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W e explore thee ectsof shear viscosity on the hydrodynam ic evolution and nalhadron spectra of
Cu+ Cu collisions at ultrarelativistic collision energies, using the new ly developed (2+ 1)-din ensional
viscous hydrodynam ic code V ISH 2+ 1. Based on the causal Israel-Stew art form alism , this code de—
scribes the transverse evolution of longitudinally boost-nvariant system sw ithout azin uthalsym m e—
try around the beam direction. Shear viscosity is shown to decelerate the longitudinaland accelerate
the transverse hydrodynam ic expansion. For xed initial conditions, this leads to a longer quark—
glion plasna (QGP) lifetin e, larger radial ow in the nalstate,and atter transverse m om entum
spectra for the em itted hadrons com pared to ideal uid dynam ic sinulations. W e nd that the
elliptic ow coe cient v , is particularly sensitive to shear viscosity: even the lowest value allowed
by the AdS/CFT conjpcture =s 1=4 suppressesw enough to have signi cant consequences for
the phenom enology of heavy-ion collisions at the R elativistic Heavy Ion Collider. A com parison
between our num erical results and earlier analytic estin ates of viscous e ects within a blastwave
m odel param etrization of the expanding reballat freeze-out reveals that the fulldynam ical theory
leads to m uch tighter constraints for the speci ¢ shear viscosity =s, thereby supporting the notion
that the quark-gluon plasn a created at RH IC exhibits aln ost \perfect uidity".

PACS numbers: 25.75.q,12.38M h,25.75.Ld, 24.10N z

I. INTRODUCTION

this assum ption to be vald, the m iscroscopic collision

Hydrodynam ics is an e clent tool to describe the ex—
pansion ofthe reballs generated in relativistic heavy-on
collisions. A s a m acroscopic description that provides
the 4-din ensional spacetim e evolution of the energy-
momentum tensorT (x) it ismuch lessdem anding than
m icroscopic descriptions based on kinetic theory that
evolve the (on-shell) distrlbbution function f (x;p) n 7-
din ensional phase-space.

Ideal uid dynam ics is even more e cient since it re-
duces the num ber of independent elds needed to de-
scribe the sym m etric energy-m om entum tensor from 10
to 5: the local energy density e(x), pressure p(x) and
the nom alized ow 4-velocity u (x) (which has 3 inde-
pendent com ponents). T he equation of state (EO S) p(e)
provides a further constraint which closes the set of four
equations@ T (x)= 0.

Ideal uid dynam ics is based on the strong assum p-
tion that the uid is n local them al equilibbrium and
evolves isentropically. W hile localm om entum isotropy
in the com oving fram e is su cient for a unigue decom —
position of the energy-m om entum tensor in term sofe, p
and u , it does not in general guarantee a unique rela-
tionshi p(e). G enerically, the equation of state p(e) (a
key Ingredient for closing the set of hydrodynam ic equa-—
tions) becom es unique only after entropy m axin ization,
ie. after a ocally them alized state, with M axwellian
(or BoseE instein and Femm iD irac) m om entum distri-
butions In the com oving fram e, has been reached. For
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tin e scale must be much shorter than the m acroscopic

evolution tin e scale. Since the reballs created in rel-
ativistic heavy—-on collisions are sn all and expand very

rapidly, applicability of the hydrodynam ic approach has

long been doubted.

It cam e therefore as a surprise to m any that the bulk
of them atter produced in A u+ Au collisions at the Rela-
tivistic Heavy JTon Collider (RH IC ) was found to behave
like an almost deal wuid. Speci cally, deal uid dy-
nam ic m odels correctly reproduce the hadron transverse
mom entum spectra in central and sem iperipheral colli-
sions, including their anisotropy in non-central collisions
given by the elliptic ow coe cient¥y (pr ) and itsdepen-—
dence on the hadron rest m ass, for transverse m om enta
up to about1.5{2G &V /c ﬂ}which coversm ore than 99%
of the em itted particles. T his observation has led to the
conclusion that the quark-gluon plasma (QGP ) created
In RHIC collisions them alizes very fast and m ust there-
fore be strongly (non-perturbatively) interacting Z giv—-
ing rise to the notion that the Q G P is a strongly coupled
p@]asn a E,B ,E] that behaves like an aln ost perfect uid

1.

At RHIC energies, the almost perfect deal uid
dynam ical description of experim ental data gradually
breaks down in m ore peripheral collisions, at high trans-
versem om enta, and at forward and backw ard rapidities;
at lower energies it Jacks quantitative accuracy even in
the m ost central collisions at m drapidity ]. M ost of
these deviations from ideal uid dynam ical predictions
can be understood as the result of strong viscous e ects
during the late hadronic stage of the reball expansion
] after the Q G P hashadronized. A s the Initial energy
density of the reball decreases, the dissipative dynam —
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ics of the hadronic stage takes on increasing in portance,
concealing the perfect uidity ofany quark-gluon plasm a
possbly created at the beginning of the collision. H ow -
ever, as also pointed out in ], persisting uncertainties
about the initial conditions in heavy-ion collisions leave
room for a small am ount of viscosity even during the
early Q GP stage. Furthem ore, the observed deviations
of the elliptic ow param eter v (pr ) at large pr even
in the largest collision system s at the highest available
collision energies are consistent w ith viscous e ects dur-
ing the early epoch of the reba]l@,]. D uring this
epoch, the m atter is so dense and strongly interacting
that a m icroscopic description based on classical kinetic
theory of on-shell partons ] m ay be questionable. W e
therefore develop here a dissipative generalization of the
m acroscopic hydrodynam ic approach, viscous relativistic
uid dynam ics.

The need for such a fram ework is further highlighted
by the recent insight that, due to quantum m echanical
uncertainty ], no classical uid can have exactly van—
ishing viscosity (asisassum ed in the dealhydrodynam ic
approach). Even in the lin it of in nitely strong coupling,
the Q GP must hence m aintain a nonzero viscosity. R e-
cent calculations of the shear viscosity to entropy ratio
(the \speci c shear viscosity" =s) in a variety of con—
form algauge eld theories which share som e properties
with QCD ,using the AdS/CFT correspondence, suggest
a lower lim jj:of; = % ,,]. T his ismuch an aller
than the value obtained from weak coupling calculations
n QCD ﬂ} (although close to a recent st num erical
result from lattice QCD ]) and m ore than an order of
m agnitude below the lowestm easured values in standard

ujds@ ]. Som e altermative deashow gn alle ective vis—
cosities could be generated by anom alouse ects (chaotic-
ity) in anisotropically expanding plaan as ] or by neg—
ative eddy viscosity in 2-din ensional turbulent ow s@}
have also been proposed.

Initial attem pts to form ulbte relativistic dissipative

uld dynam ics as a relativistic generalization of the
N avier-Stokes equation @, @J ran Into di culties be—
cause the resulting equations allowed for acausal signal
propagation, and their solitions developed instabilities.
These di culties are avoided in the \2nd order form al-
ism " developed 30 years ago by Israel and Stewart ]
which expands the entropy current to 2nd order in the
dissipative ow s and replaces the instantaneous denti -
cation of the dissipative ows with their driving forces
multiplied by som e transport coe clent (as is done In
N avier-Stokes theory) by a kinetic equation that evolves
the dissipative ow s rapidly but an oothly towards their
N avier-Stokes Iim it. T his procedure elin inates causality
and stability problem s at the expense of num erical com —
plexity: the dissipative ows becom e independent dy—
nam ical variables w hose kinetic equations of m otion are
coupled and m ust be solved sin ultaneously w ith the hy-—
drodynam ic evolution equations. T his leadse ectively to
m ore than a doubling of the num ber of coupled partial
di erential equations to be solved @ ].

O nly recently com puters have becom e pow erfiilenough
to allow e cient solution of the Israel-Stew art equations.
The last 5 years have seen the developm ent of num eri-
calcodesw hich solve these equations (or slight variations
thereof @,@,@,@,@ ]) num erically, for system sw ith
boost-invariant longitudinalexpansion and transverse ex—
pansion in zero ,@1, one @,@,@,@] and two di-
m ensions @,@,@,@} (seealsoR ef. ﬁlﬁ)ra num erical
study of the relativistic N avier-Stokes equation in 2+ 1
din ensions). The process of veri cation and validation
of these num erical codes is still ongoing: W hile di erent
initial conditions and evolution param eters used by the
di erent groups of authors render a direct com parison of
their results di cult, it seem s unlkely that accounting
for these di erences w il bring all the presently available
num erical results in line w ith each other.

W e here present results obtained with an indepen—
dently developed (2+ 1)-dim ensional causal viscous hy-—
drodynam ic code, VISH 2+ 1 @}. W hile a short ac—
count of som e of our main ndings has already been
published @], we here report m any m ore details, in—
cluding extensive tests of the num erical accuracy of the
code: W e checked that (i) in the lim it of vanishing vis-
cosity, it accurately reproduces results obtained w ith the
2+ 1)d deal uid codeAZHYDRO @]; (ii) for hom o—
geneous transverse density distrbutions (ie. in the ab-
sence of transverse density gradientsand transverse ow )
and vanishing relaxation tim e it accurately reproduces
the known analytic solution of the relativistic Navier-
Stokes equation for boost-nvariant 1-dim ensional lon—
gitudinal expansion ]; (iii) for very short kinetic re-
laxation tin es our IsraelStew art code accurately repro—
duces results from a separately coded (2+ 1)-d relativis-
tic N avier-Stokes code, under restrictive conditions w here
the Jatter produces num erically stable solutions;and (i)
for sin ple analytically param etrized anisotropic velocity
pro les the num erical code correctly com putes the ve-
locity shear tensor that drives the viscous hydrodynam ic
e ects.

In its present early state, and given the existing open
questions about the m utual com patibility of various nu-
m erical results reported in the recent literature, we be-
lieve that it is prem ature to attem pt a detailed com par—
ison of VISH 2+ 1 with experim ental data, In order to
em pirically constrain the speci ¢ shear viscosity of the
QGP. Instead, we concentrate in this paper on describ-
ing and trying to understand the robustness of a variety
of uid dynam icale ectsgenerated by shear viscosity in
a relativistic QGP  uid. W e report here only results for
Cu+ Cu collisions, w ith initial entropy densities exceed—
ing signi cantly those that can be reached In such colli-
sionsat RH IC . T he reasons for doing so are purely tech—
nical: nitially our num erical grid was not large enough
to accom odate Au+ Au collision reballs with su cient
resolution, and while this restriction has been lifted in
the m eantin e, a large body of Instructive num erical re-
sults had already been accum ulated which would have
been quite expensive to recreate for the Au+ Au system .



T he unrealistic choice of initial conditions was driven by
the wish to allow for a su ciently long lifetin e of the
QGP phase even iIn peripheral Cu+ Cu collisions such
that shear viscous e ects on elliptic ow are still dom —
inated by the quark-gluon plasm a stage. Them ain goals
of the present paper are: (i) to quantitatively estab-
lish shear viscous e ects on the evolution of the energy
and entropy density, of the ow pro le, source eccentric—
iy, and totalm om entum anisotropy, on the nalhadron
spectra,and on theellibtic ow in centraland non-central
heavy-ion collisions,underthe In uenceofdi erentequa—
tions of state; and (ii) to explore in detail and explain
physically how these e ects arise, trying to extract gen—
eralrules and generic featuresw hich should also apply for
other collision system s and collision energies. W e note
that recent calculations for Au+ Au collisions @] have
shown that viscous e ects are som ew hat bigger In the
an aller Cu+ Cu studied here than In the hrger Au+ Au
system for which the largest body of experin ental data
exists. The reader m ust therefore apply caution when
trying to com pare (in his or her m ind’s eye) our results
with the wellknown RHIC Au+Au data.

