
ar
X

iv
:0

71
1.

26
44

v1
  [

he
p-

th
] 

 1
6 

N
ov

 2
00

7

CERN-PH-TH/2007-220, UB-ECM -PF-07-32, Toho-CP-0786

A nisotropic harm onic oscillator,non-com m utative

Landau problem and exotic N ew ton-H ooke sym m etry

Pedro D.Alvareza,Joaquim Gomisb;c,KiyoshiKamimurad and M ikhailS.Plyushchaya�

aDepartam ento de F��sica,Universidad de Santiago de Chile,Casilla 307,Santiago 2,Chile
bDeparm entECM ,Facultatde F��sica,Universitatde Barcelona,E-08028,Spain

cPH-TH Division,CERN,CH-1211 Geneva 23,Switzerland
dDepartm entofPhysics,Toho University Funabashi274-8510,Japan

A bstract

W einvestigatetheplanaranisotropicharm onicoscillatorwith explicitrotationalsym m etry

asaparticlem odelwith non-com m utativecoordinates.ItincludestheexoticNewton-Hookepar-

ticleand thenon-com m utativeLandau problem asspecial,isotropicand m axim ally anisotropic,

cases.Thesystem isdescribed by thesam e(2+ 1)-dim ensionalexoticNewton-Hookesym m etry

asin the isotropiccase,and developsthree di�erentphasesdepending on the valuesofthe two

centralcharges. The specialcases ofthe exotic Newton-Hooke particle and non-com m utative

Landau problem are shown to be characterized by additional,so(3) orso(2;1)Lie sym m etry,

which reectstheirpeculiarspectralproperties.

1 Introduction

Classicaland quantum theoriesin 2+ 1 dim ensionspossessvariousexoticproperties.Theseinclude,

in particular,a possibility for existence ofparticles with fractionalspin and statistics { anyons.

Another peculiar property is an equivalence of a classical (2+ 1)-dim ensionalpure gravity to a

Chern-Sim onsgauge theory.

In a specialnon-relativistic lim it,thatisan In�on�u-W ignercontraction,(2+ 1)D Poincar�e sym -

m etry ofa free anyon theory is reduced to an exotic G alileisym m etry with two centralcharges

[1,2,3,4,5,6,7,8].A sim ilarlim itapplied to the AdS3,thatisan asym ptotic sym m etry ofthe

BTZ black holesolution ofthe3D puregravity [10],producesan exoticNewton-Hooke(ENH)sym -

m etry with two centralcharges [11,12,13]. Both exotic,G alileiand Newton-Hooke,sym m etries

can be realized assym m etriesofa particle on a non-com m utative plane. The latter sym m etry is

transform ed into the form erone in a atlim it. The two-fold centralextensionsofthe G alileiand

Newton-Hooke sym m etriesare possibleonly in 2+ 1 dim ensions1.

Like the BTZ black hole solution [10],a particle system with (2+ 1)D exotic Newton-Hooke

sym m etry displays three di�erent phases in dependence on the values ofthe m odelparam eters

[13].O n theotherhand,itsreduced phasespacedescription revealsa sym plecticstructuresim ilar

�
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1
The case ofan exotic non-relativistic string in 3+ 1 dim ensions and the relation with the exotic particle in 2+ 1

dim ensionshasbeen recently studied in [9].
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to that ofLandau problem in the non-com m utative plane [5,14,15]. The noncom m utative Lan-

dau problem (NLP) also develops three phases,the sub-and super-criticalones,separated by a

critical,quantum Halle�ect phase [15]. Therefore,these sim ilarities indicate on a possible close

relation between the (2+ 1)D exotic Newton-Hooke sym m etry and the non-com m utative Landau

problem .Thepurposeofthisarticle isto study in detailthisrelation by m eansofa planarexotic

anisotropic harm onic oscillator with explicit spatialrotation sym m etry as a particle m odelwith

non-com m utative coordinates.

The m odelofthe anisotropic harm onic oscillator we propose [(2.2) below],includes the ex-

otic Newton-Hooke particle and the non-com m utative Landau problem as special,isotropic and

m axim ally anisotropic,cases. W e shaw thatwhatdistinguishesthe exotic Newton-Hooke particle

and non-com m utative Landau problem as specialcases,is a presence ofthe additional,so(3) or

so(2;1)Lie sym m etry.In a generic case ofcom m ensurablefrequencies,theexotic anisotropic har-

m onic oscillator is characterized,instead,by a nonlinear deform ation ofthe indicated additional

Lie sym m etry.Like the exotic Newton-Hooke particle and non-com m utative Landau problem ,the

anisotropicoscillatorsystem developsthesubcriticaland supercriticalphases,separated by a criti-

calphase.Thephaseisde�ned by thevaluesofthetwo centralchargesoftheexoticNewton-Hooke

algebra.

