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A bstract

U sing Schrodinger Functionalm ethods, we com pute the non-perturbative renorm al-
isation and renomm alisation group running of several four-ferm ion operators, in the
fram ew ork of lattice sin ulations w ith two dynam ical W ilson quarks. Two classes
of operators have been targeted: (i) those w ith left-left current structure and four
propagating quark elds; (il) all operators containing two static quarks. In both
cases, only the parity-odd contributions have been considered, being the ones that
renom alise m ultiplicatively. O ur results, once com bined w ith future sin ulations of
the corresponding lattice hadronic m atrix elem ents, m ay be used for the com puta-
tion of phenom enological quantities of interest, such asBx and By (the Jatter also
In the static lim it).



http://arxiv.org/abs/0712.2429v1

1 Introduction

Hadronic m atrix elem ents of four-ferm ion operators play an in portant rdle in the
study of CP violation via CKM unitarity triangle analyses, aswell as in the under—
standing of the I = 1=2 enhancem ent puzzle n K ! decays. The only known
technigue to com pute hadronic m atrix elem ents from st principles, nam ely lat-
tice Q CD , has long been ham pered by a num ber of system atic uncertainties. M ost
notably, the high com putational cost of including light dynam ical quarks in the
sim ulations has enforced either the quenched approxin ation, or the use of heavy
dynam ical quark m asses, which necessitate long and potentially uncontrolled ex—
trapolations to the chiral regin e. It is thus In portant to upgrade existing quenched
results by the inclusion of dynam ical farm ion e ects. For recent progress reports on
lattice results on avour Physics, see [11].

T he present work is a step in thisdirection. T he non-perturbative renorm alisa—
tion of four-ferm ion operators, as well as the corresponding renorm alisation group
(RG ) running between hadronic scales of O ( gcp ) and perturbative ones of about
100 G &V, is a necessary ingredient in the process of producing the properly renor—
m alised m atrix elem ent In the continuum I it. Q uantities that determ ine these
renorm alisation properties have been com puted in the quenched approxim ation, us-
Ing nitesize scaling technigues, for a broad class of four-ferm ion operators [2{4].
T he regularisation of choice was that of non-perturbatively O (a) In proved W ilson
quarks and standard plaquette gauge action ; the renomm alisation schem es used were
of the Schrodinger functional (SF) type. The ain of the present work is to extend
these results to QCD with N¢ = 2 dynam ical quarks. M ore speci cally, we present
results for: (i) the RG +unning of left-left current relativistic four-ferm ion operators;
(ii) the RG wunning of all B = 2 operators with two static heavy quarks; (iii)
the renom alisation factors thatm atch the above operators to their renomm alisation
group Invariant (RG I) counterparts. T he latter have been com puted for a reqular-
isation of the relativistic quarks by the non-perturbatively O (a) in proved W ilson
action. Prelin inary results have been presented in [5].

A swe will point out below , the results of this work are relevant for the com —
putation of physical quantities such as the bag param eters By and By . In the
quenched approxin ation, the com bination of this renom alisation program m e w ith
com putations of bare hadronic m atrix elem ents has already produced high precision
estin ates of a few physical quantities in the continuum [6,7]. M oreover, know ledge
of the continuum RG I operators, com puted w ith W ilson ferm ions, has allowed the
determ ination, through a m atching procedure, of the renom alisation factors of the
sam e operators In the N euberger ferm ion regularisation [8].

T he paper is organised as follow s. In sect. 2 we Introduce the operator basis
and the renomm alisation schem es adopted in the present work. W e also recall som e
basic form ulae used for the reconstruction of the operator scale evolution in the SF
fram ew ork . Sect. 3 isdevoted to a detailed description of the Jattice sin ulations and



num erical analyses of the operator RG wunning. In sect. 4 we discuss the renom al-
isation of the fourquark operators at a low energy m atching scale. C onclusions are
drawn in sect. 5. In order to In prove readability, som e tables and gures have been
collected at the end of the paper.

2 De nitions and setup

2.1 Renorm alisation of four-ferm ion operators

W e w ill consider two di erent classes of four-ferm ion (dim ension-six) operators:

1(X) 1 2(x) 3(X) 2 4(x) (2% 4) 3 (2.1)

Nl N R

hix) 1 1) n(x) 2 2(x) (18 2) : (22)

In the above expressions | is a relativistic quark ed with avour index k,
( ) are static (anti-)quark elds, ;areD irac (spin)m atrices, and the parentheses
Indicate sum m ation over spin and colour indices. In the present form alism , allquark
avours are distinct, enabling us to separate the calculation of the scale-dependent
Jogarithm ic divergences, which is the aim of the present work, from the problem of
eventualm ixing w ith low erdin ensional operator@ .
T he renom alisation pattem of the above operators is determ ined by the sym —
m etries of the regularised theory. In the the parity-odd sector, com plete bases of
operators In the relativistic and static cases are given by

O 2 OyaiaviOun aviOg 25i06,:5i0, .7 7 k= 171555 (2.3)

Qk 2 OVA+AV;OVA AV;OSP PS;OSP+PS; ; k: 1;:::;4; (2'4)

respectively. T he notation is standard and selfexplanatory, indicating the operator
soin matrices 1, with say, Oy, ay Oy, + O,,. A full analysis of the renor-
m alisation properties of these operator bases w ith relativistic W ilson ferm ions has
been perform ed in [9,10]. A result of these works which is of particular relevance is
that, contrary to the parity-even case, characterised by operator m ixing due to the
explicit breaking of chiral symm etry by the W ilson term in the quark action, the
parity-odd operators are protected by discrete sym m etries, and hence their renor-
m alisation pattem is continuum ke [11]. W e point out that RG running is dentical
for parity-even and parity-odd operators of the sam e chiral representation, since in
the continuum Iim it chiral sym m etry is restored. O n the other hand, the (physically

!These power subtractions typically appear for som e speci ¢ choices of quark m asses and/or
avour content (eg. penguin operators). T heir detemm ination is independent of that of the loga—
rithm ic divergences, once m ass independent renom alisation schem es are em ployed.



relevant) m atrix elam ents of the parity-even operators can be m apped exactly to
those of the parity-odd ones via the addition of a chirally tw isted m ass term to the
lattice quark action [6,10,12].