T he paper is organized as ollow s: Section [II gives a
brief review of the IsraelStewart form alisn for causal
relativistic hydrodynam ics for dissipative uids, lists the
speci cform ofthese equations for the (2+ 1)-din ensional
evolution of non-central collision reballs with boost-
Invariant longitudinal expansion which are solved by
VISH 2+ 1, and details the initial consditions and the
equation of state (EO S) em ployed in our calculations. In
Section we report results or central (b= 0) Cu+ Cu
collisions. Section [IV] gives results for non-central colli-
sions, Including a detailed analysis of the driving forces
behind the strong shear viscous e ects on ellpptic ow
observed by us. In Section [V] we explore the In  uence of
di erent initializations and di erent relaxation tim es for
the viscous shear pressure tensor on the hydrodynam ic
evolution and establish the lim its of applicability for vis-
cous hydrodynam ics in the calculation ofhadron spectra.
Som e technicaldetails and the num erical tests perform ed
to verify the accuracy of the com puter code are discussed
in AppendicesBlID], and in A ppendix[E] we com pare our
hydrodynam ic results w ith analytical estin ates of shear
viscouse ectsby Teaney @ ]that were based on N avier—
Stokes theory and a blast-wavem odel param etrization of
the reball

II. ISRAEL-STEWART THEORY OF CAUSAL
VISCOUS HYDRODYNAM ICS

In this section, we review brie vy the 2nd order Israel-
Stew art form alisn for viscous relativistic hydrodynam ics
and the speci c¢ set of equations solved by V ISH 2+ 1 for
anisotropic transverse expansion In longitudinally boost-
Invariant reballs. D etails of the derivation can be found
n ], with a sn all correction pointed out by Bailer et
al In @ ]. For sin plicity, and in view ofthe intended ap-

plication to RH IC collisionswhose reaction reballs have
aln ost vanishing net baryon density, the discussion w i1l
be restricted to viscous e ects, neglecting heat conduc—
tion and working in the Landau velocity fram e ].

A . Basics of Israel-Stew art theory

T he general hydrodynam ic equations arise from the
local conservation of energy and m om entum ,

eT )= 0; (1)

w here the energy-m om entum tensor isdecom posed in the
form

T = euu P+ ) + (2)

Here e and p are the local energy density and them al
equilbrium pressure, and u is the (tin elke and nor-
malized, u u = 1) 4-velocity of the energy ow. is
the bulk viscous pressure; it com bines w ith the them al
pressure p to the total buk pressure. In Eq. Q) it is
m ultiplied by the pro fgctor =g uu transverse
to the ow velcity, ie. In the local uid rest fram e the
bulk pressure isdiagonaland purely spacelke, (p+ ) i5.

is the traceless shear viscous pressure tensor, also
transverse to the 4-velocity ( u = 0) and thus purely
spatial in the local uid rest fram e.

For deal wuids, and vanish, and the only dy-
nam ical elds are e(x), p(x) and u (x), with e and p
related by the equation of state p(e). In dissipative u-
ds w ithout heat conduction, and the 5 independent
com ponents of enter as additional dynam ical vari-
ables which require their own evolution equations. In
relativistic N avierStokes theory, these evolution equa-
tions degenerate to Instantaneous constituent equations,

=2 rhu (3)
which express the dissipative ows and directly
In tem s of their driving forces, the local expansion
rate r u and velocity shear tensor r? u +,

multiplied by phenom enological transport coe cients
; 0 (thebulk and shear viscosity, respectively). H ere

= r uj;

r @ is the gradient in the local uid rest frame,
and r" u t %(r u+r u) %(r u) , showing
that, like , the velocity shear tensor is traceless and

transverse to u . T he instantantaneous denti cation [@)
leads to causality problem s through instantaneous signal
propagation, so that this straightforw ard relativistic gen-—
eralization of the N avierStokes form alisn tums out not
to be a viable relativistic theory.

T he Israel-Stew art approach @ Javoids these problem s
by replacing the instantaneous identi cations [@) with
the kinetic evolution equations

1
D = — + r W (4)
1
D = — 2 P ut
u +u Du ; (5)



whereD = u @ isthe tin e derivative In the local uid
rest fram e, and the last term in the bottom egquation
ensures that the kinetic evolution preserves the trace-
lessness and transversality of ]. and are
relaxation tin es and related to the 2nd order expansion
coe clents in the entropy current ,]. T he fact that
In the IsraelStewart approach the dissipative ows
and no longer respond to the corresponding therm o-
dynam ic orcesr  uand £ u ! mstantaneously, but on

nite albeit short kinetic tin e scales, restores causality
of the theory 1.

W e should caution that the form of the kinetic evolu-
tion equations (@) is not generally agreed upon, due to
unresolved am biguities in their derivation ,,,@,
@,@,@,@,@,@]. W e w illhere use the form given In
Egs. (4E) and comm ent on di erences w ith other work
when we discuss our results.

In the follow ing calculations we further sim plify the
problem by neglecting bulk viscosity. Bulk viscosity van-—
ishes classically for a system of m assless partons, and
quantum corrections arising from the trace anom aly of
the energy-m om entum tensor are expected to be an all,
rendering bulk viscous e ectsm uch less In portant than
those from shear viscosity. This expectation has been
con med by recent lattice calculations @, ] which
yield very an all buk viscosity In the Q GP phase. The
sam e calculations show , however, a rapid rise of the
bulk viscosity near the quark-hadron phase transition
], consistent w ith earlier predictions ,1. In the
hadronic phase it is again expected to be an all ]. We
leave the discussion of possible dynam icale ects ofbuk
viscosity near the quark-hadron phase transition for a
future study. Buk viscous pressure e ects can be easily
restored by substituting p! p+  everywhere below and
adding the kinetic evolution equation (4) for

B . Viscous hydrodynam ics in 2+ 1 dim ensions

In the present paper we elin inate one of the three
spatial din ensions by restricting our discussion to lon—
gitudinally boost-nvariant system s. These are conve-
niently described in curvilinear x™ = ( ;x;y; ) coordi-

nates,where = £ 2 isthe ongitudinal proper tin e,
_1 t : . . .
=5 t*; is the space-tin e rapdity, and (x;y) are

the usualC artestsian coordinates in the plane transverse
to the beam direction z. In this coordinate system , the
transport equations for the full energy m om entum tensor
T arewritten as ]

e + @ (wE )+ @ wE )=S
QP "+ &G w® )+ QB )=5 F;  (6)
@E Y+ @ (v® V)+ @ (B Y)= S

Here-?mn ('Eﬂn+ mn),Ténn:eumun pmn be_

ing the deal uid contrbution, &' = (u ;u*;u¥;0) =

2 (1;vy ;v ;0) isthe ow pro le with, = p—2—),

2 2
1 v vy

and g™ " =diag(l; 1; 1; 1<) isthem etric tensor or
our coordinate system . The source term s S™ " on the
right hand side of Egs. (@) are given explicitly as

2

S = p @+ * % )
¢w+ ¥ )
p ° & Evi)  B8w); (7)
S * = @+ ™ w7 @™ w
B+ F); (8)
S Yy — @( Xy % Y) @(p+ Yy \{/ Y)
@+ YY) 9)

W e will see Jater (see the right panel of Fig.[13 below )
that the indicated approxin ations of these source term s
isolate the dom inant drivers of the evolution and provide
a su clently accurate quantitative understanding of its
dynam ics.

T he transport equations for the shear viscous pressure
tensor are

(@ +Vx@x+vy@y)~mn= (Nmn 2 mn)

ut ATt (@ 4+ v @ + v By )ul: (10)

m n m n

The expressions for ~ and ~ are found In
Egs. B1RED); they di erfrom ™" inEgs. {@8)and ™*
given in Ref. ]by a Jacobian ? factor in the ()
com ponent: ~ = 2 ,~ o= 2 . This factor arises
from the curved m etric where the local tin e derivative
D = u™ d, mustbe evaluated using covariant derivatives
™ @]. Sinceu = 0,no such extra Jacobian tem s arise
in the derivative D u3 in the second line of Eq. {I0).
T he algorithm requires the propagation of , 5
Y, and with Eqg. (@) even though one of the rst
three is redundant (see [37] and A ppendix Bl). In ad-
dition, we have chosen to evolve severalm ore, form ally
redundant com ponents of ™" using Eq. {8), and to use
them for testing the num erical accuracy of the code, by
checking that the transversality conditions u, ™" =0
and the tracelessness [ = 0 arepreserved overtine. W e
nd them to be satis ed w ith an accuracy of better than
1 2% everywhere except for the reballedge where the
™M are very guall and the error on the transversality
and tracelessness constraints can becom e as large as 5% .

C . 1Initial conditions

Forthe dealpartT, ;T,*; T, * oftheenergy m om en—
tum tensor we use the sam e initialization schem e as for
deal hydrodynam ics. For sin plicity and ease of com —
parison with previous ideal uid dynam ical studies we
here use a sin ple G lauber m odel nitialization w ith zero
nitial transverse ow velocity where the initial energy
density in the transverse plane is taken proportional to



the wounded nucleon density @]:

& (x7y;0) = K ny y (X;¥;b) (11)
Ty x 2; B
=K Ta x+§;y)l 1 ° 5 2 7Y
Ta x+2;y
+ T X %;y 1 1 %

Here is the total inelstic nucleon-nuclon cross
section for which we take = 40mb. Tap is the
nuclear thickness ﬁ,lriglcjon of the incom ing nucleus
A or B, Ta(x;y)= | dz a(x;yiz); a (X;y;z) IS
the nuclear density given by a W oods-Saxon pro le:

- 0o -
a (0)= Topm = For Cut Cu collisions we take

Roy=42fn, =059 ,and o= 0:17fn > . The pro—
portionality constantK doesnotdepend on collision cen—
trality but on collision energy; it xes the overall scale
of the initial energy density and, via the associated en-
tropy, the nalhadron multiplicity to which it m ust be
tted as a function of collision energy. W e here x it
to give ey e(0;0;b=0)= 30G eV /Mm> for the peak en-
ergy density in central Cu+ Cu collisions, at an initial
tine ( for the hydrodynam ic evolution that we set as
o= 06 /c. Asalready m entioned in the Introduction,
this exceeds the value reached In Cu+ Cu collisions at
RHIC (it would be appropriate for central Au+ Au col-
lisions at =~ s= 200A G &V E|]). It ensures, however, a
su ciently long lifetin e of the QGP phase n Cu+Cu
collisions thatm ost of the nalm om entum anisotropy is
generated during the Q GP stage, thereby pem itting a
m eaningful nvestigation of Q G P viscosity on the elljptic
ow generated in the collision.

Lacking a m icroscopic dynam ical theory for the early
preequilbrium stage, initializing the viscous pressure
tensor ™" requiressom eguesswork. Thee ectofdi er—
ent choices for the initial ™ " on viscous entropy produc—
tion during boost-nvariant viscous hydrodynam ic evolu-
tion without transverse expansion was recently studied
n @]. W e will here explore two options: (i) we set

0% =0 initlally @]; or (i) we assum e that at tine
onehas {"=2 [" wherethesheartensor §" iscal-
culated from the initial velocity pro e d' = (1;0;0;0)
E,@,@,@]. T he second option is the default choice
for m ost of the results shown in this paper. It gives

2, = 2= 2¥W= 34—0, ie. a negative contri-
bution to the longitudinal pressure and a positive contri-
bution to the transverse pressure.

W e here present results only for one value of the spe-
cl c shear viscosity,; = L 7 008, corresponding to its
conectured lower lim it E§ ]. The kinetic relaxation tin e

will be taken as = 53_T except were otherw ise m en—
tioned. T his value is half the one estim ated from classi-
calkinetic theory for a Boltzm ann gas of non-interacting
m assless partons @,@] { wedid notuse the tw ice larger
classical value because it led to uncom fortably large vis-
cous pressure tensor com ponents ™" at early tines,
caused by large excursions from the N avier-Stokes lin it.
To study the sensitivity to di erent relaxation tin es and

the approach to N avier-Stokes theory, we also did a few

calculationswith = % in Section 7 BI.

D. EOS

Through its dependence on the Equation of State
(EOS), hydrodynam ic  ow constitutes an in portant
probe for the existence and properties of the quark—
hadron phase transition which softens the EO S near T..
To isolate e ects Induced by this phase transition from
generic features of viscous uid dynam ics we have per—
form ed calculationsw ith two di  erent equations of state,
EOS Iand SM -EOS Q .They are described in this sub-
section.

EO S Im odelsa non-interacting gasofm asslessquarks
and glions, with p= %e. It has no phase transition.
W here needed, the tem perature is extracted from the

energy density via the relation e= 16+ ZIN¢ ‘1t

ﬁ (~c)3 '

corresponding to a chem ically equilbrated QGP with

N¢= 25e ectivem asslessquark avors.
0.8 \ I
I ng=0 |
[ | ---- EOSQ ]
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o L |
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FIG .1: Theequationsof state EO S Q (dashed line) and SM —
EOSQ (\modied EOSQ", sold line).

