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ABSTRACT

In the present contribution we extend our previous work by considering the coset space
din ensional reduction of higherdin ensional E instein{Yang{M ills theories including scalar

uctuations as well as K aluza{K lein excitations of the com pacti cation m etric and we de-
scribe the gravity-m odi ed rules for the reduction of non-abelian gauge theories.
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1 Introduction

In the last four decades we have w ithessed a revival of Interest in K aluza{K lein theories,
triggered by the realization [1l] that non-abelian gauge groups appear naturally when one
assum es that theuni cation takes place In higherdin ensions. M ore speci cally, one typically
considers a total spacetim em anifold that can be w ritten asa direct productM > = M ¢ B,
where B is a R iam annian space with a non-abelian isom etry group S. The dim ensional
reduction of this theory leads to gravity coupled to a Yang{M ills theory w ith a gauge group
containing S and scalars n four dim ensions. The m ain advantage of this scenario is the
geom etrical uni cation of gravity with the other interactions and the natural em ergence of
the obsarved non-abelian gauge symm etries. However, there are problem s in the K aluza-
K lein fram ework.

T he m ost serious ocbstacle In obtaining a realistic m odel of the low -energy interactions is
that it is In possible to obtain chiral farm ions In four dim ensions [2]. Fortunately, there isa
very interesting resolution to this problem resulting when one adds Yang{M ills elds to the
original gravity action. These gauge elds can be responsible for a non—rivial background
con guration which could provide chiral farm jons to the fourdin ensional theory according
to the A tiyah-H izebruch theorem [4]. M oreover, the systam adm its a stable classical ground
state of the required form and the relevantm echanisn isknown as spontaneous com pacti ca—
tion [3]. Thusone is led to Introduce Yang{M ills elds in higher din ensions. T his approach
is further justi ed by other popular uni cation schem es such as supergravity and heterotic
string theory [9].

Gauge elds in the higherdim ensional theory are also welcom e from another point of
view , since they can provide a potential uni cation of the low -energy gauge interactions as
wellas of gauge and H iggs elds. Conceming the latter we should recall that the celebrated
Standard M odel (SM ) ofE lem entary Particle P hysics, which had so far outstanding successes
In all its confrontations w ith experim ental results, has also obvious lim itations due to the
presence of a plethora of free param eters m ostly related to the ad-hoc introduction of the
H iggs and Yukawa sectors in the theory. The Coset Space D In ensional R eduction (CSDR)
d,[7,8]1was suggesting from the beginning that a uni cation of the gauge and H iggs sectors
can be achieved using higher dim ensions. Tn the CSD R one assum es that the form of space-
tineisM? = M* S=R with S=R being a hom ogeneous space (obtained as the quotient
of the Lie group S by the Lie subgroup R ). Then a gauge theory with gauge group G
de ned on M P can bedin ensionally reduced toM * in an elegant way using the symm etries
of S=R . In particular, the resulting fourdin ensional gauge group is a subgroup of G . The
fourdin ensional gauge and H iggs elds are sim ply the surviving com ponents of the gauge

elds of the pure higherdin ensional gauge theory.



Sin ilarly, when ferm ions are introduced [9] the fourdin ensional Yukawa and gauge in—
teractions of ferm ions nd also a uni ed description in the gauge interactions of the higher-
din ensional theory. T he last step in this uni ed description In high dim ensions is to relate
the gauge and ferm ion elds that have been Introduced. A simple way to achieve that is
by dem anding that the higherdin ensional gauge theory isN = 1 supersymm etric, which
requires that the gauge and ferm ion  elds are m em bers of the sam e vector supem ultjplet.
A very welcom e additional input is that heterotic string theory suggests the din ension and
the gauge group of the higher dim ensional supersym m etric theory [5]. M oreover, ref. [10]
showed that coset gpaces w ith nearly-K ahler geom etry yield supersymm etric solutions of
heterotic strings in the presence of uxes and condensates. T herefore, the CSDR m ight be
an appropriate reduction schem e for such com pacti cations.

