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A linear relation between Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing parameters, �� �
tan�3=2� ��� 0:24� 0:03�, involving a 1� range for �3=2, 20� <�3=2 < 115�, is obtained from B0 !
K�� amplitudes measured recently in Dalitz plot analyses of B0 ! K����0 and B0�t� ! KS�

���. This
relation is consistent within the large error on �3=2 with other CKM constraints. We discuss the high
sensitivity of this method to a new physics contribution in the �S � �I � 1 amplitude.
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I. INTRODUCTION

Two anomalous features measured in b! s penguin-
dominated processes have attracted substantial interest in
recent years [1]: (i) CP asymmetries �S in B0 ! KSX
decays (X � �0; �; �0; �0; !; KSKS; �0KS) show a hint
of systematic deviations from standard model predictions,
and (ii) the pattern of direct CP asymmetries in B! K�
decays is hard to explain using dynamical approaches
based on 1=mb expansion. Are these merely statistical
fluctuations, a sign of our inabilities to reliably calculate
the relevant observables, or are they first hints of new
flavor-dependent CP-violating contributions from new
physics at a TeV scale?

In order to answer this question it is important to obtain
precise model-independent constraints on the CKM pa-
rameters �� and �� [2] using penguin-dominated �S � 1
B decays. Comparing these constraints with CKM con-
straints which are not affected by new physics (NP) in
�S � 1 decays, e.g., the determination of � from tree-
dominated processes B! D���K��� [3], may provide a test
for the presence of NP in b! s penguin transitions.

In the present paper we study a linear constraint in the
( ��, ��) plane following from a combination of B0 ! K��
amplitudes. The method proposed in [4] and developed
further in [5] will be summarized in Sec. II. The necessary
observables required for applying the method have been
measured recently in Dalitz plot analyses of B0 !
K����0 [6] and B0 ! KS���� [7]. They will be used
in Sec. III to determine the slope of the linear constraint,
comparing this constraint with other CKM constraints.
Section IV discusses the sensitivity of this test to new
physics effects, while Sec. V concludes.

II. THE METHOD

The main idea of the method [4,5] is studying �I � 1
combinations of B! K�� amplitudes which do not re-
ceive dominant contributions from QCD penguin opera-
tors, and thus carry a weak phase � in the absence of
electroweak penguin (EWP) terms. In the present paper
we focus our attention on the I � 3=2 final state,

 3A3=2 � A�B0 ! K����� �
���
2
p
A�B0 ! K�0�0�: (1)

In the absence of EWP terms � would be given by

 � � �3=2 	 �
1
2 arg�R3=2�; R3=2 	

�A3=2

A3=2
; (2)

where �A3=2 is the amplitude for charge-conjugated states.
The phase �3=2 can be obtained by measuring magni-

tudes and relative phases of B0 ! K���� and B0 !
K�0�0 amplitudes and their charge-conjugates. The advan-
tage of B! K�� over B! K� decays is that K��
quasi–two-body states occur in Dalitz plots of B!
K��, where overlapping resonances permit determining
both the magnitudes and relative phases of B! K��
amplitudes. In contrast, the relative phases of B! K�
amplitudes cannot be measured directly.

The inclusion of EWP contributions modifies the ex-
pression for R3=2 which becomes [5]

 R3=2 � e�2i
��arg�1���� 1� c
�
�r3=2

1� c�r3=2
; (4)

 � 	 �
3

2

C9 � C10

C1 � C2

V�tbVts
V�ubVus

; c� 	
1� �
1� �

; (5)

 r3=2 	
�C1 � C2�h�K���I�3=2jO1 �O2jB0i

�C1 � C2�h�K���I�3=2jO1 �O2jB0i
: (6)

Here O1 	 � �bs�V�A� �uu�V�A and O2 	 � �bu�V�A� �us�V�A

are the V-A current-current operators.
*On sabbatical leave from the Physics Department, Technion–

Israel Institute of Technology, Haifa 32000, Israel

PHYSICAL REVIEW D 77, 057504 (2008)

1550-7998=2008=77(5)=057504(4) 057504-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.057504


The straight line �� � �� tan�3=2, in the absence of EWP
terms, is shifted by these contributions along the �� axis by
a calculable finite amount. The actual constraint becomes
[5]

 �� � tan�3=2
 ��� C
1–2 Re�r3=2�� �O�r2
3=2��; (7)

where (� � 0:227)

 C 	
3

2

C9 � C10

C1 � C2

1� �2=2

�2 � �0:27: (8)

A finite positive shift of the straight line (7) along the ��
axis, given by �C � 0:27, is obtained using next to lead-
ing order values of Wilson coefficients Ci at 	 � mb [8].
The theoretical error in this parameter is smaller than 1%.
The complex parameter r3=2 was calculated in factoriza-
tion, which gives a real result of the order of several
percent, r3=2 � 0:05 [4].

