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Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also
at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-
dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration
for Kontsevich’s solution of the long-standing problem of quantization of Poisson geometry by virtue of
his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the
topolocial sector. We show that non-commutative effectiveactions still make sense when associativity is
lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative
expansion. The measure in general curved backgrounds is naturally provided by the Born–Infeld action and
reduces to the symplectic measure in the topological limit,but remains non-singular even for degenerate
Poisson structures. Analogous superspace deformations byRR–fields are also discussed.

Contribution to the proceedings of the BW2007 Workshop ”Challenges Beyond the Standard Model”,
September 2-9, 2007, Kladovo, Serbia

1 Introduction

The non-commutative product of deformation quantization [1, 2] can be derived from string theory in a
topological limit where the space-time metric is small as compared to the anti-symmetric B-field (the
ancestor of the Poisson bi-vector) [3–5]. The non-commutative product thus amounts to a summation
of the leading B-field contributions to the effective action. In the non-symplectic case this interpretation
is spoiled, however, by the absence of a canonical measure. From the string theory point of view, on
the other hand, associativity is lost for generic backgrounds [6], but the Born-Infeld action provides a
canonical measure [4, 7]. We show that the concept of effective actions does not require associativity,
but rather a generalized Connes–Flato–Sternheimer condition called cyclicity [8, 9], i.e. commutativity
and associativity up to surface terms [10]. Cyclicity implies, however, a compatibility condition between
the star product and the measure [9], which for Born-Infeld turns out to be equivalent to the generalized
Maxwell equation for the gauge field on the D-brane [7,10]. In[10] we found that cyclicity also requires a
gauge modification of the Kontsevich product at second derivative order in a derivative expansion and we
discussed the D-brane physics related to these mathematical structures.

In section 2 of this note we review some aspects of deformation quantization and formality in simple
terms by illustrating the emergence of Hochschild cocycles, Gerstenhaber brackets and gauge transforma-
tions accompanying diffeomorphisms in derviative expansions. In section 3 we discuss the stringy origin
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of these structures and their interpretation in terms of effective actions, which requires the existence of a
measure and a generalized Connes–Flato–Sternheimerproperty. While associativity is restricted to Poisson
geometry, string theory naturally introduces the Born–Infeld measure and keeps cyclicity, at least through
second derivative order, independently of associativity and without a topological limit. We observe that
the results found in [10] straightforwardly extend to non-constant dilaton backgrounds. In section 5 we
discuss the Berkovits string in general RR backgrounds and the resulting deformation of superspace. In
section 6 we conclude with a discussion of open problems and work to be done.

2 Deformation quantization, Kontsevich product and formality

The idea of deformation quantization is to emulate the operator product of quantum mechanics by an
associative productf?gof phase space functionsf;g 2 C 1 (M )with

f?g = fg+
i

2
~ff;ggP B + O (~2) ) lim

~! 0

f?g� g?f

i~
= ff;ggP B ; (2.1)

where the Poisson bracket can be written for arbitrary phasespace coordinatesx� as a bi-derivation
ff;ggP B = � ��(x)@�f@�g in terms of a bi-vector field�2 � 2TM .

2.1 Polyvectors and the Schouten–Nijenhuis bracket

ElementsX 2 ��TM of the exterior algebra over the tangent spaceTM are called polyvector fields and
there is a bilinear operation, the Schouthen–Nijenhuis (SN) bracket

[X
(p)
;Y

(q)
]2 �

p+ q�1
TM for X

(p) 2 �
p
TM and Y

(q) 2 �
q
TM ; (2.2)

that extends the Lie bracket of vector fields to a graded bi-derivation of degree� 1 on T 2 ��TM . The
Jacobi identity of the Poisson bracket is equivalent to the vanishing of the SN bracket[�;�],

e

X
fff;ggP B ;hgP B = 0 , [�;�]= 0 with [�;�]

���
=
2

3
e

X
�
��
@��

��
: (2.3)

Lie derivatives in the direction of� 2 TM can also be written in terms of the SN bracketL�X = [�;X ]

for all polyvector fieldsX 2 ��TM .