T he fact thatthe SM isa chiraltheory leadsusto considerD -dim ensional supersym m etric
gauge theoriesw th D = 4n+ 2 [4,[8], w hich lnclude the ten dim ensions suggested by heterotic
strings [9]. Conceming supersym m etry, the nature of the fourdin ensional theory depends
on the nature of the corresponding com pact space used to reduce the higherdin ensional
theory. Speci cally, the reduction over CY spaces leads to supersymm etric theories [5] in
four dim ensions, the reduction over symm etric coset spaces leads to non-supersym m etric
theories, while a reduction over non-sym m etric ones leads to softly broken supersym m etric
theories [11/].

In the present paper, continuing our recent work on the CSDR of the bosonic part of
a higherdin ensional E instein {Yang{M ills theory [12], we apply the CSDR to the gravity
sector and describe explicitly the low -energy e ective theory. W e em phasize that the latter
is characterized by a potential for the m etric m oduli. Furthemm ore, we revisit the CSDR of
gauge theordes taking into account the contribution of the dynam ical (non—frozen) gravity
background and w rite down the resulting m odi ed constraints and e ective action.

2 G eom etry of C oset spaces

To describe the geom etry of coset spaces we rely on refs. [14,1159]. In the present section
we collect the de nitions and results that are usefiil for our discussion. On a coset S=R the
M aurerC artan 1-form isde ned by e(y)= L L (y)JL ,where L (y*) is a coset representative
and a = 1l:::dim S=R. It is the analogue of the left=nvariant form s de ned on group
m anifolds and its values are in L ie(S ), the Lie algebra of S, ie. it can be expandead as

e(y)= "Q, = €0, + €03; (2.1)



where A is a group index, a is a coset index and i isan R -index. € is the cofram e and €' is
the R -connection. T he exterior derivative of the M aurer artan 1-form is

1
de* = 5fABCeB ~ e (22)
Eq. (2.2) can be expanded as
a 1 a b A a baA i
de” = Ef e te T et ey
. 1 . 1 . )
de" = Eflabea ~ P Efljkej ~ el (2.3)

T he com m utation relations obeyed by the generators of S are

017051 = £5504;
Q:;0.1 = £.°0u;
0.;00] = £,°0.+ £,'0;: (2.4)

W eassum e (for reasonsanalyzed in detailin ref. [14]) that the coset is reductive, i.e.fbij =
0. ThenomalizerN R ) ofR In S isde ned as follows

N = fs28S; sRs'® Rg: 2.5)

Since R isnomalin N (R) the quotient N (R )=R is a group. The generators Q , split into
wo sets Q4;0, with Q4 form ing a group which is isom orphic to N (R )=R . Then the Lie
algebra of S decom poses as

S=R+K +1L;

w ith
K;K] K; K;R]I=0; K;L] L; [L,;R] L; L;LI=L+R: (26)

A ccordingly, the com m utation relations (2.4) split as

RaiQg] = £,°06; [0:;0a1= 0; RaiQal= £,.°04;
0::0a] = £.°0,; 0.;0.]= £,°0c+ £,0:: (2.7)

Eq. (23) is then further decom posed to

1
de® = Ef‘?‘ﬁéefDA e ;
1
de® = Efabc P Al faBCeBA & £ e e
- 1 . 1 . )
det = EflbcebA e Efljkej ~ et (2.8)



An S-nvariantm etric on S=R is
g ()= = ) y): (2.9)

U sing the m etric (2.9) the follow ing usefi1ll dentities can be proved

e 4= *Pyol; (2.10)
@) g )= Bvol; (211)
@ e ) g @ r e e )= vol: (2.12)

where 4 is the Hodge duality operator on a d-din ensional coset. T he K illing vectors asso—
ciated w ith the left4som etry group S are

K, =Die; (2.13)

where e, is the inverse viebein and Di’ (s) isa matrix in the adpint representation of S.
The coset S=R also posses a right—som etry group which isN (R )=R . The relevant K illing

vectors are
K,=¢; (2.14)

wherea= 1:::dimN (R )=R and e, is the Inverse vielbemn.

