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Abstract: Using Schrödinger Functional methods, we compute the non-perturbative

renormalisation and renormalisation group running of several four-fermion operators, in

the framework of lattice simulations with two dynamical Wilson quarks. Two classes of

operators have been targeted: (i) those with left-left current structure and four propa-

gating quark fields; (ii) all operators containing two static quarks. In both cases, only

the parity-odd contributions have been considered, being the ones that renormalise multi-

plicatively. Our results, once combined with future simulations of the corresponding lattice

hadronic matrix elements, may be used for the computation of phenomenological quantities

of interest, such as BK and BB (the latter also in the static limit).

Keywords: Renormalization Group, Lattice Gauge Field Theories, Lattice QCD.
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1. Introduction

Hadronic matrix elements of four-fermion operators play an important rôle in the study

of CP violation via CKM unitarity triangle analyses, as well as in the understanding of

the ∆I = 1/2 enhancement puzzle in K → ππ decays. The only known technique to

compute hadronic matrix elements from first principles, namely lattice QCD, has long been

hampered by a number of systematic uncertainties. Most notably, the high computational

cost of including light dynamical quarks in the simulations has enforced either the quenched

approximation, or the use of heavy dynamical quark masses, which necessitate long and

potentially uncontrolled extrapolations to the chiral regime. It is thus important to upgrade

existing quenched results by the inclusion of dynamical fermion effects. For recent progress

reports on lattice results on flavour Physics, see [1].

The present work is a step in this direction. The non-perturbative renormalisation

of four-fermion operators, as well as the corresponding renormalisation group (RG) run-

ning between hadronic scales of O(ΛQCD) and perturbative ones of about 100 GeV, is a

necessary ingredient in the process of producing the properly renormalised matrix element

in the continuum limit. Quantities that determine these renormalisation properties have

been computed in the quenched approximation, using finite-size scaling techniques, for

a broad class of four-fermion operators [2 – 4]. The regularisation of choice was that of

non-perturbatively O(a) improved Wilson quarks and standard plaquette gauge action;

the renormalisation schemes used were of the Schrödinger functional (SF) type. The aim
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of the present work is to extend these results to QCD with Nf = 2 dynamical quarks.

More specifically, we present results for: (i) the RG-running of left-left current relativis-

tic four-fermion operators; (ii) the RG-running of all ∆B = 2 operators with two static

heavy quarks; (iii) the renormalisation factors that match the above operators to their

renormalisation group invariant (RGI) counterparts. The latter have been computed for a

regularisation of the relativistic quarks by the non-perturbatively O(a) improved Wilson

action. Preliminary results have been presented in [5].

As we will point out below, the results of this work are relevant for the computation of

physical quantities such as the bag parameters BK andBB. In the quenched approximation,

the combination of this renormalisation programme with computations of bare hadronic

matrix elements has already produced high precision estimates of a few physical quantities

in the continuum [6, 7]. Moreover, knowledge of the continuum RGI operators, computed

with Wilson fermions, has allowed the determination, through a matching procedure, of the

renormalisation factors of the same operators in the Neuberger fermion regularisation [8].

The paper is organised as follows. In section 2 we introduce the operator basis and the

renormalisation schemes adopted in the present work. We also recall some basic formulae

used for the reconstruction of the operator scale evolution in the SF framework. Section 3

is devoted to a detailed description of the lattice simulations and numerical analyses of

the operator RG-running. In section 4 we discuss the renormalisation of the four-quark

operators at a low energy matching scale. Conclusions are drawn in section 5. In order to

improve readability, some tables and figures have been collected at the end of the paper.

2. Definitions and setup

2.1 Renormalisation of four-fermion operators

We will consider two different classes of four-fermion (dimension-six) operators:

O±

Γ1Γ2
(x) =

1

2

[(

ψ̄1(x)Γ1ψ2(x)
) (

ψ̄3(x)Γ2ψ4(x)
)

± (ψ2 ↔ ψ4)
]

, (2.1)

O±

Γ1Γ2
(x) =

1

2

[(

ψ̄h(x)Γ1ψ1(x)
) (

ψ̄h̄(x)Γ2ψ2(x)
)

± (ψ1 ↔ ψ2)
]

. (2.2)

In the above expressions ψk is a relativistic quark field with flavour index k, ψh (ψ h̄)

are static (anti-)quark fields, Γl are Dirac (spin) matrices, and the parentheses indicate

summation over spin and colour indices. In the present formalism, all quark flavours

are distinct, enabling us to separate the calculation of the scale-dependent logarithmic

divergences, which is the aim of the present work, from the problem of eventual mixing

with lower-dimensional operators.1

The renormalisation pattern of the above operators is determined by the symmetries

of the regularised theory. In the parity-odd sector, complete bases of operators in the

1These power subtractions typically appear for some specific choices of quark masses and/or flavour

content (e.g. penguin operators). Their determination is independent of that of the logarithmic divergences,

once mass independent renormalisation schemes are employed.
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relativistic and static cases are given by

Q±

k ∈
{

O±

VA+AV, O
±

VA−AV, O
±

SP−PS, O
±

SP+PS, O
±

TT̃

}

, k = 1, . . . , 5 , (2.3)

Q±

k ∈
{

O±

VA+AV,O
±

VA−AV,O
±

SP−PS,O
±

SP+PS

}

, k = 1, . . . , 4 , (2.4)

respectively. The notation is standard and self-explanatory, indicating the operator spin

matrices Γl, with say, O±
VA+AV ≡ O±

VA+O±
AV. A full analysis of the renormalisation properties

of these operator bases with relativistic Wilson fermions has been performed in [9, 10]. A

result of these works which is of particular relevance is that, contrary to the parity-even

case, characterised by operator mixing due to the explicit breaking of chiral symmetry by

the Wilson term in the quark action, the parity-odd operators are protected by discrete

symmetries, and hence their renormalisation pattern is continuum-like [11]. We point out

that RG-running is identical for parity-even and parity-odd operators of the same chiral

representation, since in the continuum limit chiral symmetry is restored. On the other

hand, the (physically relevant) matrix elements of the parity-even operators can be mapped

exactly to those of the parity-odd ones via the addition of a chirally twisted mass term to

the lattice quark action [12, 6, 10].