The paper is organized as follows. In Section 2 we introduce a planar anisotropic harm onic

oscillatorwith explicitrotationalsym m etry asa particlem odelwith non-com m utativecoordinates,

and establish its relation with the non-com m utative Landau problem . In Section 3 we discuss

the chiralform ofthe exotic Newton-Hooke sym m etry ofthe system ,and analyze its additional

sym m etries,which depend on theconcretevaluesofthem odelparam eters.In Section 4 weanalyze

the exotic Newton-Hooke sym m etry in the non-chiral,space-tim e picture. Section 5 isdevoted to

the discussion and concluding rem arks.

2 Planar anisotropic harm onic oscillator and non-com m utative

Landau problem

A canonicalLagrangian ofonedim ensionalharm onicoscillatorofm assm and frequency ! isgiven

by

Lcan =
�

2

�

�ij
_X iX j �

�

R
X

2

i

�

; (2.1)

where m = �� 1�R,! = �R � 1,and � isa dim ensionlessparam eter.Variable X 1 can be identi�ed

as the coordinate of one dim ensionalparticle, and then X 2 is proportionalto its m om entum .

Sym plecticstructure,fX i;X jg =
1

�
�ij;and Lagrangian (2.1)possessa two dim ensionalphase space

rotationalsym m etry.Taking a sum ofn copiesof(2.1)with independentparam eters�’sand �’s,

weobtain a generalized system ofn non-interacting harm onicoscillatorswith di�erentfrequencies.

Letusconsiderthe case n = 2,and take the canonicalLagrangian in the form

L+ � = �
�+

2

�

�ij
_X
+

i
X

+

j
+
�+

R
X

+

i

2
�

�
��

2

�

� �ij _X
�

i
X

�

j
+
��

R
X

�

i

2
�

: (2.2)

W esupposethatR > 0 and that�� can takevaluesofany sign.Forthem om entwedonotassum e

any restrictionsforthe param eters�� .Thedynam icsof(2.2)isgiven by

_X �

i � !� �ijX
�

j = 0: !� = �� R
� 1
; (2.3)

whileitssym plectic structureis

fX
+

i ;X
+

j g = �
1

�+
�ij; fX

�

i ;X
�

j g =
1

��
�ij; fX

+

i ;X
�

j g = 0: (2.4)

2



In thechosen specialcasen = 2,a phase space index ican bereinterpreted asa spatialindex ofthe

(2+ 1)-dim ensionalspace-tim e.W ith such reinterpretation,Lagrangian (2.2)aswellasequationsof

m otion (2.3)and sym plectic structure (2.4)possessthe explicitspatialSO (2)rotation sym m etry.

Thiscorrespondsto the diagonalpartofthe obviouschiralrotation sym m etry SO (2)� SO (2)of

(2.2). The nondiagonalpartis identi�ed with the tim e translation sym m etry,see Eqs. (3.9)and

(3.10)below.

As a result, system (2.2) provides us with a rotational invariant description of the planar

anisotropic harm onicoscillatorsystem .

Atthispointwe would like to clarify underwhich conditionsthisplanaranisotropic oscillator

can beinterpreted asa two dim ensionalparticle system with coordinate xi and velocity vi related

by a usualdynam icsequation

_xi= vi: (2.5)

In accordance with (2.3),forsuch a particle system thevariablesX +

i
and X �

i
should have a sense

ofnorm al,orchiralm odes.

To thisaim ,we�rstnotethatthetransform ation �� ! � �� ,�� ! � �� ,X
+

i
$ X

�

i
doesnot

changeequationsofm otion and theLagrangian,and itissu�cientto assum ethat(� + + �� )� 0.

If(�+ + �� ) = 0,the two chiralm odes have exactly the sam e evolution. This case should be

excluded sinceitdoesnotallow usto introducexiand virelated by (2.5).Taking also into account

that�� appearonly in thecom bination �� =R,withoutlossofgenerality we can put

�� (�)= cos�(cos� � sin�); �
�

2
< � <

�

2
: (2.6)

W ith thenorm alization chosen in (2.6),we have2 0< (�+ + �� )� 1 and � 1 � (�+ � �� )� 1.