3 The Coset Space D In ensionalR eduction

In the present section we present a brief ram inder of the C oset Space D In ensionalR eduction
scheme. The CSDR of a multidin ensional gauge eld X on a coset S=R is a truncation
described by a generalized invardiance condition

Ly:X=DW; (3.1)

where W ; is a param eter of a gauge transform ation associated w ith the K illing vector X ; of
S=R . The relevant invariance condition for the reduction of the m etric is

Lyrgyy = O: (32)
T he generalized invariance condition
LyA = 4 :dX + diy: A =DWy,=dW+ K;W:J; (3.3)
together w ith the consistency condition
LxriLyxol=Lixrixay (34)
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in pose constraints on the gauge eld. The detailed analysis of the constraints (3.3) and
(34), given in refs.[7,/8], provides us w ith the fourdin ensional unconstrained elds aswell
as w ith the gauge invariance that ram ains in the theory after dim ensional reduction.
Tnstead, wem ay use the follow Ing ansatz for the gauge elds,which was shown in [12]to
be equivalent to the CSDR ansatz and it is sin ilar to the Scherk-Schw artz reduction ansatz:

KT xpy)= ATx)+ Ty)dy ; (35)

w here
Taiy)= I (x)e (y): (3.6)

The ocbfcts 5 (x),which take values In the Lie algebra of G , are coordinate scalars in four
din ensions and they can be denti ed with H iggs elds.

4 G ravity and CSDR

U sually one studies higherdim ensional gauge theories and constructs fourdin ensional uni-

ed m odels, In a frozen gravity background, ie., the intermalm etric is of the form (2.9).
In this section we search for gravity backgrounds consistent with CSDR in the sense of
eg. (3.2) but Including uctuations of the m etric [17,/18,[19,[20]. W e begin by exam ning a
D dim ensional E instein {Y ang{M ills Lagrangian

A 1 N N A
L=R p 1 ETrF(Z)A DF(2) D) D 1; (4.1)

where FA(Z) = dAA(l) + AA(l) ~ AA(l) isa gauge eHd with values In the Lie algebra ofa group G,
R is the curvature scalar and A(D ) is the coam ological constant in D -dim ensions. A general
ansatz for the m etric is

dsl,, = dsi, + h (x;y)dy A xiy)dy A (xiv)); (42)
where A is the KaluzaK lein gauge eld
A (x;y)=ATXK g (y); ATx)= AT (x)dx ; (43)

and K (1) (y) = K ;,(y)5,~ areatmost thedim S + dim (N (R )=R ) K illing vectors of the coset
S=R oran appropriate subset. A wellknown problem w ith coset reductions is that we cannot
consistently allow K aluza{K lein gauge elds from the full isom etry group S of the coset S=R

to survive.



A ccording to refs [21]], [16]] the correct ansatz leading to a consistent truncation of the
theory is to consider K aluza-K lein gauge eldsbelonging to theN (R )=R part of the isom etry
group S=R

A (xjy)= A*RK ,(y): (4.4)

Now in the ansatz (42) we have

‘= fay AP Lv)=¢& A'k); (45)
given that
a _ a,
eK”B = 57 (46)

w ith KB being the K illing vectors of the right isom etries N (R )=R . T he rest of the 1-form s
are

d= & el= et (4.7)
For ® we nd that
D & g2, f8 ABA e_ pa }fa [N (4.8)
o = SE ; .
where F % is the el strength of the K aluza{K lein gauge ed A b de ned by
Fb_gnby 1gb acapd, (49)
- 2 éd . ..
Now them etric ansatz for a general S —-invariant m etric takes the form