SM E0S Q isa snoothed version of EOS O [44]
which connects a noninteracting Q G P through a rstor—
der phase transition to a chem ically equilbrated hadron
resonance gas. In the QGP phase it is de ned by the
relation p= %e %B (ie. c§= g—§= %). T he vacuum
energy (bag constant) B'~* = 230M &V is a param eter
that is adjasted to yield a critical tem perature T, =
164M €V . The hadron resonance gas below T. can be
approxin ately characterized by the relation p= 0:15e
(le. &= 0:5) [44]. The two sides are m atched through
a M axwell construction, yielding a relatively large la-—
tent heat epc= 1:15GeV/Mm°>. For energy densities
between e; = 045G eV /M > and e, = 16G eV /M > one
has a m ixed phase w ith constant pressure (ie. cﬁ =0).
T he discontinuous jum ps of cﬁ from a value of 1/3 to



0 at g and back from 0 to 0.15 at ey generate prop-—
agating num erical errors in V ISH 2+ 1 which grow with
tin e and cause problam s. W e avold these by am ooth-
ing the function ¢ (e) w ith a Fem idistrdbution of w dth
e= 0:1GeV /fn® centered at e= e, and another one of
width e= 002GeV /f° centered at e= e . Both the
orighal EOS Q and our am oothed version SM -EOS Q
are shown in Figure[dl. A com parison of sin ulations us-
Ing dealhydrodynam icswith EOS Q and SM E0S Q is
given in A ppendix[D1l. It gives an idea of them agnitude
of am oothing e ectson the deal uid evolution ofelliptic

ow .

Another sim ilarly smoothed EOS that matches a
hadron resonance gas below T. with lattice QCD data
above T. has also been constructed. Results using this
lattice based EO S w ill be reported elsew here.

E. Freeze-out procedure: Particle spectra and v

Final particle spectra are com puted from the hydro—
dynam ic output via a modi ed Cooper¥rye procedure
]. W e here com pute spectra only for directly em itted
particles and do not include feeddown from resonance
decay after freeze-out. W e rst detemm ine the freezeout
surface  (x), by postulating (as comm on in hydrody-
nam ic studies) that freezeout from a them alized uid
to freestream ing, non-interacting particles happens sud-
denly when the tem perature dropsbelow a criticalvalue.
As in the deal ud casewih EOS Q @J we choose
Tgec= 130M €V . T he particle spectrum is then com puted
as an integralover this surface,

LN 5 U (x)£i(x;0) (12)
5= = > P x) £i(x;p
d°p (2 ) .

- S P @ Eeubop) s Hbp));

where g; is the degeneracy factor for particle species i,
d®  (x) is the outward-pointing surface nom alvector on
the decoupling surface (x) at point %,

P H (%) = mp cosh(y ) P 5 ¢ (r)
f(r)rdrd d (13)
withr= (x;y)= (rcos ;rsin )denoting the transverse

position vector), and f;(x;p) is the local distribution

function for particle species i, com puted from hydro-
dynam ic output. Equation {IZ) generalizes the usual
C ooperFrye prescription for deal uid dynam ics@ 1by

accounting for the fact that in a viscous uid the local
distribution function isneverexactly in localequilibrium ,

but deviates from localequilbriim form by snall term s

proportionalto the non-equilbrium viscous ow s@ ,@ 1.

Both contributions can be extracted from hydrodynam ic

outputalong the freeze-out surface. T he equilbbrium con-—

tribbution is

P u(X)= 1 .14
T (x)

feq;j. (pix) = feq;i

where the exponent is computed from the team -

perature T (x) and hydrodynam ic ow velocity
u = 5 (cosh ;w» cos y;v; sih y;sinh ) albng the
surface (x):

P u(x)=-> [m7r cosh(y ) Pve cos( p )]t (15)

Herem = p%+mf is the particle’s transverse m ass.

T he viscous deviation from local equilbbrium is given by

fd,[31

pp (%)
2T % (x) (e(x )+ p(x))

£ (xip)= feqi(@ix) 1 £4;1(Pix)

lpp

goo—— —— 16
feait 2 T? etp (16)

T he approxin ation in the second line is not used in our
num erical results but it hods (within the line thickness
in all of our corresponding plots) since (1 f£4) deviates
from 1 only when p T where the last factor is sm all.
W ith it the spectrum (I2) takes the instructive form

Z
d°N 4 Ji

E =
dp @2y °

T2 etp
(17)

The viscous correction is seen to be proportional to
(x) on the freeze-out surface (nom alized by the equi-

lbrium enthalpy e+ p) and to increase quadratically w ith
the particle’sm om entum (nomm alized by the tem perature
T). At large pr , the viscous correction can exceed the
equilbrium contribution, indicating a breakdown of vis-
cous hydrodynam ics. In that dom ain, particle spectra
can not be reliably com puted w ith viscous uid dynam —
ics. T he Im it ofapplicability dependson the actualvalie
of =(e+ p) and thus on the speci c¢ dynam ical condi-
tions encountered in the heavy-ion collision.

The viscous correction to the spectrum in Eq. (I7)
reads explicitly

PP = m% cosh? (v )+ sinh? (y )2
2mt cosh (y )px T+ py Y
+ P 4 2pepy YHpl VYo (18)

W e can use the expressions given in Appendix 2 of
Ref. ] (In particular Egs. (A 22) in that paper) to re-
express this in tem s of the three independent com po-
nentsof ™" forwhich we choose

T his choice is m otivated by our num erical nding (see
Fig.2 in E]and Sec.[IVCl) that ~ , ** and YY are
about an order of m agnitude larger than all other com —
ponents of ™", and that in the azin uthally symm etric
Iim it of central (b= 0) heavy-ion collisions the azin uthal
average of vanishes (seeEq. {CA)):h i =0.We nd
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Due to longitudinal boost-nvariance, the Integration
over space-tin e rapidity in Eq. [I2) can be done an-
alytically, resulting in a series of contributions involring
modi ed Bessel functions @, E}. V ISH 2+ 1 does not
exploit this possibility and instead perfomm s this and all
other integrations for the spectra num erically.

O nce the spectrum {12) has been com puted, a Fourier
decom position with respect to the azinuthal angle |
yields the anisotropic ow coe cilents. For collisions be—
tween egual spherical nuclei followed by longitudinally
boost-invariant expansion of the collision reball, only
even-num bered coe clents contribute, the \elliptic ow"
v, being the largest and m ost in portant one:

&N dN 5
— ()= ) (21)
d°p dyprdpr d p
LN g, (or b)cos(2 o)+
= — V- ’ COoSs PR
2 dyprdpr 2P i °

In practice it is evaluated as the cos(2 )-m om ent of the
nalparticle spectrum ,

R

d , cos(2 ) dn

dyprdpr d p
dN
d G
Pdyprdpr d

1d

vy (pr ) = hcos(2 )i ;i (22)

w here, according to Eq. {I2), the particle spectrum is a
sum of a local equilbbrium and a non-equilibrium contri-
bution (to be indicated symbolically asN = N, + N ).

IIT. CENTRAL COLLISIONS
A . Hydrodynam ic evolution

Even without transverse ow initlally, the boost-
Invariant ongiudinalexpansion leads to a non-vanishing
initial stress tensor ™" which generates non—zero target
values for three com ponents of the shear viscous pres—

4 2 .
sure tensor: 2 = —, = yy=ﬁ.lnspect?onof

3
the source term s in Eq;. (IE) then reveals that the ini-
tially negative ? reduces the longitudinal pressure,
thus reducing the rate of cooling due to work done by
the latter, while the nitially positive values of ** and

¥Y¥ add to the transverse pressure and accelerate the de—
volpm ent of transverse ow in x and y directions. A s the
reball evolves, the stress tensor ™ " receives additional

contributions involring the transverse ow velocity and
its dervatives (see Eq. (22)) which render an analytic
discussion of its e ects on the shear viscous pressure in —
practical.

F igure[d show s w hat one gets num erically. P lotted are
the source tem s () and (8)), averaged over the trans-
verse plane w ith the energy density as weight function,
as a function of tin e, for evolution of central Cu+ Cu
collisions with two di erent eguations of state, EOS I
and SM E0 S Q . (In central collisions hf *ji= hf Yj.)
O ne sees that the initially strong viscous reduction of
the (negative) source term S, which controls the cool-
Ing by longitudinal expansion, quickly disappears. This
is due to a combination of e ects: while the magni-
tude of 2 decreases with tim e, its negative e ects
are further com pensated by a grow Ing positive contri-
bution @ (pvx )+ @y (pv, ) arising from the increasing
transverse ow gradients. In contrast, the viscous in-
crease of the (positive) transverse source term S * per—
sists much longer, until about 5fm /c. A fter that tin e,
how ever, the viscous correction sw itches sign (clearly vis-
ible in the upper inset in the right panel of F ig.[2b) and
tums negative, thus reducing the transverse acceleration
at late tim es relative to the deal uid case. W e can
sum m arize these ndings by stating that shear viscosity
reduces ongitudinal cooling m ostly at early tim es while
causing initially Increased but later reduced acceleration
in the transverse direction. Due to the general sm all-
ness of the viscous pressure tensor com ponents at late
tin es, the last-m entioned e ect (reduced acceleration) is
not very strong.

T he phase transition In SM -EO S Q is seen to cause an
interesting non-m onotonic behaviour of the tin e evolu—
tion of the source tem s (right panel in Fig.[d), leading
to a transient increase of the viscouse ectson the longi-
tudinal source term while the systam passes through the
m ixed phase.

T he viscous slow Ing of the cooling process at early
tin es and the increased rate of cooling at later tim es
due to accelerated transverse expansion are shown in Fig—
ure[d. T he upper set of curves show sw hat happens in the
centerofthe reball. For com parison we also show curves
for boost=nvariant longitudinal B prken expansion w ith—
out transverse ow , labeled \ (0+ 1)-d hydro". T hese are
obtained with at initial density pro les for the same
value ey (no transverse gradients). The dotted green



L S I I ——
| ‘E ?'05» ]
o 3 o 3t 1
g2 - = E g | 1
S /|— viscous hydro G S /| viscoushydro| %, T 1
3 /|- ideal hydro g 3 1/ |-— idea hydro & o
:B ’/ :B /l 0
B e i E
|/ CutCub=0fm 3 | Cu+Cu,b=0fm g | 1
i EOCSI ;: SM-EOS Q c‘; i 1
-6/ S B L -6} -0.15;
! T—To(fm/CL}
| | | |
0 1 3 5 6 0 5
T-1,(fm/c) T-T,(fm/c)

FIG .2: (Color online) T in e evolution of the hydrodynam ic source tem s a4, averaged over the transverse plane, for central
Cu+ Cu collisions, calculated with EO S I in the left paneland with SM -EOS Q in the right panel. The am aller insets blow

up the vertical scale to show m ore detail. The dashed blue lines are for ideal hydrodynam ics with ey = 30G &V /fm * and
1
008,

o= 06 /c. Sold red lines show results from wviscous hydrodynam ics with identical initial conditions and S =7
2 024 (ZOO%) fm /c. The positive source tem s drive the transverse expansion while the negative ones a ect the
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FIG .3: (Color online) T in e evolution of the local tem perature in central Cu+ Cu collisions, calculated with EO S I (left) and
SM EO0 S Q (right), for the center of the reball (r= 0, upper set of curves) and a point near the edge (r= 9fm , lower set of

curves). Sam e param eters as in Fig.[2. See text for discussion.

line in the left panel shows the wellknown T =3

behaviour of the B prken solution of deal uid dynam -
ics @],m odi ed in the right panelby the quark-hadron
phase transition w here the tem perature stays constant in

the m ixed phase. T he dash-dotted purple line show s the

slow er cooling in the viscous (0+ 1)-dim ensionalcase ],
due to reduced work done by the longitudinal pressure.
T he expansion is still boost-nvariant a la B prken @J
(as it is for all other cases discussed in this paper), but

viscouse ectsgenerate entropy, thereby keeping the tem —

perature at all tim es higher than for the adiabatic case.
T he dashed blue (deal) and solid red (viscous) lines for
the azin uthally sym m etric (1+ 1)-din ensionalcase show

the additional cooling caused by transverse expansion.
Again the cooling is initially slower in the viscous case
(sold red), but at later tin es, due to faster buid-up of
transverse ow by theviscously increased transverse pres—
sure, the viscous expansion is seen to cool the reball
center faster than ideal hydrodynam ics. (Note also the
drastic reduction of the lifetin e of the m ixed phase by
transverse expansion; due to Increased transverse ow
and continued acceleration in the m ixed phase from vis-
cous pressure gradients, it is even m ore dram atic in the
viscous than the idealcase.) The curves forr= 9fm cor—
roborate this, show ing that the tem perature initially in—
creases w ith tim e due to hot m atter being pushed from
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FIG .4: (Color online) T in e evolution of the local entropy density for central Cu+ Cu collisions, calculated with EO S I (left)

and SM EO0 S Q

(right), for the center of the reball (r= 0, upper set of curves) and a point at r= 3 fm

(low er set of curves).

