ﬁ.’l

SPS/ACC/Note/85-33

30 January 1986
LEP Controls Note 63

P.D.V. van der Stok

CERN LIBRARIES, GENEVA

(HETT

CM-P00070587

Section Page
1 Introduction . 1
2 Syntactic and program structures . 5
2.1 NODAL lines 7
2.2 Identifiers e e e 8
2.3 Numbers 10
2.4 Strings 1
3 Data structures 13
3.1 Simple variables 15
3.2 DIMENS command 16
3.2.1 Real arrays 16
3.2.2 Integer arrays 16
3.2.3 String arrays . 17
3.3 ERASE command 17
4 Assignments 21
.1 SET command 23
4.2 Expressions 24
5 Control structurei . 25
5.1 OO command 27
5.1.1 Exceptions . 28
5.1.2 Recursion 29
5.2 END command 29
5.3 RETURN command 29
5.4 GOTO command . e e e e e 30
5.5 WHILE command 31
5.6 FOR command 32
5.7 ROF command 34
5.8 IF command 34
6 String assignments 37
6.1 SSET command 39
6.2 Concatenations . 39
6.3 Identifier indirection 42
17 String control structures . . . 43

Version 1

< i1 >

_Section

Page

7.1 $D0 command
7.2 SIF command

8 Pattern and Match structures .
8.1 SPATTE command . .

8.2 SMATCH command

8.3 Pattern functions

9 Interactive command I/0 streams
9.1 TYPE command

9.2 ASK command e e e e .
9.3 SASK command
9.4 LIST command

10 In-line functions and NODAL defined functions

10.1 Function types and parameter types .

10.2 CALL command
10.3 DEFINE command
10.4 VALUE command
10.5 SVALUE command
10.6 OPEN command

1 File handling

1.1 SAVE command
11.2 LOAD command
11.3 oLD command
11.4 RUN command
11.5 OVERLA command

12 Network access . . .

12.1 IMEX command
12.2 EXECUT command
12.3 REMIT command
12.4 WAIT command

13 Utilities

13.1 HELP command
13.2 20N and ?0FF commands .

.

13.2.1 Post mortem dump information .

13.2.2 Breakpoints

14 APPENDIX A : NODAL errors

Version 1

45
45

49

51
53
55

59

61
62
63
64

67

69
"
72
15
76
17

79

84
85
86
87
88

91

93
94
95
95

97
99
99

99
101

103

< iii >

Section Page
15 APPENDIX B : NODAL in EBNF 107
Index 112

Version 1

NODAL REFERENCE MANUAL

CHAPTETR 1

Version 1

NODAL REFERENCE MANUAL

Version 1

NODAL REFERENCE MANUAL . 3
Introduction

1 Introduction

The NODAL language has been developed at CERN for the
interactive control of the SPS accelerator. Its main design
structure 1is based on FOCAL (command syntax and control
structures) and SNOBOL (string handling). It allows an easy
extension to different applications (not necessarily
accelerator applications) through its extensible set of in-

line functions.

A first description for the accelerator control of the SPS
was done in "THE NODAL SYSTEM FOR THE SPS" - 1974, LAB 2-
CO0/74-2, December 1, 1974. An improved version of the
language running on the NORD 100 computers has been
published as a CERN yellow report and describes the NODAL
language : M.C. Crowley-Milling and G.C. Shering, THE NODAL
SYSTEM FOR THE SPS, CERN 78-07, sept 1978.

Until recently the NODAL 1language has been written in
assembly language for different micro computers. To diminish
the transport problems associated with the huge language
environment it was decided to rewrite the interpreter in the
MODULA-2 language. The opportunity was used to restructure
the internal implementation of the language and to describe
the syntax more rigorously. Consequently slight differences
exist between the former NODAL implementations and the
actual one described in this manual.

The in-line NODAL functions which constitute a target
dependent addendum to the language are described elsewhere.

The syntax of the NODAL 1language is described in EBNF
(Extended Backus Naur Formalism) notation. Below a

description will be presented.

A construct is built up of a concatenation of syntactic
factors i.e.

construct = factoril factor2

On the other hand an alternative is presented as syntactic
terms, i.e.

construct = termi term2

Parentheses () may be used to group terms and factors. If a
construct is either a factor or nothing, the [] brackets are

used. i.e.
construct = [factor1tl

and when a construct includes a concatenation of a certain
.number (or none) of factors, the {} brackets are used :

construct = {factor}

Version 1

4 : NODAL REFERENCE MANUAL

Introduction
Some examples are :
(rr|e2yiralrer=criralFire] Faralr2rs)
FICF21F3 -(F1F2F3|F1F3)
F1eF2Fat=(r1|Fir2ral FiFarareralFiFerarerararal.
tr1|F21Fa =tr3lrrralr2ealririralrireralrararal Ferira.

Version 1

Y

NODAL REFERENCE MANUAL

Version 1

NODAL REFERENCE MANUAL

Version 1

NODAL REFERENCE MANUAL 7
Syntactic and program structures

2 Syntactic and program structures

The NODAL interpreter has two modes of operation :

- Interactive mode
- Program mode

The NODAL statements used in both modes are identical.
However in one of the two modes the use of some of the

statements are without meaning.

2.1 NODAL lines

syntax

NODAL program line =
line-digit [digit] . l}ine-digjt [digit] NODAL line
line-digit = ('1°’ '2'?'3"'&'T'S'T'G'T'T'T'O"'S')
digit = ('0'| line-digit)

NODAL line = NODAL statement { ';' NODAL line} I
{ NODAL line ;'] "1’ {character}

NODAL statement = [NODAL command <command syntax> |
<function call>]

The interpreter knows about:

NODAL lines,
the NODAL program composed of NODAL lines,
NODAL defined functions composed of NODAL lines.

The NODAL 1lines in the program and the functions are
preceded by a line number. A line number is composed of two

parts :

- the group part
- the individual line part.

The parts are separated by a dot.

Both the group part and the individual part have a valid
range of 1 to 99. A NODAL program or a NODAL defined
function is thus composed of lines with the numbers 1.01
through 99.99. The line number where either the individual
part or the group part is zero, is illegal. Line number 1.1
is equivalent to 1.10 and not equivalent to 1.01.

Valid numbers are : 1.01 99.01 55.55 40.40 1.99
Invalid numbers are : 0.0 0.1 44.0 100.1 1,997
The NODAL 1line consists of a set of NODAL statements

separated by a semi colon (;). The empty statement is a
NODAL statement with no characters or one or more blanks.

Version 1

NODAL REFERENCE MANUAL
Syntactic and program structures

The exception 1is the 1 character which stands for comment,
when placed at the beginning of a NODAL statement. All
characters following this character on the same NODAL line
are ignored by the interpreter. Also the semicolon character

is then ignored by the interpreter.