) ex) * (4.10)

dgl, , =& ¥ &+ &
from which we read the vielbeins (the notation is close to that one ussd in ref. [13]):
g =ec &; &F=c 2x)°% (411)

w ith
w®)= o 2(x) D(x): (4.12)

isam atrix of unit determ nant so there existsa set ( ')2 of elds satisfying
(S0 "8 w= e (413)
N ext we calculate the exterior derivatives of the vielbeins

ag = 1T A g e @ & ey (4.14)



. 1 1
d¢ = fieré&+e D %P+ e @ &° 5e‘ 2l pe &n 5f*abcébC;(zl.w)

where
e @ F2 F2d (4.16)
and
1\d . — 1 .
= ol JpE%i D © = ( o Dn “ci
o= L0 S0 DS (417)

Subsequently we com pute the spin connections

1
!\mn: !mn+ Ee( 2 Famnéa+ e (@n mlél @m nlél); (418)
1
Pia= e Ppa& e @, éa+§e( EERES Y- (4.19)
"= Tt e Quad +e Cenl; (420)
w here
1
Ccab: E(fcab-l- fbac fabc),'
1
Pran= 3 "¥Dn 2+ (0 DL 23
1
Qnan= 5 "D, 2o DL 2%

GAD (421)

Tt iswellknow n that the curvature scalar of the gravitational Lagrangian can be w ritten
as

N N

R pl= "a" p&~&); (422)

where A = m ;a and ,p are the curvature 2-form s calculated from egs. (£.18), (4.19) and
(4.20). Then the Lagrangian is reduced to four din ensions provided we in pose the follow ing
constraints

jc

! caci
Efﬁafjk*’ f5fin = 0;
CLfh+ CLEL CREL- 0 @23)

The constraints (£23) can be shown to be satis ed using the Jacobi dentities and the
Invariance of the m etric.



Finally, we can write down the reduced Lagrangian in the form

1
L = &+d o2 g 1 e? P, " Poy Eez( 2) . Fa AP
+ e? (B +d )Y @32%+44da?) 4 ~d
1 .
e 20 (S efER FR 4+ 2 P £y 4 PR ER) 1+, 1:(424)
In order to obtain the correct kinetic term s In four din ensions we should choose
r
d 2
= ; = — (4.25)
4d + 8 d

To the set of the In posad constraints we should add that the condition that isam atrix of
unit determ inant and that the structure constants of S are traceless and fully antisym m etric.
The nalform of the reduced Lagrangian is

1

N 2( ) 4 A o D 1 A
L=R 1 B" Paw Ee 4 F F 5 d d V(); (4.26)

where the potential for them etric m oduli elds reads

1 .
vV = ZeZ( D (ap O STER R+ 2 PEC FY 4+ 48 P 488 L) 1: (427)

Note that the rst two tem s in eg. (£.27) have a non—zero contribution only in the case of
non-sym m etric coset spaces.

5 Reduction of the G auge Sector: G ravity M odi ca-
tion ofthe CSDR Rules

In this section we reduce the Yang{M ills Lagrangian in the presence of uctuating gravity.
T he ansatz for the higher dim ensional gauge eld is

KT=nat+ I 2; (5.1)

w here

and T is a gauge group index. Calculating the eld strength

1
N AT T NA K

F—dA+5fJKA A™; (52)
we nd

Fil=®" F* D+D 1~ 2 Zpl, 2~ B, (53)



where F ¢ isthe KK gauge eld and

1
T_ T T T A K.
Fi=aa®+ —f7 a7~ 2% (54)
w ith
FAIB = chB g frm g IBC; (5.5)
and
D ,=d;+£,,A% D+ £ A7 [ (56)

To reduce the higher din ensional Yang{M ills Lagrangian we dualize eg. (83) to
A 1
pFl= 4FT F? DHrvol+e 4D 1N gt 5e2 2R L vol” 4(P AP (5)

and insert everything in

1 A
L = ETrFA L F

T he result is

_ }2 T a Ty A T a I'yn }2 T A T A AA B
L = 26 (F F é.) 4(F F é.) VOJd 2e D A 4D B ol