Sam e param eters and color coding as in Fig.[3. See text for discussion.

the center tow ards the edge, and that this tem perature
Increase happens m ore rapidly in the viscous uid (sold
red lines), due to the faster outw ard transport ofm atter
in this case.

Figureld show show the features seen in Fig.[@dm anifest
them selves in the evolution of the entropy density. (In
the QGP phases T°.) The double-logarithm ic presen—
tation em phasizes the e ects of viscosity and transverse
expansion on the power law s( ) : One sees that
the ! scaling of the idealB jprken solution is attened
by viscous e ects, but steepened by transverse expan-—
sion. A siswellknow , it takesa while (here about 3 /c)
until the transverse rarefaction wave reaches the reball
center and tums the nitially 1-dim ensional longitidinal
expansion into a genuinely 3-din ensionalone. W hen this
happens, thepower law s( ) changesfrom =11
the deal uidd caseto > 3@]. Here 3 is the dim ension-
ality of space, and the fact that becom es larger than
3 re ects relativistic Lorentz-contraction e ects through
the transverse- ow related , -factor that keeps increas-
ing even at late tines. In the viscous case, changes
from 1 to 3 sooner than for the ideal uid, due to the
faster grow th of transverse ow . At late tin es the s( )
curves for deal and viscous hydrodynam ics are alm ost
perfectly parallel, indicating that very little entropy is
produced during this late stage.

In Figure[d we plot the evolution of tem perature in
r space, In the form of constant-T surfaces. Again
the two panels com pare the evolution with EO S T (left)
to the one with SM EO0S Q (right). In the two halves
of each panelw e directly contrast viscous and deal uid
evolution. (T he light gray lines in the right halves are re-

ections of the viscous tem perature contours in the left
halves, to facilitate com parison of viscous and deal uid
dynam ics.) Beyond the already noted fact that at r= 0
the viscous uid cools initially m ore slow Iy (thereby giv—
ing som ew hat longer life to the Q GP phase) but later

more rapidly (thereby freezing out earlier), this gure
also exhibits two other notew orthy features: (i) M oving
from r= 0 outward, one notes that contours of larger ra-
dial ow velocity are reached sooner in the viscous than
in the deal uid case;this shows that radial ow buids
up more quickly in the viscous uid. This is illustrated
m ore explicitly in Fig.[d which show s the tin e evolution
of the radialvelocity hw, i, calculated as an average over
the transverse plane w ith the Lorentz contracted energy
density - e asweight function. (i) Com paring the two
sets of tem peratiire contours shown in the right panelof
Fig.[H, one sees that viscouse ects tend to sm oothen any
structures related to the ( rst order) phase transition in
SM E£O0S Q. The reason for this is that, with the dis—
continuous change of the speed of sound at either end of
them ixed phase, the radial ow velocity pro le develops
dram atic structuresattheQGP-M P and M P-HRG inter-
faces ]. This leads to large velocity gradients across
these interfaces (ascan be seen in the right panelofF ig.[d
in its low er right comer which show s rather tw isted con—
tours of constant radial ow velocity), inducing large vis—
cous pressures w hich drive to reduce these gradients (as
seen in ower left comer of that panel). In e ect, shear
viscosity softens the rstorder phase transition into a
an ooth but rapid cross-over transition.

T hese sam e viscous pressure gradients cause the uid
to accelerate even In the m ixed phase w here all them o-
dynam ic pressure gradients vanish (and where the deal

uid therefore does not generate additional ow ). Asa
result, the lifetin e of the m ixed phase is shorter in vis-
cous hydrodynam ics, as also seen in the right panel of
Figure[d.
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FIG .6: (Colr online) T in e evolution of the average radial ow velocity hvr i
(right panel). Solid (dashed) lines show results from ideal (viscous)

with EOS I (left panel) and SM -EOS Q

v, 1 in central Cu+ Cu collisions, calculated
uild dynam ics.

The initially faster rate of increase re ects large positive shear viscous pressure in the transverse direction at early tim es. T he
sin ilar rates of increase at late tim es indicate the gradualdisappearance of shear viscous e ects. In the right panel, the curves
exhibit a plateau from 2 to 41 /c, re ecting the softening of the EO S in the m ixed phase.

B . Finalparticle spectra

A fter obtaining the freeze-out surface, we calculate the
particle spectra from the generalized Cooperfrye for-
mula {I2), using the AZHYDRO algorithm [41] for the
Integration over the freeze-out surface For calcula—
tions with EO S Iwhich lacks the transition from m ass-
less partons to hadrons, we cannot com pute any hadron
spectra. For illustration we instead com pute the spectra

of hypotheticalm assless bosons (\gluons"). T hey can be
com pared w ith the pion spectra from SM EO0 S Q which
can also, to good approxim ation, be considered asm ass—
less bosons.

The larger radial ow generated In viscous hydrody—
nam ics, for a xed set of initial conditions, leads, of
course, to  atter transverse m om entum Spectra @,@,
@] (at least at low pr where the viscous correction £
to the distrdbution fiinction can be neglected in (12)).
This is seen in Figure[d, by com paring the dotted and
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FIG.7: (Color online) M d-rapidity particle spectra for central Cu+ Cu collisions, calculated with EOS I (left, glions) and

with SM £E0S Q (right, ,K°

and p). The solid blue (red dashed) lines are from ideal (viscous) hydrodynam ics. T he purple

dotted lines show viscous hydrodynam ic spectra that neglect the viscous correction  fi to the distribution function in Eq. {I2),
ie. include only the e ects from the lrger radial ow generated in viscous hydrodynam ics.

solid lines. T his com parison also show s that the viscous
spectra lie systam atically above the idealones, indicating
larger naltotalmultiplicity. This re ects the creation
of entropy during the viscous hydrodynam ic evolution.
A s pointed out in @, @], this requires a retuning of
initial conditions (starting the hydrodynam ic evolution
laterw ith an aller initial energy density) if one desires to

t a given set of experin entalp —spectra. Since we here
concentrate on investigating the origins and detailed m e-
chanics of viscous e ects In relativistic hydrodynam ics,
we will not explore any variations of initial conditions.
A 1l com parisons betw een idealand viscous hydrodynam —
ics presented here w illuse dentical starting tines ¢ and
initial peak energy densities e .

T he viscous correction fi in Egs. (IJ[1d) depends on
the signs and m agnitudes of the various viscous pressure
tensor com ponents along the freeze-out surface, w eighted
by the equilibrium part fo; of the distrdbution function.
Ttse ecton the nalp-spectra (even its sign!) isnota
priori obvious. Teaney ], using a blastwave m odel
to evaluate the velocity stress tensor = =2 ),
found that the correction is positive, grow ing quadrat-
ically with pr . Romatschke et al @, @] did not
break out separately the contributions from larger ra—
dial ow In £4;; and from £ . Dusling and Teaney @],
solving a slightly di erent set of viscous hydrodynam ic
equations and using a di erent (kinetic) freeze-out cri-
terium to determm ine their decoupling surface, found a
(sn all) positive e ect from £ on the nal pion spec—
tra, at least up to pr = 2G &V /¢, for freeze-out around
Tdec 130M &V , tuming weakly negative when their ef-
fective freeze-out tem perature was lowered to below 100
M €V . The dashed lines in Figure[? show that in our cal-
culations for pr > 2G &V /c the e ects from £ have an
overall negative sign, leading to a reduction of the pr -
spectra at large pr relative to both the viscous spectra
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FIG . 8: (Color online) Ratio of the viscous correction N ,
resulting from the non-equilbbrium correction £, Eq. [Id),

to the distrbbution function at freeze-out, to the equilbrium
spectrum N oy dN oq=(dyd’pr ) calculated from Eq. {I2) by
setting f = 0. Thegluon curvesare forevoluition with EO S I,
the curves for ,K " and p are from calculations with SM —
EOS Q.

without £ and the idealhydrodynam ic spectra. T his is
true for all particle species, rrespective of the EO S used
to evolve the udid.

It tums out that, when evaliating the viscous cor-
rection f in Eqg. [[d) with the help of Eq. (20), large
cancellations occur between the rst and second line in
Eqg. (20). A frer azin uthal integration, the contribution
to f from the third line vanishes identically for cen—
tral collisions.] T hese cancellations cause the nalresult
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stability is achieved by trading 2 br = 2 o+

culation of 2 and = **+ YY Tcreased numerical and usihg instead of Eq. (20) the follow ing expression :
|
. 2 .
sin( o+ sin (2
PP = m2 2cosh’(y ) 1 Lm; coshly ) .(p ) p—§ .( )
Vo SJI'I(2 v) V5 SJI'I(2 v)
. 2 .
2 .2 sin( , ) Pf sin(2 p)
+ m~ sinh + pm T cosh v ——+ — 1
7 (y J)+pmr vy ) an o) 5 2 )
sin(p  v) PEsh@(p o))
+ m t cosh g — 23
prmr oshily ¥ 2T sne v @3

The rstand second linesofthisexpression are now m uch
an aller than before and closer in m agnitude to the nal
net result forp p . This in provem ent carries over to
non-centralcollisions as discussed in Sec.[IV D], wherewe
also show the individual contributions from , and
to the particle spectra. To be able to use Eq. (23),
the num erical code should directly evolve, in addition
to ,  *,and ¥ which are needed for the velocity
nding algorithm (see A ppend{Bl), the com ponents **
and YY. O therw ise these last two com ponents m ust be
com puted from the evolved ™" com ponents using the
transversality and tracelessness constraints w hich neces-
sarily involves the am pli cation of num erical errors by
division w ith sm all velocity com ponents.

In Figure[d we explore the non-equilbbrium contribu-
tion to the nalhadron spectra in greater detail. The

gure show s that the non-equilbbriim e ects from f
are largest for m assless particles and, at high pr , de-
crease In m agnitude w ith Increasing particle m ass. The
assum ption j £j foq, which underlies the viscous hy-
drodynam ic form aliam , is seen to break down athigh pr ,
but to do so later for heavier hadrons than for lighter
ones. O nce the correction exceeds O (50% ) (indicated by
the horizontaldashed line in Fig.[8), the calculated spec-
tra can no longer be trusted.

In contrast to viscous hydrodynam ics, ideal uid dy-
nam ics has no intrinsic characteristic that will tell us
when it starts to break down. C om parison of the calcu—
lated ellptic ow y from deal uid dynam icswith the
experin entaldata from RH IC ﬂ] suggests that the deal

uid picture begins to break down abovep ' 1:5G &V /c
for pions and above pr / 2G €V /c for protons. T his phe-
nom enological hierarchy of thresholds where viscous ef-
fects appear to becom e essential is qualitatively consis-
tentw ith them asshierarchy from viscoushydrodynam ics
shown in Fig.[d.

In the region 0< pr < 155G &V /¢, the interplay be-
tween m r —and pr -dependent term s in Eq. (20) is subtle,
causing sign changes of the viscous spectral correction
depending on hadron m ass and pr (see inset in Fig.[g).
T he fragility of the sign ofthe e ect is also obvious from
Fig. 8 in the work by Dusling and Teaney @J where it

is shown that in this pr region the viscous correction
changes sign from positive to negative when freeze-out is
shifted from earlier to later tin es (higher to low er freeze—
out team perature). O verall, we agree w ith them that the
viscous correction e ects on the p —spectra are weak in
this region @}. W e will see below that a sin iar state—
m ent does not hold for the elliptic ow .

Iv.. NON-CENTRAL COLLISIONS

A . Hydrodynam ic evolution

W e now take fiill advantage of the ability of V ISH 2+ 1
to solve the transverse expansion in 2 spatialdim ensions
to explore the anisotropic  reballevolution in non-central
heavy-ion collisions. Sin ilar to Fig.[H for b= 0, F igure[d
show s surfaces of constant tem perature and radial ow
forCu+ Cu collisionsatb= 7Mm , for the equation of state
SM -EOS Q .The plots show the di erent evolution into
and perpendicular to the reaction plane and com pare
dealw ith viscous uid dynam ics. Again,even am inin al
am ountof shearviscosity (3 = % ) is seen to dram atically
an oothen all structures related to the existence ofa  rst-
order phase transition in the EO S. However, in distinc—
tion to the case of central collisions, radial ow buids
up at a weaker rate In the peripheral collisions and never
becom es strong enough to cause faster central cooling at
late tin es than seen in deal uid dynam ics (bottom row
in Fig.[d). The viscous reball cools m ore slow ly than
the dealone at all tim es and positions, lengthening in
particular the lifetin e of the Q GP phase, and it grow s
to larger transverse size at freezeout. [Note that this
doesnotin ply larger transverse HBT radiithan for deal
hydrodynam ics (som ething that {in view of the \RH IC
HBT Puzzk" [1}{ would be highly desirable): the larger
geom etric size is counteracted by larger radial ow such
that the geom etric grow th, In fact, doesnot lead to larger
transverse hom ogeneity lengths @].]