Every NODAL statement starts with a NODAL command. The
default (not explicitly stated statement) is the CALL
command. A NODAL command may be followed by a set of
literals and strings, the syntax of which depends on the
command preceding them. The NODAL command is ended by the
end of the 1line or by an end of command ';'. NODAL
statements cannot be continued on to the next line.

2.2 Identifiers

The basic set of special characters of NODAL exists of :

addition sign
minus sign

multiplication sign

division sign

equal sign

comma separator

end of command

quote sign

alternative quote sign

less equal sign

unequal sign

less than sign or start concatenation in match
greater than sign; end concatenation in match
greater equal sign

exponentiation sign

error recovery point after match command
open bracket

close bracket

open square bracket or octal sign

close square bracket or octal format sign
hexadecimal sign

hexadecimal format sign

bit format sign

character value format sign

number format sign

string indirection sign or immediate assignment sign
deferred assignment sign

comment sign

c Tee v N % 1+
v u

R r VM rm e —~a 2V v A AA
—

™ -

Identifiers are names denoting variables and functions. An
identifier may contain up to six <characters. The first
character should be a letter. This may be followed by other
letters, numbers, dot or colon.

syntax :

Version 1

NODAL REFERENCE MANUAL 9
Syntactic and program structures
NODAL name = capital { capital | digit l : ' .}

Valid names are :

AB BBAB R R12345 RT RT.... RT:::A

Non-valid names are :
BA; BA- B1234567

The command names to be found at the beginning of a NODAL
statement :

A(SK) C(ALL) DI (MENS) DE(FINE)
00 ED(IT) EN(D) ER(ASE)
EX(ECUT) F(OR) G(0TO) IF
IM(EX) LI(ST) LO(AD) oL(D)
OP(EN) OV(ERLA) Q(UIT) REM(IT)
RET(URN) RO(F) RU(N) SA(VE)
SE(T) T(YPE) V(ALUE) WA(IT)
WH(ILE) SA(SK) $0(0) SI(F)
SM(ATCH) SP(ATTE) $S(ET) SV(ALUE)
720N ?20F(F)
syntax :

NODAL command = askcom ' callcom dimcom l Tefcom l docom |

editcom endcom erasecom execcom
i

Iorcom l thocom ifcom imexcom lithom

loadco oldcom opencom Tvercom

quitcom remitco returpcom rofcom
runcom avecom etcom T typecom T
valuecom I waitcom i whilecom | do}larask
dollardo dollarif dollarmatch T
dollarpat I dolarset I dollarvalue I oncom l
offcom :

askcom : A 'AS'l'ASK'

callcom = ¢ |reat|eaLt | rcaLL:

dimcom = ‘oI’ 'DIH'I'DIHE'T'DIHEN'I'DIHENS'

defcom = '"DE'| 'DEF'| 'DEFI'| 'DEFIN'| 'DEFINE’

docom = 'DpO’

editcom = ‘g0’ | €01’ | eort’

endcom = 'EN'|"END’

erasecom = "ER’ 'ERA'I'ERAS'I'ERASE'

execcom = 'ex'|"exe’| ' exec' | execu’ | execur

forcom = 'F',‘FO'T'FOR'

gotocom = '6'|'60'| 6ot |GoTO"

ifcom = "IF'

imexcom = "IM'|'IME']| ' IMEX'

listcom = "Lr'jrerst)eIst

loadcom = 'LO'|'LOA'| LOAD’

oldcom = ‘'oL']'oLD’

opencom = 'OP'|'OPE’]| OPEN’

overcom = ‘ov'| ove'| over'| ‘overL' | overLa®

quitcom = 'a'l' u'f‘au ‘f'QUIT'

remitcom = 'REH'?‘REMI‘ ‘REMIT’

Version 1

10 .~ NODAL REFERENCE MANUAL
Syntactic and program structures

'RET'I'RETU"'RETUR'I'RETURN'

returncom =
rofcom = "RO’'|'ROF’

runcom = 'RU'|'RUN’

savecom = "SA’ 'SAV‘I'SAVE'

setcom = 'SE'|'SET’

typecom : 'T','TY'['TYP','TYPE'

valuecom = vl ya vaLu' | ‘vaLue
waitcom = "WA'|WAL'| WALIT'

whilecom = "WH'| WHI' 'HHIL'I'HHILE'
dollarask = "SA'| SAS'] 'SASK’

dollardo = ‘$0°]'$00°

dollarif = 'SI'| 'SIF’

dollarmatch = 'S$SM'| 'SMA'| 'SMAT'| SMATC'| ' SMATCH'
dollarpat = "$SP'| SPA’ | SPAT'| "SPATT | 'SPATTE'
dollarset = "$S'|'$SE’ | $SET’

dollarvalue = '$V'| S$VA' '$VAL"‘$VALU"'$VALUE'
oncom = '70N'

of fcom = "20F' | *20FF"

All commands can be shortened to their minimum number of
characters. The above tables show the shortest possible

form of the command and all larger equivalents.

It should be noted that the command names are not reserved
words. It 1is only at the beginning of a statement that the
above mentioned names have a special meaning. E.g.

SET SET = 1;

is a legal statement. The first SET is a command name while
the second SET is a variable name.

2.3 Numbers
syntax :
number = ['f'l'-‘] integer | real | hexa I octal
integer = digit { digit }
real = digit { gigit } .’ {digit} [scalefactor]
scalefactor = ‘E’ ['0'7'-'] digit {digit}
octal = '[' octal-djgit { octal-digjt}
octal-digit = '0"'1'?'2'1'3' '6'T'5' '6'1'7'
hexa = '({' hexa-digjt { hexa-digit }
hexa-digit = digitT'é’l'B't'C’ 'o‘T'e‘ F

Decimal notation is .:3d for numbers. The letter E is used
for exponential notat:i - with base 10. Correct numbers are :

1 12345 12.34 123.45€E-2 -1234.78E+08

Octal representation is denoted by preceding the number with
the [sign. Hexadecimal numbers are preceded by a [[sign.