2.2 Moyal product and Kontsevich graphs

In case of constant�, and hence in particular locally for Darboux coordinates, deformation quantization
can be achieved by the Moyal product

(f?g)(x)= exp
�
i

2
~� ��@y� @z�

�
f(y)g(z)

y = z = x

(2.4)

After a general change of coordinates in phase space�will not stay constant, which motivates the consid-
eration of deformation quantization for general�. For the symplectic casedet� 6= 0 the existence of a star
product has been shown by De Wilde and Lecompte [11] and the first construction is due to Fedosov [12].
Some details and a historical assessment with references can be found in the review [2]. For the case of
a general Poisson structure�, which by definition obeys[�;�]= 0, the construction of an associative
product is due to Kontsevich [1] and will now be discussed in more detail. Associativity of this product
is, in fact, a corollary of the formality theorem, which establishes a quasi-isomorphism ofL1 algebras.
The formality mapU maps polyvector fieldsTi to polydifferential operatorsU (T1;:::;Tn)=

P

�
w�D �

and is constructed in terms of graphs�and coefficientsw � . The coefficientsw� are defined by convergent
integrals inspired by open string Feynman diagrams (cf. section 3) with functions inserted on the real line
and polyvector fields in the upper half plane as illustrated in fig. 2.1, where the derivatives of the bidiffer-
ential operators correspond to the arrows pointing atf andg. The first two graphs fig. 2.1a give the order
� and� 2 terms of the Moyal product, while fig. 2.1b yields first derivative corrections for non-constant
�. The latter will be worked out explicitly below. The preciserelation of Kontsevich’s construction to
correlation functions of topological sigma models is due toCattaneo and Felder [5].
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Fig. 2.1 Kontsevich graphs for a) Moyal-type contributions and b) derivative corrections, respectively.

2.3 Hochschild cohomology, Gerstenhaber bracket, and the formality theorem

Rather than giving abstract definitions of the involved mathematical structures we now illustrate how they
automatically show up in simple calculations. We ignore fora moment the relation (2.1) to Poisson brackets
and consider a general deformation of the product

f?g = fg+ ~B 1(f;g)+ O (~2) with B 1(f;g)= B
��
f�g�; f� � @x� f; (2.5)

where derivatives of functions are abbreviated by subscripts. TheO (~)contribution to the associator,

f?(g?h)� (f?g)?h = ~

�

fB 1(g;h)� B 1(fg;h)+ B 1(f;gh)� B 1(f;g)h

�

+ O (~2); (2.6)

has exactly the form of a Hochschild coboundary [1]

(�C )(f0;:::;fp)= f0C (f1;:::;fp)� C (f0f1;:::;fp)+ C (f0;f1f2;:::;fp)� ::: (2.7)

There are, however, equivalences of the resulting deformedassociative algebras due to invertible maps
f ! D f with differential operators

D = 1+ ~(D
�

1
@� + D

��

1
@�@� + :::)+ ~

2
(D

�

2
@� + :::)+ ::: (2.8)

that respect the unit elementD 1 = 1. They lead to the following modification of the star product,

f ! D f ) f?
0
g = D (D

�1
f ? D

�1
g) (2.9)

and henceB 0
1(f;g)� B 1(f;g)= � fD 1(g)+ D 1(fg)� D 1(f)g;at order~, which is again a Hochschild

coboundary. For the special caseD 1 = D
��

1
@�@� this implies the gauge equivalenceB 0

1(f;g)� B 1(f;g)=

D
��

1
f�g� so that for the first order bidifferential operatorB 1(f;g)= B

��

1
f�g� of eq. (2.5) the symmetric

part ofB ��

1
can be gauged away withD ��

1
= B

(��)

1
. With the choiceB ��

1
= i

2
� �� we thus recover (2.1).