W hile Figure[d gives an in pression of the anisotropy
of the &reball n coordinate space, we study now in
Fi.[10 the evolution of the ow anisotropy hizj j¢ .



Cu+Cu, b=7 (ideal hydro)

010203040506 07 |qn

0.7 06 05040362 0.1
lop! 00 92 0R0esh

hadrons < S

r (fm)
Cu+Cu, b=7 fm (along x axis)

10';0.7 06 05 04 03 02 01 0.1 02030405 06 07 _|

G s

1(fm/c)

r (fm)

T(fm/c)

1(fm/c)

13

Cu+Cu, b=7 fm (viscous hydro)

04 03 02 01 01 02 03 04 05 06 07| 10

free hadﬁons@_

r (fm)
Cu+Cu, b=7fm (along y axix)

04 03 02 01 01 0203040506 Q7 10

free adr_bns _

r (fm)

FIG .9: (Color online) Surfaces of constant tem perature T and constant transverse ow velocity v, for sem iperipheralCu+ Cu

collisions at b= 7Mfn , evolved with SM -EO S Q . In the top row we contrast ddeal (left panel) and viscous (right panel)

uid

dynam ics, w ith a cut along the x axis (in the reaction plane) shown in the right halfwhile the left half show s a cut along the y
axis (perpendicular to the reaction plane). In the bottom row we com pare ideal and viscous evolution in the sam e panel, w ith
cuts along the x (y) direction shown in the left (right) panel. See Fig.[d for com parison w ith central Cu+ Cu collisions.

In central collisions this quantity vanishes. In deal hy—
drodynam ics it is driven by the anisotropic gradients of
the therm odynam ic pressure. In viscous uid dynam ics,
the source tem s (8[9), whose di erence is shown in the
bottom row of Fig.[l0, receive additional contributions
from gradients of the viscous pressure tensor which con—
tribute their ow n anisotropies. F ig.[I0 dem onstrates that
these additionalanisotropies increase the driving force for
anisotropic ow atvery early tines (o< 1fm /c),but
reduce this driving force throughout the later evolution.
At tines 0> 2fm /c the anisotropy of the e ective
transverse pressure even changes sign and tums nega-—
tive, working to decrease the ow anisotropy. A s a con—
sequence of this, the buidup of the ow anisotropy stalls
at o 2:5HMm/c (even earlier for SM £0S Q where
the ow buidup stopsas soon asthe reballm ediuim en—
ters the m ixed phase) and proceeds to slightly decrease

therafter. T his happens during the crucial period where
deal uid dynam ics still show s strong grow th of the ow
anisotropy. By the tine the reball m atter decouples,
the average ow velocity anisotropy of viscous hydro lags
about 2025% behind the value reached during deal uid
dynam icalevolution.

These features are m frrored in the tin e evolution of
the spatial eccentricity 4 = KTYyZi (calculated by aver—
aging over the transverse plane w ith the energy density
e(x) as weight function ] and shown in the top row
of Fig.[1dl) and of the m om entum anisotropies , and g
(shown in the bottom row ). The m om entum anisotropy

I
P ohTE*+ T/ i
verse m om entum density due to anisotropies in the col-
lective ow pattem,asshown in top row ofF ig[ld; it in—
cludes only the ideal uid part of the energy m om entum

@]m easures the anisotropy of the trans-



-

01_ -7

y
N
N

v, 10

*0.05

v

/ Cu+Cu, b=7fm
I EOS |

0 L l L | L
0 2 4 6
-1,
L ' I ' | I ]
0.25— |
o 02 | .
H 015 — viscoushydro| ]
N -—- idedl hydro |
@ 01 _
0.05 |
0 I
= . l | i
0 2 4 6
-1,

FIG .10: (Color online) T im e evolution of the transverse ow

14

0.06 T SPT E T

005 . T
0 004 )/
> o 1
 003F / -
E:<ooz Wi Cu+Cu, b=7fm A
Ly SM-EOSQ |
0.01 —
ol 1 ]
0 2 4 6 8
T—TO

T T T " T T T ]
— viscoushydro| |
---- ideal hydro -

anisotropy hjzx j 7y ji (top row ) and of the anisotropy in the

transverse source term h$ *j $ Y4 (bottom row ). Both quantities are averaged over the transverse plane, w ith the Lorentz—

contracted energy density
(dashed) lines representing deal (viscous)

. hT ** T YVj
tensor. The totalm om entum anisotropy g: m ,

sim ilarly de ned in tem s of the totalenergy m om entum
tensor T =T, + , additionally counts anisotropic
mom entum contributions arising from the viscous pres-
sure tensor. Since the htter quantity inclides e ects
due to the deviation £ of the local distribution func-
tion from its themm al equilbbrium form which, accord-
ing to Eq. (IJ), also a ects the nal hadron m om en-
tum spectrum and elliptic ow , it is this totalm om en-
tum anisotropy that should be studied in viscous hydro-
dynam ics if one wants to understand the evolution of
hadron elliptic ow . In other words, in viscous hydrody—
nam ics hadron elliptic  ow is not sin ply a m easure for
anisotropies In the collective ow velocity pattem, but
additionally re ects anisotropies in the local rest fram e
mom entum distrbutions, arising from deviations of the
localm om entum distrdbution from them al equilibrium
and thus being related to the viscous pressure.

Figure [[1 correlates the decrease in tin e of the spa-
tial eccentricity , with the buidup of the m om entum
anisotropies , and g. In viscous dynam ics the spatial
eccentricity is seen to decrease initially faster than for
deal uids. This is less a consequence of anisotropies in
the large viscous transverse pressure gradients at early
tin es than due to the faster radial expansion caused by
their large overall m agnitude. In fact, it was found a

. as weight function. The lft (right) colum n shows results for EOS I (SM £0S Q ), with solid
uid dynam ical evolution.

w hile ago @ ]that for a system of free-stream ing partons
the gpatial eccentricity falls even faster than the viscous
hydrodynam ic curves (solid lines) in the upperrow ofF ig-
ure[lll. Thee ectsofearly pressure gradient anisotropies
isre ected In the initial grow th rate of the ow -induced
momentum anisotropy p which is seen to slightly ex-
ceed that observed in the deal uid at tim esup to about
1fm /c after the beginning of the transverse expansion
(bottom panels in Fig.[Idl). This parallkels the slightly
faster nitial rise of the ow velocity anisotropy seen in
the top panels of Fig.[I0. Figure[Id also show s that in
the viscous uid the ow velocity anisotropy stalls about
21fm /c after start and rem ains about 25% below the
nal value reached In deal uid dynam ics. This causes
the spatial eccentricity of the viscous reball to decrease
more sow Iy at later tin es than that of the deal uid
(top panels in Fig.[Idl) which, at late tin es, features a
signi cantly larger di erence between the horizontal (x)
and vertical (y) expansion velocities.

It is very instructive to com pare the behaviour of
the ow-induced deal- uid contribution to the m om en—
tum anisotropy, p, with that of the total m om entum
anisotropy g. At early tines they are very di erent,
w ith g being much smnaller than , and even tuming
slightly negative at very early tines (see insets in the
lower panels of Fig.[Il). This re ects very large nega—
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FIG .11: (Coloronline) T in e evolution for the spatialeccentricity x ,m om entum anisotropy , and totalm om entum anisotropy

0

p (see text for de nitions), calculated for b= 7fm Cu+ Cu collisions with EO S T (left coum n) and SM -EO S Q (right colum n).

D ashed lnes are for deal hydrodynam ics while the solid and dotted lines show results from viscous hydrodynam ics. See text

for discussion .

tive contributions to the anisotropy of the total energy
m om entum tensor from the shear viscous pressure w hose
gradients along the out-ofplane direction y strongly ex—
ceed those w ithin the reaction plane along the x direc—
tion. At early times this e ect alm ost com pensates for
the larger inplane gradient of the them alpressure. T he
negative viscous pressure gradient anisotropy is responsi-
ble for reducing the grow th of ow anisotropies, thereby
causing the ow -induced m om entum anisotropy , to sig-

ni cantly lag behind its deal uid value at later tin es.

T he negative viscous pressure anisotropies responsible for
thedi erencebetween , and g slow Iy disappear at later
tin es, since all viscous pressure com ponents then becom e
very sn all (see Fig.[I3 below ).

T he net result of this Interply is a totalm om entum
anisotropy In Cu+ Cu collisions (ie. a source of elliptic

ow y) that fora \m inim ally" viscous uid w itho = %
is 40-50% lower than for an ideal uid, at all except the
earliest tin es (w here it iseven sn aller). T he origin ofthis
reduction changesw ith tim e: Initially it isdom inated by
strong m om entum anisotropies in the local rest fram e,
with m om enta pointing preferentially out-ofplane, in—
duced by deviations from local themm al equilibbrium and
associated with large shear viscous pressure. At later
tin es, the action of these anisotropic viscous pressure

gradients Integrates to an overall reduction in collective
ow anisotropy, w hile the viscous pressure itself becom es
an all; at this stage, the reduction of the totalm om entum
anisotropy is indeed m ostly due to a reduced anisotropy
in the collective ow pattern while m om entum isotropy
in the Iocal uid rest fram e is approxin ately restored.

B. Eliptic ow vy of nalparticle spectra

The e ect of the viscous suppression of the totalm o—
mentum anisotropy g on the nalparticle elliptic ow
is shown in Figure[IZd. Even for the \m inin al" viscosity
5= % considered here one sees a very strong suppression
of the di erential elliptic ow w(pr ) from viscous evo-
ution (dashed lines) com pared to the ideal uid (solid
lines). Both the viscous reduction of the collective ow
anisotropy (whose e ect on v is shown as the dotted
lines) and the viscous contributions to the anisotropy of
the Iocalm om entum distrdbution (embodied in the tem
f in Eq.[[2)) play big parts in this reduction. T he runs
with EOS I (which is a very hard EO S) decouple m ore
quickly than thosew ith SM EO S Q ; correspondingly, the
viscous pressure com ponents are still larger at freeze-out

and the viscous corrections f to the distrilbbution func—
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the nom alizing factore+p T * decreases rapidly w ith tin e. R ight panel: C om parison of the full viscous hydrodynam ic source
tem s S™ *, averaged over the transverse plane, w ith their approxin ations given in Egs. (I, as a function of tin e. The thin
gray lines indicate the corresponding source term s In ideal uid dynam ics.

tion play a bigger role. W ith SM £EO0S Q the reball
doesn’t freeze out until ™" has becom e very sm all (see
Fig[I3below ), resulting in m uch sm aller corrections from

f (di erencebetween dashed and dotted lines in F i)
@]. On the other hand, due to the longer reball life-
tin e the negatively anisotropic viscous pressure hasm ore
tin e to decelerate the buidup of anisotropic ow,s0 ¥
is strongly reduced because of the much smaller ow-
induced m om entum anisotropy .

The net e ect of all this is that, for Cu+ Cu collisions
and In the soft m om entum regjonpr < 15GevV/c, the
viscous evolution with — = = leads to a suppression of
v, by about a factor 2 E in both the slope of its pr -
dependence and its pr -integrated value. (Due to the at-

ter pr spectra from the viscous dynam ics, the e ect in
the pr -Integrated v, isnot quite as large as for v, (pr ) at
xed @ )

C. Tin e evolution of the viscous pressure tensor
com ponents and hydrodynam ic source term s

In Figure[ld we analyze the tin e evolution of the vis-
cous pressure tensor com ponents and the viscous hydro-
dynam ic source term s on the rh.s. of Egs. [@). As
a]ready m entioned, the largest com ponents of ™" are

, X and YY (seeFig.2 in @ and left panel of
Fi.[I3 597). At early tines, both 2 and the sum



*¥4 VY reach (with opposite signs) aln ost 20% of
the equilbbrium enthalpy e+ p. At this stage all other
com ponents of are at least an order of magnitude
an aller (see inset). The largest of these sn all com po—
nents is the di erence = ** Y¥ which we choose
as the variable describing the anisotropy of the viscous
pressure tensor In non-central collisions. At late tin es
( 0> 5Mfm /c),when the lJarge com ponentsof ™" have
strongly decreased, becom es com parable to them in
m agnitude. A s a fraction of the them alequilbbriim en-
thalpy etp T which sets the scale ;n ideal uid dy-
nam ics and which itself decreases rapidly w ith tine, all
viscous pressure com ponents are seen to decrease w ith
tine. Ina uld with a sest ratio =s,viscouse ects thus
becom e less In portant w ith tim e. In real life, however,
theratio =sdepends itself on tem perature and risesdra—
m atically during the quark-hadron phase transition and
below @, @]. Shear viscous e ects will therefore be
larger at late tim es than considered here. The conse-
quences of this w ill be explored elsew here.