From now on,we w ill consider the subset of operators

0, ; 0% 2 07,07 +40%;0%+20;;0% 20} (2.5)
A Nl these operators renom alisem ultplicatively ; ie. given an operatorO 2 £Q, ;0 O}t g
the corresponding operator Insertion in any on-shell renomm alised correlation func-
tion is given by
Oz (x; )= JJ;mOZ(go;a )0 (x;90) 7 (2.6)
a.

w here gy ;a are the bare coupling and lattice spacing, respectively and  is the renor-
m alisation scale. The RG +unning of the operator is controlled by the anom alous
din ension ,de ned by the Callan-Sym anzik equation

@ _
@_OR(X; )= @( ))0xx; ); (2.7)
supplam ented by the corresponding RG -equation for the renom alised coupling g,
@ _ _
@—g( )= (@G()): (2.8)

In m ass-ndependent renom alisation schem es, the —function and all anom alous
din ensions depend only on the renomm alised coupling §. T hey adm it perturbative
expansions of the form

1o
9" F bt g+ gt i 2.9)

g! 0
(g) F ot 1+ ogt+ i; (2.10)

In which the coe cients b ;b ; ¢ are renom alisation schem e-independent. In par-
ticular, the universal coe cients of the -flinction read

1 2 1 38
11 =N¢ ; b = n 102 ng ; (211)

(4 ) 3
and the universal leading order (LO ) coe cients of the anom alous din ensions of the
operators in Eq. (Z.3) are given by

by =

0 = S = ° (212)
0 4 2’ 0 a2’ |
@ 8 @) 8
_ ; = ; 213
0 4 )2 0 3(4 )2 213)
3) 10 4) 4
— ; = . 214
0 4 )2 0 4 )2 (214)



M oreover, in the SF renom alisation schem e, the nexttonext+to-Jleading order (NN LO )
coe cientb§’ of the -function is known to be [13]

1 2 3
5 = TBE 0483 0275N¢+ 0:036INf 000175Nf (215)

Upon form al integration of Eq. (Z.1), one obtains the renom alisation group
Ihvariant (RG I) operator insertion

@.2( ) 2bg exp g ( )dg (g) _O
4 0 @) Ing

Ore:(X)= 0 (X; ) 7 (2.16)

while the RG evolution between two scales 1; » isgiven by the scaling factor

‘250 )

2 7 .

U(2; 1): exp dgﬁ) = Iim M: (2'17)
(1) g) al 0 Z (gosa 1)

2.2 Schrodinger Functional renorm alisation schem es

Egs. (ZI8)(Z.17) are the starting point for the non-perturbative com putation of
the RG evolution of com posite operators. To that purpose we Introduce a fam ily of
Schrodinger Functional renom alisation schem es. T he hatter are de ned by setting
up the theory on a Hurdin ensionalhypercube of physicalsize T L*> with D irichlet
boundary conditions in Euclidean tim e and periodic boundary conditions in the
Spatial directions, up to a phase . W e refer the reader to [14] for an introduction

to the SF setup. In the present work we always chocose T = L and = 05. We
also assum e that no background eld is present. T he renomm alisation scale is set as
= 1=L.

R enomm alisation conditions are im posed on SF correlators, follow ing [2{4]; for
the sake of com pleteness, we brie y outline them ethod. W e rst Introduce bilinear
boundary sources pro Ected to zero extermalm om entum ,

as, [ 1= a’ o (%) 5 (V) ; (2.18)

- a D) Sy (219)
xy

Here denotesa D iracm atrix, the avour indices s1, can assum e both relativistic
and static valies and the eds ( °) represent functional derivatives w ith respect
to the ferm ionic boundary eldsofthe SEF attheinitial ( nal) tinexg= 0 (xg= T).
T he fourquark operators are then treated as local insertions In the bulk of the SF,



Figure 1: D jagram m atic representation of correlation functions: relativistic four-quark cor-
relatorsF  ( rstdiagram from left), static ourquark correlatorsF %) (third diagram from

left), relativistic boundary-to-boundary correlators fi2, k1? (second diagram from left) and
static boundary-to-boundary correlators fi# and ki® (fourth diagram from left). Euclidean
tin e goes from left to right. Single (double) lines represent relativistic (static) valence
quarks.

giving rise to the correlation functions

F %0)=L *h 250 c1Q; x) 210l al aslsli; (2.20)

laieic]

k)

laisic

F (o)=L *h 5 [cl10% (&) mlal 2slslk: (221)

C learly, the D irac m atrices of the boundary sources m ust be chosen so that the
correlators do not vanish trivially (eg. due to parity).

In the above de nitions a \spectator" light quark has been introduced w ith

avour s= 5 forF and s= 3 forF ¥), Thisquark eld hasnoW ik contractions

w ith the valence quarks of the operator insertion and propagates straight from the
nitial to the naltin e boundary. Its r0le ism erely to allow for parity-even correla—
tors of parity odd four-ferm ion insertions w ithout the need of introducing non-zero
externalm ocm enta.

In order to isolate the operator ultraviolet divergences in Egs. (2.20)-(2.211),
one has to rem ove the boundary sources’ additional divergences. To this end, we
Introduce a set of boundary-+toJoundary correlators,

1 0

fflszz ﬁh 5152[5] szsl[SJi; (2.22)
3

S182 _ 1 X 0 T

kl = m h 5152[}{] Sgsl[k]ll (2-23)
k=1

where the avour indices s;, m ay assum e once again either relativistic or static val-
ues. W ick contractions of fourquark and boundary-to-Jboundary correlation func-
tions are depicted in Fig.[d.

Since the logarithm ic divergences of the boundary elds are rem oved by m ulti-
plicative renorm alisation factors Z and Z ", it can be easily recognised that ratios



of correlators such as

R (xg) F[A;B;C](XO) (2.24)
X ) = ;
0 [f112]3=2 IZK%Z] !
(k)
B (Xo)
R(k)(xo)= [aigicl ; (2.25)

EPIEP P2 kP

are free of boundary divergences for any choice of the parameter . Thus, the
operators of interest are renom alised through the conditions

Z (goja=L)R (T=2)=R (T=2) O; (2.26)
go=

7 ®N(gpia=L )R ®)(T=2)= R ®)(T=2) i (227)
go=
w here all correlation functions are to be evaluated at the chiral point.

A crucialobservation isthatallrenom alisation factors thusobtained are avour—
blind, In the sense that they rem ove the logarithm ic divergences from any four-
ferm ion operator of a given D irac structure, irrespective of its speci ¢ avour con—
tent. For instance, n H = 2 transitions, such asB 45 Bgq(s) Oscillations in the
static 1m it, one denties 1 = 5 = d(s) asa down (strange) quark,and 3= u
as an up quark; for either avour identi cation the same 7z *)’s renom alise the
corresponding operator. Sin ilarly, in the relativistic quark case, the dim ension-six
operator,be it S = 2 (with 1= 3= sand ,= 4= d)or B = 2 (with

1= 3=Dband 5= 4= d(s)),isrenom alised by thesame Z* . A Iso in this case
we note the presence of the gpectator quark s = u in the renom alisation condi-
tion. T hese renomm alisation factors also ram ove the logarithm ic divergences of other
din ension-six operators w ith the sam e D irac structure but di erent avour content.
For exam ple, even if the renomm alisation of some F = 1 operators isonly com plete
after pow er subtractions are taken into account, their logarithm ic divergences are
rem oved by the same Z and z ®) factors.