1

+ Zez ‘ FagFcpvol ” oA B d(Nc ~ P ); (5.8)

w here
S G R - S (59)

To reduce 3. (5.8) we m ust in pose the constraints

D {=0; FL=FL=0; (5.10)
and
D s=F,=F,=Fau= 0: (511)

The rstsetistheusualCSDR constraints described in detail at variousplaces (eg.[12]).
W e concentrate on the gravity—-induced second set. From the condition

I _ € T . — .
Fég— f ab e [ér B]l"_ 0/

we conclude that 4 are the generators of an N (R )=R subgroup of H (ram ember that R
hasno N (R )=R subgroup and H is the centralizer of the em bedding of R on G , the higher
din ensional gauge group). W e conclude also that

£e

T _ T J
o= 1 a

o>

(512)

ab JK



G iven the condition (5.12) the constraint D [ = 0 yields ( » is constant)

T T Kb T I K _ A.
fJ“K“a}SA-I-fJK"A E_O' (5.13)

Eqg. (5.13) determ ines the gauge el belonging to the N (R )=R part of H in tem s of the
Kaluza{K lein gauge elds
AT=1a" I (5.14)

Calculating the corresponding eld strength we nd
T ar, Lo aanpb T a T
F'=dA" ;+ Ef Yt A .=F" ;: (515)

This is exactly the term subtracted from F ! in eq. (83), thus leaving a surviving gauge
group K obtained from the decom positions

G R H
and
H INR)=R) K-:

T he constraint
Fai=[47 1]1=0

is satis ed trivially while the representations In which the scalars 4 belong are determm ined
by

Fap = £ ¢ [aipl=0; (5.16)
Fag = £, [a; i]=0: (5.17)

al

T hese constraints are solved by considering the follow ing decom positions of S and G

S R N R )=R); X
adS = adR + adN R )=R + (ri;n;) (5.18)
and
G R N R)=R) K; %
adG = (adR;1;1)+ (1;adN R )=R;1)+ (1;1;adK )+ (1;m 5;ky): (5.19)

A sin thepureYang{M illscase there isa k; multiplet of scalar elds surviving when (r;;n;) =
(L;m 1).
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C ollecting the various tem s we obtain the Lagrangian

1 1 1
L = 5e2 FIr ,FTrvol 5e2 *p I~ D gAvon+Ze2 ¢ ac Mp_ p_volL~vol;
(5.20)
w ith gauge group K and scalars in speci ¢ representations of K sub gct to the potential
1
Vg = zle‘2 S A (521)

6 Conclusions

W e have studied higherdin ensionalE instein{Y ang{M ills theories and exam ined their C oset
Space D Im ensional R eduction using an approach sim ilar to that of ref. [13] and com bined
with the m ethod of Coset Space D In ensional R eduction of gauge theories introduced in
ref. [/]. W e found that the expected fourdin ensional gauge theory com ing from CSDR
considerations with frozen m etric is indeed enhanced by the K aluza{K lein m odes of the
metric. However, the em ergence of the full isom etry of the coset as a part of the four-
din ensional gauge group is not perm itted. Th addition, we showed how the fourdim ensional
potential ism odi ed from the new scalar elds in the case of non—-sym m etric coset spaces.

Ref. [10] uncovered supersymm etric vacua of heterotic supergravity (with uxes and
condensates) oftheform M ;3 S=R ,with S=R being a hom ogeneous nearly-K ahlerm anifod.
It would be interesting to perform explicitly the reduction on these m anifolds using the
schem e developed in this work and com pare it w ith the approach of [24] for reduction on
SU (3) structure m anifods.
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