The observation that m any com ponents of ™" are
very an all throughout the reballevolution underlies the
validity of the approxin ation of the hydrodynam ic source
term s given in the second lines of Egs. {A8)). T he excel-
lent quality of this approxin ation is illustrated in the
right panel of F ig.[13.

D . V iscous corrections to nalpion spectra and
elliptic ow

T he large viscous reduction of the elliptic ow seen In
Fig.[[J warrants a m ore detailed analysis of the viscous
corrections to the particle spectra and v,. In Fig.[14
we show , for Cu+ Cu collisions at b= 7fm evolved w ith
SM EO S Q , the tin e evolution of the independent com —
ponents , and oftheviscouspressure tensor ™",
nom alized by the equilibbrium enthalpy e+ p, along the
Tgec= 130M €V decoupling surface plotted in the upper
right panel of Fig.[d. Solid (dashed) lines show the be-
haviour along the x (y) direction (right (left) half of the
upper right panelin Fig.[d). W e see that generically all
three of these viscous pressure com ponents are of sin ilar
m agnitude, except for  which strongly dom inates over
the other two during the st 2Mm /c after the beginning
of the expansion stage. H ow ever, since m ost particle pro—
duction, especially that of low pr particles, occursat late
tihes ( > 4fin /c orb= 7fm /c Cu+ Cu, see Fig.[d and
the discussion around Fig. 27 in Ref. ﬂ]), the regions
where  is lJarge do not contribute much. A s far as the
non-equilibrium contribution to the spectra is concemed,
we can thus say that the viscous pressure at freeze-out
is of the order of a few percent of e+ p. T he anisotropy
term is even an aller, due to cancellations betw een the
Inplane (x) and outofplane (y) contributions when in—
tegrating over the azim uthalangle in Eq. (12).

T hese viscous pressure com ponents generate the non-
equilbrium contribution f to the distribution func-
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FIG.14: Tine evolution of , ,and ,aswellas that

of the transverse velocity, along the decoupling surface for
b= 7fn Cu+ Cu collisions in viscous hydrodynam icsw ith SM —
EOSQ ,asshown in Fig.[9. Solid (dashed) lines represent cuts
along thex ( =0)andy ( = E)djrectjons.

tion on the freezeout surface according to Egs. (I€)
and (23), resulting in a corresponding viscous correc—
tion tﬁ the azinuthally integrated particle spectrum
3

N dp EGS
equilbbrium contributions forpions, nom aljzeﬁl by th}e az—
nuthally averaged equilibrium part N o4 d pddh;;"
W e show both the total viscous correction and the indi-
vidual contributions arising from the three independent
pressure tensor com ponents used in Eq. (23) and shown
in Fig.[I4.

In the viscous correction, the term (23) (nom alized
by T?(e+ p)) is weighted by particle production via the
equilbbrium distrdbution function foq(x;p). It is well-
known (see Fig. 27 in Ref. Eh) that for low r particles
this weight is concentrated along the relatively at top
part of the decoupling surface in F ig.[d, corresponding to

>5 6fin/c i Fig[ld. In this m om entum range, the
contributions from , and to N=Ng are ofsim i-
larm agnitude and altemating signs (see F ig [13), m aking
the sign of the overall viscous correction to the spectra
hard to predict.

H ighpr particles, on the other hand, com e from those
regions in the reballwhich feature the lJargest transverse

ow velocity at freeze-out. F ig[d show s that this restricts
their em ission m ostly to the tin e Interval3< < 6fm /c.
In this region is negative, see Fig.[14. A detailed
study ofthedi erent tem s in Eq.[23) reveals that (after
azin uthal integration) the expression m ultiplying is
positive, hence the negative sign of explains its nega-
tive contribution to N =N, athigh pr ,asseen in Fig [13.
Figure[Id also show s that in the region pr ~ 1G &V /c the

rst line in Eq. (23) com pletely dom inates the vis—
cous correction to the spectra. W e found that this in-
volves additional cancellations between term s of oppo—

Fiure [I3 shows these non-
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FIG .15: (Coloronline) V iscous corrections to the azin uthally
averaged pion spectrum resulting from individualcom ponents
of the viscous pressure tensor ™" as indicated, aswellas the
totalcorrection N =Ng4,forCu+ Cu collisionsatb= 7m with
SM -EO S Q . The horizontaldashed line at 50% indicates the
lin it of validity.

site sign (after azin uthal Integration) inside the square
brackets m ultiplying and in the second and thid
line ofEq. (23). Furthem ore, the tem isthe only
contribution whose m agnitude grow s quadratically w ith
pr . For the contrbutions involving and , the appar-
ent quadratic m om entum dependence seen in Eq. (23) is
tem pered by the integrations over space-tin e rapidity
and azinuthalangle in (I2), resulting In only linear
grow th at large pr .

In the absence of higher-orderm om entum anisotropies
Vn,n> 2,theelliptic ow ¥ (pr ) can be easily com puted
from themomentum spectra in x ( p=0)and y ( p=
directions:

3)

N, N,
N

2vy (pr )

= B Nyea® (Rx W) o)
Neg+ N

whereN = N+ N is shorthand for the azin uthally av—
eraged spectrum dN =(2 dyprdpr ),and N, denote the
Pr Spectra along the x and y directions, respectively:
Ny Nyeqt Ny dypﬁ%( »=0), and sin ilarly for
Ny with p=.Equation {24) show sthatv, receivescon-
tributions from anisotropies In the equilibrium partofthe
distrdbution function foq,which re ect the hydrodynam ic
ow anisotropy along the freeze-out surface,and from the
viscous correction f,which re ectsnon-equilbbriim m o—
mentum anisotropies n the local uid rest frame. The
dashed line in Figure[Id shows the relative m agnitude

of these two anisotropy contributions, 3 N. Ny , and

ieq N yieq
com pares it w ith the relative m agnitude 3 Y of the non—
eq

equilbrium and equilbrium contributions to the total,
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FIG .16: (Color online) R atio of non-equilbbrium and equilib—
rium contributions to particle production (solid line) and to
its m om entum anisotropy (dashed line), as a function of pr

for pions from Cu+ Cu collisionsatb= 7fm with SM -EO0S Q.

p-integrated pion spectrum for Cu+ Cu atb= 7fm . W e
see that the non-equilibrium contribution to them om en—
tum anisotropy v, is always negative and larger n rel-
ative m agnitude than the non-equilbrium contribution
to the azimuthally averaged spectrum . Since v, is a
an allquantity re ecting the anisotropic distortion of the
singleparticle spectrum , it reacts m ore sensitively than
the spectrum itself to the (anisotropic) non-equilbrium
contributions caused by the sm all viscous pressure ™"
on the decoupling surface. Furthem ore, the viscous cor-
rections to the -integrated spectrum change sign as a
function of pr , the corrections to v, are negative every—
where, decreasing v, (pr ) at all values of pr , but egpe-
cially at large transverse m om enta.

V. SENSITIVITY TO INPUT PARAMETERS
AND LM ITS OF APPLICABILITY

A . Initialization of ™"

Lacking Input from a m icroscopic m odel of the pre-
equilbrium stage preceding the (viscous) hydrodynam ic
one, one must supply initial conditions for the energy
mom entum tensor, including the viscous pressure ™.
T hem ost popular choice hasbeen to nitialize ™" with
itsNavier-Stokesvalue, ie. to set initially ™" =2 ™",
Up to this point, this has also been our choice in the
present paper. Ref. (3d] advocated the choice ™" =0
attine ( in order to m inim ize viscous e ects and thus
obtain an upper lin it on =s by com parison w ith exper—
mentaldata. In the present subsection we explore the
sensitivity of the nal spectra and elliptic ow to these
di erent choices of initialization, keeping all otherm odel
param eters unchanged.

F igure[I7 show s the tim e evolution of the viscous pres—
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FIG.17: (Color online) Sim ilar to Figure [[3d, but now com paring runs with di erent initial conditions. The thick lines

reproduce the results from Figure[l3, obtained with ™" =2
the corresponding results obtained by setting initially

approxim ation: h3 *4i (dashed),hf Y1 (dotted), and hS

sure tensor and viscous hydrodynam ic source term s for
the two di erent initializations. Di erences w ith respect
to the results shown Fig.[I3d (which are reproduced in
Fig.[I7 for com parison) are visible only at early tin es

0<5 1fm /c. A fter 02 fm /c, the initial dif-
ference ™" 2 ™" has decreased by roughly a factor
1=e, and after several kinetic scattering tim es the
hydrodynam ic evolution has apparently lost allm em ory
how the viscous term s were initialized.

Correspondingly, the nal spectra and ellpptic ow
show very little sensitivity to the initialization of ™",
as seen in Fig.[18. W ith vanishing initial viscous pres-
sure, viscous e ects on the nal
little weaker (dotted lines in Fig.[I8), but thisdi erence
is overcom pensated in the totalellpptic ow by slightly
stronger anisotropies of the local rest fram e m om entum
distrlbutions at freeze-out (dashed lines in Fig.[18). For
shorter kinetic relaxation tines ,thedi erences result—
ing from di erent initializationsof ™" would be sn aller
still.

B . K inetic relaxation tim e

W hile the niterelxation tine forthe viscouspres-
sure tensor in the Israel-Stewart form alism elin inates
problem s w ith superlum inal signal propagation in the
relativistic N avierStokes theory, it also keeps the vis-
cous pressure from ever fully approaching its Navier-
Stokes Im it ™" =2 ™%_ In this subsection we ex—
plore how far, on average, the viscous pressure evolved
by V ISH 2+ 1 deviates from its N avier-Stokes 1 it, and
how this changes if we reduce the relaxation tin e by
a factor 2.

In Figure [19 we com pare, for central Cu+ Cu colli-

"M at initial tin e
® % = 0. The right panel show s the full viscous source tem s, w ithout
i (dash-dotted).

ow anisotropy are a

o, while thin lines of the sam e type show

Cu+Cu, b=7 fm, SM-EOSQ, Tt
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FIG . 18: (Color online) D i erential elliptic ow v, (pr ) for

plons from b= 7fn Cu+ Cu collisions with SM -EO S Q . Thick
lines reproduce the pion curves from F igure[lZ, obtained w ith
"t =72 ™"agt initial tine o, while thin lines of the sam e

type show the corresponding results obtained by setting ini-
tihally ™" =0.
sions, the tin e evolution of the scaled viscous pressure
tensor, averaged in the transverse plane over the them al-
ized region inside the freeeze-out surface, w ith itsN avier—
Stokes lim it, or two values of , = 3 =sT = °©Bs5=
and cBss—4  For the larger relaxation tin e, the de—
viations from the Navier-Stokes lm it reach 2530% at
early tin es, but this fraction gradually decreases at later
tin es. For the twice shorter relaxation tim e, the frac—
tional deviation from N avierStokes decreases by som e—
what m ore than a factor 2 and never exceeds a value of
about 10% .

