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A bstract

W e Investigate the planar anisotropic ham onic oscillator w ith explicit rotational sym m etry
asa particlem odelw ith non-com m utative coordinates. Tt lncludes the exotic N ew ton-H ooke par—
ticle and the non-com m utative Landau problem as special, isotropic and m axin ally anisotropic,
cases. The systam is described by the sam e (2+ 1)-din ensionalexotic N ew ton-H ooke sym m etry
as In the isotropic case, and develops three di erent phases depending on the values of the two
central charges. T he special cases of the exotic N ew ton-H ooke particle and non-com m utative
Landau problem are shown to be characterized by additional, so(3) or so(2;1) Lie symm etry,
which re ects their peculiar spectral properties.

1 Introduction

C lassicaland quantum theories in 2+ 1 dim ensions possess various exotic properties. T hese include,
in particular, a possibility for existence of particles w ith fractional spin and statistics { anyons.
Another peculiar property is an equivalence of a classical (2+ 1)-din ensional pure gravity to a
C hem-Sin ons gauge theory.

In a special nontelativistic lin it, that is an Tnonu-W igner contraction, (2+ 1)D Poincare sym —
m etry of a free anyon theory is reduced to an exotic G alilei symm etry w ith two central charges
,2,3,/4,5,6,7,/8]. A sin ilar lin it applied to the AdSs, that is an asym ptotic sym m etry of the
BT Z black hole solution of the 3D pure gravity [10], produces an exotic N ew ton-H ooke (ENH ) sym —
m etry with two central charges [111,[12,[13]]. Both exotic, G alilei and N ew ton-H ooke, sym m etries
can be realized as symm etries of a particle on a non-com m utative plane. T he latter symm etry is
transform ed into the form er one in a at lin it. The two—old central extensions of the G alilei and
N ew ton-H ooke sym m etries are possible only in 2+ 1 dim ensjonﬂ.

Like the BTZ black hole solution [10], a particle system with (2+ 1)D exotic N ew ton-H ooke
symm etry displays three di erent phases in dependence on the values of the m odel param eters
[13]]. O n the other hand, its reduced phase space description reveals a sym plectic structure sin iar
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to that of Landau problem in the non-com m utative plane [5,114,115]. T he noncom m utative Lan—
dau problem (NLP) also develops three phases, the sub—and super<ritical ones, separated by a
critical, quantum Hall e ect phase [15]. T herefore, these sin ilarities indicate on a possble close
relation between the (2+ 1)D exotic New ton-H ooke symm etry and the non-com m utative Landau
problem . T he purpose of this article is to study in detail this relation by m eans of a planar exotic
anisotropic ham onic oscillator w ith explicit spatial rotation symm etry as a particle m odel w ith
non-com m utative coordinates.

The m odel of the anisotropic ham onic oscillator we propose [{Z.2) below ], includes the ex—
otic N ew ton-H ooke particle and the non-com m utative Landau problem as special, isotropic and
m axin ally anisotropic, cases. W e shaw that what distinguishes the exotic N ew ton-H ooke particle
and non-com m utative Landau problem as special cases, is a presence of the additional, so(3) or
so(2;1) Lie symm etry. In a generic case of com m ensurable frequencies, the exotic anisotropic har-
m onic oscillator is characterized, instead, by a nonlnear deform ation of the indicated additional
Lie symm etry. L ke the exotic N ew ton-H ooke particle and non-com m utative Landau problam , the
anisotropic oscillator system develops the subcritical and supercritical phases, separated by a criti-
calphase. T he phase isde ned by the values of the tw o central charges of the exotic N ew ton-H ooke
algebra.

T he paper is organized as follows. In Section 2 we Introduce a planar anisotropic harm onic
oscillator w ith explicit rotational sym m etry as a particle m odelw ith non-com m utative coordinates,
and establish its relation with the non-comm utative Landau problem . In Section 3 we discuss
the chiral form of the exotic N ew ton-H ooke symm etry of the system , and analyze its additional
sym m etries, w hich depend on the concrete values of them odel param eters. In Section 4 we analyze
the exotic N ew ton-H ooke sym m etry in the non-chiral, spacetin e picture. Section 5 is devoted to
the discussion and concluding rem arks.