Now we can introducethe coordinate and velocity ofthe two dim ensionalparticle system ,

X
�

i
= �� xi� R�ijvj; (2.7)

xi=
1

�+ + ��

�

X
+

i
+ X

�

i

�

; vi=
1

R(�+ + �� )
�ij

�

�� X
�

j
� �+ X

+

j

�

; (2.8)

which satisfydynam icsrelation (2.5).In agenericcase,in correspondencewith (2.4),thecoordinate

xi describesa non-com m utative plane,

fxi;xjg =
1

(�+ + �� )
2

�+ � ��

�+ ��
�ij: (2.9)

Thecom ponentsofthecoordinatevectorxiarecom m utativeonly when �+ = �� .Asweshallsee,

only in thiscase the G alilean boostsm utually com m ute.O therbracketsare

fxi;vjg =
1

R 2(�+ + �� )
2

M

�+ ��
�ij; fvi;vjg =

1

R 2(�+ + �� )
2

B

�+ ��
�ij; (2.10)

where

M = R (�+ �� + �� �+ ); B = �+ �
2

�
� �� �

2

+
: (2.11)

Sym plectic two-form corresponding to (2.9)and (2.10)hasa sim plestructure,

� = M dvi^ dxi+
1

2
R
2(�+ � �� )�ijdvi^ dvj +

1

2
B�ijdxi^ dxj: (2.12)

2
In what follows it willbe m ore convenient to work, however, in term s of �� , im plying the one-param etric

representation (2.6).
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In term softhe particle coordinate xi,the anisotropy revealsitselfin the coupled dynam icsof

the com ponentsx1 and x2,

�xi+ (!+ � !� )�ij_xj + !+ !� xi= 0; (2.13)

where !� are de�ned in (2.3). Thisshould be com pared with the second orderequations forthe

chiralm odes, �X �

i
+ !2

�
X

�

i
= 0.Thedynam icsofx1 and x2 decouplesonly in theisotropic(� = 0)

case

�+ = �� = 1: (2.14)

In term s ofvariables xi and vi,Lagrangian (2.2) takes,up to a totalderivative,a non-chiral

form

L = M

�

_xivi�
�+ ��

2R 2
x
2

i �
N

2M
v
2

i

�

+ (�� � �+ )

�

�+ �� �ijxivj �
R 2

2
�ijvi_vj

�

+
B

2
�ijxi_xj; (2.15)

whereN = R (�+ �+ + �� �� ).NotethatM and N haveunitsofm ass,whileB doesofam agnetic

�eld. The term �ijvi_vj,with coe�cient proportionalto (� + � �� )in (2.15)isresponsible forthe

coordinatenon-com m utativity (2.9).Physically itdescribesa m agneticlikecoupling forvelocities.

The term s _xivi and �ijxi_xj,with coe�cients M and 1

2
B,correspond to the nontrivialbrackets

between xi and vi,and to the velocity non-com m utativity,see the �rst and second relations in

(2.10).

Theequationsofm otion obtained by variation of(2.15)in xi and vi,are,respectively,

M

�

_vi+
�+ ��

R 2
xi

�

= �ij(B _xj + (�� � �+ )�+ �� vj); (2.16)

R
2(�+ � �� )

�

_vi+
�+ ��

R 2
xi

�

= �ij(M _xj � N vj): (2.17)

If�+ = �� ,and hence,fxi;xjg = 0,(2.17)takesthe form (2.5),thatisan algebraic equation

forvi.In thiscase v1 and v2 becom e auxiliary variablesand can be elim inated by theirequations

ofm otion from (2.15). As a result,(2.15)turnsinto a regular,second order Lagrangian L(x;_x),

thatdescribesa usualLandau problem in the presence ofadditionalisotropic harm onic potential

term .

It is necessary to note that though for �+ 6= �� Eq. (2.5) also appears as a consequence of

the system ofequations(2.16)and (2.17),itisnotproduced by the variation ofLagrangian in vi

itself.Ifin thiscasewetry to substitutevi,using(2.5),in Lagrangian (2.15),wewould getahigher

derivative,nonequivalentLagrangian,thatgeneratestheequationsofm otion di�erentfrom (2.13).

In theisotropiccase(2.14),system (2.15)isreduced totheexoticNewton-Hookeparticle,which

wasconstructed in [13]by the nonlinearrealization m ethod [16]accom m odated to the space-tim e

sym m etries,see forexam ple [17].