F igure[2d show s that, sm allas they m ay appear, these



L TT
0.002 - ! Cu+Cu, b=0fm
A
o001/ SM-EOSQ
_/' 3
0
-0.001
I~ "\.___,.,w
-0.002 |- | | | |
5 5 10

- —- 20" /(e+p)T) T,=3nVsT
— @ /(e+p)] T =3n/sT
............ 2n0™/(e+p) T =L.5r/sT
- m[mn/(e+p)m ‘[T[:1.5r}’ST

0.1}

0.05 °
O -
0 5 10
T-1,(fm/c)
FIG. 19: (Color online) Tine evolution of the two in-

dependent viscous pressure tensor com ponents and
= **4 YV for central Cu+ Cu collisions (solid lines), com —
pared w ith their N avier-Stokes lin its 2 and 2 ( **+ YY)
(dashed lines), for two values of the relaxation time,
= 3 =sT (thick lines) and =1:5 =sT (thin lines). A1l
quantities are scaled by the them alequilbrium enthalpy e+ p
and transversally averaged over the them alized region inside
the decoupling surface.

deviationsof ™" from itsNavier-Stokeslm it2 ™" (es—
pecially on the part of the decoupling surface correspond—
ing to early tin es o) still play an in portant role for
the viscous reduction of elliptic ow observed in our cal-
culations. W hile a decrease of the relaxation tim e by a
factor 2 leadsto only a sm all reduction of the viscous sup—
pression of ow anisotropies (dotted lines in Fig[2Q), the
contribution to v, (pr ) resulting from the viscous correc—
tion wp. """ tothe nalparticle spectra is reduced
by about a factor 2, too, leading to a signi cant over—
all increase of v, (pr ) In the region pr > 1GeV/c. To
avold strong sensitivity to the presently unknown value
of the relaxation tin e n the QG P, future extractions
of the speci c shear viscosity =s from a com parison be-
tw een experim entaldata and viscous hydrodynam ic sin —
ulations should therefore be perform ed at ow transverse
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FIG .20: (Colbronline) D i erentialelliptic ow v (pr ) for
from b= 7fm Cu+ Cu collisions with SM -EO S Q , calculated
from viscous hydrodynam ics w ith two di erent values for the
relaxation time Thick lines reproduce the pion curves
from Figure[lZ, thin lines show results obtained with a twice
shorter relaxation tim e. For the standard (tw ice larger) classi-
cal relaxation tin e value = 6 =sT m,@] deviations from
deal hydrodynam ics would exceed those seen in the thick
lines.

momenta, pr < 1G &V /¢, where our results appear to be
reasonably robust against variations of

C . Breakdown of viscous hydrodynam ics at high pr

A s indicated by the horizontaldashed lines in F igs.[§
and[19, the assum ption j £j Jfoqjunder which the vis-
cous hydrodynam ic fram ework is valid breaks down at
su clently large transverse m om enta. For a quantita—
tive assesam ent we assum e that viscous hydrodynam ic
predictions becom e unreliable when the viscous correc—
tions to the particle spectra exceed 50% . Fig.[d shows
that the characteristic transverse m om entum p; where
this occurs depends on the particle species and increases
w ith particle m ass. To be speci ¢, we here consider p
for pions | the values for protons would be about 15%
higher. T he discussion In the preceding subsection of the

-dependence of viscous corrections to the nal spec—
tra m akes it clear that reducing willalso push p;, t
larger values. Since we do not know we refrain from a
quantitative estin ate of thise ect.

In Fig.2l we show the breakdown m om entum p, for
pions as a fiinction of the peak initial energy density in
the reball center (ie. indirectly as a function of colli-
sion energy ), for both centraland peripheralCu+ Cu col-
lisions. (The initial tine washeld xed at (= 0:6fm .)
G enerically, p; risesw ith collision energy. T he anom aly
at Jow values of e(r=0) results, as far as we could as—
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FIG .21: (Color online) C haracteristic transverse m om entum

pr where the viscous corrections to the nal pion spectrum

becom e so large (> 50% ) that the spectrum becom es unreli-
able, as a function of the initial energy density in the center
of the reball. Stars are for central Cu+ Cu collisions, open
circles for peripheral Cu+ Cu collisions at b= 7fm . Note that
denticale(r= 0) values correspond to higher collision energies
in peripheral than in central collisions. p; values are higher
for m ore m assive hadrons (see F ig.[8), and they also increase
for an aller relaxation tim es (see discussion of Fig.[20).

certain, from e ects connected w ith the phase transition
In SM-EOS Q .Therise of p; with increasing e(r=_0) re-
ects the grow ing  reball lifetin e which leads to am aller
viscous pressure com ponents at freeze-out. T his lifetin e
e ect isobviously stronger for central than for peripheral
collisions, leading to the faster rise of the stars than the
open circles in F ig [21l. Taking further into account thata
given beam energy leads to higher e(r=0) values in cen-
tral than in peripheral collisions such that, for a given
experin ent, the peripheral collision points are located
farther to the left in the gure than the central collision
points, we conclude that in central collisions the validity
of viscous hydrodynam ics extends to signi cantly larger
valies ofpr than in peripheral collisions: V iscouse ects
arem ore serious In peripheral than in central collisions.

VI. SUMMARY AND CONCLUSION S

In this paper, we num erically studied the shear vis-
cous e ects to the hydrodynam ic evolution, nalhadron
spectra, and elliptic ow y, using a (2+ 1)-din ensional
causal viscous hydrodynam ic code, V ISH 2+ 1, based on
the 2nd order Israel-Stew art form alisn . Usinga xed set
of initialand nalconditions, we explored the e ects of
shear viscosity for a \m inin ally" @] viscous uild with
5= % in centraland peripheral C u+ Cu collisions, com —
paring the evolution w ith two di erent equationsof state,
an dealm assless parton gas (EO S I) and an EO S with a
sem irealistic param etrization of the quark-hadron phase
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transition (SM E£0 S Q ). Final hadron spectra and their
elliptic ow were calculated from the hydrodynam ic out—
put using the C ooper¥rye prescription.

W e found that shear viscosity decelerates longitudi-
nalexpansion, but accelerates the build-up of transverse

ow . This slow s the cooling process initially, leading to
a longer lifetin e for the Q G P phase, but causes acceler—
ated cooling at later stages by faster transverse expan—
sion. V iscous pressure gradients during the m ixed phase
increase the acceleration during this stage and slightly re—
duce its lifetim e. T hey counteract large gradients of the
radialvelocity pro lethatappear in deal uid dynam ics
asa result of the softness of the EO S In them ixed phase,
thereby de facto sm oothing theassum ed  rst-orderphase
transition Into a rapid crossover transition. In the end
the largerradial ow developing in viscous hydrodynam —
ics leads to  atter transverse m om entum  spectra of the

nally em itted particles,w hile theirazin uthalanisotropy
in non-centralheavy-ion collisions is found to be strongly
reduced.

A Yhough the viscous hardening of the hadron pr -
spectra can be largely absorbed by retuning the initial
conditions, starting the transverse expansion later and
w ith lower Initial entropy density @,@ ], this only acer-
bates the viscous e ects on the ellpptic ow wwhich in
this case is further reduced by the decreased reball life-
tin e. The reduction of the elliptic ow ¥ by shear vis-
cous e ects is therefore a sensitive and robust diagnostic
tool for shear viscosity in the uid @}.

O urresults indicate that in sem JperipheralCu+ Cu col-
lisions even a \m inim al" am ount of shear viscosity ]
causes a reduction of v, by alm ost 50% relative to ideal

uid dynam ical sin ulations. In the present paper we ex—
plored the origin of this reduction in great detail. The
e ectsobserved by us for C u+ Cu collisions|B7 ]are larger
than those recently reported in R efs. @,@] forAu+Au
collisions. W hile som e of these di erences can be at-
trbuted to an increased in portance of viscous e ects
In smaller system s @1, the buk of the di erence ap-
pears to arise from the fact that the di erent groups
solre som ewhat di erent sets of viscous hydrodynam ic
equations ,@]. (See also the recent Interesting sug-
gestion by Pratt @ ]fora phenom enologicalm odi cation
of the Isreal-Stew art equations for system sw ith large ve—
locity gradients.) This raises serious questions: if the-
oretical am biguities in the derivation of the viscous hy-—
drodynam ic equations re ect them selves In large varia—
tions of the predicted elliptic ow ,any value ofthe QG P
shear viscosity extracted from relativistic heavy-ion data
w i1l strongly depend on the speci chydrodynam icm odel
used in the com parison. A reliable quantitative extrac—
tion of =s from experin entaldata w ill thus only be pos-
sible if these am biguities can be resolved.

Our studies show that shear viscous e ects are
strongest during the early stage of the expansion phase
when the longitudinal expansion rate is largest. At later
tin es the viscous corrections becom e sn all, although not
negliglble. Sm all non—zero viscous pressure com ponents



along the hadronic decoupling surface have signi cant
e ectson the nalhadron spectra that grow with trans-
verse m om entum and thus lin it the applicability of the
viscous hydrodynam ic calculation to transversem om enta
below 2-3G eV /c, depending on in pact param eter, colli-
sion energy and particle m ass. Viscous e ects are m ore
In portant in peripheral than in central collisions, and
larger for light than for heavy particles. They increase
w ith the kinetic relaxation tim e for the viscous pressure
tensor. Since the breakdow n of viscous hydrodynam ics is
signalled by the theory itself, through the relative m ag—
nitude of the viscous pressure, the applicability of the
theory can be checked quantitatively case by case and
during each stage of the expansion.

For the kinetic relaxation tin es considered in the
present work, sensitivities to the initial value of the vis-
cous pressure tensor were found to be anm all and practi-
cally negligble. Sensitivity to the value of was found
for the hadron spectra, especially the elliptic ow, at
large transverse m om enta. This leads us to suggest to
restrict any com parison between theory and experim ent
w ith the goalof extracting the shear viscosity =s to the
region pr < 1G &V /c where the sensitivity to s su
ciently weak.

T he dynam icalanalysis of shear viscous e ects on the
mom entum  anisotropy and ellipptic ow in non-central
collisions reveals an Interesting feature: The totalm o-
m entum anisotropy receives two types of contributions,
the st resulting from the anisotropy of the collective

ow pattem and the second arising from a localm om en—
tum anisotropy of the phase-space distribution function
in the bcal uid rest fram e, re ecting viscous corrections
to its local them al equilbrium form . D uring the early
expansion stage the latter e ect (ie. the fact that large
viscous pressure e ects generatem om entum anisotropies
In the local uid rest fram e) dom inate the viscouse ects
on elliptic ow. At later tin es, these localm om entum
anisotropies get transferred to the collective ow pro Ile,
m anifesting them selves as a viscous reduction of the col-
lective ow anisotropy. The tin e scale for transferring
the viscous correction to v, from the local rest fram e
m om entum distrdbution to the collective ow pattem ap-—
pears to be of the sam e order as that for the evolution of
the totalm om entum anisotropy itself.

Several additional steps are necessary before the work
presented here can be used as a basis for a quantita—
tive interpretation of relativistic heavy—ion data. First,
the abovem entioned am biguity of the detailed form of
the kinetic evolution equations for the viscous pressure
m ust be resolved. Second, the equation of state m ust be

ne-tuned to lattice Q CD data and other available infor—
m ation, to m ake it as realistic as presently possble. T he
hydrodynam ic scaling of the nalellptic ow ¥ with
the initial source eccentricity @J and its possible vio—
lation by viscouse ectsneed to be exp]ored@ ], In order
to assess the sensitivity of the scaled elliptic ow y= 4
to details of the m odel used for initializing the hydrody-—
nam ic evolution @ ]. T he tem perature dependence of the
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speci c shear viscosity =s, especially across the quark—
hadron phase transition @,@ ], m ust be taken into ac—
count, and buk viscous e ects, again particularly near
T.,must be included. To properly account for the highly
viscous nature of the hadron resonance gas during the
last collision stage it m ay be necessary to m atch the vis-
cous hydrodynam ic form alisn to a m icroscopic hadronic
cascade to describe the last part of the expansion until
hadronic decoupling @]. W e expect to report soon on
progress along som e of these fronts.

N ote added: Just before subm itting this work for pub—
lication we becam e aware of Ref. @J where the fom
of the kinetic evolution equations for the viscous pres-
sure is revisited and it is argued that Egs. (@) must
be am ended by additional term sw hich reduce the strong
viscous suppression of the elliptic ow observed by us
@ ]. W hile details of the num erical results w ill obviously
change if these term s are included (cf. Refs. @,@]),
our discussion of the driving forces behind the nally ob—
served viscous corrections to ideal uid resultsand of the
evolution of these corrections w ith tim e is generic, and
the Insights gained in the present study are expected to
hold, at least qualitatively, also for future in proved ver-
sions of VISH 2+ 1 that properly take into account the
new ndings reported in @].
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APPENDIX A:EXPRESSIONS FOR ~"" AND ~""

T he expressions for ~* " and ~" " in Eq. {IJ) are
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APPENDIX B:VELOCITY FIND IN G

A sshown in @ ], since we evolve all three com ponents
, %, and ¥ (one of which is redundant due to
the constraint  ™u, = 0),the ow velcity and energy
density can be found from the energy-m om entum tensor
com ponentsw ith the sam ee cient one-din ensional zero—
search algorithm em ployed In ddeal hydrodynam ics @].
This is in portant since this step has to be perform ed
after each tim e step at all spatial grid points in order to
evaluate the EO S p(e).