A nother issue, related to the above discussion, is that here we are working w ith
N = 2dynam ical avours. In lJargevolum e sin ulations ofhadronicm atrix elem ents,
the htter would be naturally denti ed w ith the up and down sea quarks. H ow ever,
m ost m atrix elem ents of Interest Involre additional propagating physical avour@ .
T hus, it becom es necessary to address the e ects of partialquenching, in the context
of operator renomm alisation.

Due to their avourdblind nature, the renom alisation factors and RG running
contained In this work account for the scale dependence of any m atrix elem ent of
four-ferm ion operator, com puted on an N ¢ = 2 sea, provided that partial quenching

’An exception is that of B = 2 oscillations of the B 4 m eson in the static lin it.



does not generate extra scaledependent m ixing, which spoils m ultiplicative renor-
m alisation. T his is Indeed the case for F = 2m eson oscillations, since in the chiral

Iin it the relevant sym m etries (CPS forQ, and CPT plisheavy quark spin symm e-
try for Q O}i ) rem ain valid and protect these operators from new counterterm s. On
the contrary, unphysical m ixing, generated by partial quenching, m ay becom e an
issue for F = 1 hadronic decays, at least for penguin contributions [15]. W e stress

that this problem is not speci ¢ to the renomm alisation schem esunder consideration.

2.3 Step-scaling functions

T he non-perturbative study of the RG -evolution of our com posite operators is based
on the step-scaling functions (SSF's)

Z ;a=(2L
(u)= lm (u;a=L) ; (uja=L) = 2 ja=(ah)) ; (228)
al 0 Z (gosa=L)

gir (L)=u;mo=mcr
with 2 2 £2 ;2 ®)g. A ccording to Eq. (2.17), the SSF s describe the operator RG —
running between the scales | = 1=L and , = 1=(2L). The choice of the ratio
1= 5 = 2 as the an allest positive Integer ism ade w ith the aimn of m inim ising the
e ects of the ultraviolet cuto at nite values of the latter.
In practice, the SSFs are sim ulated at several values of the lattice gpacing for
xed physical size (inverse renom alisation scale) L . T he corresponding values of the
nhverse bare coupling = 6:g§ are indeed tuned by requiring that the renomm alised
SF coupling @fp ,and hence L , are kept constant. T he criticalm assm . is obtained
from the requirem ent that the PCAC m ass vanishes in the O (a) in proved theory.
Once (u) is com puted at several di erent values of the squared gauge cou-
pling u, it is possble to reconstruct the RG evolution factor U ( pt; naq) between
a hadronic scale 1aq, In the range of a few hundred M €V , and a perturbative one
pt, In the high-energy regim e. This In tum leads to the com putation of the RG I
operator of Eq. (2.14), with controlled system atic uncertainties, by splitting the

exponentialon the rhsof Eq. (2.14), evaluated at = 1.q,as llow s:
( )
0 Z =
& ) F%( haa) 20 exp gl had)dg 9 o _
had 4 o (g) bog
= ¢( pt) U ( pti had) : (229)

T he second factor on the rhs is know n non-perturbatively as a product of continuum

SSFs (u);cf. Eq. (Z.I7). The rstfactor can be safely com puted at next-to-Jeading
order (NLO ) in perturbation theory, provided the scale ¢ ishigh enough to render
NNLO e ectsnegligible. T he full procedure for the construction of U ( pt; nhaq) has
been Introduced in [16] for the running quark m ass in the quenched approxin ation,



Q a B c

Q7 5 5 5 0
Q, K 5 k 1
o9 5 5 5 1=2
09 5 5 5 0
Q% 5 5 5 0
QY 5 5 5 0

Table 1: O ptin al renom alisation schem es for the various four-quark operators.

and subsequently applied In several contexts (for a recent review , see [17]). The
reader is referred to the abovem entioned works for a detailed description of the
m ethod. M ore gpeci cally, since the present work concems two— avour QCD , we
follow closely thework of ref. [18]on the running quark m assw ith N ¢ = 2 dynam ical
quarks.

Conceming the choice of [ o ; g; c land ,we observe that in our quenched
studies [2,4]we have considered ve possible non-trivial D irac structures that pre-
serve cubic sym m etry at vanishing extermalm om enta, ie.

laseicl=f10lsisisl sxlii g7 xlilsixixl
[xisixlilxixislg (2.30)

(wherea sum over repeated indices is understood ), and various possible values of the
param eter,nam ely = f£0;1=2g for the static operatorsand = f0;1;3=2g for the
relativistic ones. N ot all of the resulting renomm alisation schem es were equally well
suited to our purposes: som e of them were characterised by a RG running with a
slow perturbative convergence at NLO ; cf. refs. [3,10]. T his rendered the m atching
of perturbative and non-perturbative running at ¢ (cf. Eq. (2.29)) less reliable
and the system atics hard to control; see sect. 3.3 below form ore details. The sam e
considerations are valid in the present case of two dynam ical quarks. For the sake
of brevity we w ill concentrate only in those schem es which have been found to be
best behaved in the present unquenched study. T hese optin al schem es are gpeci ed
in Table[l. A com plete account of our results in all schem es considered is available

upon request.
T he non-universal tw o-loop coe cients of the anom alous dim ensions Eq. ([2.10)



for the operators of interest in the aforem entioned optim al schem es read [3,4]

1
F = 7 0:0828(48) + 0:03200(28)N ¢ ; (2.31)
1

T 06880(24) + 0:12648(16)N ¢ ; (2.32)
@ ! 1:345(2 0:0008(2)N ¢ ; 233
e TR (2) + 0:0008Q2)N: ; (233)
@ _ ! 1251 (1 0:11637(8)N ¢ ; 234
e TR (1) + 0:11637(8)N¢ ; (2.34)
G ! 0327(3) + 0:211(2)N¢ ; (2.35)
1 - (4 )2 . f I

@ ! 0:146(1 0:06784(8)N ¢ : 236
T 146(1) + O (8N¢ : (2.36)

3 N on-perturbative com putation of the RG running

3.1 Sim ulations details

O ur sin ulations are based on the regularisation of relativistic quarks by the non-
perturbatively O (a) in proved W ilson action, w ith the Sheikoleslam W ohlert (SW )
coe cient c 4, determ ined in [19]. Static quarks have been instead discretised as
proposed in [20]. In particular, all results reported in this work refer to the so—
called HY P2 action, ie. the lattice static action of [21], w ith the standard parallel
trangporter U (0;x) replaced by the tem poral hypercubic link introduced in [22],
and a choice of the an earing parameters ( 1; »; 3) = (1:0;1:0;05). The latter
m Inin ises the quenched static selfenergy, providing the largest exponential increase
of the signaltonoise ratio in the staticquark propagator, when com pared to the
original Eichten-H ill action. The m ininum of the static selfenergy is shifted by
Intemalquark-loopsonly at NLO in perturbation theory: such shift is thus expected
to be relatively sm all.

