3.9) can be written in the rst order form as

2

L°=p x 1 =) > 2

e+ %) (42)

1
S -
where e is a lagrange m ultiplier (einbein). In the lagrangian we have om itted ¢ and &
term s since they are total dervatives. By elin nating p ’s and e using their equations of
m otion, the lJagrangian goes back to the covariant one in eJ. ) .

Let us study the constraints and symm etries of L¢ . T he canonicalm om enta arede ned
by using keft derivatives as the G rasan ann variables are concemed,

QL® (chi QLC
"= =p; = = 0; © = = 0;
P @x P v @p P e
@'LC i @'LC i
- = = 5= = Z°+ip (4.3)
@— 2 @=2 2
A 1l of them give rise to prin ary constraints
*=p° p =0; P=1p”=0; =1p°=0;
_ i, I - 0: (44)
> 7 5 5 > P :
T he Ham iltonian, H g L,is
H = 4+ Py o %+ + % s+ -+ ?); (4.5)
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's are D irac m ultipliers. U sing the graded Poisson brackets fp;gg = 1 we

where the
study the stability of the constraints. W e get the follow ing secondary constraint
1
SE =0 (4.6)
and 1
P=0;  Te=ep+i = ~p (4.7)

2. The secondary constraint (@) is

where we have used the condition (B.10),
preserved in tim e

—= 0; (4.8)
P = 0 are second class constraints and

= 0 are used to elim nate

X _

and it does not generate further constraints.
are used to elin inate p* and p" : T he second class constraints
. The D irac bracket for the ram aining variables are

i
fp jx g = i £ g== ; fs;i’g= 1 (49)
and the H am iltonian becom es
_ e 5 e, & 2 2 5 is . .
H= ¢ " +te + 5= ep+2(p+ )+ (s > p ) (4.10)
The constraints ©; and s appearing here are the rst class constraints. In particular

21
: (4.11)

we have )
. i
fsisg=1 -—-pp =

s generates the local kappa variation corresponding to (3.13),

. p 2i
x =1 () = =20 =70 e= =270 (412)
under w hich the lJagrangian transform s as
d 1
I°= — 2= %) 413
3 2(p ) () ( )
T he global vector supersym m etry transform ations are
x =1 5, = ; = 5; (4.14)
and again the lagrangian changes by a total derivative
d i i
If = — = —_— (415)
d 2 2
T he generators of the global supersym m etries are
G = + 51 +ip =1 +1ip °;
is
G5 = 5+ E (4.16)
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T hey satisfy
fG ;G g = i ; fG ;Gsg = ip; £fGs;Gsg = 1 : (4.17)
At the quantum levelwe have
G G =+ i G iGslk =+p; GsiGsl =+ (4.18)

This is a canonical realization of the starting algebra @.J3) and €4) with the central
charges®
(4.19)

5. Quantization in R educed Space

In this section we discuss the quantization of this system in termm s of the unconstrained

variables. Let us see the classical form of the canonical action in the reduced space. T he

starting point is the canonical Jagrangian L® de ned in eg. (@). It is locally supersym —

m etric and it is invariant under reparam etrization in . These two local symm etries are

generated by the rstclass constraints s= 0 (44) and = 0in (44) respectively. W e
x these gauge freedom by In posing the conditions

"= ; > = 0: (51)

The rstclassconstraints = 5= 0 becom e second class and are solved forpy and s as
[ S

Po = e+ ?; 5= 1p (52)

0O ther second class constraints are also used to reduce the variables leaving x*;p; and
as the independent variables . T he non—rivialD irac brackets w ith respect to all these new
second class constraints are

fpi;xilg = ;£ - (53)
pllg 17 lg

T he canonical form of the Jagrangian ) in the reduced space’ becom es

LS = m + px _ (54)
Now we quantize the m odel. T he basic canonical (anti-)com m utators are

khpil=iY; [ k= = (55)

It is possible to show (see ref. [EJ) that the representations of the Vector Super Poincare algebra are

characterized , besides them om entum square and the Paulil.ubanskiinvariant, by the quantity 41/ # Z" jand
by the signs of Z and Z".
"An analogous discussion for the lagrangian of spinning particle of EJ was done in reference 1.
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N ote that the sign degree of freedom of pp must be taken into account in the quantum
theory. T he ham ilttonian for the lagrangian @) is an operator

Py = : ! pZ+ 2; (5.6)

taking eigenvalues ! on the positive and negative energy eigenstates. T he Schrodinger
equation becom es