2 Planar anisotropic hamm onic oscillator and non-com m utative
Landau problem

A canonical Lagrangian of one din ensionalham onic oscillator ofm assm and frequency ! is given
by

2
Lcanzz 15%5X 5 Exi ; (21)

wherem = I'rR,!'= R ',and isa din ensionless param eter. Variable X 1 can be denti ed

as the coordinate of one din ensional particle, and then X , is proportional to its m om entum .

Sym plectic structure, £fX ;X sg = 1 ij;and Lagrangian (2.]]) possess a two din ensionalphase space

rotational sym m etry. Taking a sum ofn copies of (2.1l) w ith independent param eters ‘sand s,

we obtain a generalized systeam ofn non-interacting harm onic oscillators w ith di erent frequencies.
Let us consider the case n = 2, and take the canonical Lagrangian in the form

+ + < + + +2 2
L+ = 7 lJX—lXj + ?Xl 7 le—lXj + ?Xl (2.2)
W e suppose thatR > 0 and that can take valies of any sign. For them om ent we do not assum e
any restrictions for the param eters . The dynam ics of (Z.2)) is given by
Xy !l Xy =02 ! = R Y (2.3)

w hile its sym plectic structure is

fX{iXig= — i  £X;iX5;9=— i £X ;X ;9= 0: (24)

+



In the chosen specialcasen = 2,a phase space Index ican be reinterpreted asa spatial Index of the
(2+ 1)-din ensional space-tin e. W ith such reinterpretation, Lagrangian (2.2) as well as equations of
m otion (2.3) and sym plectic structure (2.4) possess the explicit spatial SO (2) rotation symm etry.
T his corresponds to the diagonal part of the cbvious chiral rotation symm etry SO (2) SO (2) of
(22)). The nondiagonal part is denti ed with the tim e translation symm etry, see Egs. (3.9) and
(3.I0) below .

As a result, system (22) provides us with a rotational invariant description of the planar
anisotropic ham onic oscillator system .

At this point we would like to clarify under which conditions this planar anisotropic oscillator
can be interpreted as a two din ensional particke system w ith coordinate x; and velocity v; related
by a usualdynam ics equation

Xi= Vi: (2.5)

In accordance w ith (2.3), for such a particle system the variablesX [ and X ; should have a sense
of nom al, or chiralm odes.

To thisain ,we rstnote that the transform ation ! , ! ,Xi+ $ X, doesnot
change equations of m otion and the Lagrangian, and it is su cient to assum e that ( , + ) 0.
I (4 + ) = 0, the two chiral m odes have exactly the sam e evolution. This case should be

excluded since it does not allow us to introduce x; and v; related by (2.5). Taking also Into account
that appear only in the com bination =R , w ithout loss of generality we can put

()= cos (cos sh ); —< < —=: (26)

N
N

W ith the nomm alization chosen in dz__ﬁl),wehav£0< ( . + )y land 1 ( . y 1.
Now we can introduce the coordinate and velocity of the two din ensional particle system ,

Xi = X4 R ijvj; (2-7)
- ' ; - ! ' 28
Xi—TXi + X5 Vi—ﬁij X5 + Xy (2.8)

w hich satisfy dynam ics relation (Z.3). In a generic case, in correspondence w ith (2.4), the coordinate
x; describes a non-com m utative plane,

£ ! . (2.9)
Xi;X+g = it .
SO R A
T he com ponents of the coordnate vector x; are comm utative only when , = .Aswe chall see,
only In this case the G alilean boosts m utually com m ute. O ther brackets are
. 3 1 M . . 3 1 B
fxi;vig = 22 .+ 2 iji fvijvig = R2( .+ 2 i (2.10)
w here
M =R (, + L) B= . ° 2. (2.11)
Sym plectic twoform corresponding to {2.9)) and (2.10) has a sin ple structure,
1, 1
=M dv; " dx;+ ER ( 4 ) 15dvi ~ dvy + EB 1dx; © dxy: (212)
2 In what Dllows it will be m ore convenient to work, however, in tem s of , Inplying the oneparam etric

representation (2.4)).