W ith the above prescriptions, the SSFs have been com puted at six di erent
values of the SF renom alised coupling, corresponding to six di erent physical lattice
lengths L . For each physical volum e three di erent values of the lattice spacing have
been sim ulated, corresponding to Iatticesw ith L=a = 6;8;12 (and 2L=a = 12;16;24
respectively) for the com putation of Z (gp;a=L) (and Z (gp;a=(2L))).

The gauge con guration ensamble used in the present work (generated with
N ¢ = 2 dynam ical farm ions) and the tuning of the lattice param eters ( ; ) have
been taken over from [18]. A 1l technical details conceming these dynam ical farm ion
sin ulations are discussed in that work. The one technical aspect that m akes a



signi cant di erence In our case concems the perturbative value of the boundary
n provem ent coe cient ¢+ [23]. A s pointed out in [18], the gauge con gurations at
the three weakest couplings have been produced using the one{loop perturbative
estim ate of ¢ [23], except for (L=a = 6, = 7:5420) and (L=a= 8; = 7:72006).
For these two cases and for the three stronger couplings, the two{loop value of ¢t [24]
has been used. W e have enforced the sam e ¢ values in the valence propagators.
C om parison of the results of two di erent sin ulations, nam ely

1:5031(25) ; L=a= 6 ;
15078(44) ; L=a= 6 ;

7:5000 ; 0:1338150 ; ¢ = one Iloop ;
7:5420 ; = 01337050 ; .= two loop :

2
Isr

2
sr

show s that the renom alisation factor Zp of the pseudoscalar density, analysed in
[18], is sub Fct to a relative 4 perm ille variation, corresponding to a m ild discrepancy
ofabout 15 w ith regards to our statistical uncertainty. U nfortunately, for the four-
ferm Jon correlation functions this ram ains true only for the operator Q ; , while the
Q { and Q O}i cases show relative variations of the order of 12% , corresponding to
di erencesofabout2:5  with regards to the statistical precision. W e expect that, for
a given renomm alised coupling §§F , this e ect din inishes at ner lattice resolutions
a=L (ie. closer to the continuum ), while it becom esm ore pronounced in the strong
coupling region, at constant L=a. In principle, this problem can be rem oved by
perform ing all sin ulationsw ith a two{loop estin ate of ¢. and/or a sm aller resolution
a=L . A s furtherdynam ical sin ulations are beyond the scope of the present work ,we
lin it ourselves In stating that our results are sub Fct to this illcontrolled system atic
uncertainty, which, in view of the fact that the oneJdoop value of ¢ is only used
n the weak coupling region, is how ever not expected to be signi cant for our nal
results. In this respect, we have checked that the ( nal) overall result is una ected

when either ¢ is em ployed at this coupling. Tt is also encouraging that, as we
w il see below , ncluding or discarding the L=a = 6 data-points In the continuum

extrapolations does not alter the nalresults signi cantly.

N um erical results are collected in Tables[8{10. Statistical errors w ere com puted
by a pckknife analysis. T he estin ates of the autocorrelation tim es, calculated w ith
the autocorrelation function m ethod, them ethod of ref. [25]and thebinningm ethod,
were found to be com patble.

3.2 Continuum extrapolation of the step-scaling functions

Since we do not in plem ent O (a) Im provem ent of four-ferm ion operators, the only
linear cuto e ects that are ram oved from (u;a=L ) are those cancelled by the SW
term in the ferm jon action. T herefore, we expect SSF's to approach the continuum
Iin it linearly in a=L and correspondingly we t to the ansatz

(uja=L )= (u)+ (u)@=L) : (31)

10



09793 1.010(11) 0.983(07) 0.946(08) 1.004(07) 0.960(05) 0.990(05)
11814  1.044(15) 0.965(10) 0.951(12) 0.991(08) 0.942(07) 0.976(05)
15078 1.039(21) 0.953(11) 0.932(13) 0.987(10) 0.932(09) 0.970(07)
2.0142 1.040(18) 0.936(11) 0.896(11) 0.985(10) 0.901(09) 0.955(08)
24792  1.078(35) 0.879(19) 0.890(19) 0.958(13) 0.873(14) 0.938(12)
3.3340 1.129(37) 0.862(25) 0.784(23) 0.938(17) 0.798(18) 0.905(16)

Table 2: Results of the continuum lin it extrapolation of the lattice step-scaling functions
and *).Data havebeen tted from all available lattice resolitions as lnear finctions
in (a=L).

In practice it is often observed that the data corresponding to L=a = 8;12 are
com patible within errors, whereas the L=a = 6 result, bearing the largest cuto
e ects, iso . This suggests that, In analogy to [18], a welghted average of the two

nest lattice results m ay be a reliable estinm ate of the continuum lim it value. W e
have checked that, In m ost cases, linear ts to all three data-points and weighted
averages of the two results from the ner lattices lead to continuum lim it estim ates,
com patible within one standard deviation; cf. Figs.[d,[d and [@. Fit results are
reported in Table[d. Since the discretisation errors are O (a) and not O (a2) as
n [18], we conservatively quote, as our best results, those obtained from linear
extrapoltions involving all three data-points.

Tt should be added that, besidesthe HY P 2 action, w e have also tried other static
quark action varieties, nam ely the APE and the HYP1 ones (see ref. [20]), which
dier from HYP2 by O (a?) lattice artefacts. Since the static fourquark operators
are not O (a) In proved, it is reasonable to expect signi cant discretisation e ects at
the coarsest lattice spacing, which would enable com bined ts of the data from all
three actions, constrained to a comm on value in the continuum Iin it. Unsurpris-
Ingly, the situation tumed out to be sin ilar to that of [4], in that data obtained w ith
the above actions do not di er noticeably (even at L/a = 6) and are very strongly
correlated. Consequently, a com bined continuum extrapolation a ects the contin—
uum I it results only m arginally, w ith the relative error decreasing only by a few
percent. For this reason we only quote results from the HY P2 analysis.