Letusshow now thatthe case ofthem axim alanisotropy,

� = "
�

4
: �" = 1; �� " = 0; "= + ;� ; (2.18)

correspondsto the non-com m utative Landau problem described by the Ham iltonian

H =
1

2m
P 2

i; (2.19)

sym plectic structure

fXi;Xjg =
�

1� �
�ij; fXi;Pig=

1

1� �
�ij; fPi;Pjg =

B

1� �
�ij; (2.20)
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and equationsofm otion

_Xi=
1

m �
Pi; _Pi=

B

m �
�ijPj: (2.21)

Here B is m agnetic �eld,� = �B ,m� = m (1 � �) plays the role ofthe e�ective m ass,while �

is a param eter,which at B = 0 characterizes a non-com m utativity ofthe coordinates and ofthe

G alilean boostsofa free exotic particle [5,15]. Lagrangian corresponding to (2.19)and (2.20)is

given by

LN LP = Pi _Xi�
1

2m
P 2

i +
1

2
��ijPi _Pj +

1

2
B �ijXi

_Xj: (2.22)

Com paring (2.15) and (2.22), we �nd that in m axim ally anisotropic case (2.18) the form er

system reduces to the latter one under the following correspondence between the variables and

param eters:

xi= Xi; vi=
1

m �
Pi; (2.23)

�" = jB (1� �B )j; �� " = jB jsgn(1� �B ); R =
�
�!

� 1
�
�; (2.24)

"= sgn(B (� � 1)); ! =
B

m �
: (2.25)

Having this correspondence,and using transform ation (2.8),we obtain the chiralform ofLa-

grangian (2.22)forthecase �+ = 0,�� = 1 ("= � 1),

L
+ �

N LP
= �

B

2
�ij

_X
+

i X
+

j �
B (1� �)

2

�

� �ij _X
�

i X
�

j + !X
�

i

2
�

; (2.26)

which generatesequationsofm otion

_X +

i
= 0; _X �

i
� !�ijX

�

j
= 0: (2.27)

In term softhe variablesXi and Pi,the chiral(norm al)m odesare given by

X
+

i
= Xi+

1

m �j!j
�ijPj; X

�

i
= �

1

m �j!j
�ijPj: (2.28)

The chiralm ode X
+

i is an integralofm otion not depending explicitly on tim e (cf. the chiral

integralsofm otion (3.2)in a generic case).Itcan beidenti�ed asa guiding centercoordinate.

The case �+ = 1,�� = 0 (" = + 1) can be obtained via obvious changes in correspondence

with relations(2.24),(2.25). In thiscase the chiralm ode X �

i
playsthe role ofthe guiding center

coordinate, while X
+

i has the sam e evolution law as the chiralm ode X
�

i in the previous case

"= � 1.

Theatlim it

R ! 1 ; (�+ � �� )! 0; R�+ (�+ + �� )! m ; R
2(�+ � �� )! �m

2
; (2.29)

applied to (2.15),producesa freeexotic particle,

L� = m

�

_xivi�
1

2
v
2

i

�

+
1

2
�m

2
�ijvi_vj; (2.30)

that is described by the equations ofm otion _xi = vi, _vi = 0,and carries the two-fold centrally

extended G alileisym m etry [5]. If, as in generic case (2.15), we try to substitute vi using the

equation vi = _xi produced by variation of (2.30) in xi, we would get a nonequivalent higher

derivative m odel[4]with additional,spin degreesoffreedom ,see [7,8].
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3 Sym m etries: chiralpicture

Toidentify thesym m etriesofoursystem ,weproceed from thechiralLagrangian (2.2).W eintegrate

equations(2.3),

X
�

i
(t)= � �

ij
(t)X �

j
(0); � �

ij
(t)= �ijcos(�� t=R)� �ijsin(�� t=R); (3.1)

and constructtheintegralsofm otion,

J �

i
� R�� �ijX

�

j
(0)= R�� �ij�

�

jk
(� t)X �

k
; (3.2)

J � � �
��

2

�

X
�

i
(0)

�
2
= �

��

2

�

X
�

i

�
2
; (3.3)

whereX �

i
= X

�

i
(t).ThequantitiesJ �

i
aretheintegralsofm otion thatincludeexplicitdependence

on tim e and satisfy the equation d
dt
J �

i
= @

@t
J �

i
+ fJ �

i
;H g = 0,where

H =
1

2R

�

�+ �+ X
+

i
2 + �� �� X

�

i
2
�

(3.4)

playsthe role ofthe Ham iltonian. Unlike the linearin X
�

i integrals(3.2),the quadratic integrals

(3.3)do notincludeexplicitdependenceon tim e.