In tem s of the particle coordinate x;, the anisotropy reveals itself in the coupled dynam ics of
the com ponents x1 and xo,

Xi+ ('+ ! )1]>&]+ |+| X4i= O; (2.13)

where ! arede ned in (2.3). This should be com pared w ith the second order equations for the
chiralm odes, X ; + ! 2X ; = 0. Thedynam icsof x; and x; decouples only in the isotropic ( = 0)
case

+ = = 1: (2.14)

In tem s of variables x; and vy, Lagrangian (2.2) takes, up to a total derivative, a non-chiral
form

. , N R? B
L=M xivy Rz Kot ( +) s XV T gViYy o Xy (2.15)
whereN =R ( , , + ). Note thatM and N have units ofm ass,while B doesofam agnetic
ed. The termm  ;5vivy, w ith coe cient proportionalto (. ) in (2.19) is responsible for the

coordinate non-com m utativity (2.9). Physically it describes a m agnetic like coupling for velocities.
The term s x3v; and  35Xix54, with coe cients M and %B , correspond to the nontrivial brackets
between x; and v;, and to the velocity non-com m utativity, see the rst and second relations in
(2.10).

T he equations of m otion obtained by variation of (Z.I9) in x; and v;, are, respectively,

M v+t Rz %t T i Bxs+ ( +) o+ Vy); (2.16)
RZ(, ) v+ ;2 xi = M x5 Nvy): (2.17)
If , = ,and hence, fx;;x59 = 0, (ZI7) takes the form (Z5), that is an algebraic equation

for vi. In this case v; and v, becom e auxiliary variables and can be elim inated by their equations
of motion from (Z.18]). As a result, (Z.19) tums into a regular, second order Lagrangian L (x;x),
that describes a usual Landau problem in the presence of additional isotropic ham onic potential
term .

It is necessary to note that though for , 6 Eq. (2.9) also appears as a consequence of
the system of equations (2.16) and (2.17), it is not produced by the variation of Lagrangian in v;
itself. Ifin this case we try to substitute v;, using (2.9), in Lagrangian (2.19), we would get a higher
derivative, nonequivalent Lagrangian, that generates the equations of m otion di erent from (2.13).

In the isotropic case (2.14]), systam (2.19]) is reduced to the exotic N ew ton-H ooke particle, w hich
was constructed In [13] by the nonlinear realization m ethod [16]] accom m odated to the spacetin e
sym m etries, see for exam ple [17].

Let us show now that the case of the m axin al anisotropy,

=" W= 1; wv=0; "=+; ; (218)

corresponds to the non-com m utative Landau problem described by the Ham iltonian

1 2
H = %Pi; (2.19)

sym plectic structure

1 B
XX 49 = T i £X;Pig= L fPiiP 49 = T i (220)



and equations of m otion

1 B
X3= —Py; By= — 4Py (2.21)
m m
Here B ismagnetic ed, = B,m = m (1 ) plays the role of the e ective m ass, while

is a param eter, which at B = 0 characterizes a non-com m utativity of the coordinates and of the
G alilean boosts of a free exotic particle [§,[19]. Lagrangian corresponding to (2.19) and (2.20) is
given by

1
ijP j_Pj‘ + EB in j_)(j‘ : (2 .22)

1, 1
Lyip = PiXy EPi-’_E

Com paring (2.18)) and (2.22)), we nd that in m axin ally anisotropic case (2.18) the form er
system reduces to the latter one under the follow Ing correspondence between the variables and
param eters:

xi= Xy; vi= —Py; (2.23)
m
= B @A B)F n= B B); R=1!'; (2.24)
B
"semB( 1) L= — (2.25)
Having this correspondence, and using transform ation (2.8), we cbtain the chiral form of La-
grangian (2.22) for thecase , = 0, =1("= 1),
B B (1 ) 2
Lyte = 5 9% X —5— g Xg X0 (2.26)
w hich generates equations of m otion
X5 =0; X3 !Xy o=0: 2.27)
In termm s of the variables X ; and P ;, the chiral (nom al) m odes are given by
N 1 1
Xi = Xi+ Wjiij; Xi = Wjijpj: (2.28)