3.3 RG running in the continuum Iim it

In order to com pute the RG running of the operators in the continuum Ilm it as
described in [18], the continuum SSFs have to be tted to som e functional form .
T he sim plest choice is represented by a polynom ial

W)= 1+ sju+ spu’+ s3u + 11t ; (3.2)
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o]

u Y Mnik) €& @Mni) M@yl Pl eV @ai) WL i)

0 4610 1.246 0.551 0.807 0.680 0.524 0.776

1 3.032 1.225(26) 0.564(10) 0.775(14) 0.732(09) 0.532(08) 0.788(09)
2 2341 1212(38) 0.566(14) 0.773(20) 0.751(12) 0.538(11) 0.794(12)
3 1918 1.205(46) 0.564(16) 0.773(24) 0.759(15) 0.541(13) 0.797(14)
4 1628 1.202(53) 0.561(18) 0.772(27) 0.762(18) 0.541(14) 0.797(16)
5 1414 1201(60) 0.558(20) 0.772(30) 0.763(20) 0.541(15) 0.797(18)
6 1251 1.201(66) 0.554(21) 0.771(33) 0.763(22) 0.540(17) 0.797(19)
7 1121  1.202(71) 0.551(22) 0.770(35) 0.763(24) 0.539(18) 0.796(20)
8 1.017 1.202(76) 0.548(24) 0.770(37) 0.762(26) 0.538(19) 0.795(22)

Table 3: Perturbative m atching (cf. Eq. (2.29)) for various choices of the m atching scale

_ n
pt — 2 had -

whose form ism otivated by the perturbative series, w ith coe cients

s;= oh2; (3.3)

S,= 12+ =(0)l+h o (n2)°: (34)

N =

Tt isworth stressing that s; is universaland independent of N ¢, whereas s, carries a
dependence upon N ¢ via Iy and 1, w ith the Jatter coe cient introducing a schem e
dependence. In our tswe truncated the polynom ialat O (u’). The tshave been
perform ed w ith s1 xed to its perturbative value and s, , s3 left as free param eters.
F it results are shown in Figs.[3,[H and [1. F itted valies of s, tumed out to be close
to the perturbative prediction of Eq. (3.4), w ith the exception of Q O; .

O nce the continuous SSF's have been obtained as functions of the renom alised
coupling, the ratios ¢ (cf. Eq. (2.14))) are cbtained recursively. T he low -energy scale
had = L1, is In plicitly de ned in this work through the condition G2, (Lpyax) =
461, as explained In [18]. This scale is chosen so that the renomm alisation con-—
stants Z (ggj;a haq) can be com puted in the accessible gprange comm only used in
largevolum e sim ulations. T he non-perturbative RG running of the six operators of

interest are shown in Fig.[8.
A sdiscussed In our form er quenched study [4], the m ain criterion for selecting
robust schem es am ounts to checking that the system atic uncertainty present in our
nal results, due to the NLO truncation of the perturbative m atching at the scale
pt 2" haa,iswellunder control. This in tum requires an estin ate of the size of
the NNLO contrbution to ¢. To this purpose we have recom puted ¢ w ith two dif-
ferent ansatze for the NNLO anom alousdin ensions ,: () weset o= 1= 1= oJ
(i) we perform a two-param eter t to the SSF with si,5, xed to their perturba-
tive values and s3,84 lkft as free param eters, and then estin ate , by equating the

12



resulting value of s3 to its perturbative expression

s3= 22+ [ 1+ 2y 1+ b ol(In2)%+

4
o+ by &+ gbéo (n2)° : (35)

+
ol

T he optin al scham es speci ed in Table [l are precisely those for which the aforem en—
tioned determ inations of the e ective , lead to the an allest discrepancies betw een
the corresponding universal factors €.

The e ect of varying the perturbative m atching point in the optin al schem es
is described by Tablk[3. W e see that num bers are very stable orn 6, while the
uncertainty increases w ith n due to progressive error accum ulation at each step.
Final results, reported in the second colum n of Tabl[] refer to n = 7. Note that
typical relative errors are as big as 5% , which may result in a sizeable error in
hadronic m atrix elem ents, solely due to renomm alisation.

4 Connection to hadronic observables

Having com puted the universal evolution factors &( paq), which provide the RG -
running from the low energy matching scale g to a formally In nite one, we
proceed to establish the connection between bare lattice operators and their RG I
counterparts. The latter, de ned in Eq. (2.18) from the integration of the Callan—
Sym anzik equation, are related to the bare operators used in Jattice sin ulations via
a total renom alisation factor Z;:(gp), de ned as

Zrc1(90) = Z (J0ia nad)C( had) : (41)

The 7. factor does not depend on any renom alisation scale and carries a depen-—
dence upon the renom alisation condition only via cuto e ects.

In order to obtain Z (gpj;a haq),we follow [18]and com pute Z (gp;a ) at three
values of the Jattice spacing, nam ely = £5:20;529;5:40g, which belong to a range
of inverse couplings com m only used for sin ulations of two— avour Q CD in physically
large volum es. Simulation param eters and results are collected in Tablk[4 for the
relativistic operators 9 ; and in Table[d for the static ones Q O}i .

W hile the simulation at ( = 520;L=a = 6) is exactly at the target value
for @fp (L ax )y corresponding to Z (gp;a naq ), the sin ulations at the other values
require a slight interpolation. W e adopt a tansatz,m otivated by Eq.(2.14),

h@)=ca+ceh@l); (42)

In order to Interpolate the Z factors between the values of§§F straddling the target
value §§F (Lmax) = 4®61. Note that the ts take into account the (independent)

13



L=a g% (L) 7" z

520 0.13600 4 3.65(3) 0.7547(19) 0.4797(12)
6 4.61(4) 0.7715(20) 0.4383(11)
529 013641 4 3.394(17) 0.7558(17) 0.5070(11)
6 4.297(37) 0.7749(24) 0.4644(13)
8 5.65(9) 0.8036(26) 0.4339(12)

540 0.13669 4 3.188(24) 0.7591(16) 0.5342(11)
6 3.864(34) 0.7709(21) 0.4871(13)
8 4.747(63) 0.7938(22) 0.4583(11)

Tabl 4: Results or Z* and Z with ¢ set to its 2{loop value. The values of G2 are
from [26]. The hopping param eters used in the sinulations are the critical ones ( <)
of [27].