@ (x; )=Po (x; ); = ; (5.7)

where , and are positive and negative energy states. Now we look for a realization
of . Since they satisfy the anticom m utators in ) and must comm ute w ith all the
bosonic variables, In particular w ith the energy Py in ). W e can realize them in tem s
of 8-din ensionalgam m a m atrices

r r
5

~ 1
B 2

2 s i (5.8)

0 0
wherethe and ° aretheordinary 4-com ponent gamm am atrices in 4-din ensions. where

is an 8 com ponent wave function and , and are four din ensional spinors associ-
ated to positive and negative energy states. W e rew rite the Schrodinger equation In a
m ore fam iliar form usihg a unitary transform ation, an inverse Foldy-W houthuysen (FW )
transform ation,

@ ~= Pt - UqU3 UgUoUs -
1 4
i Us4U5 UqU2U;
(59)
where and ' areusualD irac m atrices and
0 1, 1
B 1, G i? o i
S = % : % ’ U3+ = © 3 I U3 = © : 3 7
1, et 2 2 el 27 2
1, .
0 1
B 1 8 elTl 3 e172 2
U4=% 1 A7 U, = 61713 7 U, = e1722 7
1
P e P —
2 o2 2
tan 1=&; tan 2=M; tan 3 = P (5.10)
b1 B3
M ultiplying by = on the equation ),we get
%ip ~= (Y iR+ ) (511)
w here
1= j‘,‘ 2: 1, = : (5.12)
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) is the 8-com ponents D irac equation reducible into two 4-com ponents D irac equations

with mass ,

( (1 )+ )x )= “(x )= 0: (513)

6. Quantization in C 1i ord R epresentation

In this section the system is quantized in a covariant m anner by requiring the rst class
constraints to hold on the physical states. T he D irac brackets are replaced by the follow ing
graded-com m utators,

Pixl= 1 ; [ ; L= = ; [s5;°k= 1 (61)

T he odd variables de ne a C1i ord algebra. T his is better seen by introducing a new set
of variables w ith appropriate nom alization. W e de ne
r _ r _ .
P 5.y 2 s, 62 4 2 5+§l5: (62)

5 i
= ; = i — —

> 2
T he reason to Introduce the i’s is that them om entum 5 is antihem itian at the pseudo-
classical level and in this way all the dynam icalvariables are real, ( #) = 2.
The ?’sde neaClord algebra C ¢,

[2; P =208, 2B = (4454545 ) (BB = 0;1;2;3;5;6): (63)

T hese variables can be denti ed as a particular com bination of the elem ents of another
Ce¢ algebra having w ithin its generators the  ’s isom orphic to the D rac m atrices already
used In eg. (B.§). Thisalgebra isde ned by the ©llow Ing elem ents

0 S >0 ¢ 0 1
- ; = ; - ; 6.4
0 0 S 1 0 ©4)
satisfying
[2; PL=2%"; PP =(+; ; ; ;+; ) (65)

O f course, both C 1i ord algebras have the sam e autom orphisn group SO (4;2). They are
related In the ollow ng way

< M0 A=0512:35
Y A =5; (6.6)
1i°°%  A=6:

Let us start considering the C ¢ generated by the 2 ’s. The unitarity of the represen—
tation In term s of 2’s requires an extra m easure, , In the inner product,
Z Z
< jo>= d*x Y(x) (x) d'x (x) (x): (6.7)
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In the quantization process we are going to require that the operators in the m atrix basis
satisfy, w ith respect to the metric , the sam e reality property as In the classical case.
W e nd that the follow Ing operator satisfy our requirem ent

_ 1086, vy_ . 2_1q, (6.8)
in fact
—A
(*y = % (69)
Tn term s of ® we have also
= 06, (6.10)

T he expressions for the generators of vector SUSY transform ations (4.14) are cbtained
by inverting the relations (@)

r__
i 5 6 5 1 5 6
= - = + ; = — : 611
5= 5 2( )i 192—( ) ( )
We nd
. 5 i 5 6
G =1 +1p = P P ( )
_ .t s .6
= 19? p@ 1i°) (6.12)
and r __ r __
Gs= s+i=°>=1i = °= - > 8 6.13
5 st 15 3 > ( )
T he generators have the follow Ing conjugation properties
G = G ; Gs= Gs: (6.14)

In analogous way we get the expression for the odd rst class constraint

.5 . i 5 i 5
5= 5 1~ P =19—2 P =19—2 (® + ) (6.15)

T he requiram ent that the rstclass constraint s holdson the physical states is equivalent
to require the D irac equation on an 8-dim ensional spinor