Returning to the Kontsevich graphs fig. 2.1 we now want to workout the derivative corrections that are
needed for associativity at order~2. For this purpose we define the Moyal part

[f?g]� fg+ i~
2
� ��f�g� �

~
2

8
� ��� ��f��g�� � ::: (2.10)

of a productf ?g as the result of dropping all terms with derivatives acting on �. Then

f?g = [f?g]� ~
2
�
��
@��

��
(a[f�� ?g�]+ b[f� ?g��])+ O

�
@
2
�

(2.11)

whereO
�
@2
�

only counts derivatives acting on� and the coefficients! � of the two graphs in fig. 2.1b
area andb, respectively. Instead of determining these coefficients from integrals over� in the upper half
plane we determine them by imposing associativity. The firstderivative order part off?(g?h)is

� ~2X ���
h

af�� ?(g?h)�+ bf� ?(g?h)��+
1

4
f� ?(g� ?h�)+ af?g�� ?h� + bf?g� ?h��)

i

(2.12)

with X ��� = � ��@��
�� , and theO (@)contributions to(f?g)?h are

� ~2X ���
�
a(f?g)�� ?h�+ b(f?g)� ?h���

1

4
(f� ?g�)?h� + af�� ?g� ?h + bf� ?g�� ?h)

�
(2.13)

so thatf ?(g?h)�(f ?g)?h = ~
2[f� � g� � h�]

�

(a� 1

4
)X ���+(a�b)X ��� � (b+ 1

4
)X ���

�

:Associativity

implies that the coefficient of[f� � g� � h�]vanishes. Using the antisymmetry of�we first observe thatX
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Fig. 2.2 Dressings of a) Lie derivative, b) Poisson bracket and c) associator, respectively.

cannot be totally antisymmetric. Thus symmetrization in��, �� and�� impliesb= 2a� 1

4
, a = 2b+ 1

4

anda+ b= 0, respectively. The unique solution isa = � b= 1

12
. Hence

f ? (g ? h)� (f ? g)?h = �
1

6
~
2
[f� � g� � h�]

e

X

���

�
��
@��

��
+ O (@2) (2.14)

so that[�;�]= 0 is a necessary condition for the existence of an associativedeformation. The Kontsevich
product through second derivative order (setting~ = 1)

f?g = [f?g]�
1

12
�
�
@�

��
�
f�� ?g� + f�?g��

�
+

1

24
@��

��
@��

��
[f� ?g�]

+
i

48
�
�
@�

��
@��

��
[f��?g��� f��?g��]�

i

48
�
�
�
��
@@��

��
�
f���?g�� f� ?g���

�

+
1

2

1

122
(�

�
@�

��
)(�

��
@��

��
)
�
f����?g��+ 2f���?g���+ f�� ?g����

�
+ O (@3) (2.15)

has been determined in [10] using the known coefficient1

24
of the gauge term and symmetry under com-

plex conjugation combined with the exchange off andg. Note that each term in (2.15) comprises the
contributions of an infinite number of graphs with Moyal-type additions to the classical part of?, since this
formula holds to all orders in the undifferentiated�’s.

The Gerstenhaber bracket of polydifferential operatorsPi is the commutator[P1;P2]with respect to an
appropriate definition of the compositionP1 � P2 of degree� 1. For bidifferential operators the bracket
thus yields a tridifferential operator, and in the special caseP1 = P2 = ? the bracket becomes proportional
to the associator1

2
[?;?](f;g;h)= f?(g?h)� (f?g)?h. The formality map can be regarded as a dressing, or

quantization, of polyderivationsTi 2 ��TM to higher order polydifferential operatorsPi. The formality
theorem ensures that this map is anL1 quasi-isomorphism where the (homotopy) Lie algebra structures
are related to the SN bracket and the Gerstenhaber bracket, respectively.

The cases of vector fields�, Poisson tensors�and rank three tensorsJ 2 � 3TM shown in fig. 2.2 are
of particular interest. The quantization of�yields the star product (2.15). Since the SN bracket is mapped
to the Gerstenhaber bracket,J = [�;�]as well as its quantization vanish in the case of a Poisson structure
[�;�]= 0. Since[?;?]is the associator this establishes associativity of the Kontsevich product (compare
fig. 2.2c to our result (2.14) at leading order~

2).
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Fig. 2.3 Sample graphs for dressed coordinate transformations through second derivative order.