L=a 32 @) s (1) 7 (2) 7 (3) 7 (4)

520 0.13600

fisy
w
o)
a
w

0.7793(17) 09741(16) 0.8681(16) 0.8317(13)
6 4.61(4) 0.7118(17) 0.9409(15) 0.7857(13) 0.7921(13)

529 0.13641 4 3.394(17) 0.7862(16) 0.9766(16) 0.8768(15) 0.8397(14)
37) 0.7275(20) 0.9431(18) 0.7992(16) 0.8017(15)

(
(
8 5.65(9) 0.6612(19) 09150(16) 0.7337(15) 0.7619(14)

540 0.13669 4 3.188(24) 0.7972(15) 0.9805(14) 0.8864(14) 0.8497(12)
6 3.864(34) 0.7378(18) 0.9434(17) 0.8098(15) 0.8094(14)
8 4.747(63) 0.6840(16) 0.9231(14) 0.7529(13) 0.7781(12)

Table 5: Results for Z ®) with ¢, set to its 2{loop value. The values of g2, are from [26].
T he hopping param eters  used in the sin ulations are the criticalones ( ) of [27].

errors ofboth Z and (_TISZF . M oreover, we have conservatively augm ented the terrors
by the di erence between the t results of Eq. (£2) and the results from a naive
tw o-point linear interpolation in (_TISZF . Thecoe cientsc , ofthe ts (4J) deviate n a
rangeof7% 30% from the lowest ordercoe cients (=(2ky), signalling the presence
of m oderate higher-order perturbative e ects.

T he resulting num bers for the renom alisation factors at the low energy m atch—
ng scale, and also for the RG I renom alisation factors Ziq:(gg), are collected in
Table[d. The rsterror ofthe Z..’s stem s from the error of Z factors, w hereas the
second accounts for the uncertainties in the universal factors ¢. N ote that only the

rst of these errors should be added In quadrature to the error of the bare hadronic
m atrix elam ents, once these becom e availbble from future com putations, in order
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Z ’ ZR+G I Z ZRG I
5.20 0.7715(20) 0.927(2)(55) 04383(11) 0.241(1)(10)
529 0.7825(27) 0.940(3)(56) 0.4560(23) 0.251(1)(10)
5.40 0.7905(26) 0.950(3)(56) 0.4623(25) 0.255(1)(10)

2

2 2, 29 2
520 0.7118(17) 0.548(1)(28) 0.9409(15) 0.718(1)(26)
529 0.7093(27) 0.546(2)(28) 0.9374(30) 0.715(2)(26)
5.40 0.6904(40) 0.532(3)(28) 0.9233(46) 0.704(4)(26)

3

2 2., 20 2l
520 0.7857(13) 0.423(1)(15) 0.7921(13) 0.631(1)(17)
529 0.7836(40) 0.422(2)(15) 0.7916(18) 0.630(1)(17)
5.40 0.7567(75) 0.408(4)(14) 0.7807(38) 0.621(3)(17)

ne1r Lagor ZR(}S)I for three bare gauge coupling
values corresponding to our low -energy m atching point at ng = 461 in the SF scheme.

Table 6: Results or 2,2 , 72 %) and z27

to obtain the total error of the renom alised quantity, at a given lattice spacing.
The second error, which is entirely unrelated to the discretisation of the theory,
should only be added in quadrature to the continuum extrapolated hadronic m atrix
eleam ent. For the sake of convenience, a representation of the num erical results of
Table[d by interpolating polynom ials is also adopted, ie.

Zeor=ap+ ai(  52)+ ax(  52)%; (43)

which can be used at any intermm ediate value of between = 520 and = 5#40.
F it coe cients are reported in Table [1 for the various operators. T he uncertainty of
the RG I constants at interm ediate points m ay be easily obtained from those at the
sin ulation points, see Tablel[d, by linear interpolation.

A sa nalrem ark,we observe that the sin ulation of the renorm alisation factors

at = 520;L=a = 4 is not at the target value for g2, . W e used is as a check of
the independence of the Z,; ;, com puted via Eq. (4.]]) from the low energy m atching
scale. Speci cally, the two m easured values of Z factors at = 520 have been

usaed in order to extrapolate the renomm alisation constants at Q[SZF (L ax=2) = 3:0318,
w here the non-perturbative m atching w ith the universalevolition factors ¢ hasbeen
subsequently perform ed. R esults tumed out to be fully com patiblew ith those quoted
in Tablk[d.
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o) E(Ly L) ao ai az

Q7] 1202(71) 09270 01741 -0.2973
Q, 0551(22) 02414 01431 -0.3853
Q% 0.770(35) 05481 0.0285 -0.5546
Q% 0.763(24) 0.J179 00010 -0.3407
0% 0539(18) 04235 00411 -0.5962
0% 0.796(20) 06305 00291 -0.3723

Table 7: Universal factors ¢ and coe cients of the interpolating polynom ials of the RG I
renom alisation constants, see Eq. {(4.3)). Uncertainties are discussed in the text.

5 Conclusions

U sing standard SF m ethods, we have perform ed a fully non-perturbative com pu—
tation of the renom alisation and RG running of several four-fem ion operators in
Nef= 2QCD .W e have considered the two operators m ade of four relativistic quark

elds w ith a leftJeft D irac structure and the com plete basis of operators w ith two
static and tw o relativistic quarks. TheW ilson lattice actions have been in plem ented
for both the gauge and the ferm ionic parts, the latter with a non-perturbatively
tuned C over term . The HY P2 discretisation of the static quark tumed out to be
the less noisy choice, after com parison w ith other options. O nly the parity-odd parts
of the operators have been analysed, as their renom alisation pattem is una ected
due to the loss of chiral sym m etry by the regularisation.

Our results are an essential buiding block for any N¢ = 2 com putation of
quantities like Bx and By . Nevertheless, their precision is som ew hat 1m ited by
Increased statistical uctuations at the three strongest couplings and by the lack of
a fourth, ner, Jattice resolution which would in prove the continuum extrapolation
of the operator SSFs. This could lead to a potentially unsatisfactory total error
on hadronicm atrix elem ents. Future re nem ent (besides using a two{loop estin ate
of ¢ throughout the runs and increased statistics at the three strongest couplings)
is necessary, either by sin ulating closer to the continuum Iim it, or by com pletely
rem oving leading order discretisation e ects from the sin ulations.
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Figure 2: Continuum extrapolation of the SSF's for QI (left) and Q; (right). T he renor-
m alised coupling increases from top to bottom . Blue dotted lines and the blue cross at
a=L = 0 correspond to weighted averages of the L=a = 8;12 data, red dashed lines and the
red a=L = 0 open point to linear extrapoltions in a=L of the three data.
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Figure 3: The stepscaling functions * and (discrete points) as obtained non-

perturbatively. The shaded area is the one sigm a band obtained by tting the points to
a polynom ialasdiscussed In the text. The dotted (dashed) line is the LO (NLO ) perturba-
tive result.
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a polynom ialas discussed In the text. The dotted (dashed) line is the LO (NLO ) perturba-
tive result.
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Figure 6: Continuum extrapolation of the SSF s for Q O; (left) and O OZ (right). T he renor-
B lue dotted lines and the blue cross at
a=L = 0 correspond to weighted averages of the L=a = 8;12 data, red dashed lines and the

m alised coupling increases from top to bottom .