Valid numbers are :

Version 1

NODAL REFERENCE MANUAL 11
Syntactic and program structures

[1234 [o [[FFFF [[AB

Uncorrect numbers are :

1,1 1e234 1EXP& 1E4/5
[AB [98 ((GG
2.4 Strinas
syntax :
string = '"'{ character }"'l"' { character } "'

Sequences of characters enclosed by single quotes or by
double quotes are called strings. Examples of strings are :

"assg4$$55” ‘778ghhhh’ ‘strin”’ tent " ‘7;8°

Invalid strings are :

ddddd” ff' fff’ "ddddd’ “ddd" "’

Version 1

12

Version 1

NODAL REFERENCE MANUAL

1

L}

NODAL REFERENCE MANUAL

Version 1

13

14

Version 1

NODAL REFERENCE MANUAL

r

t

NODAL REFERENCE MANUAL 15
Data structures

3 Data structures

pata types can be specified anywhere during program
execution. Data types can be modified during execution.
Simple variables are automatically created by the assignment
statement : SET. Composite data types are created by the

command DIMENS

There are three basic data types
- type REAL

- type INTEGER (only in arrays)
- type STRING

A set of operations can be\executed on each of these types.
Wwhen an arithmetic operation is executed the type INTEGER is
always converted into REAL, before the operation is

executed.

3.1 Simple varjables

Any simple variable is either a STRING or a REAL. Values of
type REAL are real numbers. The available basic operations
are :

add

minus

multiply

divide

exponentiate

+

-~ % |

It is important to remember that REAL values are stored as a
number sequence and an exponent. The maximum and minimum
numbers which can be stored depend on the size of the
exponent and the number sequence, while the accuracy of the
numbers is determined by the number of characters in the
number sequence (floating point representation). The values
are stored internally as 64 bit IEEE floating point format
numbers and they are stored on files and transported as 32
bit IEEE floating point format numbers.

The type STRING is represented as a sequence of characters
with a maximum length of 80 characters. Each string has a
size allocated to it, which denotes the total number of
characters present in the string. No end of string character
is available. No quotes are stored at the beginning and end
of string.

Version 1

:G NODAL REFERENCE MANUAL
Data structures

3.2 DIMENS command

syntax :
DIMENS statement = dimcom ['-' int l'-' str] identifier
‘('expression [’ expression]’)’
int = 'I"'IN'I'INT'i'INTE' 'INTEG'['INTEGE' 'INTEGER’
‘str = 'S'|'ST'|'STR'|'STRI'| 'STRIN'| 'STRING'

Composite types are created with the DIMENS command.

DIM-1 creates INTEGER arrays.
DIM creates REAL arrays.
DIM-S creates STRING arrays.

The statement DIM NAME erases first the variable NAME if it
already exists, and then creates a new variable of the same
"name NAME. This 1is true for all three types of DIMENS

commands mentioned above.

3.2.1 Real arravs

The command DIM A(N) creates an array A with N floating
point numbers. The numbers are stored contiguously in
memory. After creation their position does not change until
they are erased, redefined or garbage collection takes
place. An alternative call is : DIM A(N,M) which creates a
two dimensional array A.

The two dimensional arrays are stored by column, 1i.e. the
first subscript varies most rapidly. The above array is

stored as :

AL1, 1) A(2,1) AL3,1) ...l .. A(N,1)
Al1,2) A(2,2) A(3,2) A(N,2)
Al1, M) A(2,M) A(3I M) A(&,M)

The two dimensional array can also be accessed as a one
dimensional one. The access to Al(x,y) is then equivalent to

accessing Al(x + (y-1)%N)

N.B. A(k,1) is equivalent to A(k), even for one dimensional
arrays.

3.2.2 Integer arravs

Integer arrays can be defined with the DIM-1 command. They
are stored as 16 bit 2's-complement. B8oth one dimensional
and two dimensional arrays are allowed. The storage order is
as described above for REAL arrays.

Version 1

NODAL REFERENCE MANUAL | , 17
Data structures

3.2.3 String arrays

Apart from the string variables also one dimensional string
arrays can be defined. They have no predefined number of
elements.The individual members are character strings with a
maximum of 80 characters per member. The characters of each
individual member are stored contiguously, while the members
themselves are not stored in a predefined fashion. Actually
any member can at a given moment be anywhere in memory. Once
defined a member of a STRING array is only moved when a new
assignment is done to it. The arrays are defined with the
command DIM-S. After the definition of the string array, the

individual members are defined by assigning strings to them.
It is possible to first define element n and afterwards

element m where m may be smaller or larger than n and does
not need to be adjacent to n.

String array elements to which no values have been assigned,
will return an empty string.

Having defined A as string array first, it can afterwards be
redefined as a REAL array by invoking the command DIM.
However to redefine A as a simple variable, one first needs
to ERASE A and then redefine A by doing an assignment to A,
which will then automatically create the simple variable A.
Once A is defined as an array or simple variable it should
be used as such in assignments, expression or

concatenations.

3.3 ERASE command

syntax
ERASE statement = erasecom { identifier group I line }

The erase command serves to erase NODAL defined functions,

variables, lines or complete groups. As many identifiers,
group numbers or 1line numbers may be specified as can be

written on one NODAL line.
It is not allowed to erase inline-NODAL functions.

The use of the ERASE command for program lines is
discouraged in program mode. It is always possible to erase
lines which are currently active, thus creating situations
which have unpredictable consequences.

Some standard uses of ERASE can be made with standard
identifiers

Version 1

18

ER ALLD
ER ALLP
ER ALLYV
ER ALL

ER

N.B.

is

When

care should
currently
interpreter

where

the

NODAL REFERENCE MANUAL
Data structures

means ERASE all NOOAL defined functions.

means ERASE all NODAL program lines.

means ERASE all NODAL variables.

means ERASE all NODAL variables and program lines

equivalent to ER ALLP

the ERASE command is used in program mode, great
be exercised not to erase the 1lines which are
active. In that case the behaviour of the
is unpredictable. There is only one instance
current 1line may be erased or the whole program

may be erased that is in a $00 command followed by a RUN :

10.10 $SDO "ERASE ALL; RUN file”

Version 1

[}

NODAL REFERENCE MANUAL
Data structures

Version 1

19

Version 1

NODAL REFERENCE MANUAL

!

NODAL REFERENCE MANUAL

Version 1

21

22

Version 1

NODAL REFERENCE MANUAL

NODAL REFERENCE MANUAL 23
Assignments

4 Assignments

4.1 SET command

syntax

SET statement = setcom identifier’'=' expression

An assignment statement starts with a SET command, followed

by an identifier, a = and finally an arithmetic
expression.

The meaning of this command is :

- Find the identifier; when non existent , create it.
- Evaluate the expression, which yields a value.
- Feed the obtained value into the identifier.

The identifier can be :

- A simple variable.

A REAL or integer array element.

- A write or read/write in-line function.
A NODAL defined function

The identifier cannot be a string, a string element or a
string function.

For example with A a simple variable, B a two dimensional
array and FUNC a write in-line function, the following 1is

allowed :

SET A = expression
SET B(n,m) = expression
SET FUNC(param) = expression

Not allowed is:

SET B = expression
SET A{1,3) = expression

when C does not exist, the expression SET C = expression 1is
allowed and the variable C will be created. However, when C
does not exist the statement SET C(m) = expression is not

allowed and C is not created.