For vector fields� the classical term is the Lie derivative, which amounts to a change of coordinates.
Its quantization yields an equivalence transformationD � of the form (2.9) so that the Kontsevich prod-
uct transforms covariantly under changes of coordinates only up to gauge equivalence. For infinitesimal
transformations

@t(f?tg)= D �f?g+ f?D �g� D �(f?g) with _x
�
= �

�
: (2.16)

In fig. 2.3 we enumerate the graphs that contribute to infinitesimal transformations (i.e. linear in�) through
second derivative order in�. Note that the additional lines corresponding to derivatives acting on� andf
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can lead to different tensor structure, as indicated by coefficientsA;:::;P for the terms with two deriva-
tives on�’s, plus an infinite number of additional Moyal-type contributions. Through first derivative order

D � = �
�
@� +

1

24
�
�
���

��
@��

��
@�@� + O (@2): (2.17)

At second derivative order the graphs define differential operatorsD � containing (non-Moyal) terms with
up to five derivatives,D �f = ��f� + :::+ P ����@��

��@��
�� ��@��

�"f���"but many coefficients
may be zero.

3 Open strings, Born–Infeld electrodynamics and non-commutativity

In order to relate the Kontsevich product (2.15) to string theory we start with the Polyakov action for closed
strings moving in a curved background with2-form fieldB . In conformal gauge

SP =
1

2��0

Z

�

d
2
z@X

� �@X
�
�

g��(X )+ B ��(X )

�

; (3.1)

whereX � :� �! M maps the closed world sheet� to the target manifoldM . Note that this action is
invariant under the gauge transformation�� B = d�.

When we consider open strings, we have to introduce world sheets with boundaries and specify a hy-
persurface inM , i.e. a D-brane, to which the end points of open strings are mapped. In the following
we will only consider space-filling branes. By Stokes’ theorem, (3.1) is not gauge invariant anymore,R

�
X ��� B =

R

@�
X ��, and we have to introduce a compensator fieldA at the boundary, which turns out

to be aU (1)gauge field with field strengthF = dA . The associated action,

SA =

Z

@�

X
�
A =

Z

@�

dt@tX
�
A �(X )=

Z

�

X
�
F; (3.2)

then restores gauge invariance of (3.1) by setting��;� A = � 1

2��0�+ d�.
As a consequence of gauge symmetry the effective action depends on the fieldsA andB only through

the gauge invariant quantitiesF = B + 2��0F andH = dB = dF . For slowly varying fieldsF andg the
effective theory on the D-brane is Born–Infeld electrodynamics [13] governed by

SB I =

Z

M

d
D
x

q

det(g�� + F�� ): (3.3)

Let us have a closer look at the quantization of (3.1) and (3.2) on the upper half plane, conformally equiv-
alent to the disk. We split the embedding map into fluctuations around a constant mode,X �(z;�z) =

x� + ��(z;�z), and organize the perturbative quantization in terms of a derivative expansion in the back-
ground fields. Moreover, we regard the metricg(x)and the curvatureF (x)as a classical background in
order to ensure conformal invariance.

The variation of the action requires the mixed Dirichlet–Neumann boundary condition

g��@tX
� � F��@nX

�
�
�
@�

= 0; (3.4)

which leads to the following propagator for fluctuations at the boundary (�;�02 @�):

h��(�)��(�0)i= �
1

2�

n

G
��
(x)lnj� � �

0j2 + i��
��
(x)�(� � �

0
)

o

; (3.5)

where we introducedG (��)+ � [��]:= (g�� + F��)
�1 and the sign function�(�)= �=j�j.