Integrals(3.2)and (3.3)generate thealgebra

fJ +
;J

+

i
g= �ijJ

+

j
; fJ

+

i
;J

+

j
g = Z

+
�ij; (3.5)

fJ �
;J

�

i
g= �ijJ

�

j
; fJ

�

i
;J

�

j
g = Z

�
�ij; (3.6)

whereZ � = � R 2�� have a senseofcentralcharges,and allotherbracketsare equalto zero.This

is a chiralform ofthe (2+ 1)D exotic Newton-Hooke sym m etry presented in the form ofa direct

sum ofthetwo (1+ 1)D centrally extended Newton-Hookealgebras.ThequadraticCasim irsofthis

algebra are

C� = J �

i

2
+ 2Z � J �

: (3.7)

LetusstressthattheexoticNewton-Hookealgebra(3.5),(3.6)in agenericcase(2.6)hasexactly

the sam e form asin the particularisotropic case (2.14).Forthelattercase itwasobtained in [13]

by a contraction ofthe AdS3 algebra,with identi�cation ofthe param eterR asthe AdS3 radius.

Thischiralform ofthe ENH sym m etry isrooted in the algebra isom orphism

AdS3 � so(2;2)� so(2;1)� so(2;1)� AdS2 � AdS2:

Integrals(3.2)and (3.3)generate thesym m etry transform ationsofthe chiralcoordinates3,

fX +

i
;J +

j
g= � R� +

ij
(t); fX �

i
;J �

j
g= R� �

ij
(t); (3.8)

fX
+

i ;J
+ g = � �ijX

+

j ; fX
�

i ;J
� g = � �ijX

�

j : (3.9)

Due to the presence ofthe explicit dependence on tim e ofthe chiralintegrals (3.2),sym m etry

transform ations(3.8)arealso tim e-dependent.Underthem ,Lagrangian (2.2)isquasi-invariant.

The Ham iltonian and the angular m om entum are identi�ed as linear com binations of the

quadratic integrals,which generate the tim e translationsand space rotations,

H =
1

R

�

�+ J
+ � �� J

�
�

; J = J + + J �
: (3.10)

3
W e do notindicate explicitly in�nitesim altransform ation param eters.
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Thisform ofH and J isbehind theanisotropy ofdynam icsand rotationalsym m etry ofthesystem

(2.2).

Forthe NLP case (2.18),one ofthe chiralgenerators,J + orJ � ,disappearsfrom the Ham il-

tonian. As a result,the corresponding chiralm ode has a trivialdynam ics ofthe guiding center

coordinate, _X + = 0,or _X
�

i
= 0,see Eq. (2.27),and one ofthe two vectors(3.2)transform sinto

an integralofm otion thatdoesnotdepend explicitly on tim e.

Noticethatin theexcluded case�+ = � �� ,thetim etranslation,H ,and rotation,J,generators

would be(up toam ultiplicativeconstant)thesam e,thatpreventstheintroduction ofthecoordinate

xi and velocity vi related by Eq.(2.5).

Letusdiscussbriey sym m etriesin the quantum case.

W e de�nethe operators

a
� =

r

j�+ j

2

�

X
+

2
+ iX

+

1

�

; a
+ =

�

a
�
�
y

; b
� =

r

j�� j

2

�

X
�

1
+ iX

�

2

�

; b
+ =

�

b
�
�
y

; (3.11)

which obey the com m utation relations [a� ;a+ ]= �+ ,[b
� ;b+ ]= �� and [a� ;b� ]= 0,where �� =

sgn(�� ). For �+ > 0 (�+ < 0) and �� > 0 (�� < 0),the operators a+ (a� ) and b+ (b� ) are

identi�ed ascreation oscillator operators. W ith the sym m etrized ordering prescription,(3.3)and

(3.10)give the Ham iltonian and theangularm om entum operatorsin a form

RH = �+ �+ a
+
a
� + �� �� b

+
b
� +

1

2
(�+ �+ + �� �� ); (3.12)

J = �+ a
+
a
� � �� b

+
b
� +

1

2
(�+ � �� ): (3.13)

From hereitfollowsthatin thegenericanisotropiccase,likein particularcasesoftheENH particle

[13]and the NLP [15],oursystem can exhibitthree di�erentkindsofbehaviorin dependence on

the valuesoftheparam eters�� .

Sincetheeigenvaluesofthenum beroperatorstakenon-negativeintegervalues,na,nb = 0;1;:::,

we �nd that when �+ = �� ,J can take values ofboth signs. Its spectrum is unbounded. This

case we calla subcriticalphase. The spectrum ofH in this phase is bounded from below (when

�+ ;�� > 0),orfrom above (for�+ ;�� < 0).