When B is an integer array the result of the expresssion is
truncated to the highest possible positive value |(7FFF
hexadecimal) and then stored in the array element of B.

Version 1

24 NODAL REFERENCE MANUAL
Assignments

4.2 Expressions

syntax:

Expression = ['-"" "1 opeTand { operator operand}
operator = “-"'"f"]' “"*' "t
operand = ‘(' Expression ')’ | number identifier

An expression is composed of operands and operators. It 1is
evaluated by applying the operands on the operators in the
correct order. The operators may be :

- addition (+)

- subtraction (-)

- multiplication (*)
- division (/)

- exponentiation (?t)

The operands may be :

Simple variables.

Array elements {INTEGER or REAL).
Read or read/write in-line functions.
NODAL defined functions.

Parts of expressions may be enclosed in parentheses. The
part of the expression contained within the parentheses
should be an expression in its own right. The following
additional rules apply :

- Every variable in an expression should exist.

- Two operators must never be written side by side.

- Two operands must never be written side by side.

- Precedence rules determine the order of evaluation.
- Parentheses can be used to force precedence.

The order of evaluation is from left to right. The order of
precedence of the operators is first exponentiation, then
multiplication, then division, then subtraction and finally
addition. Expressions enclosed in parentheses are evaluated
first. Parentheses can be nested. In that case first the
expressions of lower level are evaluated before the higher
level expression can be evaluated.

Valid expressions are :

2%3 + 4%5 . yields 26
10$3%3/10 + 21 - 2 yields 319

6 + 6 ¥ 2 yields 18

(6 + 6)x2 yields 24
1/2%5%4 yields 0.025
(1/2)%x5%4 yields 10

Version 1

NODAL REFERENCE MANUAL

Version 1

25

26

Version 1

NODAL REFERENCE MANUAL

NODAL REFERENCE MANUAL 27
Control structures

5 Control stryctures

It is of prime importance that statements can be selected
and/or executed repetitively dependent on conditions
specified in the program. Hence the sequence of actions
which are executed in a program depends on the data of the
program. The paths through the program are specified by
selecting the NODAL lines or NODAL groups which have to be
executed. So most NODAL control statements either act on the
statements following the condition on the same NODAL line or
specify the NODAL group or line to which the program path
has to be deferred. Below the individual control statements

will be discussed.

5.1 DO command

Syntax :
DO statement = docom expression {'!’' expression} ['!']

The 00 command specifies the group or line which has to be
executed. After execution the control returns to the
statement following the DO command. The D0 command is the
most widely used command in combination with other
conditional commands. As most conditional commands only
allow the execution of the two or three NODAL statements
following them on the same line, the number of executable
statements can be enormously enlarged with the DO command.

The following example will show a possible use of the 00
command.

1.1 00 10; DO 20; END

10.10 NODAL statements
10.20 NODAL statements

20.10 NODAL statements

Executions starts at line 1.1. After the first 00 command
the 1lines 10.10 and 10.20 are executed. Hereafter control
returns to the statement following the 00 10 statement : 00
20. Now line 20.10 is executed, control returns to line 1.1
and the program ends with the END statement.

Both the interactive use and the program use of DO 1is
allowed.

After evaluation of the expression following the DO command
the obtained number is rounded to the second decimal. When
the number has no decimal part a DO group is executed. In
the other case only the specified line is executed.

Version 1

28 NODAL REFERENCE MANUAL
Control structures

when the specified line or group does not exist, an error is
generated.

The DO command allows to go from interactive mode to program
mode. The DO command in an interactive NODAL line starts the
execution of the specified group or line. Together with the
RUN command, this is the only way to go from interactive to
program execution mode.

5.1.1 Exceptions

The exclamation mark "!" in the DO command syntax is used to
specify actions after the occurrence of an error. Normally
when an error occurs in a NODAL program the execution is
terminated and the error is displayed on the screen. However
it is not always advisable to stop the execution of the
program when an error is detected. It may be the main
purpose of the program to wait for errors and then execute a
specially designed error sequence. To cater for this the |
sign in the DO command specifies the group or line to be
executed after the occurrence of an error in the formerly
executed line. See example below.

1.1 DO 10!'20; END
10.10 DO 50
20.10 Error display
50.10 Provoke error
At line 1.1 group 10 is executed which executes group 50,
which provokes an error. Control then returns to the first
DO command and now group 20 is executed. Control then

returns to the statement after the DO statement in line 1.1
and the programs ends.

Error returns can be multiple or omitted :

00 n! means execute group n and return to the statement
following the command, independent of the correct execution
of n.

DO k!l!m!n means execute k, if error execute 1, if error
execute m, if error execute n, if error pass error to next
DO command with exclamation mark. When no error, execute the
statement following the DO statement.

The above example shows that the DO commands and the
exclamation marks are nestable.

Version 1

NODAL REFERENCE MANUAL 29
Control structures

1.1 DO 10!20; END
10.10 DO 30!40
20.10 Display error
30.1 provoke error 1

40.1 provoke error 2

In this example the error at line 30.1 is trapped at line
10.10. However the error in 40 is trapped at 1line 1.1, At
line 20 error 2 (the last one) is then displayed.

5.1.2 Recyrsion

Recursive use of the DO command is also possible. The
expression DO n in group n is allowed and correctly executed
till any depth dependent on the stack space available to the
program. However the programmer should be aware that all
group n actions are executed on the same local variables. If
one wants to write recursive procedures it is recommended to
use the NODAL defined functions.

5.2 END command

syntax :
END statement = endcom

The END command terminates the execution of a NODAL program
or NODAL defined function. When the END is met in a program
the interpreter returns to interactive mode or the
interpreter is stopped. When the END is executed in a NODAL
defined function control is returned to the NODAL line
invoking this function.

5.3 RETURN command

syntax :
RETURN statement = returncom

The execution of a D00 group can be terminated by invoking

the RETURN command. Its action is :

Terminate the execution of the current do group or line and
return to the command following the invoking DO command.
When no DO command was executed the program is terminated.
In the latter case the RETURN is equivalent to an END

command.

Version 1

30 NODAL REFERENCE MANUAL
Control structures

t

5.4 GOTO command

syntax :
GOTO statement = gotocom expression

The GOTO command serves to tell the interpreter that
execution should continue at another line. Its action 1is

- Evaluate expression.
- Transfer execution to the line specified by expression.