From now on, we will consider the subset of operators

Q±

1 , Q′+
k ∈

{

Q+
1 ,Q

+
1 + 4Q+

2 ,Q
+
3 + 2Q+

4 ,Q
+
3 − 2Q+

4

}

. (2.5)

All these operators renormalise multiplicatively; i.e. given an operator O ∈ {Q±

1 ,Q
′+
k }

the corresponding operator insertion in any on-shell renormalised correlation function is

given by

OR(x, µ) = lim
a→0

Z(g0, aµ)O(x; g0) , (2.6)

where g0, a are the bare coupling and lattice spacing, respectively and µ is the renormali-

sation scale. The RG-running of the operator is controlled by the anomalous dimension γ,

defined by the Callan-Symanzik equation

µ
∂

∂µ
OR(x, µ) = γ (g (µ)) OR(x, µ) , (2.7)

supplemented by the corresponding RG-equation for the renormalised coupling g ,

µ
∂

∂µ
g (µ) = β(g (µ)) . (2.8)

In mass-independent renormalisation schemes, the β-function and all anomalous dimen-

sions depend only on the renormalised coupling g . They admit perturbative expansions of

the form

β(g)
g→0
≈ −g3

(

b0 + b1g
2 + b2g

4 + . . .
)

, (2.9)

γ(g)
g→0
≈ −g2

(

γ0 + γ1g
2 + γ2g

4 + . . .
)

, (2.10)
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in which the coefficients b0, b1, γ0 are renormalisation scheme-independent. In particular,

the universal coefficients of the β-function read

b0 =
1

(4π)2

{

11 −
2

3
Nf

}

, b1 =
1

(4π)4

{

102 −
38

3
Nf

}

, (2.11)

and the universal leading order (LO) coefficients of the anomalous dimensions of the oper-

ators in eq. (2.5) are given by

γ+
0 =

4

(4π)2
, γ−0 = −

8

(4π)2
, (2.12)

γ
(1)
0 = −

8

(4π)2
, γ

(2)
0 = −

8

3(4π)2
, (2.13)

γ
(3)
0 = −

10

(4π)2
, γ

(4)
0 = −

4

(4π)2
. (2.14)

Moreover, in the SF renormalisation scheme, the next-to-next-to-leading order (NNLO)

coefficient bSF
2 of the β-function is known to be [13]

bSF
2 =

1

(4π)3

{

0.483 − 0.275Nf + 0.0361N2
f − 0.00175N3

f

}

. (2.15)

Upon integration of eq. (2.7), one obtains the renormalisation group invariant (RGI)

operator insertion

ORGI(x) = OR(x;µ)

[

g 2(µ)

4π

]−
γ0
2b0

exp

{

−

∫ g (µ)

0
dg

(

γ(g)

β(g)
−

γ0

b0g

)

}

, (2.16)

while the RG evolution between two scales µ1, µ2 is given by the scaling factor

U(µ2, µ1) = exp

{

∫ g (µ2)

g (µ1)
dg

γ(g)

β(g)

}

= lim
a→0

Z(g0, aµ2)

Z(g0, aµ1)
. (2.17)

2.2 Schrödinger Functional renormalisation schemes

Eqs. (2.16)–(2.17) are the starting point for the non-perturbative computation of the RG

evolution of composite operators. To that purpose we introduce a family of Schrödinger

Functional renormalisation schemes. The latter are defined by setting up the theory on a

four-dimensional hypercube of physical size T × L3 with Dirichlet boundary conditions in

Euclidean time and periodic boundary conditions in the spatial directions, up to a phase

θ. We refer the reader to [14] for an introduction to the SF setup. In the present work we

always choose T = L and θ = 0.5. We also assume that no background field is present.

The renormalisation scale is set as µ = 1/L.

Renormalisation conditions are imposed on SF correlators, following [2 – 4]; for the

sake of completeness, we briefly outline the method. We first introduce bilinear boundary

sources projected to zero external momentum,

Σs1s2 [Γ] = a6
∑

xy

ζ̄s1(x)Γζs2(y) , (2.18)

Σ′

s1s2
[Γ] = a6

∑

xy

ζ̄ ′s1
(x)Γζ ′s2

(y) . (2.19)

– 4 –
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Figure 1: Diagrammatic representation of correlation functions: relativistic four-quark correlators

F± (first diagram from left), static four-quark correlators F (k) (third diagram from left), relativistic

boundary-to-boundary correlators f12
1 , k12

1 (second diagram from left) and static boundary-to-

boundary correlators f1h
1 and k1h

1 (fourth diagram from left). Euclidean time goes from left to

right. Single (double) lines represent relativistic (static) valence quarks.

Here Γ denotes a Dirac matrix, the flavour indices s1,2 can assume both relativistic and

static values and the fields ζ (ζ ′) represent functional derivatives with respect to the

fermionic boundary fields of the SF at the initial (final) time x0 = 0 (x0 = T ). The

four-quark operators are then treated as local insertions in the bulk of the SF, giving rise

to the correlation functions

F±

[ΓA,ΓB,ΓC](x0) = L−3〈Σ′

53[ΓC] Q±

1 (x) Σ21[ΓA] Σ45[ΓB]〉 , (2.20)

F
(k)
[ΓA,ΓB,ΓC](x0) = L−3〈Σ′

3h̄
[ΓC] Q′+

k (x) Σ1h[ΓA] Σ23[ΓB]〉 . (2.21)

Clearly, the Dirac matrices of the boundary sources must be chosen so that the correlators

do not vanish trivially (e.g. due to parity).

In the above definitions a “spectator” light quark has been introduced with flavour

s = 5 for F± and s = 3 for F (k). This quark field has no Wick contractions with the

valence quarks of the operator insertion and propagates straight from the initial to the

final time boundary. Its rôle is merely to allow for parity-even correlators of parity odd

four-fermion insertions without the need of introducing non-zero external momenta.

In order to isolate the operator ultraviolet divergences in eqs. (2.20)–(2.21), one has

to remove the boundary sources’ additional divergences. To this end, we introduce a set of

boundary-to-boundary correlators,

f s1s2
1 = −

1

2L6
〈Σ′

s1s2
[γ5] Σs2s1 [γ5]〉 , (2.22)

ks1s2
1 = −

1

6L6

3
∑

k=1

〈Σ′

s1s2
[γk] Σs2s1 [γk]〉 , (2.23)

where the flavour indices s1,2 may assume once again either relativistic or static values.

Wick contractions of four-quark and boundary-to-boundary correlation functions are de-

picted in figure 1.

Since the logarithmic divergences of the boundary fields are removed by multiplicative

renormalisation factors Zζ and Zh
ζ , it can be easily recognised that ratios of correlators

– 5 –
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such as

R±(x0) =
F±

[ΓA,ΓB,ΓC](x0)

[f12
1 ]3/2−α[k12

1 ]α
, (2.24)

R(k)(x0) =
F

(k)
[ΓA,ΓB,ΓC](x0)

[f1h
1 ][f12

1 ]1/2−α[k12
1 ]α

, (2.25)

are free of boundary divergences for any choice of the parameter α. Thus, the operators of

interest are renormalised through the conditions

Z±(g0, a/L)R±(T/2) = R±(T/2)
∣

∣

∣

g0=0
, (2.26)

Z(k)(g0, a/L)R(k)(T/2) = R(k)(T/2)
∣

∣

∣

g0=0
, (2.27)

where all correlation functions are to be evaluated at the chiral point.