In the limit wheng�� vanishes (withF�� kept finite) [4], the actionSP + SA is topological. Only the
second part in (3.5) survives, and the non-commutative product on the D-brane world volume becomes
apparent. For constant backgrounds it is the Moyal product.For varying backgrounds we notice, however,
that the Einstein equations for the background fields requireH = dF = 0 in the topological limit [14], i.e.
F is a symplectic form with Poisson structure� = F �1 . The resulting non-commutative product is then
the associative product (2.15) due to Kontsevich [1].
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4 Associativity, cyclic invariance and effective actions

From the string theory point of view, the assumption of�(x)being a Poisson structure is not natural.
The only condition on the background fields should come from conformal invariance, or equivalently the
classical equations of motion. Therefore, it is preferableto define the non-commutative product without
taking the topological limit. It is clear that the first term in the propagator (3.5) should play a secondary rôle
in this definition, which suggests to consider two (off-shell) vertex operators at a distance�0� � = 1 [7],
i.e.

f(x)� g(x):=
1

p
jg+ F j

Z

D � e
�S[X = x+ �]

f(X (0))g(X (1)): (4.1)

The Born–Infeld measure in the prefactor is cancelled by (world sheet)1-loop diagrams. At higher deriva-
tive orders of the background fields the measure gets corrected [15].

Let us comment on some properties of this product.
� An immediate consequence of giving up on�(x)being Poisson is theloss of associativity, so that a

sum over different configurations of brackets will appear inopen string scattering amplitudes and in
the effective action. In the topological limit, the non-commutative product (4.1) becomes the Kontse-
vich product, up to gauge equivalence,D (f ? g)= D f � D g, so that associativity is restored.

� As was argued in [10], the variational principle for the low-energy effective theory requires that the
non-commutative product iscyclic, i.e.

Z

M


f � g =

Z

M


f � g and
Z

M


(f � g)� h =

Z

M


f � (g� h); (4.2)

where
 is a measure, which requires@ �(
�
��)= 0:From a string theory point of view the measure


 is the Born–Infeld measure that appeared in (3.3), i.e.
 =
p
jg+ F j, and cyclicity follows from

the generalized Maxwell equation associated with the Born–Infeld action (3.3):

@�(
p
jg+ F j� ��

)= 0 ( ) G
��
D �F�� �

1

2
�
��
H ��

�F�� = 0: (4.3)

This is in line with the assumption of a classical background, which ensures conformal invariance
and, in particular, cyclic invariance of disk amplitudes. Notice that if we include the dilaton� in the
background, the measure is modified toe��

p
jg+ F j.

For Poisson structures the second condition in (4.2) follows from associativity, and the first is due
to Connes–Flato–Sternheimer [16]. In fact, for any volume form 
 subject to@ �(
�

��)= 0 there
exists a star-product that satisfies cyclic invariance (4.2) [9]. However, in contrast to the physical
context above, there is no canonical measure for Poisson structures.

� In [7] an explicit computation of the product (4.1) was givento first derivative order,@�, in the
background field, but to all orders in�. In [10] it was shown that the cyclic invariance (4.2) uniquely
fixes the non-commutative product to second derivative order, with the result

f � g = f?g�
1

24
�
��
�
��
@�@�(log
)f� g�: (4.4)

The first contribution is the same expression (2.15) as the Kontsevich product but without the Poisson
constraint on�and the second is a gauge term that is needed to ensure cyclic invariance.

If we want to use the non-commutative product (4.1) to compute string S-matrix elements we have to
impose on-shell conditions not only on the background fieldsbut also on the vertex operator insertions. In
the present context the vertex operators are functions,f(X ), and thus the on-shell condition is the one for
an open string tachyonT(x)

� T =
1



@�
�

G

��
@�T

�
= �

1

�0
T: (4.5)

This fixes the kinetic term for the low-energy effective action. The result is

S = �
1

2g2o

Z

M




n

G
��
@�T @�T �

1

�0
T
2 �

r
8

9�0
T (T � T)

o

; (4.6)

where the cubic tachyon interaction was found in [17] by computing3-point amplitudes.
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5 Superstrings and non-anticommutative superspace