The interpreter does not keep track of the line from which
the GOTO command was invoked. The control transfer depends
however on the DO command. If the line specified in the GOTO
command lies outside the group specified by the currently
active DO command, then a RETURN is executed and control
returns to the statement following the invoking DO command.
when the line containing the GOTO is called by a 00 1line
statement then all GOTO statements will provoke a RET
command, unless a GOTO its proper line number is specified.

For example :

1.1 D0 10; END

10.1 GOTO 10.3
10.2 NODAL statements
10.3 GOTO 12.4
10.4 NODAL statements

12.4 NODAL statements

In this example control goes to line 10.1 then to 10.3 and
back to 1.1, because 12.4 lies outside group 10. If 1.1 is
replaced by DO 10.1, then only line 10.1 is executed before

control returns to line 1.1,

The GOTO statement placed after a WHILE or FOR command
allows an exit from the repetitive loops.

N.B. the GOTO statement is only executed when in program
mode. Consequently a GOTO statement in an interactive line
is equal to a return to the interactive command mode of the

interpreter.

Version 1

NODAL REFERENCE MANUAL 31
Control structures

5.5 WHILE command

syntax

WHILE statement =
whilecom expression relation expression

{ 'OR' expression relation expression }
relation = ‘¢’ | g=" I Ko l =t l B I ="
The sequence of actions of the WHILE command are :

- Evaluate first expression.
- Evaluate second expression.

- Compare values.

- Compare comparison result with condition.

- Execute rest of line when comparison fits condition.
- Search for OR, retest condition and execute if true.

- At end of line return to WHILE.

The WHILE statement serves to execute a certain mumber of
times (as 1long as a certain condition holds) the statement
sequence following the WHILE command on the same line.

Two expression are supposed to be equal when they differ
less than S5E-8.

For example the statement :
WHILE 0=0; NODAL statements

will indefinitely execute the NODAL statements following the
WHILE command.The statement :

WHILE A > 1 OR A <= 1; NODAL statements

will also be executed indefinitely because one of the two
statements is always true.

However the NODAL statements below :
WHILE A > 1; WHILE A ¢ 1; NODAL statements

will never be executed, because one of the two statements is
false. When A is smaller than 1 the first WHILE statement
will be executed only once. When A is bigger than 1 the
second WHILE statement will be executed indefinitely because
A will stay larger than 1 and the first condition is

eternally fulfilled.

From above it can be deduced that WHILE statements can be
nested on the same line.

Version 1

32 NODAL REFERENCE MANUAL
Control structures

The order of nesting is shown in the diagram below.

loop 1

WHILE cond; WHILE cond ; NHILT cond; NODAL statements I
loop 2 l

loop 3

The outer 1loop always encloses the inner loop. When all
three conditions are true the inner loop 1 is executed until
its condition is false. Control then returns to loop 2 and
back to loop 1, etc until all three conditions are false.

When a GOTO statement is placed after a WHILE statement, an
exit from the WHILE loop is provided. Actually a GOTO inside
a WHILE loop invoked by a 00 comand is equivalent to a
RETURN command when the GOTO is outside the group.

Example
1.1 DO 2; END

2.1 WHILE cond; GOTO 3.1
2.2 NODAL statements

3.1 NODAL statements
is in this context equivalent to :
1.1 DO 2; END

2.1 WHILE cond; RETURN
2.2 NODAL statements

3.1 NODAL statements

5.6 FOR command

syntax:

FORstatement = forcom
identifier'=' expression [, expression] [, expression]

The sequence of actions for the FOR command is :

- Find identifier, when non existent create it.

- Evaluate expression 1.

- Evaluate expressions 2 and 3 when available.

- Feed the value of expression 1 into control variable.
- Store result of control variable into identifier.

- Execute NODAL commands on same line till end of line.
- Return to FOR command and increment control variable.
- Store result of control variable into identifier.

- When maximum value obtained leave FOR loop.

Version 1

NODAL REFERENCE MANUAL 33
Control structures

The FOR command allows the repetitive execution of the NODAL
statements on the same line following the FOR command. The

semantic meaning of the parameters are :

- first expression{compulsory) : start value of identifier.
- last expression (optional) : end value of identifier.
- middle expression (optional) : increment of identifier.

Default value of last expression is first expression value .
Default value for middle expression is 1.

The statement :

FOR I = expression ; NODAL statements

is equivalent to :

SET I = expression ; NODAL statements

The expression

FOR I = expression, expression; NODAL statements

is executed as:

SET I to first expression, and execute following statements.
At end of line increment I by 1, if I is larger than the
second expression, exit <from FOR 1loop and execute the
following 1line. If a third expression is added, I is
incremented by the value specified by the middle expression.

N.B. The expressions in the FOR statements are evaluated
only once at the beginning of the execution, and the end
value, increment and start value are unchanged, even when a
parameter of the expressions is changed within the FOR loop

statements.

FOR loops can be nested as the WHILE statements. FOR loops
can be nested inside WHILE loops and vice versa as shown in

the diagram below

loop 1

WHILE/FOR ; WHILE/FOR ; WHILE/TOR ; NODAL statements,
loop 2 ,’

loop 3

The outer loop always encloses the inner 1loop. When all
three conditions are true the inner loop 1 is executed until
its condition is false. Control then returns to loop 2 and
back to 1loop 1, etc until all three conditions are false.
Conditions are weither the WHILE conditions or the
verification of the upper value of the FOR control

parameter.

When a GOTO statement is placed after a FOR command, an exit
from the FOR loop is provided. Actually a GOTO inside a FOR
loop invoked by a DO command is equivalent to a RETURN
command when the GOTO is outside the group.

Version 1

34 NODAL REFERENCE MANUAL
Control structures

5.7 ROF command

syntax :
ROF statement = rofcom

The purpose of the ROF command is to terminate the current
FOR 1loop. The ROF applies to the last active FOR statement

even if several DO statements are currently active between
the FOR command and the ROF command.

Example :
1.1 FOR I = 1,10; DO 10
1.2 END
10.1 FOR K = 1,10; DO 20

20.1 NODAL statement
20.2 DO 30

30.1 NODAL statement
30.2 ROF

Every time ROF is met control returns to the NODAL 1line
following 1line 10.1. This implies a return to the FOR
statement in line 1.1. Consequently the first FOR statement
is executed for all 10 values of I, and the second FOR

statement is executed 10 times for one value of K.

5.8 IF command

There are two types of IF commands.
syntax :
IF statement = logical IF | arithmetic IF

logical IF = ifcom expression relation expression
{ 'OR' expression relation expression }

arithmetic IF = ifcom '(’ sression ')’
expression ['. xpression] [',

expression]
The sequence of actions of tr: logical IF command are :

- Evaluate expression.
- Evaluate second expression.

- Compare values.
- Compare comparison result with condition.
- Execute rest of line when comparison fits condition.