W hen the signsof�+ and �� are opposite,the spectrum ofJ isbounded from one side.This

isa supercriticalphase.In thisphasethespectrum ofH isunbounded,excepttheNLP case.The

case ofthe NLP isspecial:itsenergy isbounded in both,sub-and super-criticalphases,because

one ofthe chiralm odeshaszero frequency,and doesnotcontribute to the energy.

Yet,another phase corresponds to the case when one ofthe param eters �+ or �� takes zero

value.In such a phaseoneofthem odesdisappearsfrom Lagrangian (taking a roleofa puregauge

degree offreedom ),and the system transform sinto a one-dim ensionaloscillator,whose sym m etry

isdescribed by the(1+ 1)D centrally extended Newton-Hooke algebra [13].Thisisa criticalphase

thatseparatestwo otherphases,and ischaracterized by thezero valueofoneofthecentralcharges,

Z + ,or Z � . In the NLP it corresponds to the quantum Halle�ect phase. W e note here that in

the criticalphase,in turn,two di�erent cases should be distinguished. W hen,say,�� = 0 and

�+ = 1,the Ham iltonian isnontrivialand generatesa rotation ofthe rem aining chiralm ode X
+

i ,

thatcoincides(up to a gauge shift)with xi. W hen �� = 0 and �+ = 0,Ham iltonian isequalto

zero,and the chiralm ode hasa trivialdynam ics,X +

i
(t)= X

+

i
(0)[fora discussion ofthe critical

phasein theNLP,seeref.[15]].In both cases,�+ = 1 and �+ = 0,xiand vi satisfy relation (2.5),

butthey are linearly dependentvariablesin correspondence with decreasing ofthe num berofthe

physicaldegreesoffreedom .
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From the point ofview ofthe dynam ics and sym m etries,as in the case ofthe usualplanar

anisotropicharm onicoscillatorgiven by thesecond orderLagrangian,itisalso necessary to distin-

guish specialcases. Asitfollows from (2.8)and (3.1),the particle trajectory xi(t)isclosed only

when �+ =�� isrational.Behind thisproperty,there isadditionalsym m etry.

In the isotropic case (2.14),the ENH particle system ischaracterized by additionalsym m etry

associated with the integralsa+ b� and a� b+ ,which,like H and J,do notinclude explicitdepen-

dence on the tim e. In term s ofthe chiralm odes,these are linear com binations ofthe Herm itian

operators(X +

1
X

�

2
+ X

+

2
X

�

1
)and (X +

2
X

�

2
� X

+

1
X

�

1
). In sub-and super-criticalphases,they to-

getherwith angularm om entum J generatetheso(3)and so(2;1)sym m etries,which areresponsible

fora �niteand in�nitedegeneracy oftheenergy levels.Thisadditionalsym m etry wasdiscussed in

detailin [13].

In the NLP,analogously,we have additionalso(2;1) sym m etry. If,say,�+ = 0,�� = 1,and

�+ > 0,the so(2;1) generators are given by the quadratic integrals I0 =
1

4
fa+ ;a� g,I+ = 1

2
a+ 2

and I� = 1

2
a� 2,

[I0;I� ]= � I� ; [I+ ;I� ]= � 2I0: (3.14)

Allthe energy levelsare in�nitely degenerate.

In the anisotropic case with �+ =�� = p=q,p;q = 1;2;:::,p 6= q,the frequenciesofthe chiral

m odesarecom m ensurable,and thesystem hasadditionalintegralsofm otion j+ = (a+ )q(b� )p and

j� = (a� )q(b+ )p. In this case the energy levels have �nite,or in�nite additionaldegeneracy,in

dependenceon whetherwehave a sub-,orsuper-criticalphase.Theseintegralstogetherwith the

angularm om entum generatea nonlinear(polynom ial)deform ation oftheso(3),orso(2;1)algebra,

[J;j� ]= � (q+ p)j� ; (3.15)

[j+ ;j� ]=

q
Y

k= 1

[a+ a� + (1� k)�+ ]

p
Y

‘= 1

[b+ b� + ‘�� ]�

q
Y

k= 1

[a+ a� + k�+ ]

p
Y

‘= 1

[b+ b� + (1� ‘)�� ]; (3.16)

where

a
+
a
� =

�+

(�+ + �� )
(RH + �� J)�

1

2
; b

+
b
� =

��

(�+ + �� )
(RH � �+ J)�

1

2
; (3.17)

in which theHam iltonian playsaroleofthecentralelem ent,[H ;J]= [H ;j� ]= 0.Thisiscom pletely

analogousto thevery wellknown property ofa usual(non-exotic)planaranisotropicoscillatorwith

com m ensurablefrequencies,see [18,19,20,21].