A crucial observation is that all renormalisation factors thus obtained are flavour-blind,

in the sense that they remove the logarithmic divergences from any four-fermion operator

of a given Dirac structure, irrespective of its specific flavour content. For instance, in

∆H = 2 transitions, such as Bd(s) − B̄d(s) oscillations in the static limit, one identifies

ψ1 = ψ2 = d(s) as a down (strange) quark, and ψ3 = u as an up quark; for either flavour

identification the same Z(k)’s renormalise the corresponding operator. Similarly, in the

relativistic quark case, the dimension-six operator, be it ∆S = 2 (with ψ1 = ψ3 = s and

ψ2 = ψ4 = d) or ∆B = 2 (with ψ1 = ψ3 = b and ψ2 = ψ4 = d(s)), is renormalised by

the same Z+. Also in this case we note the presence of the spectator quark ψ5 = u in

the renormalisation condition. These renormalisation factors also remove the logarithmic

divergences of other dimension-six operators with the same Dirac structure but different

flavour content. For example, even if the renormalisation of some ∆F = 1 operators is only

complete after power subtractions are taken into account, their logarithmic divergences are

removed by the same Z± and Z(k) factors.

Another issue, related to the above discussion, is that here we are working with Nf = 2

dynamical flavours. In large-volume simulations of hadronic matrix elements, the latter

would be naturally identified with the up and down sea quarks. However, most matrix ele-

ments of interest involve additional propagating physical flavours.2 Thus, it becomes neces-

sary to address the effects of partial quenching, in the context of operator renormalisation.

Due to their flavour-blind nature, the renormalisation factors and RG running con-

tained in this work account for the scale dependence of any matrix element of four-fermion

operator, computed on an Nf = 2 sea, provided that partial quenching does not generate

extra scale-dependent mixing, which spoils multiplicative renormalisation. This is indeed

the case for ∆F = 2 meson oscillations, since in the chiral limit the relevant symmetries

(CPS for Q±

1 and CPT plus heavy quark spin symmetry for Q′+
k ) remain valid and protect

these operators from new counterterms. On the contrary, unphysical mixing, generated

2An exception is that of ∆B = 2 oscillations of the Bd meson in the static limit.
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by partial quenching, may become an issue for ∆F = 1 hadronic decays, at least for pen-

guin contributions [15]. We stress that this problem is not specific to the renormalisation

schemes under consideration.

2.3 Step-scaling functions

The non-perturbative study of the RG-evolution of our composite operators is based on

the step-scaling functions (SSFs)

σ(u) = lim
a→0

Σ(u, a/L) , Σ(u, a/L) =
Z (g0, a/(2L))

Z(g0, a/L)

∣

∣

∣

∣

g 2
SF(L)=u, m0=mcr

, (2.28)

with Z ∈ {Z±,Z(k)}. According to eq. (2.17), the SSFs describe the operator RG-running

between the scales µ1 = 1/L and µ2 = 1/(2L). The choice of the ratio µ1/µ2 = 2 as the

smallest positive integer is made with the aim of minimising the effects of the ultraviolet

cutoff at finite values of the latter.

In practice, the SSFs are simulated at several values of the lattice spacing for fixed

physical size (inverse renormalisation scale) L. The corresponding values of the inverse

bare coupling β = 6/g2
0 are indeed tuned by requiring that the renormalised SF coupling

g 2
SF, and hence L, are kept constant. The critical mass mcr is obtained as in [18] from the

requirement that the PCAC mass vanishes in the O(a) improved theory.

Once σ(u) is computed at several different values of the squared gauge coupling u, it is

possible to reconstruct the RG evolution factor U(µpt, µhad) between a hadronic scale µhad,

in the range of a few hundred MeV, and a perturbative one µpt, in the high-energy regime.

This in turn leads to the computation of the RGI operator of eq. (2.16), with controlled

systematic uncertainties, by splitting the exponential on the rhs of eq. (2.16), evaluated at

µ = µhad, as follows:

ĉ(µhad) ≡

[

g 2(µhad)

4π

]−
γ0
2b0

exp

{

−

∫ g (µhad)

0
dg

(

γ(g)

β(g)
−

γ0

b0g

)

}

=

= ĉ(µpt) U(µpt, µhad) . (2.29)

The second factor on the rhs is known non-perturbatively as a product of continuum SSFs

σ(u); cf. eq. (2.17). The first factor can be safely computed at next-to-leading order (NLO)

in perturbation theory, provided the scale µpt is high enough to render NNLO effects

negligible. The full procedure for the construction of U(µpt, µhad) has been introduced

in [16] for the running quark mass in the quenched approximation, and subsequently applied

in several contexts (for a recent review, see [17]). The reader is referred to the above-

mentioned works for a detailed description of the method. More specifically, since the

present work concerns two-flavour QCD, we follow closely the work of ref. [18] on the

running quark mass with Nf = 2 dynamical quarks.

Concerning the choice of [ΓA,ΓB,ΓC] and α, we observe that in our quenched stud-

ies [2, 4] we have considered five possible non-trivial Dirac structures that preserve cubic

– 7 –
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Q ΓA ΓB ΓC α

Q+
1 γ5 γ5 γ5 0

Q−

1 γk γ5 γk 1

Q′+
1 γ5 γ5 γ5 1/2

Q′+
2 γ5 γ5 γ5 0

Q′+
3 γ5 γ5 γ5 0

Q′+
4 γ5 γ5 γ5 0

Table 1: Optimal renormalisation schemes for the various four-quark operators.

symmetry at vanishing external momenta, i.e.

[ΓA,ΓB,ΓC] = { [γ5, γ5, γ5], ǫijk[γi, γj , γk], [γ5, γk, γk],

[γk, γ5, γk], [γk, γk, γ5] } (2.30)

(where a sum over repeated indices is understood), and various possible values of the

α parameter, namely α = {0, 1/2} for the static operators and α = {0, 1, 3/2} for the

relativistic ones. Not all of the resulting renormalisation schemes were equally well suited

to our purposes: some of them were characterised by a RG running with a slow perturbative

convergence at NLO; cf. refs. [3, 10]. This rendered the matching of perturbative and non-

perturbative running at µpt (cf. eq. (2.29)) less reliable and the systematics hard to control;

see section 3.3 below for more details. The same considerations are valid in the present

case of two dynamical quarks. For the sake of brevity we will concentrate only in those

schemes which have been found to be best behaved in the present unquenched study. These

optimal schemes are specified in table 1. A complete account of our results in all schemes

considered is available upon request.