Version 1

[

NODAL REFERENCE MANUAL 35
Control structures

- Search for OR, retest condition and execute if true.

The sequence of actions for the arithmetic IF are :

- Evaluate expression.

- Test sign of result.
- If sign negative, execute a GOTO to the line specified by

first expression.
- When expression = 0, execute a GOTO to the line specified

by second expression or continue NODAL line.
- When expression > 0, execute a GOTO to the line specified
by the third expression or continue NODAL line.

The expressions of the logical IF are equal when their
absolute difference is less than l 5E-8 |. The expression
within brackets of the arithmetic IF is zero when its
absolute value is less than T 1E-6 l. Some examples will be

shown below :
IF A=1 OR A=3; SET A = A+1

When A has the value 1 or 3 the value of A will be
incremented by 1 .

IF A=1; IF A=3; SET A = A+1

The condition expressed above means if A has the value 1 and
the value 3 simultaneously, then increment A. As a
consequence A 1is never incremented. By placing several IF
statements in cascade, an AND of conditions is obtained.

The arithmetic IF statement can be used as shown in the
examples below :

1.1 IF (X) 10.1; NODAL statements

When X < 0 then control is tranferred to line 10.1. In all
other cases the NODAL statements following the IF statement
are executed.

1.1 IF (X) 10.1, 10.2; NODAL statements

When X < 0 then control is transferred to line 10.1. If X =
0 then control is transferred to line 10.2. In all other
cases the NODAL statements following the IF statement are

executed.

1.1 IF (X) 10.1, 10.2, 10.3; NODAL statements

In this case the NODAL statements following the IF statement
are never executed. When X > 0 then control is transferred

to line 10.3.

N.B. As the GOTO statement has no sense in interactive mode,
the GOTO of the arithmetic IF statement is never executed

when in interactive mode.

Version 1

36

Version 1

NODAL REFERENCE MANUAL

v

NODAL REFERENCE MANUAL

CHAPTIER &

Version 1

37

38

Version 1

NODAL REFERENCE MANUAL

NODAL REFERENCE MANUAL _ 39
String assignments

6.1 SSET command

syntax :

$SET statement = dollarset identifier '=' concatenation
The meaning of this command is :

- Find the identifier, when not existent create it.
- Evaluate the concatenation.
- Feed the obtained string into the identifier.

The identifier can be :

- A simple string variable.

- A string array element.

- A write or read/write in line string function.
A NODAL string defined function.

For example with S1 a simple string variable, S$2 a string
array and SF a write in-line string function, the following

is allowed :

$SET St = concatenation

$SET S2(n) = concatenation

$SET SF(param) = concatenation
Not allowed is :

SSET S2 = concatenation

$SET S2(n, m) = concatenation

$SET St(n) = concatenation

When SV does not exist, the statement SSET SV =
concatenation is allowed and the string variable SV will be
created. However when SV does not exist the statement $SET
Sv(n) = concatenation is not allowed and SV is not created.

The total 1length of the result string of the concatenation
may not exceed 80 characters.

6.2 Concatenations

A concatenation is composed of string elements and
expressions which may be preceded by a format definition.

Version 1

40 NODAL REFERENCE MANUAL
Str ng assignments

syntax

concatenation = (string I [formTt] expression l

identirier TontroT) [conTatenation]
“format = ‘1’ expression 1, "1 ‘11 2!
control = !’ T "\' expression ‘%' expression

A string may be :

A literal string.

String variable.

String array element.

Read or read/write in-line string functions.

NODAL string functions.

A control may be :

- single character value preceded by \ (\ expression).

- CR LF (!).
- spaces (& expression)

The identifier may be :

String variable.

String array element.

Read or read/write in-line string functions.
NODAL string defined functions.

A format is :

1 expression : change format to field length specified by

~ expression.
1, : return value in exponential representation.
] : return value in octal representation.
1] : return value in hexadecimal representation.
? : return value in binary representation.

The newly defined format field with the 'I° character is
valid for all numbers following the format specification
within the same NODAL statement.

The field length definition of a format is of the form n.m.
N designates the total field length, while m*100 expresses
the number of digits behind the decimal point. The default
value is 11.04 meaning 4 digits behind the decimal point and
6 digits or blanks before the decimal point.

The total field length should be smaller than 80.

When the number m is zero (no fractional part) the number
will be visualised as a right adjusted integer with total
field length n.

The exponential format can be forced by using 'I,' and is
automatic when the number exceeds the space allocated by the

current format specification.

Version 1

NODAL REFERENCE MANUAL 41
String assignments

The exponential notation will visualise the number with a
total field length of 12. The last part is the value of the
exponent preceded by the E digit. The first part is the
decimal number with one digit for the integer part followed
by the decimal point and the fractional part. The number one

will be displayed as :

1.0000000E0

The octal representation is preceded by one blank and
followed by 5 octal digits.

The hexadecimal representation is preceded by one blank and
followed by four hexadecimal digits.

The binary representation consists of 16 binary digits.

The insertion pf an expression into a concatenation is done
in the following way. '

- Evaluate expression.
- Write result of expression into a string dependent on

format directive.
- Concatenate string to result string.

Some examples are :

SSET ST = "HELP" "ME"
results in :
HELPME

$SET ST = "HELP" ! "ME"
will result in :

HELP

ME

The latter is equivalent to:

SSET ST = "HELP" \10 \13 "ME"
The expression:

$SET ST = "HELP" ! 1132 "ME"

will result in :

HELP

0040ME
SSET ST = "HELP" &8 "ME"
will result in :

HELP ME

N.B It should be noted that the total maximum length of a
concatenation is 80 characters.

Version 1

42 NODAL REFERENCE MANUAL
String assignments

6.3 Identifier indi .

syntax :
identifier = {'$'} NODAL name

The left hand identifier may be any identifier as specified
in the syntax of the individual commands. The right hand

NODAL name, when preceded by a ‘$', is the name of :

- a string variable.

string array.
NODAL string in-line function.

NODAL string defined function.

The action is :

Take the last dollar sign in the chain of dollars and
replace it together with the name of the identifier by the
contents of the identifier. Use the thus obtained identifier
as identifier. When another dollar precedes the newly
acquired identifier, repeat the sequence. This also means
that dollars contained in the identifier preceded by a
dollar are added to the sequence of indirection dollars.

Below some examples will follow :

$SET A="B"; $SET C=$A

will put the contents of B into C as SA is replaced with 8
and the last statement becomes S$SET C=8B.