The chiral m ode X I is an integral of m otion not depending explicitly on time (cf. the chiral
integrals of m otion (3.2) in a generic case). It can be denti ed as a guiding center coordinate.
Thecase , =1, = 0 ("= +1) can be ocbtained via obvious changes in correspondence
w ith relations (2.24)), (2.25). In this case the chiralm ode X ; plays the rol of the guiding center
coordinate, while XI has the sam e evolution law as the chiralmode X ; in the previous case

"= 1.
The atlim it
R! 1; (. )! 0; R ,(4+ )! m; R, ) m?; (2.29)

applied to (Z.19]), produces a free exotic particle,

m? 1§ViVy; (2.30)

P
N =

that is described by the equations of motion x; = vi, vy = 0, and carries the two-fold centrally
extended G alilei symm etry [B]. If, as in generic case (2.19), we try to substitute v; using the
equation v; = x; produced by vardation of (230) in x;, we would get a nonequivalent higher
derivative m odel [4]w ith additional, spin degrees of freedom , see [7,[81.



3 Symm etries: chiral picture

To dentify the sym m etries of our systam ,we proceed from the chiralLagrangian (Z2)). W e integrate
equations (2.3),

X i (t) = ij (t)Xj (0); i (t) = ij cos( =R) ij sin ( =R ); (3.1)
and construct the integrals of m otion,
J, R lej (0)=R ij jk( t)Xk ; (32)
2 2

whereX; = X, (f). ThequantitiesJ, are the integrals ofm otion that include explicit dependence

on tim e and satisfy the equation ditJi = @%Ji + £J;, Hg= 0,where
H = L X2y X 2 (34)

SR TOTTHE i '

plays the role of the Ham iltonian. Unlke the linear .n X ; integrals (3.2), the quadratic integrals
(33) do not include explicit dependence on tim e.
Integrals (3.2) and (3.3) generate the algebra

£37;379= yJ;;  £3{:379=12" y; (35)
£3 3y9= 5J5 0 £3,33,9=2 i; (36)
wherez = R? have a sense of central charges, and all other brackets are equal to zero. T his

is a chiral form of the (2+ 1)D exotic New ton-H ooke sym m etry presented in the form of a direct
sum ofthetwo (1+ 1)D centrally extended N ew ton-H ooke algebras. T he quadratic C asin irs of this
algebra are

c =J,%+2 J : (3.7)

Let us stress that the exotic N ew ton-H ooke algebra (3.9), (3.8) in a generic case (2.8) has exactly
the sam e form as in the particular isotropic case (2.14). For the latter case it was obtained in [13]
by a contraction of the AdSs3 algebra, with identi cation of the param eter R as the AdS3 radius.
This chiral form of the ENH symm etry is rooted in the algebra isom orphian

AdSs so(2;2) so(2;1) so(2;1) AdS, AdS;:
Integrals (3.2) and (3.3) generate the symm etry transform ations of the chiral coordjnateg,

fX7;379= R L) X 535 L (D); (3.8)

X ;T3 g= ijxjf; X530 g= X (39)

g= R

Due to the presence of the explicit dependence on tin e of the chiral integrals (32), symm etry
transfom ations (3.8) are also tin edependent. Under them , Lagrangian (2.J) is quasidnvariant.

The Ham iltonian and the angular m om entum are identi ed as linear com binations of the
quadratic integrals, which generate the tin e translations and space rotations,

H=— ,J° J ; J=J"+J : (310)

*W e do not indicate explicitly in nitesim al transform ation param eters.



Thisform ofH and J isbehind the anisotropy of dynam ics and rotational sym m etry of the system
22).

For the NLP case (2.18)), one of the chiral generators, J ©* orJ ,disappears from the Ham il-
tonian. A s a result, the corresponding chiral m ode has a trivial dynam ics of the guiding center
coordinate, Xt = 0, orX5 = 0,seeEq. (227), and one of the two vectors (3.2) transfom s into
an integral of m otion that does not depend explicitly on tin e.

N otice that in theexcluded case , = , the tim e translation ,H , and rotation, J , generators
woul be (up to am ultiplicative constant) the sam e, that prevents the introduction of the coordinate
x; and velocity v; related by Eqg. (2.9).