The non-universal two-loop coefficients of the anomalous dimensions eq. (2.10) for the

operators of interest in the aforementioned optimal schemes read [3, 4]

γ+
1 =

1

(4π)2
[

0.0828(48) + 0.03200(28)Nf

]

, (2.31)

γ−1 = −
1

(4π)2
[

−0.6880(24) + 0.12648(16)Nf

]

, (2.32)

γ
(1)
1 = −

1

(4π)2
[

1.345(2) + 0.0008(2)Nf

]

, (2.33)

γ
(2)
1 = −

1

(4π)2
[

−1.251(1) + 0.11637(8)Nf

]

, (2.34)

γ
(3)
1 = −

1

(4π)2
[

−0.327(3) + 0.1211(2)Nf

]

, (2.35)

γ
(4)
1 = −

1

(4π)2
[

−0.146(1) + 0.06784(8)Nf

]

. (2.36)
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3. Non-perturbative computation of the RG running

3.1 Simulations details

Our simulations are based on the regularisation of relativistic quarks by the non-

perturbatively O(a) improved Wilson action, with the Sheikoleslami-Wohlert (SW) co-

efficient csw determined in [19]. Static quarks have been instead discretised as proposed

in [20]. In particular, all results reported in this work refer to the so-called HYP2 action,

i.e. the lattice static action of [21], with the standard parallel transporter U(0, x) replaced

by the temporal hypercubic link introduced in [22], and a choice of the smearing param-

eters (α1, α2, α3) = (1.0, 1.0, 0.5). The latter minimises the quenched static self-energy,

providing the largest exponential increase of the signal-to-noise ratio in the static-quark

propagator, when compared to the original Eichten-Hill action. The minimum of the static

self-energy is shifted by internal quark-loops only at NLO in perturbation theory: such

shift is thus expected to be relatively small.

With the above prescriptions, the SSFs have been computed at six different values

of the SF renormalised coupling, corresponding to six different physical lattice lengths L.

For each physical volume three different values of the lattice spacing have been simulated,

corresponding to lattices with L/a = 6, 8, 12 (and 2L/a = 12, 16, 24 respectively) for the

computation of Z(g0, a/L) (and Z (g0, a/(2L))).

The gauge configuration ensemble used in the present work (generated with Nf =

2 dynamical fermions) and the tuning of the lattice parameters (β, κ) have been taken

over from [18]. All technical details concerning these dynamical fermion simulations are

discussed in that work. The one technical aspect that makes a significant difference in

our case concerns the perturbative value of the boundary improvement coefficient ct [23].

As pointed out in [18], the gauge configurations at the three weakest couplings have been

produced using the one-loop perturbative estimate of ct [24], except for (L/a = 6, β =

7.5420) and (L/a = 8, β = 7.7206). For these two cases and for the three stronger

couplings, the two-loop value of ct [25] has been used. We have enforced the same ct values

in the valence propagators. Comparison of the results of two different simulations, namely

ḡ2
SF = 1.5031(25) , L/a = 6 , β = 7.5000 , κ = 0.1338150 , ct = one − loop ,

ḡ2
SF = 1.5078(44) , L/a = 6 , β = 7.5420 , κ = 0.1337050 , ct = two − loop .

shows that the renormalisation factor ZP of the pseudoscalar density, analysed in [18], is

subject to a relative 4 per mille variation, corresponding to a mild discrepancy of about 1.5σ

with regards to our statistical uncertainty. Unfortunately, for the four-fermion correlation

functions this remains true only for the operator Q−

1 , while the Q+
1 and Q′+

k cases show

relative variations of the order of 1-2%, corresponding to differences of about 2.5σ with re-

gards to the statistical precision. Therefore, the results of extrapolations to the continuum

limit are slightly affected by the value of ct. We expect that, for a given renormalised cou-

pling g 2
SF, this O(g 4

SFa) discrepancy diminishes rapidly at finer lattice resolutions a/L (i.e.

closer to the continuum), while it becomes more pronounced in the strong coupling region,

at constant L/a. In principle, this problem can be removed by performing all simulations
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with a two-loop estimate of ct and/or a smaller resolution a/L. As further dynamical

simulations are beyond the scope of the present work, we limit ourselves in stating that

our results are subject to this systematic uncertainty, which, in view of the fact that the

one-loop value of ct is only used in the weak coupling region, is however not expected to

be significant for our final results. In this respect, we have checked that the (final) overall

result is unaffected when either ct is employed at this coupling. It is also reassuring that,

as we will see below, including or discarding the L/a = 6 data-points in the continuum

extrapolations does not alter the final results significantly.

Numerical results are collected in tables 8–10. Statistical errors were computed by a

jackknife analysis. The estimates of the autocorrelation times, calculated with the auto-

correlation function method, the method of ref. [26] and the binning method, were found

to be compatible.

3.2 Continuum extrapolation of the step-scaling functions

Since we do not implement O(a) improvement of four-fermion operators, the only linear

cutoff effects that are removed from Σ(u, a/L) are those cancelled by the SW term in the

fermion action. Therefore, we expect SSFs to approach the continuum limit linearly in a/L

and correspondingly we fit to the ansatz

Σ(u, a/L) = σ(u) + ρ(u)(a/L) . (3.1)

In practice it is often observed that the data corresponding to L/a = 8, 12 are compatible

within errors, whereas the L/a = 6 result, bearing the largest cutoff effects, is off. This

suggests that, in analogy to [18], a weighted average of the two finest lattice results may

be a reliable estimate of the continuum limit value. We have checked that, in most cases,

linear fits to all three data-points and weighted averages of the two results from the finer

lattices lead to continuum limit estimates, compatible within one standard deviation; cf.

figures 2, 4 and 6. Fit results are reported in table 2. Since the discretisation errors are

O(a) and not O(a2) as in [18], we conservatively quote, as our best results, those obtained

from linear extrapolations involving all three data-points.

It should be added that, besides the HYP2 action, we have also tried other static

quark action varieties, namely the APE and the HYP1 ones (see ref. [20]), which differ

from HYP2 by O(a2) lattice artefacts. Since the static four-quark operators are not O(a)

improved, it is reasonable to expect significant discretisation effects at the coarsest lattice

spacing, which would enable combined fits of the data from all three actions, constrained

to a common value in the continuum limit. Unsurprisingly, the situation turned out to be

similar to that of [4], in that data obtained with the above actions do not differ noticeably

(even at L/a = 6) and are very strongly correlated. Consequently, a combined continuum

extrapolation affects the continuum limit results only marginally, with the relative error

decreasing only by a few percent. For this reason we only quote results from the HYP2

analysis.
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u σ+(u) σ−(u) σ(1)(u) σ(2)(u) σ(3)(u) σ(4)(u)

0.9793 1.010(11) 0.983(07) 0.946(08) 1.004(07) 0.960(05) 0.990(05)

1.1814 1.044(15) 0.965(10) 0.951(12) 0.991(08) 0.942(07) 0.976(05)

1.5078 1.039(21) 0.953(11) 0.932(13) 0.987(10) 0.932(09) 0.970(07)

2.0142 1.040(18) 0.936(11) 0.896(11) 0.985(10) 0.901(09) 0.955(08)

2.4792 1.078(35) 0.879(19) 0.890(19) 0.958(13) 0.873(14) 0.938(12)

3.3340 1.129(37) 0.862(25) 0.784(23) 0.938(17) 0.798(18) 0.905(16)

Table 2: Results of the continuum limit extrapolation of the lattice step-scaling functions Σ± and

Σ(k). Data have been fitted from all available lattice resolutions as linear functions in (a/L).