$SET A="$B"; S$SET B="$A" ;$SET C=$A

will result in an eternal loop as the $A will be replaced by
a $B and the $B by a $A ad infinitum. The loop will

terminate with a stack overflow.
$SET C="8"; $SET B8="D"; $SET A=$$C

will result in the contents of D to go to A, as SC will be
replaced with 0. This is equivalent to :

$SET C="$B"; $SET B="D"; $SET A=$C

The name indirection can be used for every identifier. The
following actions are completely valid.

$SET XX="B"; DIM $XX(10); FOR I =1,10; SET $XX(I)=I

The array B of dimension 10 is created and the contents of
its members is set to their array indices.

Version 1

NODAL REFERENCE MANUAL

Version 1

43

N

Version 1

NODAL REFERENCE MANUAL

v

NODAL REFERENCE MANUAL 45
String control structures

7 String control structures

Apart from the control structures used to take decisions on
the results of expressions, two other string based
structures are available. The two string based possibilities

are:

- Execute a concatenation.
- The string equivalent of the IF command.

7.1 $D0 command

syntax :
$D0 statement = dollardo concatenation

The actions associated with this command are :

- Create the result string of the concatenation
- Execute this string by the interpreter.

Some examples are
SSET ST = "SET A=1"; $DO ST

will set the variable A to 1. To create the variables A to 2
and assign values to them the following can be tried.

FOR I =65,90;$SET ST="SE "\I"=I1":;$D0 ST
The same tricks can be done with arrays. Suppose the array
ST to be prepared with a set of NODAL lines. Then the
following statement will execute them all.

FOR I=1,N; $DO ST(I)

7.2 $1F command

Again there are two types of IF commands: the logical SIF
and the arithmetic $IF command. The logical $IF is :

syntax :
$IF statement = logical $IF | arithmetic $IF

logical $IF = dollarif concatenation relation concatenation
{ 'OR’' concatenation relation concatenation }

Version 1

46 NODAL REFERENCE MANUAL
String control structures

arithmetic $IF =
dollarif '('identifier {identifier} ‘-' concatenation ‘)’
expression(',' expression] [',' expression 1

identifier may be :

string variable

String array element

- NODAL string function

NODAL in-line read/write string function

The sequence of actions for the logical $IF command are :

- Store result string of concatenation

- Store second result string of concatenation

- Compare the two strings lexically

- Compare comparison result with condition

- Execute rest of line when comparison fits condition
- Search for OR, retest condition and execute if true

The sequence of actions for the arithmetic SIF are :

- Concatenate string identifiers until minus sign.

- Store result string.
- Store second result string of concatenation.

- Compare the two strings lexically.
- IF first string is smaller execute a GOTO to the line

specified by the first expression.
- IF strings are equal execute a GOTO to the line specified

by the second expression or continue NODAL line.
- IF first string is larger execute a GOTO to the line
specified by the third expression or continue NODAL line.

The lexical comparison is done on a character by character
basis where the value is determined by the ASCII values of
the characters, where the following rule holds

NULL<0<9<A<Z

Two strings are different from the first character position
on which the two character values differ, independent of the
size of the strings. When two strings are the same but one
string is longer than the other, then the longer has the

largest value.
Some examples will be shown below :
$IF As"YES" OR A="NO"; NODAL statements

The NODAL statements following the S$IF command will be
executed when A contains either YES or NO.

SIF A="YES"; SIF A="NO"; NODAL statements
In this case the NODAL statements will nevef be executed
because A has to contain YES and NO simultaneously for the

two conditions to be true. An effective AND of string
comparisons is obtained by a sequence of SIF statements.

Version 1

NODAL REFERENCE MANUAL 47
String control structures

The arithmetic $IF can be used as shown below :
SIF (A - "YES") 10.1, 10.2 ,10.3

The contents of the variable A is compared with YES. If the
lexical contents is smaller a GOTO 10.1 is executed; when it
is equal or larger a GOTO 10.2 and 10.3 1is executed

respectively.

N.B. As the GOTO statement has no sense in interactive mode,
the GOTO of the arithmetic $IF statement is never executed

when in interactive mode.

Version 1

48

Version 1

NODAL REFERENCE MANUAL

NODAL REFERENCE MANUAL

Version 1

49

NODAL REFERENCE MANUAL

Version 1

NODAL REFERENCE MANUAL 51
Pattern and Match structures

8 Pattern and Match e

The SMATCH command makes use of patterns which can be
defined with the SPATTE command. This part of the NODAL
language is almost an integral copy of the SNOBOL4 language.

8.1 AT an

syntax

SPATTE statement = dollarpat identifier “=" pattern
pattern = simplepattern [f.‘NODAL name ,'s'NODAL name]

{ pattern]
simplepattern = (NODAL namelstr'ng) {NODAL namelstring} l
‘(' pattern ')’ TNODAL name'! 'NODAL name

A NODAL name can be :

- simple string variable.

- string array item.

- inline string function. .
- inline pattern function.

- NODAL string defined function.

The $PATTE command takes the pattern defined on the right
hand side of the equal sign and stores the encoded result
into the pattern variable specified on the left hand side.

If the variable does not exist a pattern variable is
created. If the variable exists but is not a pattern
variable then an error is generated.

The result of a pattern is a string. The pattern functions
operate on the string and determine which part of the string
should be selected when a match 1is being done. It can
position at a special place in the string or ignore a set of
characters in the string.

Alternation of strings is defined by the ! character and
grouping is specified by the '(' and ')' brackets.

For example the pattern :
"YES" ! "NO*

results in the strings "YES" and "NO". This can also be
expressed by :

uYn -En usu ! nNu -ou

The example with brackets shows its function in connection
with the ! character :

Version 1

52 NODAL REFERENCE MANUAL
Pattern and Match structures

results in the strings "ABD" and "ACD". The brackets denote
the construction of all possible strings enclosed in the
brackets and to add to those results, all the possible
string combinations which surround the brackets.

The additional facility of storing result strings into
string variables or string functions is connected with the
SMATCH command and will be treated in the next section. The
result string is denoted by

.NODAL name
SNODAL name

NODAL name stands for :

- string variable.

- string array element.

- read/ write inline string functions.
- write only in-line string functions.
- NODAL string defined functions.

The precedence rules for a pattern construction are :
Construction from 1left to right with precedence for the
operators in the order shown below.

patterns contained in brackets ()

direct assignment or deferrred assignment .$
sequences of patterns

alternative possibilities !

The pattern
"Yy" “"E" "S* ! "N" "O"
is equivalent to
("Y" "" "s") ! ("N" "0")
The pattern
"Y® "E* ("S" ! "N") "O°
means :
YENO and YESO
The pattern
P1 P2 .At P3 P4 $§ A2
is equivalent to
P1 (P2 A1) P3 (P& $§ A2)
This means that A1 will only contain the partial match of P2
and A2 only the partial match of P4. The time of storage of
the result in A1 (at the end of a complete match of the

total pattern defined above) has nothing to do with the

Version 1

NODAL REFERENCE MANUAL 53
pattern and Match structures

precedence of the pattern operations defined in the pattern
above.