The superstring in Green-Schwarz (GS) related formulations is an embedding of a string in superspace.
It thus appears natural that, in addition to non-commutativity of space-time coordinates, there should be
a mechanism that deforms the anticommutation of the fermionic superspace coordinates. Indeed such a
mechanism exists. Independently of string theory, specialcases of non-anticommuting supercoordinates
were already considered by van Nieuwenhuizen and others in [18] (N = 1

2
SUSY, see [19]). A more

general ansatz was presented in [20]. After indications in [21,22] that similar structures originate from the
superstring, this could eventually be shown in [23] for a string in four dimensions (with six dimensions
compactified on a Calabi-Yau) and was generalized in [24] to ten dimensions. In both cases a constant
RR-field-strength was considered and turned out to be responsible for the nonanticommutativity of the
supercoordinates. The calculations where performed in different versions of the covariant superstring
[25–27]. This non-(anti)commutativity can again be implemented via a star product, now on superspace
(see [28] and references therein). For non-constant background fields (but in the topological limit), this
corresponds to a graded generalization of Kontsevich’s associative star product. A derivation from a�-
model with super-targetspace along the lines of Cattaneo and Felder [5] was presented in [29]. The effect
of a constant RR-potential (not field strength) on the deformation of the bosonic space was already studied
in [31]. In the following we sketch how non-anticommutativity of superspace arises from the Berkovits
pure spinor superstring [24].

Although we will consider an open string with type I supersymmetry, we want to couple it to the type
II bulk fields (see e.g. [31]). In particular the RR-fields belong to the bulk and will take over the role of the
B-field in the fermionic case. It is therefore necessary to embed the string into a type II superspace with
coordinatesxM = (xm ;��;�̂�̂). In this section Greek letters will be reserved for fermionic indices while
bosonic indices are denoted by Latin letters. In conformal gauge, the GS action in flat background reads

SG S �
R
d2z 1

2
� a
z�ab�

b
�z + LW Z (conformal gauge)

LW Z � � 1

2
� a
z

�

�a
�@� � �̂a �@�̂

�

+ 1

2
(�a@�)(̂�a

�@�̂)� (z $ �z); (5.1)

where� a
z=�z

are the supersymmetric momenta. They can be described as thepullback of the bosonic part
of the supervielbein

E
A � dxM EM

A at
=

�

�
a

z }| {

dxa + d�a� + d̂�a�̂ ;d�� ;d�̂�̂
�

(5.2)

to the worldsheet. Letters from the beginning of the alphabet shall denote “flat indices” (with respect to
the local frame), while letters from the end of the alphabet will denote “curved indices”. This distinction is
more relevant for the curved background to be discussed later. As usual,a�� denotes the off-diagonal chiral
block of the 10-dimensional Dirac gamma matrix�a, in a representation where it is real and symmetric
(i.e. graded antisymmetric) in the indices� and�.

The Wess-Zumino termLW Z is responsible for the existence of a local fermionic symmetry, the�-
symmetry. Indeed, the theory contains a number of fermionicconstraintsdz� , d̂�z� . Only half of each set,
however, is first class and the constraint algebra is therefore not closed:

fdz�(�);dz�(�
0
)g / 2

a
��� za�(� � �

0
): (5.3)

Being a spinor in an irreducible representation,dz� cannot covariantly be separated into first and second
class and thus does not allow covariant quantization. A longstruggle to overcome this problem resulted in
the invention of the pure spinor string [27,30] as an alternative formalism.