4 Exotic N ew ton-H ooke sym m etry: space-tim e picture

Here we �nd the sym m etry transform ations in term s ofthe variables xi,and vi ofthe (2+ 1)D

particle system ,and theircorresponding generators.In particular,weidentify theintegrals,which

in a atlim itaretransform ed into com m uting translationsand non-com m uting boostsgenerators,

and �nd thealgebra form ed by them togetherwith H and J.

To identify the translationsand boostsgenerators,we note thatbecause ofthe vectornature,

they have to belinearcom binationsoftheintegralsJ
�

i .Thetransform ationsproduced by J
�

i ,in

correspondencewith relations(3.8)and (2.8),are

fxi;J
�

j g = � R(�+ + �� )
� 1� �

ij(t); fvi;J
�

j g= �� (�+ + �� )
� 1
�ik�

�

kj
(t); (4.1)

where � �

ij(t)isde�ned in (3.1).Then,in orderto recoverthe G alilean transform ationsin the at

lim it(2.29),fxi;Pjg = �ij;fxi;K jg = � �ijt;fvi;Pjg= 0;fvi;K jg = � �ij;we obtain

Pi=
1

R

�

�+ J
�

i � �� J
+

i

�

; K i= � �ij

�

J +

j + J �

j

�

: (4.2)
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Note thatthe relation (4.2)between Pi,K i and J �

i
hasa structure sim ilarto thatbetween H ,J

and J � ,see (3.10). The sym m etry transform ationsgenerated by Pi and K i can be com puted by

m eansof(4.1)and (4.2).

In correspondence with (2.5)and (2.13),the tim e translationssym m etry transform ationstake

herea form

fxi;H g = vi; fvi;H g = �
�+ ��

R 2
xi�

�+ � ��

R
�ijvj; (4.3)

where,in correspondencewith (2.15),

H = �+ ��

�

M

2R 2
x
2

i + (�+ � �� )�ijxivj

�

+
N

2
v
2

i: (4.4)

Thesecond term in thetransform ation law forthevelocity isproportionaltotherotation sym m etry

transform ation fvi;Jg = � �ijvj,and disappearsin the isotropic case.Itisworth to note thatthe

structureofthe angularm om entum ,

J =
B

2
x
2

i +
1

2
R
2(�+ � �� )v

2

i + M �ijxivj; (4.5)

reproducesthe structureofthe sym plectic two-form (2.12).

Thesym m etry algebra generated by H ,J,Pi and K i is

fK i;K jg = � ~Z�ij; fPi;Pjg = �
1

R 2

�

R (�+ � �� )Z + �+ ��
~Z

�

�ij; fK i;Pjg = Z�ij; (4.6)

fK i;Jg = � �ijK j; fPi;Jg = � �ijPj; fH ;Jg = 0; (4.7)

fK i;H g = Pi+
(�+ � �� )

R
�ijK j; fPi;H g = �

�+ ��

R 2
K i; (4.8)

where

Z = (�+ Z
� � �� Z

+ )R � 1 = M ; ~Z = � (Z + + Z
� )= R

2(�+ � �� ); (4.9)

and M isde�ned in (2.11).Casim irs(3.7)take herean equivalentform

C� =

�

Pi�
��

R
�ijK j

�
2

� 2

�

Z �
��

R
~Z

� �

H �
��

R
J

�

: (4.10)

W hen �+ = �� ,the centralcharge ~Z takeszero value,and the G alilean boostscom m ute.Itis

exactly thesam ecasewhen thecoordinatesoftheparticlearecom m utative,see(2.9).Analogously,

the com m utativity ofthe boosts and translations takes place when another centralcharge disap-

pears,Z = M = 0.In thiscasethecoordinatexi and velocity vi com m ute,seethe�rstrelation in

(2.10).

For the particular case (2.18) ofthe non-com m utative Landau problem the explicit form of

the algebra generated by H ,J,Pi and K i can be obtained from (4.6){(4.10) by m eans ofthe

correspondence relations (2.23){(2.25). W e only note that the translation generator is reduced

here for the conserved chiralm ode identi�ed with the guiding center coordinate, see (4.2). It

generatesusualtim e-independenttranslations,�xi = �ai,�vi = 0,underwhich Lagrangian (2.22)

isquasi-invariant.