Let usdiscuss brie y symm etries in the quantum case.
W e de ne the operators

r r
a = jz*jx;nxl*;a*:ay; b = jzjlnxz;]o*:by; (311)
which obey the comm utation relations @ ;a* ]= ,, b ;b ]= and @ ;b ]= 0,where =
sgn( ). For , > 0 ( , < 0) and > 0 ( < 0), the operators a* (@ )and b (b ) are

denti ed as creation oscillator operators. W ith the sym m etrized ordering prescription, (3.3) and
(3.I0) give the Ham iltonian and the angular m om entum operators in a form

1
RH =, ,aa + b'b +E(+ . ); (3.12)

J = + + 1 .
= ,a a bb+5(+ ). (3.13)

From here it follow s that in the generic anisotropic case, like In particular cases of the ENH particle
137 and the NLP [19], our systam can exhibit three di erent kinds of behavior in dependence on
the values of the param eters

Since the eigenvalues of the num ber operators take non-negative Integer values, n,,ny = 0;1;:::,
we nd thatwhen , = ,J can take values of both signs. Its spectrum is unbounded. This
case we call a sukcritical phase. The spectrum of H in this phase is bounded from below (when

4 > 0), or from above (for ; ; < 0).

W hen the signsof , and are opposite, the gpectrum of J is bounded from one side. This
is a supercritical phase. In this phase the spectrum ofH is unbounded, except the NLP case. The
case of the NLP is special: its energy is bounded In both, sub—and super<critical phases, because
one of the chiralm odes has zero frequency, and does not contribute to the energy.

Yet, another phase corresponds to the case when one of the param eters , or takes zero
value. In such a phase one of them odes disappears from Lagrangian (taking a role of a pure gauge
degree of freedom ), and the system transform s Into a one-dim ensional oscillator, whose sym m etry
isdescribed by the (1+ 1)D centrally extended N ew ton-H ooke algebra [13]. T his is a critical phase
that separates tw o other phases, and is characterized by the zero value of one of the central charges,
Z*,orZ . In the NLP it corresponds to the quantum Hall e ect phase. W e note here that in
the critical phase, n tum, two di erent cases should be distinguished. W hen, say, = 0 and

+ = 1, the Ham iltonian is nontrivial and generates a rotation of the ram aining chiralm ode X I ,
that coincides (up to a gauge shift) with x;. W hen = 0and , = 0,Ham iltonian is equalto

zero, and the chiralm ode has a trivialdynam ics, X | (t) = X | (0) [for a discussion of the critical

1
phase in the NLP, see ref. [I5]]. In both cases, , = land . = 0,x; and v; satisfy relation (2.3),
but they are linearly dependent variables in correspondence w ith decreasing of the num ber of the

physical degrees of freedom .



From the point of view of the dynam ics and symm etries, as in the case of the usual planar
anisotropic ham onic oscillator given by the second order Lagrangian, it is also necessary to distin-—
guish special cases. As it ©llows from (2.8) and (3.), the particle trafctory x;(t) is closed only
when = isrational. Behind this property, there is additional sym m etry.

In the isotropic case (2.14)), the ENH particle system is characterized by additional sym m etry
associated w ith the ntegralsa®*b and a b" ,which, Ikke H and J, do not include explicit depen—
dence on the tin e. In tem s of the chiralm odes, these are linear com binations of the H erm itian
operators (X X, + X, X, )and (X, X, X;X,).In sub-and super-critical phases, they to-
gether w ith angularm om entum J generate the so(3) and so(2;1) sym m etries, w hich are responsble
fora nite and in nite degeneracy of the energy levels. T his additional sym m etry was discussed in
detail in [13].

In the NLP, analogously, we have additional so(2;1) symm etry. If, say, + = O, = 1,and
+ > 0, the so(2;1) generators are given by the quadratic Integrals Iy = %fa+ ;a g, I = %a" 2
and I = %a 2 ,

o;I 1= I ; I ;I 1= 2Io: (3.14)

A 1l the energy levels are in nitely degenerate.
In the anisotropic casewith = = p=g,p;q9= 1;2;:::,p é g, the frequencies of the chiral
m odes are com m ensurable, and the system has additional ntegrals ofm otion 3, = (@* )2 (b )® and
j = (@ )A®E °. In this case the energy levels have nite, or in nite additional degeneracy, in

dependence on whether we have a sub—, or super-critical phase. T hese integrals together w ith the
angularm om entum generate a nonlinear (polynom ial) deform ation of the so(3), or so(2;1) algebra,