red a=L = 0 open point to linear extrapolations in a=L of the three data.
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Figure 7: The step-scaling functions
perturbatively. The shaded area is the one sigm a band obtained by tting the points to
a polynom ialas discussed In the text. The dotted (dashed) line is the LO (NLO ) perturba-
tive result.
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g2 L) or L=a (go;a=L) Z7 (goj;a=2L) * (goja=L)
0.9793 9.50000 0.131532 6 0.8714(14) 0.8827(22) 1.0129(30)
9.73410 0.131305 8 0.8765(16) 0.8852(25) 1.0099(34)
10.05755 0.131069 12 0.8899(17) 0.9022(52) 1.0138(61)
1.1814 8.50000 0.132509 6 0.8510(14) 0.8683(48) 1.0204(58)
8.72230 0.132291 8 0.8594(29) 0.8849(33) 1.0296(52)
8.99366 0.131975 12 0.8753(20) 0.9019(64) 1.0304(77)
1.5078 7.54200 0.133705 6 0.8309(18) 0.8580(47) 1.0327(60)
7.72060 0.133497 8 0.8395(38) 0.8725(62) 1.0392(87)
1.5031 7.50000 0.133815 [ 0.8317(15) 0.8390(55) 1.0088(69)
8.02599 0.133063 12 0.8531(44) 0.8811(83) 1.0328(111)
2.0142 6.60850 0.135260 6 0.8023(19) 0.8382(32) 1.0448(47)
6.82170 0.134891 8 0.8209(40) 0.8545(45) 1.0410(74)
7.09300 0.134432 12 0.8400(44) 0.8771(70) 1.0442(100)
24792 6.13300 0.136110 6 0.7885(33) 0.8371(71) 1.0616(100)
6.32290 0.135767 8 0.8038(31) 0.8466(127) 1.0531(163)
6.63164 0.135227 12 0.8290(39) 0.8921(148) 1.0761(186)
3.3340 5.62150 0.136665 9 0.7667(45) 0.8193(129) 1.0686(179)
5.80970 0.136608 8 0.7927(45) 0.8812(1206) 1.1116(171)
6.11816 0.136139 12 0.8252(68) 0.9040(110) 1.0955(161)
g L) e L=a 72 (g;a=L) 2 (go;a=2L) (go;a=L)
09793 9.50000 0.131532 6 0.7841(12) 0.7546(15) 0.9623(24)
9.73410 0.131305 8 0.7767(10) 0.7500(27) 0.9657(37)
10.05755 0.131069 12 0.7696(09) 0.7491(27) 0.9733(36)
1.1814 8.50000 0.132509 6 0.7512(11) 0.7185(34) 0.9564(47)
8.72230 0.132291 8 0.7461(18) 0.7180(19) 0.9623(35)
8.99366 0.131975 12 0.7372(10) 0.7075(30) 0.9598(43)
1.5078 7.54200 0.133705 6 0.7091(11) 0.6696(24) 0.9443(37)
7.72060 0.133497 8 0.6998(18) 0.6680(44) 0.9547(68)
1.5031 7.50000 0.133815 6 0.7062(09) 0.6655(25) 0.9424(38)
8.02599 0.133063 12 0.6954(25) 0.6584(31) 0.9468(56)
2.0142 6.60850 0.135260 9 0.6475(13) 0.5965(16) 0.9212(31)
6.82170 0.134891 8 0.6428(27) 0.6011(25) 0.9351(55)
7.09300 0.134432 12 0.6379(22) 0.5898(29) 0.9246(55)
24792 6.13300 0.136110 6 0.6029(21) 0.5470(37) 0.9072(69)
6.32290 0.135767 8 0.5994(16) 0.5336(38) 0.8902(68)
6.63164 0.135227 12 0.5995(22) 0.5386(53) 0.8984(94)
3.3340 5.62150 0.136665 6 0.5288(31) 0.4610(69) 0.8718(140)
5.80970 0.136608 8 0.5363(24) 0.4632(63) 0.8637(124)
6.11816 0.136139 12 0.5417(31) 0.4698(49) 0.8672(102)

Table 8: Num erical values of the renom alisation constants 2 * , Z
functions ¥, at various renom alised SF couplings and lattice spacings. D ata at @SZF =
0:9793; 1:1814; 1:5031 have been obtained w ith ¢t evaluated in one-loop perturbation theory.
T he ram aining data have been obtained w ith ¢ evaluated in two-loop perturbation theory.
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g (L) e L=a 2% (gjsasL) 2" (g;a=2L) ) (go;a=L)

09793 950000 0131532 6 0.8958(15) 0.8630(18) 0.9634(25)
9.73410 0.131305 8 0.8845(13) 0.8486(23) 0.9594(29)
10.05755 0.131069 12 0.8733(15) 0.8335(38) 0.9545(47)
1.1814 8.50000 0.132509 6 0.8771(16) 0.8421(41) 0.9601(50)
8.72230 0.132291 8 0.8650(22) 0.8304(29) 0.9600(41)
8.99366 0.131975 12 0.8503(17) 0.8117(47) 0.9545(59)
1.5078 7.54200 0.133705 6 0.8531(16) 0.8043(29) 0.9428(39)
7.2060  0.133497 8 0.8385(34) 0.7924(53) 0.9450(74)
1.5031 7.50000 0.33815 6 0.8547(13) 0.8161(43) 0.9548(52)
8.02599 0.133063 12 0.8161(43) 0.7638(37) 0.9359(67)
2.0142 660850 0.135260 6 0.8190(17) 0.7535(22) 0.9200(33)
6.82170 0.134891 8 0.8082(31) 0.7334(35) 0.9075(56)
7.09300 0.134432 12 0.7798(28) 0.7102(38) 0.9108(59)
24792 6.13300 0.136110 6 0.7937(27) 0.7085(49) 0.8927(68)
6.32290 0.135767 8 0.7754(21) 0.6841(90) 0.8823(119)
6.63164 0.135227 12 0.7492(25) 0.6691(65) 0.8931(92)
3.3340 5.62150 0.136665 6 0.7570(38) 0.6233(67) 0.8235(98)
580970 0.136608 8 0.7330(37) 0.5987(71) 0.8168(106)
6.11816 0.136139 12 0.7048(46) 0.5658(65) 0.8028(106)