In thegenericcase,thegeneratorsH ,J,Piand K i,and thecentralchargesZ and ~Z arelinear

com binationsofthe chiralintegralsJ � and J �

i and centralchargesZ + and Z � ,see Eqs.(3.10),

(4.2)and (4.9).Hence,there existsa linearrelation between the space-tim e,non-chiralsym m etry

generators ofthe exotic anisotropic harm onic oscillator characterized by the param eters �� (�),
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and the space-tim e generators ofthe exotic Newton-Hooke sym m etry which corresponds to the

sym m etric case (2.14).Explicitly,we have

�

RH

J

�

�+ ;��

=

�

A + A �

0 1

� �

RH

J

�

�+ = �� = 1

; (4.11)

�

RPi

K i

�

�+ ;��

=

�

A + �ij A � �ij

0 �ij

� �

RPj

K j

�

�+ = �� = 1

; (4.12)

�

RZ

~Z

�

�+ ;��

=

�

A + � A �

0 1

� �

RZ

~Z

�

�+ = �� = 1

; (4.13)

whereA � = 1

2
(�+ � �� ):

Theserelationsm ean thatthegeneralcaseoftheexoticanisotropicharm onicoscillator,includ-

ing the NLP system asa particularcase,isdescribed,in fact,by the sam e non-chiral,space-tim e

form ofthe (2+ 1)D exotic Newton-Hooke sym m etry,as the exotic isotropic oscillator does. O n

theotherhand,with m aking useof(4.11){(4.13),thegeneratorsand centralchargesofthegeneric

anisotropiccasecan also bepresented aslinearcom binationsofthegeneratorsand centralcharges

ofthenon-com m utative Landau problem .

5 D iscussion and concluding rem arks

W e have showed thatthe planarexotic anisotropic harm onic oscillatorischaracterized by exactly

the sam e chiralform ofthe (2+ 1)D exotic Newton-Hooke sym m etry algebra (3.5),(3.6)asin the

isotropic case. The anisotropy reveals itselfonly in the sym m etry transform ations law,see Eqs.

(3.8) and (3.1),that is associated with the anisotropy ofthe Ham iltonian structure (3.10). In

the space-tim e picture the anisotropy reveals itself both in the sym m etry transform ations,and

in the structure ofthe sym m etry algebra. However,unlike the usualplanaranisotropic harm onic

oscillatorgiven by thesecond orderLagrangian,anisotropy doesnotviolatetherotation sym m etry.

Itonly m ixesthe tim e translationswith the rotations,and the space translationswith the boosts

transform ations,see Eqs.(4.11),(4.12).Thepresence ofthe two independentparam eters�+ and

�� isbehind thenon-com m utativity natureoftheparticlecoordinate(2.9)in a genericcaseofthe

m odel.

Thetranslations,Pi,and theboosts,K i,generatorsoftheexotic Newton-Hooke sym m etry are

the linear com binations ofthe �rst order in the chiralvariables X �

i
integrals (3.2),that include

explicit dependence on tim e. O n the contrary,the H and J are the linear com binations ofthe

explicitly tim e-independent,quadratic in (3.2),integrals (3.3). The additionalsym m etries ofthe

isotropic and the NLP specialcases, discussed at the end of Section 3, are also generated by

the explicitly tim e-independent integrals,which are quadratic in the integrals J �

i . Ifwe supply

thesefourexplicitly tim e-independentquadraticintegralswith othersix,explicitly tim e-dependent

quadratic in J �

i integrals ofm otion,we would get a m ore broad,the AdS4 � so(3;2) � sp(4)

sym m etry as a sym m etry ofthe system . W ith respect to the ten so(3;2) generators,which are

certain linear com binations ofthe quadratic quantities LaLb,a = 1;:::;4,La = (J
+

i ;J
�

j ),the

integralsJ �

i
form a M ajorana spinor[22,23]. From the pointofview ofthe so(3;2)algebra,the

Ham iltonian H and theangularm om entum J oftheexoticanisotropicharm onicoscillatorarejust

linearly independentcom binationsofthe one ofspatialrotation generatorsin an abstract(3+ 2)D

space-tim e,and ofthe generatorofrotationsin the plane ofthe two tim e-like coordinatesin that

space-tim e,see[23].W enoticeherethatthesystem (2.2)can berelated to thegauge�xed version

oftheSp(4)gauge invariantparticle m echanicsm odel[24].
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To conclude,sincetherearesom eindicationson thepossiblecloserelation oftheENH particle

to the physics ofthe BTZ black hole [13],it would be interesting to clarify whether the exotic

anisotropic harm onic oscillator,and the non-com m utative Landau problem asitsparticular case,

could berelated to the3D gravity physics.A closerelation between theusualLandau problem and

a fam ily ofG �odel-type solutionsin M -theory and 3+ 1 G eneralRelativity waspointed outrecently

in [25,26].
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