Another example is

P1 .A1 ! P2 .A2

is equivalent to

(P1 A1) I (P2 .A2)

which means that after a match of P1, assignment to A1 will
take place and the matching of P2 will not take place and no
assignment to A2 will happen. Assignment to A2 will only
happen when P1 fails (no assignment to A1) and P2 succeeds.

The pattern functions are treated separately in the NODAL
function manual and in the section 8.3. During the matching
of a pattern to a string, these functions execute actions on
the result string. Either by suppressing characters or
adding characters or by positioning within the pattern

result string.

8.2 SMATCH command

syntax

SMATCH statement = Tollarmat

(string identifier ‘¢' concatenation ‘>’)
(pattern ['=' concatenation])
[':' expression]

The identifier may be :

- string variable.

- string array element.

- read/write inline string function.
- NODAL string defined function.

The purpose of the command is to match the pattern against
the string or concatenation which precedes the pattern. When
the statement includes a pattern assignment then this
pattern assignment is only executed when the match succeeds.

A match will succeed when any of the possible result strings
defined by the pattern is completely present in the object
string defined immediately after the SMATCH command. The
found result string may be preceded or followed by any

number of characters.

The following examples will clarify these concepts.

SMATCH "OYES"™ "YES~

Version 1

54 NODAL REFERENCE MANUAL
Pattern and Match structures

will first try to match YES with the first three characters
in the match string OYE. When this has failed it will move
its position to the second character and find YES which
matches. The second string can be replaced by a pattern.

SPAT P1="YES"; $MATCH "OYES" P1

which again would have matched with YES. It is possible to
reassign another string to the object string, if the latter
is an identifier.

SSET ST="OYES"; S$PAT P1="YES"; SMATCH ST P1="NO"

After the first match the contents of the matched substring
is now replaced with NO and ST will contain ONO.

In case of mismatch the line following the S$MATCH command
will be executed. When the SMATCH statement contains a ':°'
then a GOTO the 1line specified by the expression will be

executed.

10.1 SPAT P1="YES"; S$SET ST="OYES"
10.2 WHILE 0=0 ;SMATCH ST P1="NO":10.4; NODAL statement

10.4 END

In the above example the first time a match will occur, and
the NODAL statement will be executed; but the second time no
match will occur and a GOTO 1line 10.4 will be executed,
which ends the program.

Within the pattern, variables can be specified into which
the result of a match will be stored. Two types of
assignments can be discerned :

- immediate assignment, preceded by a '$’
- deferred conditional assignment, preceded by a '.’

In the first case after every successful partial match, the
result is stored in the item specified after the $ sign. In
the second case the assignment only takes place when the
whole pattern has been matched. Finally it is possible to
visualise the results of the matches, as is clarified in the

following example :

SPAT P1 = ("YES" $S1 "NO") .S2
SMATCH “YES, YES, YESNO" P1

the string YESNO will be matched against the one specified
in the $MATCH command. Three times YES will be matched and
immediately stored in S1 and YESNO will once be stored in
§2. When the command had been :

SMATCH "YES, YES, YES NO° Pt

then S1 would still have received YES three times but S2
will never be filled as YESNO is not specified. When the
pattern P1 is modified to :

Version 1

w,
[3;]

NODAL REFERENCE MANUAL
Pattern and Match structures

SPAT P1 = ("YES" .St "NO") .S2
then in the first case S1 will receive YES only once and S2

will recieve YESNO. The end result is not different. However
in the second case both S1 and S2 will receive nothing.

A final example is

SPAT P1 = "BE" ! "BEA" ! "BEAR"
SPAT P2 = "RO" ! "ROO" ! "ROOS"
SPAT P3 = "0S™ ! "D"

SPAT P4 = "TS" ! "T*

SPAT FI = P1 P3 ! P2 P4

The result strings of this pattern are :

BE bS BEDS BEADS BEARDS
BEA D BED BEAD BEARD
BEAR ‘

==z)
RO Is ROTS ROOTS ROOSTS
ROQ T ROT ROOT ROOST
ROOS

yielding a total. of 12 possible result strings.

8.3 Pattern functions

A subdivision of three types of pattern functions can be
made :

- position dependent functions (POS, RPOS, TAB, RTAB, LEN)
- character dependent functions (SPAN, BREAK, ARB, ANY,

NOTANY)
- control functions (ABORT, FAIL)

The POS and RPOS functions serve to position patterns at a
certain place in the object string. POS(0) will force a

pattern at the beginning of the object string and RPOS(0)
will position the pattern at the end of the object string.

The pattern :
SPAT P1 = "CAR" ! "CARD" ! "CARDS"

will ascertain that one of the three strings is present in
the object string. However the pattern :

SPAT P2 = POS(0) P1

ascertains that one of these strings 1is present at the
beginning of the string. Actually the two alternatives have

no real meaning here.

Version 1

EFERENCE
atch str

MANUAL
c ctures

NODAL R
Pattern and M u

The function LEN assures that a string has a certain length.
For example the pattern

SPAT P1 = '(" LEN(5) ")'

assures that the object string contains somewhere the string

(XXXXX)
where x stands for any character.

The functions TAB and RTAB match all characters in the
object string until the position defined by one of the two
functions. TAB matches all characters up to position 1,
while RTAB matches all characters from position i until the

end of the string. The pattern
TAB(O) RTAB(O0)
always matches the whole of a string.

The functions are specially useful in breaking out pieces of
strings. For example

TAB(4) .A1

will assign the first four characters of the object string
to A1. As such it is convenient to obtain separate parts of
object strings of which the format is known beforehand. It
should be remembered that it is not allowed to move the
cursor backward during pattern matching. The pattern :

LEN(5) TAB(4)

will fail, because TAB(4) positions the cursor to a position
which is already passed.

SPAN and BREAK are pattern functions which match runs of
characters. Patterns which describe a run of characters, or
a run of blanks, or a run of numbers can be described by

using SPAN :

SPAN(NUM) will match a run of numbers. SPAN(ALPHA) will
match run of capital letters. SPAN(' ') will match a run
of blanks.

Patterns to describe anything up till a character are
constructed with BREAK.

BREAK(ALPHA) will match anything until a capital 1letter is
met. BREAK(NUM) will match anything until a decimal digit is
met. BREAK(',.;:!?') will match anything up till a
punctuation mark.

SPAN may be thought of as the streaming of the cursor as
long as characters contained in the argument are met; BREAK
is the streaming of the cursor until characters present in
the argument are met. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>