A similar but more conservative result is obtained for
r3=2 by applying flavor SU(3) to corresponding �S � 0
decay amplitudes. Noting that the operators in the numera-
tor and denominator in (6) transform as 6 and 15 of SU(3),
one finds [5],

 r3=2 �
j
��������������������
B����0�

p
�

��������������������
B��0���

p
j

��������������������
B����0�

p
�

��������������������
B��0���

p

� 0:054� 0:045� 0:023: (9)

The first error is experimental. The second error is due to
SU(3) breaking, small �S � 0 penguin amplitudes and
small strong phase difference between B! �� decay
amplitudes which are neglected.

We have assumed that SU(3) breaking in ratios of �S �
1 amplitudes and corresponding �S � 0 amplitudes intro-
duces an uncertainty of 30% in these ratios. The B! ��
phase difference is expected to be suppressed by 1=mb and

s�mb� [9,10]. Indeed, evidence for a small phase differ-
ence is provided by an isospin pentagon relation obeyed by
measured B! �� amplitudes [5]. The error in (7) from
neglecting this small strong phase difference is negligible
because Re�r3=2� depends quadratically on this phase. We
will use the calculation (9) for r3=2 which is more con-
servative than the one using factorization. Combining in
quadrature the two errors in r3=2, the constraint (7) be-
comes

 �� � tan�3=2
 ��� 0:24� 0:03�: (10)

The dominant uncertainty in this linear constraint origi-
nates in r3=2.

Equation (4) and a real value of r3=2 imply jR3=2j � 1.
The strong phase of r3=2 is expected to be suppressed by
1=mb and 
s�mb� [9,10]. Using (9) we take

 jr3=2j< 0:11; j arg�r3=2�j< 30�; (11)

leading to the bounds

 0:8< jR3=2j< 1:2: (12)

III. DETERMINING �3=2

The phase �3=2 can be determined by measuring the
magnitudes and relative phases of the B0 ! K����, B0 !
K�0�0 amplitudes and their charge-conjugates. A graph-
ical representation of the triangle relation equation (1) and
its charge-conjugate is given in Fig. 1.

The above four magnitudes of amplitudes and the
two relative phases, � 	 arg
A�B0 ! K�0�0�=A�B0 !
K������ and �� 	 arg
A� �B0 ! �K�0�0�=A� �B0 !
K������, determine the two triangles separately. These
quantities have been measured recently in a Dalitz plot
analysis of B0 ! K����0 and its charge-conjugate [6].
The relative phase �� 	 arg
A�B0 ! K�����=A� �B0 !
K������, which fixes the relative orientation of the two
triangles, has been measured in a time-dependent Dalitz
plot analysis of B0 ! KS�

��� [7].
Table I quotes CP-averaged branching ratios and CP

asymmetries for B0 ! K����; B0 ! K�0�0 using
Refs. [6,11]. A value �� � ��164� 30:7�� was mea-
sured in B0�t� ! KS���� [7]. The experimental situation
is less clear for the phases � and ��, measured recently in
an amplitude analysis performed for B0 ! K����0 and
its charge-conjugate [6].

In order to calculate the �2 dependence on �3=2 we use
the �2 dependence on � and �� given in Ref. [6], assuming
Gaussian errors for �� and for branching ratios and CP
asymmetries in B0 ! K���� and B0 ! K�0�0. Potential
correlations between �; �� and branching ratios and asym-
metries are neglected. Two resulting �2 plots as function of
�3=2 are shown in Fig. 2. The broken purple curve corre-
sponds to an unconstrained jR3=2j, while the solid blue
curve is obtained by imposing the bounds (12), expected
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FIG. 1. Geometry for Eq. (1) and its charge-conjugate, using
notations A�� 	 A�B0 ! K�����, A00 � A�B0 ! K�0�0� and
similar notations for charge-conjugated modes.

TABLE I. Branching ratios in units of 10�6 and CP asymme-
tries in B0 ! K�� [6,11].

Mode Branching ratio ACP

K���� 10:4� 0:9 �0:14� 0:12
K�0�0 3:6� 0:9 �0:09� 0:24
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to hold in the standard model. The latter curve defines a 1�
range,

 20� <�3=2 < 115�: (13)

Figure 3 shows the linear constraint (10) with the large
range of slopes (13) overlaid on CKMFitter results follow-
ing from [11,12] jVubj=jVcbj � 0:086� 0:009, obtained in
semileptonic B decays, and values � � �21:5� 1:0��,

 � �88� 6�� and � � �53�15

�18 � 3� 9�� [13], obtained
in B! J= KS, B! ��; ��; ��, and B� ! D���K����,
respectively. The small theoretical error in the B! K��
constraint [� 0:03 in Eq. (10)] is described by the differ-
ence between dark and light shaded regions in Fig. 3. The
large experimental error in �3=2 originates to a large extent
in ambiguities in � and �� measured in B0 ! K����0,
using an integrated luminosity on the ��4S� of only about
200 fb�1 [6]. This error is expected to be reduced consid-

erably by analyses based on higher up-to-date and future
luminosities.