3.3 RG running in the continuum limit

In order to compute the RG running of the operators in the continuum limit as described

in [18], the continuum SSFs have to be fitted to some functional form. The simplest choice

is represented by a polynomial

σ(u) = 1 + s1u+ s2u
2 + s3u

3 + . . . , (3.2)

whose form is motivated by the perturbative series, with coefficients

s1 = γ0 ln 2 , (3.3)

s2 = γ1 ln 2 +

[

1

2
(γ0)

2 + b0γ0

]

(ln 2)2 . (3.4)

It is worth stressing that s1 is universal and independent of Nf , whereas s2 carries a depen-

dence upon Nf via b0 and γ1, with the latter coefficient introducing a scheme dependence.

In our fits we truncated the polynomial at O(u3). The fits have been performed with s1
fixed to its perturbative value and s2, s3 left as free parameters. Fit results are shown in

figures 3, 5 and 7. Fitted values of s2 turned out to be close to the perturbative prediction

of eq. (3.4), with the exception of Q′+
2 .

Once the continuous SSFs have been obtained as functions of the renormalised cou-

pling, the ratios ĉ (cf. eq. (2.16)) are obtained recursively. The low-energy scale µhad = L−1
max

is implicitly defined in this work through the condition g 2
SF(Lmax) = 4.61, as explained

in [18]. This scale is chosen so that the renormalisation constants Z(g0, aµhad) can be

computed in the accessible g0-range commonly used in large-volume simulations. The

non-perturbative RG running of the six operators of interest are shown in figure 8.

As discussed in our former quenched study [4], the main criterion for selecting robust

schemes amounts to checking that the systematic uncertainty present in our final results,

due to the NLO truncation of the perturbative matching at the scale µpt ≡ 2nµhad, is well

under control. This in turn requires an estimate of the size of the NNLO contribution

to ĉ. To this purpose we have re-computed ĉ with two different ansätze for the NNLO

anomalous dimensions γ2: (i) we set |γ2/γ1| = |γ1/γ0|; (ii) we perform a two-parameter fit

to the SSF with s1,s2 fixed to their perturbative values and s3,s4 left as free parameters,
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n u ĉ+(L−1
max) ĉ−(L−1

max) ĉ (1)(L−1
max) ĉ (2)(L−1

max) ĉ (3)(L−1
max) ĉ (4)(L−1

max)

0 4.610 1.246 0.551 0.807 0.680 0.524 0.776

1 3.032 1.225(26) 0.564(10) 0.775(14) 0.732(09) 0.532(08) 0.788(09)

2 2.341 1.212(38) 0.566(14) 0.773(20) 0.751(12) 0.538(11) 0.794(12)

3 1.918 1.205(46) 0.564(16) 0.773(24) 0.759(15) 0.541(13) 0.797(14)

4 1.628 1.202(53) 0.561(18) 0.772(27) 0.762(18) 0.541(14) 0.797(16)

5 1.414 1.201(60) 0.558(20) 0.772(30) 0.763(20) 0.541(15) 0.797(18)

6 1.251 1.201(66) 0.554(21) 0.771(33) 0.763(22) 0.540(17) 0.797(19)

7 1.121 1.202(71) 0.551(22) 0.770(35) 0.763(24) 0.539(18) 0.796(20)

8 1.017 1.202(76) 0.548(24) 0.770(37) 0.762(26) 0.538(19) 0.795(22)

Table 3: Perturbative matching (cf. eq. (2.29)) for various choices of the matching scale

µpt = 2nµhad.

and then estimate γ2 by equating the resulting value of s3 to its perturbative expression

s3 = γ2 ln 2 + [γ0γ1 + 2b0γ1 + b1γ0] (ln 2)2+

+

[

1

6
γ3
0 + b0γ

2
0 +

4

3
b20γ0

]

(ln 2)3 . (3.5)

The optimal schemes specified in table 1 are precisely those for which the aforementioned

determinations of the effective γ2 lead to the smallest discrepancies between the corre-

sponding universal factors ĉ.

The effect of varying the perturbative matching point in the optimal schemes is de-

scribed by table 3. We see that numbers are very stable for n ≥ 6, while the uncertainty

increases with n due to progressive error accumulation at each step. Final results, reported

in the second column of table 7 refer to n = 7. Note that typical relative errors are as

big as 5%, which may result in a sizeable error in hadronic matrix elements, solely due to

renormalisation.

4. Connection to hadronic observables

Having computed the universal evolution factors ĉ(µhad), which provide the RG-running

from the low energy matching scale µhad to a formally infinite one, we proceed to establish

the connection between bare lattice operators and their RGI counterparts. The latter,

defined in eq. (2.16) from the integration of the Callan-Symanzik equation, are related to

the bare operators used in lattice simulations via a total renormalisation factor ZRGI(g0),

defined as

ZRGI(g0) = Z(g0, aµhad)ĉ(µhad) . (4.1)

The ZRGI factor does not depend on any renormalisation scale and carries a dependence

upon the renormalisation condition only via cutoff effects.

In order to obtain Z(g0, aµhad), we follow [18] and compute Z(g0, aµ) at three values

of the lattice spacing, namely β = {5.20, 5.29, 5.40}, which belong to a range of inverse
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β κ L/a g 2
SF(L) Z+ Z−

5.20 0.13600 4 3.65(3) 0.7547(19) 0.4797(12)

6 4.61(4) 0.7715(20) 0.4383(11)

5.29 0.13641 4 3.394(17) 0.7558(17) 0.5070(11)

6 4.297(37) 0.7749(24) 0.4644(13)

8 5.65(9) 0.8036(26) 0.4339(12)

5.40 0.13669 4 3.188(24) 0.7591(16) 0.5342(11)

6 3.864(34) 0.7709(21) 0.4871(13)

8 4.747(63) 0.7938(22) 0.4583(11)

Table 4: Results for Z+ and Z− with ct set to its 2-loop value. The values of g 2
SF

are from [27].

The hopping parameters κ used in the simulations are the critical ones (κcr) of [28].

β κ L/a g 2
SF(L) Z

(1)
Z

(2)
Z

(3)
Z

(4)

5.20 0.13600 4 3.65(3) 0.7793(17) 0.9741(16) 0.8681(16) 0.8317(13)

6 4.61(4) 0.7118(17) 0.9409(15) 0.7857(13) 0.7921(13)

5.29 0.13641 4 3.394(17) 0.7862(16) 0.9766(16) 0.8768(15) 0.8397(14)

6 4.297(37) 0.7275(20) 0.9431(18) 0.7992(16) 0.8017(15)

8 5.65(9) 0.6612(19) 0.9150(16) 0.7337(15) 0.7619(14)

5.40 0.13669 4 3.188(24) 0.7972(15) 0.9805(14) 0.8864(14) 0.8497(12)

6 3.864(34) 0.7378(18) 0.9434(17) 0.8098(15) 0.8094(14)

8 4.747(63) 0.6840(16) 0.9231(14) 0.7529(13) 0.7781(12)

Table 5: Results for Z(k) with ct set to its 2-loop value. The values of g 2
SF

are from [27]. The

hopping parameters κ used in the simulations are the critical ones (κcr) of [28].

couplings commonly used for simulations of two-flavour QCD in physically large volumes.