(P + ) = 0: (6.16)
T he other rst class constraint (@), = %(p2 + 2) = 0, is then autom atically satis ed
since,
12 s 5 )
= 3 D =0; wih D (p + ) (6.17)

At the pseudo—classical level the st class constraints are Invariant under the supersym -
m etry transform ation. At the quantum level this is re ected by the follow ing properties

G ;D] = Gs;D] = 0: (6.18)
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From these relations we can de ne the corresponding symm etry transform ations on the
wave finction ifwe can construct a m atrix, callit E , anticom m uting w ith all the dynam ical
variables, 2 ’s. In this case we have

EG ;D]= EGs;D]=0 (6.19)

and the transfomm ations generated by EG and E G5 leave Invariant the action of the
theory 7

d'x D : (6.20)
T he corresponding unitary transform ations (w ith respect to themetric ) are
ei 5EG5; ei EG ; (6.21)

where 5 and are even param eters de ning the transform ations®. The operator E can
be easily constructed since our Cli ord algebra is de ned In a even dim ensional space.
T herefore,

E = 7:i012356: 01236:i57; 7i012356; (622)

anti-comm utes w ith all ? ’s. O ne coud ask if it is possible to recover the result of ref. E 1,
that is a D frac equation in a 4-din ensional spinor space. T his was indeed done in ref. ]
where it was in posed a further constraint

s+ i— °= 0: (6.23)

In thisway the quantization can bedone by using only a C 5 algebra which can be realized in
a 4-dim ensional space. N ote that ifwe In pose this condition the supersym m etry generator
G 5 vanishes dentically. T herefore one looses the rigid supersym m etry although the local

one rem ains.

7.BPS Con gurations

Herewew illconsider the BP S equations for them assive spinning particle. T he correspond—
ing bosonic supersym m etric con gurations appear only when the lJagrangians have a gauge
world-line supersym m etry.

T he lJagrangian of the m assive spinning particle @) has a gauge sym m etry when the
param eters ; ; verify the condition ),

= 7 (71)

Now we look for supersym m etric bosonic con gurations. For consistency we look for trans-
form ations of the ferm ionic variables not changing their initial value that is supposed to

®NotethatEGs = EGs; EG = EG
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vanish

_ 5 _ 5 5.
0= ferm fons= 0 + 4
_ o0 _ 0o 5
0= o onee 0 cosh v
i
- . v
. 5
0= * . = ' ——shhv °: (72)
ferm ions= 0 v

T he previous equations have a non—rivial solution if
v = constant: (7.3)

T hen,allthe param eters can be expressed in term sofan independentglobal supersym m etry
param eter, 5,as
, i
= % O —coshv ; - —Zshhv °: (74)
v
Equation ) is the BP S equation of thism odel. Iffwe w rite this expression in term s of

spacetin e coordinates, using the solutions (3.19) of 3.14), we get

p&:}g = constant: (7.5)
In Ham iltonian term s this in plies that the m om entum is constant. Note that this BPS
equation in plies the second order equations ofm otion of a free relativistic particle. T here-
fore the BPS con gurations (IE) preserve 1/5 of the supersymm etry. Notice that the
fraction of preserved supersymm etry is di erent from the ordinary (spinor realization of)
Super Poincare group as, for exam ple, in the case of the superparticle.

8. D iscussions

In this paper we use the rigid space-tin e vector supersym m etry to construct the action of
the m assive spinning particle from the non-linear realization m ethod.

For particular values of the coe cients of the lagrangian, the m odel has world line
gauge supersymm etry which is the analogous of the ferm ionic kappa symm etry of the
superparticle case. By quantizing the m odel in such a way to respect the rigid supersym —
metry,we nd two decoupled 4d D irac equations w ith the sam em ass. T he supersym m etry
transform ations at quantum levelm ix the two 4d D irac equations.

At classical levelwe nd BPS con gurations that preserve 1/5 of the supersym m etry.
The BPS eguations in ply second order equations of m otion.

In a future work] we will study the representations of the Vec’%)r Super Poincare

algebra which, in the m assive case, are characterized by the quantity # Z'jand by the
signs of Z and Z'. Them assless spinning particle w ill be also considered.

Two interesting questions are: the possible physical role of the space+in e vector su—
persym m etry in quantum eld theories and the relation of this approach w ith the one based
on space-tin e spinorial supersym m etry.
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N ote added A fter this paper was put on the archive. M . P lyushchay has inform ed
of a previous work ] which has som e overlap with our work. In particular about the
constraints analysis of the m odel we have considered and the non-equivalence am ong the
m odels of references [f1and [{1.
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