J;3 1= @G+ p)j ; (315)
bal YP Y YP
0r 73 1= 'a + (1 k)+1 bBb+“ ] 'a +k;+] b+ @ “) 1; (316)
k=1 =1 k=1 =1
w here
. N 1 . 1
aa =———RH+ J) = bb = — RH cJ) =5 (317)
(4 + ) 2 (4 + ) 2

In which theH am iltonian playsa role ofthe centralelement, H ;J]= [H ;j ]= 0. Thisiscom plktely
analogous to the very well know n property of a usual (non-exotic) planar anisotropic oscillator w ith
com m ensurable frequencies, see [18,119,120,/21].

4 Exotic N ew ton-H ooke sym m etry: space-tim e picture

Here we nd the symm etry transform ations in temm s of the variables x;, and v; of the (2+ 1)D
particle system , and their corresponding generators. In particular, we dentify the integrals, which
in a at lim it are transform ed into com m uting translations and non-com m uting boosts generators,
and nd the algebra form ed by them together with H and J.

To dentify the translations and boosts generators, we note that because of the vector nature,
they have to be linear com binations of the integrals J, . T he transform ations produced by J; , In
correspondence w ith relations (3.8) and (2.8), are
) 1

fx3;05,9= R( 4+ + ()5 fvi;d, 9= (++

. ) T s (D) (41)

where (t) isde ned i (3). Then, in order to recover the G alilan transform ations in the at
Im it 229), £x4;P49 = i5ifxiK 9=yt fvi;Pyg= 0;fvi;K jg=  i;weobtain
1 + +
Pi:E +Ji Ji H Ki= i Jj+Jj : (42)



N ote that the relation {4.2]) between P;,K ; and J; hasa structure sin ilar to that between H , J
and J , see (3.I0). The symm etry transform ations generated by P; and K ; can be com puted by
m eans of (4.1]) and (4.7).

In correspondence w ith (2.9) and (2.13)), the tin e translations sym m etry transform ations take

here a form
+

fxi;Hg= vy; fvijHg= Rz X = 15V ; (4.3)
where, In correspondence w ith (2.19),
M, N 5
H= Exi + ( 4 ) i§Xivy  t+ ?Vi: (44)

T he second term in the transform ation law for the velocity is proportionalto the rotation sym m etry
transform ation fv;;Jg = 1§V, and disappears In the isotropic case. It is worth to note that the
structure of the angular m om entum ,
_B o 1., 2 e
J = in+ 2R ( 4+ Wi+ M 5xvy; (45)
reproduces the structure of the sym plectic two-form (2.17).
The sym m etry algebra generated by H ,J,P; and K ; is

1
fKi/K49= 7 4; fPijPyg= RZ R (4 )2+« 7 45 fK4Psg= 7 457 (46)
fK i;Jg= inj; fPi;Jg= j_ij; fH ;Jg= O; (4.7)
FK Hge= Pyt ) g, fPHg= ~_ K (4.8)
il g i R ijh gr il g R2 ir B
w here
Z=(.,2 Z")R =M ; = @"+2 )=R?(, ); (49)

and M isde ned in (2.11]). C asin irs (3.7) take here an equivalent form

c = Pi ? inj : 2 7 ?ZV H ?J H (4.10)

W hen , = , the central charge 7" takes zero value, and the G alilan boosts comm ute. It is
exactly the sam e case when the coordinates of the particle are com m utative, see (2.9)). A nalogously,
the com m utativity of the boosts and translations takes place when another central charge disap-
pears,Z2 = M = 0. In this case the coordinate x; and velocity v; com m ute, see the rst relation in
210).

For the particular case (2.18) of the non-com m utative Landau problem the explicit form of
the algebra generated by H , J, P; and K ; can be obtained from (4.8){{4.10) by m eans of the
correspondence relations (2.23){(2Z29). W e only note that the translation generator is reduced
here for the conserved chiral m ode denti ed with the guiding center coordinate, see (42). It
generates usual tin e-independent translations, x = &, v = 0,under which Lagrangian (2.22)
is quasi-nvariant.