Simulation parameters and results are collected in table 4 for the relativistic operators Q±

1

and in table 5 for the static ones Q′+
k .

While the simulation at (β = 5.20, L/a = 6) is exactly at the target value for g 2
SF(Lmax),

corresponding to Z(g0, aµhad), the simulations at the other β values require a slight inter-

polation. We adopt a fit ansatz, motivated by eq. (2.16),

ln (Z) = c1 + c2 ln(g 2
SF) , (4.2)

in order to interpolate the Z factors between the values of g 2
SF straddling the target value

g 2
SF(Lmax) = 4.61. Note that the fits take into account the (independent) errors of both Z

and g 2
SF. Moreover, we have conservatively augmented the fit errors by the difference be-

tween the fit results of eq. (4.2) and the results from a naive two-point linear interpolation in

g 2
SF. The coefficients c2 of the fits (4.2) deviate in a range of 7%−30% from the lowest order

coefficients γ0/(2b0), signalling the presence of moderate higher-order perturbative effects.

The resulting numbers for the renormalisation factors at the low energy matching scale,

and also for the RGI renormalisation factors ZRGI(g0), are collected in table 6. The first

error of the ZRGI’s stems from the error of Z factors, whereas the second accounts for the

uncertainties in the universal factors ĉ. Note that only the first of these errors should be

added in quadrature to the error of the bare hadronic matrix elements, once these become

available from future computations, in order to obtain the total error of the renormalised
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β Z+ Z+
RGI Z− Z−

RGI

5.20 0.7715(20) 0.927(2)(55) 0.4383(11) 0.241(1)(10)

5.29 0.7825(27) 0.940(3)(56) 0.4560(23) 0.251(1)(10)

5.40 0.7905(26) 0.950(3)(56) 0.4623(25) 0.255(1)(10)

β Z
(1)

Z
(1)
RGI Z

(2)
Z

(2)
RGI

5.20 0.7118(17) 0.548(1)(28) 0.9409(15) 0.718(1)(26)

5.29 0.7093(27) 0.546(2)(28) 0.9374(30) 0.715(2)(26)

5.40 0.6904(40) 0.532(3)(28) 0.9233(46) 0.704(4)(26)

β Z
(3)

Z
(3)
RGI Z

(4)
Z

(4)
RGI

5.20 0.7857(13) 0.423(1)(15) 0.7921(13) 0.631(1)(17)

5.29 0.7836(40) 0.422(2)(15) 0.7916(18) 0.630(1)(17)

5.40 0.7567(75) 0.408(4)(14) 0.7807(38) 0.621(3)(17)

Table 6: Results for Z+, Z−, Z(k) and Z+
RGI

, Z−
RGI

, Z
(k)
RGI for three bare gauge coupling values

corresponding to our low-energy matching point at ḡ2
SF

= 4.61 in the SF scheme.

quantity, at a given lattice spacing. The second error, which is entirely unrelated to

the discretisation of the theory, should only be added in quadrature to the continuum

extrapolated hadronic matrix element. For the sake of convenience, a representation of the

numerical results of table 6 by interpolating polynomials is also adopted, i.e.

ZRGI = a0 + a1(β − 5.2) + a2(β − 5.2)2 , (4.3)

which can be used at any intermediate value of β between β = 5.20 and β = 5.40. Fit

coefficients are reported in table 7 for the various operators. The uncertainty of the RGI

constants at intermediate points may be easily obtained from those at the simulation points,

see table 6, by linear interpolation.

As a final remark, we observe that the simulation of the renormalisation factors at β =

5.20, L/a = 4 is not at the target value for ḡ2
SF. We used is as a check of the independence

of the ZRGI, computed via eq. (4.1) from the low energy matching scale. Specifically, the

two measured values of Z-factors at β = 5.20 have been used in order to extrapolate the

renormalisation constants at ḡ2
SF(Lmax/2) = 3.0318, where the non-perturbative matching

with the universal evolution factors ĉ has been subsequently performed. Results turned

out to be fully compatible with those quoted in table 6.

5. Conclusions

Using standard SF methods, we have performed a fully non-perturbative computation of

the renormalisation and RG running of several four-fermion operators in Nf = 2 QCD. We

have considered the two operators made of four relativistic quark fields with a left-left Dirac

structure and the complete basis of operators with two static and two relativistic quarks.

The Wilson lattice actions have been implemented for both the gauge and the fermionic

parts, the latter with a non-perturbatively tuned Clover term. The HYP2 discretisation of

the static quark turned out to be the less noisy choice, after comparison with other options.
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Q ĉ(L−1
max) a0 a1 a2

Q+
1 1.202(71) 0.9270 0.1741 -0.2973

Q−

1 0.551(22) 0.2414 0.1431 -0.3853

Q′+
1 0.770(35) 0.5481 0.0285 -0.5546

Q
′+
2 0.763(24) 0.7179 0.0010 -0.3407

Q′+
3 0.539(18) 0.4235 0.0411 -0.5962

Q
′+
4 0.796(20) 0.6305 0.0291 -0.3723

Table 7: Universal factors ĉ and coefficients of the interpolating polynomials of the RGI renormal-

isation constants, see eq. (4.3). Uncertainties are discussed in the text.

Only the parity-odd parts of the operators have been analysed, as their renormalisation

pattern is unaffected by the loss of chiral symmetry in the regularisation.

Our results are an essential building block for any Nf = 2 computation of quantities

like BK and BB. Nevertheless, their precision is somewhat limited by increased statistical

fluctuations at the three strongest couplings and by the lack of a fourth, finer, lattice

resolution which would improve the continuum extrapolation of the operator SSFs.3 As

a consequence, the contribution to the total error on physical observables coming from

renormalisation may be of the same size as that related to the computation of bare matrix

elements. Future refinement (besides using a two-loop estimate of ct throughout the runs

and increased statistics at the three strongest couplings) is desirable, either by simulating

closer to the continuum limit, or by completely removing leading order discretisation effects

from the simulations.
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g 2
SF(L) β κcr L/a Z+ (g0, a/L) Z+ (g0, a/2L) Σ+ (g0, a/L)

0.9793 9.50000 0.131532 6 0.8714(14) 0.8827(22) 1.0129(30)

9.73410 0.131305 8 0.8765(16) 0.8852(25) 1.0099(34)

10.05755 0.131069 12 0.8899(17) 0.9022(52) 1.0138(61)

1.1814 8.50000 0.132509 6 0.8510(14) 0.8683(48) 1.0204(58)

8.72230 0.132291 8 0.8594(29) 0.8849(33) 1.0296(52)

8.99366 0.131975 12 0.8753(20) 0.9019(64) 1.0304(77)