gie (L) e« L=a 2% (gpja=L) 2 (gj;a=2L) ) (go ja=L)
09793 950000 0131532 6 0.9810(11) 0.9645(15) 0.9832(19)
9.73410 0.131305 8 0.9739(10) 0.9613(23) 0.9871(26)
10.05755 0.131069 12 0.9676(09) 0.9627(37) 0.9949(39)
1.1814 8.50000 0.132509 6 0.9769(13) 0.9599(42) 0.9826(45)
8.72230 0.132291 8 0.9699(18) 0.9572(21) 0.9869(28)
8.99366 0.131975 12 0.9644(11) 0.9516(29) 0.9867(32)
1.5078 7.54200 0.133705 6 0.9738(11) 0.9507(25) 0.9762(28)
72060 0.133497 8 0.9662(24) 0.9482(40) 0.9813(48)
1.5031 7.50000 0.133815 6 0.9707(11) 0.9579(24) 0.9868(28)
8.02599 0.133063 12 0.9579(24) 0.9392(46) 0.9805(54)
2.0142 6.60850 0.135260 6 0.9667(12) 0.9371(18) 0.9694(22)
6.82170 0.134891 8 0.9551(24) 0.9372(23) 0.9813(34)
7.09300 0.134432 12 0.9476(22) 0.9179(49) 0.9687(56)
24792 6.13300 0.136110 6 0.9605(23) 0.9207(48) 0.9586(55)
6.32290 0.135767 8 0.9496(14) 0.9099(51) 0.9582(56)
663164 0135227 12 0.9385(23) 0.8995(56) 0.9584(64)
3.3340 5.62150 0.136665 6 0.9511(41) 0.8997(75) 0.9459(89)
580970 0.136608 8 0.9352(37) 0.8769(84) 0.9376(97)
6.11816 0.136139 12 0.9200(35) 0.8669(59) 0.9423(74)

Table 9: Num erical values of the renom alisation constants Z V), Z ) and the step-scaling
functions ), ) with HYP2 action at various renom alised SF couplings and lattice
gpacings. Data at @fF = 0:9793; 1:1814; 1:5031 have been obtained with ¢ evaliated In
one-loop perturbation theory. T he rem aining data have been obtained w ith ¢ evaluated in
tw o—-loop perturbation theory.
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g3 (L) e L=a 2% (gia=l) 2" (ga=2L) (9 7a=L)
09793 9.50000 0.131532 [ 0.9306(10) 0.8879(13) 0.9541(17)
9.73410 0.131305 8 0.9164(08) 0.8762(12) 0.9561(16)
10.05755 0.131069 12 0.8973(07) 0.8586(21) 0.9569(24)
1.1814 8.50000 0.132509 9 0.9179(10) 0.8715(30) 0.9494(34)
8.72230 0.132291 8 0.8996(13) 0.8526(17) 0.9478(23)
8.99366 0.131975 12 0.8810(09) 0.8333(27) 0.9458(33)
1.5078 7.54200 0.133705 6 0.9038(10) 0.8411(20) 0.9307(25)
7.72060 0.133497 8 0.8814(20) 0.8207(26) 0.9311(36)
1.5031 7.50000 0.133815 6 0.8998(10) 0.8564(20) 0.9517(25)
8.02599 0.133063 12 0.8564(20) 0.7976(36) 0.9314(48)
2.0142 6.60850 0.135260 9 0.8794(12) 0.7981(16) 0.9075(22)
6.82170 0.134891 8 0.8543(22) 0.7788(22) 0.9116(34)
7.09300 0.134432 12 0.8231(22) 0.7405(37) 0.8997(50)
24792 6.13300 0.136110 [ 0.8596(21) 0.7582(42) 0.8821(53)
6.32290 0.135767 8 0.8347(13) 0.7329(52) 0.8780(63)
6.63164 0.135227 12 0.7972(19) 0.6999(50) 0.8780(66)
3.3340 5.62150 0.136665 6 0.8346(36) 0.7043(62) 0.8439(83)
5.80970 0.136608 8 0.7996(33) 0.6568(63) 0.8214(85)
6.11816 0.136139 12 0.7587(30) 0.6241(58) 0.8227(82)

g, L) or L=a 7" (g;a=L) 2z (go;a=2L) ) (go;a=L)
09793 9.50000 0.131532 9 0.9281(09) 0.9082(12) 0.9786(16)
9.73410 0.131305 8 0.9213(08) 0.9033(12) 0.9804(15)
10.05755 0.131069 12 0.9147(06) 0.9009(21) 0.9849(23)
1.1814 8.50000 0.132509 6 0.9158(10) 0.8950(24) 0.9773(28)
8.72230 0.132291 8 0.9094(13) 0.8904(14) 0.9791(21)
8.99366 0.131975 12 0.9022(08) 0.8811(19) 0.9766(23)
1.5078 7.54200 0.133705 6 0.8995(10) 0.8691(18) 0.9662(23)
7.72060 0.133497 8 0.8924(18) 0.8668(28) 0.9714(37)
1.5031 7.50000 0.133815 [ 0.8979(10) 0.8829(16) 0.9833(2)
8.02599 0.133063 12 0.8829(16) 0.8536(28) 0.9668(36)
2.0142 6.60850 0.135260 6 0.8749(11) 0.8353(14) 0.9548(20)
6.82170 0.134891 8 0.8671(19) 0.8321(18) 0.9597(30)
7.09300 0.134432 12 0.8562(18) 0.8143(31) 0.9510(42)
24792 6.13300 0.136110 6 0.8566(19) 0.8006(36) 0.9347(47)
6.32290 0.135767 8 0.8461(14) 0.7906(41) 0.9344(51)
6.63164 0.135227 12 0.8360(17) 0.7832(46) 0.9368(58)
3.3340 5.62150 0.136665 6 0.8268(35) 0.7474(58) 0.9040(80)
5.80970 0.136608 8 0.8142(30) 0.7337(63) 0.9011(85)
6.11816 0.136139 12 0.8002(26) 0.7239(48) 0.9046(67)

Table 10: Num ericalvalies of the renom alisation constants z ),z “) and the step-scaling
functions ), ) with HYP2 action at various renom alised SF couplings and lattice
0:9793; 1:1814; 15031 have been obtained w ith ¢ evaluated in
one-loop perturbation theory. T he ram aining data have been obtained w ith ¢, approxin ated

spacings. Data at g2,

in two-loop perturbation theory.
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