In the generic case, the generators H ,J,P; and K ;, and the central charges Z and 7" are linear
com binations of the chiral integrals J  and J; and centralcharges Z* and Zz , see Egs. (3.10),
(42) and (49). Hence, there exists a linear relation between the space-tin e, non—chiral sym m etry
generators of the exotic anisotropic hamm onic oscillator characterized by the param eters (),



and the space-tin e generators of the exotic New ton-H ooke symm etry which corresponds to the
symm etric case (2.14]). Explicitly, we have

RH A, A RH ) @11)
J + O l J + = :1, .
RP A, + A 4 RPy
* = 79 13 ’ ; (4.12)
Kl + 7 O ij Kj + = =1
R7Z A, A R7Z
- . 413
7 0 1 7 ! ( )

whereA = % ( 4+ ):

T hese relations m ean that the general case of the exotic anisotropic ham onic oscillator, includ—
ing the NLP system as a particular case, is described, in fact, by the sam e non-chiral, spacetin e
form of the (2+ 1)D exotic N ew ton-H ooke sym m etry, as the exotic isotropic oscillator does. On
the other hand, w ith m aking use of {4.11]){ (4.13), the generators and central charges of the generic
anisotropic case can also be presented as linear com binations of the generators and central charges

of the non-com m utative Landau problem .

5 D iscussion and concluding rem arks

W e have showed that the planar exotic anisotropic ham onic oscillator is characterized by exactly
the sam e chiral form of the (2+ 1)D exotic N ew ton-H ooke symm etry algebra (3.3), (3.4) as in the
isotropic case. The anisotropy reveals itself only In the symm etry transfom ations law , see Egs.
(38) and (31), that is associated with the anisotropy of the Ham iltonian structure (3.10). In
the spacetin e picture the anisotropy reveals itself both in the symm etry transform ations, and
In the structure of the sym m etry algebra. H owever, unlke the usual planar anisotropic ham onic
oscillator given by the second order Lagrangian , anisotropy does not violate the rotation symm etry.
Tt only m ixes the tin e translations w ith the rotations, and the space translations w ith the boosts
transform ations, see Egs. 411, (£12). The presence of the two independent param eters , and

is behind the non-com m utativity nature of the particle coordinate (Z.9) in a generic case of the
m odel.

T he translations, P;, and the boosts, K ;, generators of the exotic N ew ton-H ooke sym m etry are
the linear com binations of the rst order In the chiral variables X ; Integrals (3.2), that include
explicit dependence on tine. On the contrary, the H and J are the linear com binations of the
explicitly tin e-independent, quadratic in (3.2), integrals (33). The additional symm etries of the
isotropic and the NLP special cases, discussed at the end of Section 3, are also generated by
the explicitly tim e-independent integrals, which are quadratic in the integrals J; . If we supply
these four explicitly tin e-independent quadratic integrals w ith other six, explicitly tin edependent
quadratic In J, Integrals of m otion, we would get a m ore broad, the AdSy so(3;2) sp(4)
symm etry as a symm etry of the systam . W ith respect to the ten so(3;2) generators, which are
certain linear com binations of the quadratic quantities L Ly, a = 1;:::;4, L, = (Ji+ ;Jj ), the
ntegrals J; form a M aprana spinor 22,123]. From the point of view of the so(3;2) algebra, the
Ham iltonian H and the angularm om entum J of the exotic anisotropic ham onic oscillator are jast
linearly independent com binations of the one of spatial rotation generators in an abstract (3+ 2)D
space-tin e, and of the generator of rotations in the plane of the two tin e-lke coordinates in that
space-tin e, see 23]. W e notice here that the systam (2.2) can be related to the gauge xed version
of the Sp(4) gauge Invariant particle m echanics m odel [24/].
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To conclude, since there are som e Indications on the possible close relation of the ENH particle
to the physics of the BT Z black hole [13], it would be interesting to clarify whether the exotic
anisotropic hamm onic oscillator, and the non-com m utative Landau problem as its particular case,
could be related to the 3D gravity physics. A close relation between the usuallLandau problem and
a fam ily of G odeltype solutions in M —theory and 3+ 1 G eneral R elativity was pointed out recently
n [25,126].
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