Berkovits’ pure spinor formalism has two basic ingredients. The first is a free action of the form

Sfree =
R
d2z 1

2
@xm �m n

�@xn + �@��pz� + @�̂�̂ p̂�z�̂

=
R
d2z 1

2
� a
z�ab�

b
�z + LW Z + �@��dz� + @�̂�̂ d̂�z�̂; (5.4)

wherepz� , p̂�z� are independent variables anddz� � pz� � (a�)�
�
@xa � 1

2
�a@� � 1

2
�̂a@�̂

�
and

its hatted counterpart have the same algebra as the constraints of the GS-string. In addition, this action
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coincides classically with the GS-action fordz� = d̂�z�̂ = 0. The second basic ingredient are the BRST
operators

Q =
H

dz��dz�; Q̂ =
H

d�z �̂�̂ d̂�z�̂; (5.5)

which implement in some sense the constraintsdz� = d̂�z�̂ = 0 cohomologically. �� and �̂�̂ are
ghost fields of even parity. Containing also second class constraints, the above BRST operators fail
to be nilpotent in general. This can be repaired by constraining the ghost fields to be so-called pure
spinors, obeying�a� = �̂a�̂ = 0:Like the fermionic coordinates, the ghost fields should be left
and right-moving respectively and one thus adds the corresponding ghost term to the free action (5.4):
Sps = Sfree+

R
d2z �@��!z� + @�̂�̂!�z�̂ + Lz�za(�

a�)+ L̂z�za(̂�
a�̂):The implementation of the pure

spinor constraints with the help of Lagrange multipliers immediately reveals (by varying with respect to
the ghost) a gauge symmetry of the antighosts of the form�(�)!z� = �za(

a�)� which corresponds to
the (first-class) pure-spinor constraints. Because the field equations are basically free, one gets free field
operator products after quantization. For the antighost field, this statement is restricted to gauge invariant
operators like the ghost current or the Lorentz current. Apart from the central charges, their OPEs look as
if there was no pure spinor constraint. To determine the central charges, one has to solve the constraint
once (see e.g. [27]).

In order to complete the description for the open string, we still need boundary conditions. For vanishing
background a natural choice is to set� = �̂ and� = �̂ at the boundary. This can be implemented by the
variation of a boundary term that one should add to the action. The precise form of this boundary term is
fixed byN = 1 supersymmetry, BRST invariance and the antighost gauge symmetry. As the final form of
the boundary action is quite lengthy and not very illuminating, we refer to [32] for further details.

The open string in a general background of bulk and boundary fields consists of a bulk part of the same
form as a closed string in general background and an additional boundary part. The closed pure spinor
superstring in general background was studied first by Berkovits and Howe in [33]. Already at classical
level, conservation and nilpotency of the BRST charges implement the type II supergravity constraints.
Those, in turn, guarantee 1-loop quantum conformal invariance of the theory [34]. The presentation of the
bulk part in the following is based on [35]. The starting point is the most general classically conformally
invariant action:

Sbulk =

Z

d
2
z

1

2
@x

M
(G M N (

�

x)+ BM N (
�

x))�@x
N
+ �@x

M
EM

�
(
�

x)dz� + @x
M
EM

�̂
(
�

x)d̂�z�̂ +

+ dz� P
� �̂
(
�

x)d̂
�z�̂ + �

�
C�

� ̂
(
�

x)! z� d̂�ẑ + �̂
�̂
Ĉ �̂

�̂ 
(
�

x)!̂
�z�̂dz +

+

�
�@�

�
+ �

� �@x
M

M �

�
(
�

x)

�

+

�

@�̂
�̂
+ �̂

�̂
@x

M

̂M �̂

�̂
(
�

x)

�

!̂
�z�̂ +

+
1

2
Lz�za(�

a
�)+

1

2
L̂ �zzâ(̂�

â
�̂)+ �

�
�̂
�̂
S� �̂

� �̂
(
�

x)! z� !̂ �z�̂ (5.6)

The variable
�

x containsxm ;�� and�̂�̂ . In addition to the action, we need the two BRST operators. In
principle they could contain background fields as well, but it is always possible to reparametrizedz� and
d̂�z�̂ such that they have the same form as in the flat case. Consistency of the equations of motion with the
pure spinor constraints requires that the background fields
M �

� and
̂M �̂
�̂ are each a sum of a spinorial

Lorentz-transformation and dilatation in the last two indices. They can thus be regarded as Lorentz plus
scale connections. This property also establishes the antighost gauge symmetry in the general case. BRST
invariance of the action requires that the symmetric two-tensor is of the formG M N = EM

a�abEN
b. The

background fieldsEM a, EM � andEM �̂ can then be combined to a single objectEM
A and regarded as

supervielbein. BRST invariance and nilpotency of the BRST transformations put several restrictions on
the background fields which turn out to be equivalent to the type II supergravity constraints [33–35].