IV. SENSITIVITY TO NEW PHYSICS

As has already been stressed, new physics (NP) �S � 1
contributions may lead to an inconsistency between the
linear constraint (7) in penguin-dominated B! K�� de-
cays and values of jVubj=jVcbj; �; 
 and � obtained in the
above-mentioned processes. The constraint (7) is affected
by �I � 1 NP operators, while NP contributions from
potential �I � 0 operators drop out. A general discussion
of ways for distinguishing between NP in �I � 0 and
�I � 1 b! s transitions can be found in Ref. [14].

The I � 3=2 amplitude consists of complex tree and
EWP terms, T and PEW, both of which involve strong
phases,

 A3=2 � Tei� � PEW: (14)

The ratio [5]

 

PEW

T
� j�j

1� r3=2

1� r3=2
(15)

involves the parameter � defined in (5), which has some
dependence on CKM matrix elements whose central values
correspond to j�j ’ 0:66.

Allowing for a NP term ANP exp�i �, where ANP in-
volves a CP conserving strong phase while  is a new
CP-violating phase, the �I � 1 amplitude becomes

 A3=2 � Tei� � PEW � ANPe
i : (16)

The NP term can be reabsorbed quite generally in redefined
tree and electroweak penguinlike contributions, �T and
�PEW, without changing the structure (14) [15],

 A3=2 � �Tei� � �PEW: (17)

Here

 

�T � T � ANP
sin 
sin�

; �PEW � PEW � ANP
sin� � ��

sin�
:

(18)

The amplitudes �T and �PEW can be used to define a
complex parameter �r in analogy to Eq. (15),

 

�PEW

�T
� j�j

1� �r
1� �r

: (19)

Thus, the parameter �r replaces r3=2 in the expression (4) for
R3=2. Values of �r outside the range (11) lead for most such
values (unless arg��r� is small) to a violation of the bounds
(12). This would be likely evidence for new physics.

A criterion for the sensitivity of the method to observing
a NP amplitude is provided by requiring that �r lies outside
the range of values (11) allowed for r3=2. Because of these
small values this criterion is expected to hold also for
values of ANP which are small relative to T and PEW. An
exception is a singular case where the weak phases  and �
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3 2
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FIG. 2 (color online). �2 dependence on �3=2 for uncon-
strained jR3=2j (broken purple line) and for 0:8< jR3=2j< 1:2
(solid blue line). A black horizontal line at �2 � 1 defines 1�
ranges for �3=2.

FIG. 3 (color online). Constraint in the ��� �� plane following
from Eqs. (10) and (13). The dark shaded region marked K��1�
corresponds to the experimental error on �3=2 given by the 1�
range (13), while the light shaded region includes also the error
on r3=2 (9). Also shown are CKMfitter constraints obtained using
jVubj=jVcbj; �; 
; � and �md [12].
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are related by

 

sin� � ��
sin 

�
PEW

T
; (20)

for which �PEW= �T � PEW=T is independent of ANP. In the
following discussion we will assume a value � � 60�.

Denoting qNP � ANP=PEW, we plot in the dark area in
Fig. 4 points corresponding to values of jqNPj and  , for
which both r3=2 and �r are in the range (11). The region
outside this area, including for most values of  rather
small values of jqNPj, jqNPj  0:3, implies a high sensitiv-
ity to an observable NP amplitude. The spikes around  

�90�, implying very low sensitivity, correspond to solu-
tions of (20) and nearby lying values of  .

V. CONCLUSION

Magnitudes and phases of B0 ! K�� decay amplitudes,
extracted in Dalitz plot analyses for B0 ! K����0 and
B0 ! KS����, are used for obtaining the linear con-
straint (10) in the ��; �� plane, where �3=2 lies in a 1� range
(13). This constraint is consistent with other CKM con-
straints which are unaffected by NP �S � 1 operators. The
dominant error in the slope of the straight line is purely
experimental, while a much smaller theoretical uncertainty
occurs in a parallel shift along the �� axis. This small
theoretical uncertainty is shown to imply in principle a
high sensitivity to a new physics �S � 1, �I � 1
amplitude.
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FIG. 4. Values of jqNPj and  providing a signal for NP (at
� � 60�) are given by points outside the dark area, which is
obtained by requiring values of r3=2 and �r in the range (11).
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