Using the output from the num erical transport al-
gorithm , one de nes the two-din ensional vector M =
MyMy) (TF T Y ¥). This is the deal uid
part of the transversem om entum density vector; as such
it is parallel to the tranverse ow velocity v = (vx vy ).
Introducing furtherM o T ,one can w rite the en—
ergy density as

e=Mo w M =M wM; (B1)
S|
where v; = vZ+VvZ is the transverse ow speed and
q_ -
M M Z2+M 2. One sees that solving for e requires

only the m agnitide of v, which is obtained by solving
the in plicit relation [28,[67]

M
Mg+ ple=My

(B2)

Vo = :
wM )

by a one-din ensionalzero-search. The ow velocity com —
ponents are then reconstructed using

(B3)

N ote that this requires direct num ericalpropagation of
all three com ponents ( , *and Y) since the ow
velocity is not know n until after the velocity nding step
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has been com pleted. H ence the transversality constraint
™u, = 0 cannot be used to determ ne, say, from
*and Y. However, it can be used after the fact to
test the num erical accuracy of the transport code.

APPENDIX C: ™" IN TRANSVERSE POLAR
COORDINATES

A Ithough V ISH 2+ 1 uses Cartesian (x;y) coordinates
in the transverse plane, polar (r; ) coordinates m ay
be convenient to understand som e of the results in the
Iim it of zero im pact param eter where azim uthal sym —
metry is restored. In ( ;r; ; ) coordinates the ow
velocity takes the é}bm ut = > (1;ve ;v ;0), with

oo - - =
»=1= 1 ¥=1= 1 ¢ 2£v’.Thepokrcoordinate

com ponents of the shear pressure tensor com ponents ™"

are obtained from those n ( ;x;y; ) coordinates by the
transform ations
= *cos + Ysin ;
r = *sih + Ycos ; (c1)
T XXl 4D *Ygin cos + YYsin?

r? = *Xgin? 2% sin cos + YWcod ;
r* = (¥ *sn cos + *¥(cos sif );
with cos = x=r and sin = y=r. In tem s of these the
independent com ponents  and of Egs. [[A20) are

given as
_ rr o, r2 .
4
= cos(2 ) *F ¢ 2sin(2 )r* ; (C2)
from which we easily get
2 *X = Y14 wos(2 ) + (1 cos(2);
2V = TF(1 cos(2 )+ r® (14 cos(2 )(€3)

Note that azinuthal symmetry at b= 0 lmplies * =0
and a vanishing azinuthal average or : h 1 =0 or
h **1 =h YY1 .

APPENDIX D:TESTSOF THE VISCOUS
HYDRO CODE VISH 2+ 1

1. Testing the idealhydro part ofV ISH 2+ 1

W hen one sets ™" = 0 initially and takes the lin it

= 0,V ISH 2+ 1 sim ulates the evolution ofan deal uid,
and its results should agree w ith those of the well-tested
and publicly available (2+ 1)-din ensionalideal uid code
AZHYDRO [41]. Since V ISH 2+ 1 was written indepen—
dently, using only the ux-corrected SHASTA transport
algorithm from the AZHYDRO package ,@1 in its
evolution part, this is a useful test of the code. The
left panel in Fig.[22 show s that, for dentical initial and
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FIG . 22: (Color online) Left: D1 erential elliptic ow v (pr ) for from b= 4fm Cu+Cu collisions and b= 7fm Au+Au

collisions, using EO S Q .Results from V ISH 2+ 1 for
AZHYDRO (sold lines). R ight: v, (pr ) for

evolution with EOS Q (dashed) and SM E£0S Q

nal conditions as described in Sec [T, the two codes
indeed produce aln ost dentical results. The sn all dif-
ference in the Au+ Au system at b= 7fm is lkely due
to the slightly better accuracy of AZHYDRO which, in
contrast to V ISH 2+ 1, Invokes an additional tin esplitting
step in its evolution algorithm .

W hen com paring our VISH 2+ 1 results with AZHY —
DRO we hitially found som ew hat larger discrepancies
w hich,however, could be traced back to di erentversions
of the EOS used in the codes: EOS Q in AZHYDRO,
the am oothed version SM EO0OS Q In VISH2+ 1. In the
left panelof Fig.[2d thisdi erence has been rem oved, by
running alsoVISH 2+ 1 with EO S Q . In the rightpanelwe
com pareV ISH 2+ 1 results forEO S Q and forSM -E0 S Q,
show ing that even the tiny rounding e ects resulting from
the sn oothing procedure used in SM £0 S Q (which ren—
ders the EO S slightly sti er in the m ixed phase) lead to
di erences in the elliptic ow for peripheral collisions of
an allnucleiw hich exceed the num ericalerror of the code.

2. Com parison w ith analytical results for (0+ 1)-d
boost-invariant viscous hydro

For boost-nvariant longitudinal expansion w ithout

transverse ow , the relativistic N avier-Stokes equations
read EJ
e e+ p+ 2
@ = 0; (D1)
4
2
= —-= D2)
3 (

Foran idealgasEO S p= %e T* this leads to the Hllow —

= 0 and
from Cu+ Cu collisions at in pact param etersb= 4 and 7fn , com paring V ISH 2+ 1
(solid) in the deal uid lm it

™" = (0 (dashed lines) are com pared w ith the deal uid code

mno Q.

=0,

! I ! I ! I
1, |----numerical result from (2+1)-d viscous hydro with |
\ homogeneous transverse initial energy density
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FIG . 23: (Color online) Com parison between the analyti-

caltem perature evolution for (0+ 1)-d boost-nvariant N avier-
Stokes viscous hydrodynam ics (solid line) and num erical re—
sults from V ISH 2+ 1 w ith hom ogeneous transverse initial en—
ergy density pro les (dashed line).

ing analytic solution for the tem perature evolution E I:
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To test ourcode against thisanalyticalresult w e nitialize
V ISH 2+ 1 w ith hom ogeneous tranverse density distribu—
tions (not transverse pressure gradients and ow ) and
use the NavierStokes denti cation ™" =2 ™" in the
hydrodynam ic part of the evolution algorithm , sidestep—
ping the part of the code that evolves ™" kinetically.
It tums out that in this case the relativistic Navier-
Stokes evolution is num erically stable. Fig.[23 com pares



the num erically com puted tem perature evolution from
V ISH 2+ 1 w ith the analytic omula ([D3), or =s= 0:08
and Tp= 360M &V at o= 06 /c. T hey agree perfectly.

3. Reduction of VISH 2+ 1 to relativistic
N avier-Stokes theory for sm all and

Having tested the hydrodynam ic part of the evolution
algorithm in Appendix D1, we would lke to dem on-
strate also the accuracy of the kinetic evolution algorithm
that evolves the viscous pressure tensor com ponents. A
straightforw ard approach would be to take V ISH 2+ 1, set
the relaxation tin e as close to zero as possible, and
com pare the result with a sin ilar calculation as in Ap-
pendix [D_1l where we sidestep the kinetic evolution aljo-
rithm and Instead insert into the hydrodynam ic evolution
code directly the Navier-Stokes dentity ™"=2 ™7,

Vo
05H[—

ideal hydro

NS viscous hydro

NS viscous hydro (flow anisotropy only)
045 |— IS viscous hydro
IS viscous hydro (flow anisotropy only) | -~

0.3 gluons
02 Cu+Cu, b=7 fm
EOSI
0.1
| | |
0 1 2 3 4

p(GeV)

FIG . 24: (Color online) D i erential elliptic ow v, (pr ) for
glions from b= 7fm Cu+ Cu collisions, calculated with ideal
hydrodynam ics (blue dashed line), relativistic N avier-Stokes
(NS) hydrodynam ics (light blue lines), and IsraelStewart
(IS) viscoushydrodynam icsw ith - = ;52— and = 0:03fm /c
(red Iines), using EO S I.The lines for NS and IS viscous hy-—
drodynam ics are aln ost indistinguishable. Solid lines show

the full results from viscous hydrodynam ics, dotted lines ne-
glect viscous corrections to the spectra and take only the ow

anisotropy e ect into account.

U nfortunately, this naive procedure exposes us to the
wellknow n instability and acausality problem sof the rel-
ativistic N avier-Stokes equations. T he suggested proce-
dure only works ifa set of nitialconditions and transport
coe cients can be found where these instabilities don’t
kick in before the freeze-out surface has been reached.

W e found that su ciently stable evolution of the rel-
ativistic N avier-Stokes algorithm (ie. of VISH 2+ 1 with
thedenti cation ™" =2 ™")canbeachieved for stan—
dard initialdensity pro les in Cu+ Cu collisions and the
sin ple ideal gas equation of state EO S I by choosing
a very small and tem perature dependent speci c shear

viscosity - = 0:01 = L _ . For the Israel-Stewart

T
200M ev 2Gev
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evolution we use a relaxation tim e which is correspond-—
ingly short: = 2= 0031 /c.

Fiure[24 show s thedi erentialelliptic ow w(pr ) for
glions in b= 7fm Cu+ Cu collisions evolved with these
param eters. T he dashed line gives the deal uid result.
T he solid and dotted lines show the totalelliptic ow and
the anisotropic ow contribution to ¥ (pr ), respectively,
sin ilar to the left panel Fig.[IJ. There are two sold
and dotted lines w ith di erent colors, corresponding to
Israel-Stew art and N avier-Stokes evolution; they are in—
distinguishable, but clearly di erent from the deal uid
result. W e conclude that, for sm all shear viscosity =s
and In the lmit ! 0, the second-order Israel-Stewart
algorithm reproduces the Navier-Stokes I it and that,
therefore,V ISH 2+ 1 evolves the kinetic equationsfor ™ °
accurately.

APPENDIX E:HYDRODYNAM ICSVS.BLAST
WAVE MODEL

A sdiscussed in Sec [IIIBI, the viscous corrections to the

nalpion spectra from the hydrodynam ic m odel have a
di erent sign (at least in the region p > 1G &V ) than
those originally obtained by Teaney ]. In this Ap-
pendix we try to explore the origins of this discrepancy.
W ew illsee that the sign and m agnitude of viscous correc—
tions to the (azin uthally averaged) particle spectra are
fragile and depend on details of the dynam ical evolution
and hydrodynam ic properties on the freeze-out surface.
Fortunately, they sam e caveat does not seem to apply
to the viscous corrections to elliptic ow where hydro—
dynam ic and blast wave m odel calculations give qualita—
tively sin ilar answ ers.

Follow Ing Teaney s procedure,we calculate ™" in the
NavierStokes limit ™" =2 ™". W e do this both in
the blast wavem odel and using the results for ™" from
VISH2+ 1. For the blast wave model we assum e lke
Teaney freeze-out at constant  w ith a box-like density
pro le e(r)= @ec Ry r), where gc.= 0:085G eV /fm >
is the sam e freeze-out energy density as in the hydro-
dynam ic model for EOS I, and Rg= 6fm . The veloc-
ity pro le in the blast wave m odel is taken to be lin-
ear, u, (r)= aoﬁ Ry r),wih a = 0:5; freezeout is
assum ed to occur at gec= 4:dMn/c. Rg, ap and gec
are som ew hat gn aller than in Ref. @] since we study
Cu+ Cu instead of Au+Au collisions. W e concentrate
here on a discussion of ** for illustration ; the expression
for ¥ isund n Ref. 29], Eq. 3 11c). W hile ** from
VISH2+ 1di ers from 2 *F due to the nite relaxation
tine (see Sec.[ Cl), we have checked that the signs
of these two quantities are the sam e on the freezeout
surface so that our discussion provides at least a qualita—
tively correct analysis of the viscous spectra corrections
in the two m odels.

In Fig.[29we com pare the freeze-outpro les or thera—
dial ow velcity and 2 ™ from the blast wave m odel.
In spite of qualitative sin ilarity of the velocity pro les,
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along freeze-out surface

V \'
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FIG .25: (Coloronline) Top row : Velocity pro lesfrom theblastwavem odel (left) and from the hydrodynam icm odelw ith EO S I
at xed tin es (m ddle) and along the decoupling surface (right). Bottom row : T he corresponding pro les for the transverse
shear viscous pressure ** in the NavierStokes linit, **= 2 r® u . Calkulations are for central C u+ Cu collisions, and the

curves in the m iddle panels correspond to the tim es

the freezeout pro lesof2 ** are entirely di erent and
even have the opposite sign In the region where m ost of
the hydrodynam ic particle production occurs (left and
right comns in Fig.[23). The m iddle column shows
thatat xed tines ,thehydrodynam icpro lefor2 **
show s som e sin ilarity w ith the blast wavem odel in that
2 ' is positive throughout m ost of the interior of the

reball. W hat m atters for the calculation of the spec—

=1,2,4,and 6fm /c. See text for discussion.

tra via Eq. {IJ), however, are the valuesof 2 ** on the
freeze-out surface  where they are negative, m ostly due
to radial velocity derivatives. T his explains the opposite
sign of the viscous correction to the spectra In the hydro—
dynam ic m odel and show s that, as far as an estin ate of
these viscous corrections goes, the blast wave m odel has
serious lin itations.
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