For the moment, we restrict ourselves to a glance at the propagator. I.e., we are interested in the
quadratic part of the action and do not yet need all the constraints. Expanding the coordinates around
a constant zero mode, restricting to vanishing zero mode forthe fermionic coordinates and the ghosts,
choosing a parametrization which corresponds to the WZ-gauge and restricting to the quadratic part, one
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arrives at

Squj�= � = 0 =
R
d2z 1

2
@�m

�

em
a(

!

x)�aben
b(

!

x)+ B m n(
!

x)

�
�@�n + dz� P

� �̂(
!

x)d̂
�z�̂ (5.7)

+ �@�
m
 m

�
(
!

x)dz� + �@�
�
��

�
dz� + @�

m
 ̂m

�̂
(
!

x)d̂�z�̂ + @�
�̂
��̂

�̂
d̂�z�̂ + �@�

�
! z� + @�̂

�̂
!̂
�z�̂

with xM (z;�z)= xM + �M (z;�z). At this stage it becomes visible that the Ramond-Ramond (RR) fields
P � �̂ will enter the propagator between the fermionic coordinates. This observation was made for con-
stant RR-fields in [23] for four dimensions (with six compactified on a Calabi-Yau) and in [24] for ten
dimensions. The associated anticommutation relations were found to be

f�� ;�̂�̂ g/ P
� �̂
: (5.8)

Turning on the field strengthF modifies the boundary conditions for all world sheet fields and also leads
to a RR background dependent shift in the noncommutativity parameter� m n [31].

For general backgrounds, one needs to check the consistencyof the boundary action with the bulk BRST
transformations and the pure spinor constraints. Already for the open pure spinor string in an open string
background this is a long story, which was discussed by Berkovits and Pershin in [32]. In addition to the
boundary term that was mentioned before they add the integrated open string vertex operator of the form

V /

Z

d� _�
�
+ A � (x;�+ )+ �

m
+ B m (x;�+ )+ d

+

� W
�
(x;�+ )+

1

2
(N + )

�
� (F )

�
� (x;�+ ) (5.9)

to the action. The worldline fields with index ’+’ are just suitable linear combinations of the left and
rightmovers and(N + )

�
� / �

�
+ !

+
� . The objectsA � ,B m ,W � andF � � areN = 1background superfields.

The consistency requirements of the boundary action with BRST invariance and the pure spinor constraint
leads to the field equations of supersymmetric Born–Infeld for these background superfields.

In order to generalize the result (5.8) to non-constant bulkfields one has to become yet more general,
combining the boundary partV with the bulk action (5.6) and studying the consistent boundary conditions
and field equations. This is work in progress.

6 Conclusion

In this note we gave an introduction to the Kontsevich product and discussed our proposal for a general-
ization to the non-associative case. We established cyclicity through second derivative order, which allows
for the non-commutative product to be used in the construction of effective actions. We checked that our
previous results [10] generalize to non-constant dilaton backgrounds, with the only modification being the
prefactorexp(� �) in the measure. We also reviewed the existing results and ideas about generalizations
to superstrings, which have been investigated so far for constant background fields.

There is a number of obvious directions for further work. Forthe bosonic string a non-commutative
generalization of the gauge field effective action should beconstructed, which presumably is related to
derivative corrections to the measure. The non-abelian case should also have interesting implications for
commutative non-abelien Born-Infeld actions. A quite demanding task will be the generalization of our
results to superstrings in curvedRR andB -field backgrounds. On the more mathematical side, it would be
interesting to establish cyclicity to all orders in the derivative expansion and if possible explicitly construct
the non-associative product.
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