1.5078 7.54200 0.133705 6 0.8309(18) 0.8580(47) 1.0327(60)

7.72060 0.133497 8 0.8395(38) 0.8725(62) 1.0392(87)

1.5031 7.50000 0.133815 6 0.8317(15) 0.8390(55) 1.0088(69)

8.02599 0.133063 12 0.8531(44) 0.8811(83) 1.0328(111)

2.0142 6.60850 0.135260 6 0.8023(19) 0.8382(32) 1.0448(47)

6.82170 0.134891 8 0.8209(40) 0.8545(45) 1.0410(74)

7.09300 0.134432 12 0.8400(44) 0.8771(70) 1.0442(100)

2.4792 6.13300 0.136110 6 0.7885(33) 0.8371(71) 1.0616(100)

6.32290 0.135767 8 0.8038(31) 0.8466(127) 1.0531(163)

6.63164 0.135227 12 0.8290(39) 0.8921(148) 1.0761(186)

3.3340 5.62150 0.136665 6 0.7667(45) 0.8193(129) 1.0686(179)

5.80970 0.136608 8 0.7927(45) 0.8812(126) 1.1116(171)

6.11816 0.136139 12 0.8252(68) 0.9040(110) 1.0955(161)

g 2
SF(L) β κcr L/a Z− (g0, a/L) Z

− (g0, a/2L) Σ− (g0, a/L)

0.9793 9.50000 0.131532 6 0.7841(12) 0.7546(15) 0.9623(24)

9.73410 0.131305 8 0.7767(10) 0.7500(27) 0.9657(37)

10.05755 0.131069 12 0.7696(09) 0.7491(27) 0.9733(36)

1.1814 8.50000 0.132509 6 0.7512(11) 0.7185(34) 0.9564(47)

8.72230 0.132291 8 0.7461(18) 0.7180(19) 0.9623(35)

8.99366 0.131975 12 0.7372(10) 0.7075(30) 0.9598(43)

1.5078 7.54200 0.133705 6 0.7091(11) 0.6696(24) 0.9443(37)

7.72060 0.133497 8 0.6998(18) 0.6680(44) 0.9547(68)

1.5031 7.50000 0.133815 6 0.7062(09) 0.6655(25) 0.9424(38)

8.02599 0.133063 12 0.6954(25) 0.6584(31) 0.9468(56)

2.0142 6.60850 0.135260 6 0.6475(13) 0.5965(16) 0.9212(31)

6.82170 0.134891 8 0.6428(27) 0.6011(25) 0.9351(55)

7.09300 0.134432 12 0.6379(22) 0.5898(29) 0.9246(55)

2.4792 6.13300 0.136110 6 0.6029(21) 0.5470(37) 0.9072(69)

6.32290 0.135767 8 0.5994(16) 0.5336(38) 0.8902(68)

6.63164 0.135227 12 0.5995(22) 0.5386(53) 0.8984(94)

3.3340 5.62150 0.136665 6 0.5288(31) 0.4610(69) 0.8718(140)

5.80970 0.136608 8 0.5363(24) 0.4632(63) 0.8637(124)

6.11816 0.136139 12 0.5417(31) 0.4698(49) 0.8672(102)

Table 8: Numerical values of the renormalisation constants Z+, Z− and the step scaling functions

Σ+, Σ− at various renormalised SF couplings and lattice spacings. Data have been obtained with

ct evaluated either in one-loop or two-loop perturbation theory, as detailed in the text.
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g 2
SF(L) β κcr L/a Z

(1) (g0, a/L) Z
(1) (g0, a/2L) Σ(1) (g0, a/L)

0.9793 9.50000 0.131532 6 0.8958(15) 0.8630(18) 0.9634(25)

9.73410 0.131305 8 0.8845(13) 0.8486(23) 0.9594(29)

10.05755 0.131069 12 0.8733(15) 0.8335(38) 0.9545(47)

1.1814 8.50000 0.132509 6 0.8771(16) 0.8421(41) 0.9601(50)

8.72230 0.132291 8 0.8650(22) 0.8304(29) 0.9600(41)

8.99366 0.131975 12 0.8503(17) 0.8117(47) 0.9545(59)

1.5078 7.54200 0.133705 6 0.8531(16) 0.8043(29) 0.9428(39)

7.72060 0.133497 8 0.8385(34) 0.7924(53) 0.9450(74)

1.5031 7.50000 0.133815 6 0.8547(13) 0.8161(43) 0.9548(52)

8.02599 0.133063 12 0.8161(43) 0.7638(37) 0.9359(67)

2.0142 6.60850 0.135260 6 0.8190(17) 0.7535(22) 0.9200(33)

6.82170 0.134891 8 0.8082(31) 0.7334(35) 0.9075(56)

7.09300 0.134432 12 0.7798(28) 0.7102(38) 0.9108(59)

2.4792 6.13300 0.136110 6 0.7937(27) 0.7085(49) 0.8927(68)

6.32290 0.135767 8 0.7754(21) 0.6841(90) 0.8823(119)

6.63164 0.135227 12 0.7492(25) 0.6691(65) 0.8931(92)

3.3340 5.62150 0.136665 6 0.7570(38) 0.6233(67) 0.8235(98)

5.80970 0.136608 8 0.7330(37) 0.5987(71) 0.8168(106)

6.11816 0.136139 12 0.7048(46) 0.5658(65) 0.8028(106)

g 2
SF(L) β κcr L/a Z

(2) (g0, a/L) Z
(2) (g0, a/2L) Σ(2) (g0, a/L)

0.9793 9.50000 0.131532 6 0.9810(11) 0.9645(15) 0.9832(19)

9.73410 0.131305 8 0.9739(10) 0.9613(23) 0.9871(26)

10.05755 0.131069 12 0.9676(09) 0.9627(37) 0.9949(39)

1.1814 8.50000 0.132509 6 0.9769(13) 0.9599(42) 0.9826(45)

8.72230 0.132291 8 0.9699(18) 0.9572(21) 0.9869(28)

8.99366 0.131975 12 0.9644(11) 0.9516(29) 0.9867(32)

1.5078 7.54200 0.133705 6 0.9738(11) 0.9507(25) 0.9762(28)

7.72060 0.133497 8 0.9662(24) 0.9482(40) 0.9813(48)

1.5031 7.50000 0.133815 6 0.9707(11) 0.9579(24) 0.9868(28)

8.02599 0.133063 12 0.9579(24) 0.9392(46) 0.9805(54)

2.0142 6.60850 0.135260 6 0.9667(12) 0.9371(18) 0.9694(22)

6.82170 0.134891 8 0.9551(24) 0.9372(23) 0.9813(34)

7.09300 0.134432 12 0.9476(22) 0.9179(49) 0.9687(56)

2.4792 6.13300 0.136110 6 0.9605(23) 0.9207(48) 0.9586(55)

6.32290 0.135767 8 0.9496(14) 0.9099(51) 0.9582(56)

6.63164 0.135227 12 0.9385(23) 0.8995(56) 0.9584(64)

3.3340 5.62150 0.136665 6 0.9511(41) 0.8997(75) 0.9459(89)

5.80970 0.136608 8 0.9352(37) 0.8769(84) 0.9376(97)

6.11816 0.136139 12 0.9200(35) 0.8669(59) 0.9423(74)

Table 9: Numerical values of the renormalisation constants Z(1), Z(2) and the step-scaling func-

tions Σ(1), Σ(2) with HYP2 action at various renormalised SF couplings and lattice spacings. Data

have been obtained with ct evaluated either in one-loop or two-loop perturbation theory, as detailed

in the text.
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g 2
SF(L) β κcr L/a Z

(3) (g0, a/L) Z
(3) (g0, a/2L) Σ(3) (g0, a/L)

0.9793 9.50000 0.131532 6 0.9306(10) 0.8879(13) 0.9541(17)

9.73410 0.131305 8 0.9164(08) 0.8762(12) 0.9561(16)

10.05755 0.131069 12 0.8973(07) 0.8586(21) 0.9569(24)

1.1814 8.50000 0.132509 6 0.9179(10) 0.8715(30) 0.9494(34)

8.72230 0.132291 8 0.8996(13) 0.8526(17) 0.9478(23)

8.99366 0.131975 12 0.8810(09) 0.8333(27) 0.9458(33)

1.5078 7.54200 0.133705 6 0.9038(10) 0.8411(20) 0.9307(25)

7.72060 0.133497 8 0.8814(20) 0.8207(26) 0.9311(36)

1.5031 7.50000 0.133815 6 0.8998(10) 0.8564(20) 0.9517(25)

8.02599 0.133063 12 0.8564(20) 0.7976(36) 0.9314(48)

2.0142 6.60850 0.135260 6 0.8794(12) 0.7981(16) 0.9075(22)

6.82170 0.134891 8 0.8543(22) 0.7788(22) 0.9116(34)

7.09300 0.134432 12 0.8231(22) 0.7405(37) 0.8997(50)

2.4792 6.13300 0.136110 6 0.8596(21) 0.7582(42) 0.8821(53)

6.32290 0.135767 8 0.8347(13) 0.7329(52) 0.8780(63)

6.63164 0.135227 12 0.7972(19) 0.6999(50) 0.8780(66)

3.3340 5.62150 0.136665 6 0.8346(36) 0.7043(62) 0.8439(83)

5.80970 0.136608 8 0.7996(33) 0.6568(63) 0.8214(85)

6.11816 0.136139 12 0.7587(30) 0.6241(58) 0.8227(82)

g 2
SF(L) β κcr L/a Z

(4) (g0, a/L) Z
(4) (g0, a/2L) Σ(4) (g0, a/L)

0.9793 9.50000 0.131532 6 0.9281(09) 0.9082(12) 0.9786(16)

9.73410 0.131305 8 0.9213(08) 0.9033(12) 0.9804(15)

10.05755 0.131069 12 0.9147(06) 0.9009(21) 0.9849(23)

1.1814 8.50000 0.132509 6 0.9158(10) 0.8950(24) 0.9773(28)

8.72230 0.132291 8 0.9094(13) 0.8904(14) 0.9791(21)

8.99366 0.131975 12 0.9022(08) 0.8811(19) 0.9766(23)

1.5078 7.54200 0.133705 6 0.8995(10) 0.8691(18) 0.9662(23)

7.72060 0.133497 8 0.8924(18) 0.8668(28) 0.9714(37)

1.5031 7.50000 0.133815 6 0.8979(10) 0.8829(16) 0.9833(2)

8.02599 0.133063 12 0.8829(16) 0.8536(28) 0.9668(36)

2.0142 6.60850 0.135260 6 0.8749(11) 0.8353(14) 0.9548(20)

6.82170 0.134891 8 0.8671(19) 0.8321(18) 0.9597(30)

7.09300 0.134432 12 0.8562(18) 0.8143(31) 0.9510(42)

2.4792 6.13300 0.136110 6 0.8566(19) 0.8006(36) 0.9347(47)

6.32290 0.135767 8 0.8461(14) 0.7906(41) 0.9344(51)

6.63164 0.135227 12 0.8360(17) 0.7832(46) 0.9368(58)

3.3340 5.62150 0.136665 6 0.8268(35) 0.7474(58) 0.9040(80)

5.80970 0.136608 8 0.8142(30) 0.7337(63) 0.9011(85)

6.11816 0.136139 12 0.8002(26) 0.7239(48) 0.9046(67)

Table 10: Numerical values of the renormalisation constants Z(3), Z(4) and the step-scaling func-

tions Σ(3), Σ(4) with HYP2 action at various renormalised SF couplings and lattice spacings. Data

have been obtained with ct evaluated either in one-loop or two-loop perturbation theory, as detailed

in the text.
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Figure 2: Continuum extrapolation of the SSFs for Q+
1 (left) and Q−

1 (right). The renormalised

coupling increases from top to bottom. Blue dotted lines and the blue cross at a/L = 0 correspond

to weighted averages of the L/a = 8, 12 data; red dashed lines and the red open point at a/L = 0

to linear extrapolations of the three data.

Figure 3: The step-scaling functions σ+ and σ− (discrete points) as obtained non-perturbatively.

The shaded area is the one sigma band obtained by fitting the points to a polynomial as discussed

in the text. The dotted (dashed) line is the LO (NLO) perturbative result.
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Figure 4: Continuum extrapolation of the SSFs for Q′+
1 (left) and Q′+

2 (right). The renormalised

coupling increases from top to bottom. Blue dotted lines and the blue cross at a/L = 0 correspond

to weighted averages of the L/a = 8, 12 data; red dashed lines and the red open point at a/L = 0

to linear extrapolations of the three data.

Figure 5: The step-scaling functions σ(1) and σ(2) (discrete points) as obtained non-perturbatively.

The shaded area is the one sigma band obtained by fitting the points to a polynomial as discussed

in the text. The dotted (dashed) line is the LO (NLO) perturbative result.
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Figure 6: Continuum extrapolation of the SSFs for Q′+
3 (left) and Q′+

4 (right). The renormalised

coupling increases from top to bottom. Blue dotted lines and the blue cross at a/L = 0 correspond

to weighted averages of the L/a = 8, 12 data; red dashed lines and the red open point at a/L = 0

to linear extrapolations of the three data.

Figure 7: The step-scaling functions σ(3) and σ(4) (discrete points) as obtained non-perturbatively.

The shaded area is the one sigma band obtained by fitting the points to a polynomial as discussed

in the text. The dotted (dashed) line is the LO (NLO) perturbative result.
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Figure 8: RG-running of of the four-quark operators obtained non-perturbatively (discrete points)

at specific values of the renormalisation scale µ, in units of Λ. The lines are perturbative results at

the order shown for the Callan-Symanzik β function and the operator anomalous dimension γ.
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