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1. Introduction

In describing the eld theoretic representation of a supersym m etry algebra, one usually speci es
those elds that represent physical states only. It is known that other elds can be added
to the supem ultiplet that do not describe physical states but on which nevertheless the full
supersym m etry algebra can be realized (for an early discussion of such potentials, see [1]). In
this paper we w ill focus on the follow ing two classes of such elds.
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The rst class consists of (D 1){form potentials n D din ensions, which we will call
\deform ation potentials" for the follow Ing reason. T he equations of m otion of these deform a—
tion potentials can be solved in tem s of integration constants that describe deform ations of
the supersym m etric theory. T he forem ost exam ple of a deform ation potential is the nine{fom
potential of type IIA string theory that couples to the D 8{brane [2{4]. The integration con—
stant corresponding to this nine{form potential is the m asslike param eter m of m assive ITIA
supergravity [5]. The relation between the two is given by

d?F(lO)(A(9)): 0 ) ?F(lO)(A(9)) / m : (1.1)

T he second clss of elds that do not describe physical states consists of D {form potentials
in D dim ensions, which we w i1l call \top{form s potentials", or top-form s for short. The prin e
exam ple of a top{form is the Ram ond {R am ond ten {form that couples to the D 9{brane of type
IIB string theory [2]. It tums out that this ten{fomm is part of a quadruplet of ten—form s
transform Ing according to the 4 representation of the SL (2;R) duality group, whilke also a
doublet 2 of ten—form s can be added in IIB supergravity [6].

It has been known for a num ber of years that one can reproduce the physical degrees of
freedom ofm axin alsupergravity from thevery extended K ac{M oody algebra E 17 [7{9]. Further—
m ore, this K ac{M oody algebra contains generators corresponding to the deform ation potential
of ITA [9,10] and the top{form potentials of IIB [9,11,12]. R ecently, the representations under
the duality group of the deform ation and top{form potentials ofallm axin al supergravities have
been calculated [13,14]. Ram arkably, the E 117 results on deform ation potentials are In agreem ent
w ith those of [15{24]where m axin al gauged supergravities are classi ed w ithin a supergravity
approach’. In particular, this agreem ent show s that the com ponents of the em bedding ten—
sor [15,16,18] can be denti ed w ith the m asslike deform ation param eters of the supergravity
theory. Therefore, the el strength F ) of the deform ation potential A ; ;, is proportional
to the em bedding tensor

Foy)yBApy [/ (12)

This relation can be viewed as a duality relation, lke the ones between potentials and dual
potentials.

It is natural to extend the analysis of [13,14] to other cases. In this paper we will do
this for the class of half{m axin al supergravity theories. T he K ac{M oody analysis for this case
show s a num ber of new features. First of all, one can add m atter vector m ultiplets and consider
m atter{coupled supergravity [9,27]. Our results on the deform ation and top{form potentials
w i1l depend on the num ber of vector m ultiplets. Another new feature is that one encounters
duality groups that are notm axin al non-com pact. O nly a lin ited num ber of vector m ultiplets
Jlead to a m axin al non{com pact duality group. F inally, the duality groups are not necessarily
sim ply Jaced, and hence we w illhave to address the issue of non-sym m etric C artan m atrices and
roots of di erent lengths. For m ore details on the latter, see appendix El

'an exception to this correspondence are the gauging of the “rom bone’ or scale sym m etry ofthe eld equations
and B ianchiidentities [25], asdiscussed in eg. [23,24,26], for which no corresponding deform ation potentials have
been denti ed in E 11 .
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An additionalm otivation to study the case of half{m axin al supergravities is that for D <
10, eg. D = 4 orD = 6, the corresponding m attercoupled supergravities are related to
com pacti cations of string theory and M -theory w ith background uxes. The nonzero uxes
lead to the additionalm ass param eters. Egpecially the D = 6 case is Interesting due to the
existence of a chiral and a non-chiral theory. These two theories are related via S—and T -
dualities between Type I string theory on T? and Type II string theory on K 3. The mass
param eters of these theories have been investigated [28,29] and the m assive dualities betw een
them have been studied [30,31].

In this paper we w ill pay particular attention to the bosonic algebra that the di erent p{
form K ac{M oody generatorsw ith p > 0 satisfy am ongst each other. W ew illcall this algebra the
\p{fom algebra". T his algebra, w ithout the deform ation and top-form generators, also occurs
n [32,33] as the bosonic gauge algebra of supergravity. The p{form potentials corresponding
to these generators, together w ith gravity and the scalar elds, constitute the part of the very
extended K ac{M oody spectrum that does not require the introduction of the dualgraviton. W e
w ill show how the possible deform ation and top{form potentials, w ith which the p{form algebra
can be extended, follow from the K ac{M oody algebra. In particular, we w ill show that for the
case of half{m axin al supergravity the deform ation potentials of the p{form algebra, and hence
also the em bedding tensor in generic din ensions, can be written in tem s of the fiindam ental
and three-form representation of the duality group.

O ne encounters the follow Ing subtlety in establishing the connection between the p{fom
algebra and supergravity : whereas for each physical state the K ac{M oody algebra gives rise to
both the potential and the dualpotential this isnot the case for the deform ation potentials. T he
K ac{M oody algebra does give rise to the deform ation potentials but not to the dualem bedding
tensor. Indeed the duality relation ) does not ollow from the K ac{M oody approach. W e
know from supergravity that the inclusion of a m ass param eter or an em bedding tensor leads to
deform ations of the transform ation rules. W e w ill show that in speci ¢ cases these deform ations
cannot be captured by the p{form algebra alone but that, instead, one is forced to introduce
further m ixed sym m etry generators w hose Interpretation has yet to be clari &d.

This paper is organized as follows. In section E we brie y summ arize the K ac{M oody
approach to supergravity. In section E we Introduce the p{form algebra and uncover interesting
properties of the deform ation and top{form potentials In the context of this algebra. W e will
use the case of m axim al supergravity to elucidate a few of these general properties. In the
next section we apply the K ac{M oody approach to the case of half{m axin al supergravity. In
section E we w il show that the addition of the em bedding tensor leads to the introduction of
additional sym m etry generators to obtain closure. Finally, in the conclusions we com m ent on
our results. W e have included four appendices. Z—\ppendjx@ shortly sum m arizes the term inology
we Introduce in this paper. Appendix Bl contains a brief summ ary of the physical degrees of
freedom and duality groups of m attercoupled half{m axin al supergravity. A ppendix El covers
som e group { theoretical details conceming the K ac{M oody algebras that are non{sim ply laced.
Finally, appendix D] contains lists of tables w ith the relevant low level results of the spectrum
of the relevant K ac{M oody algebra.
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2. The K ac{M oody approach to supergravity

T he spectrum of physical states of the di erent m axin al supergravity theories can be obtained
from the very extended K acM oody algebra E 1 [7{9]. This has been extended to the set of
all possible deform ation and top{form potentials in [13,14]. A sin ilar analysis could be done
for By [34{36]except for the top{form potentials. In addition, non{m axin al supergravity and
the associated very extended K ac{M oody algebras have been discussed in [9,27,37]. In the
present paper we w ill apply the \K ac{M oody approach" to extract the deform ation and top({
form potentials of half{m axin al supergravity. In general this approach breaks down into four
Steps:

1. Reduce to D = 3 over a torus and detem ine the G=K (G ) scalar coset sigm a m odel.
2. Take thevery extension G***=K (G**" ).
3. 0xdize back to 3 D Dmax-

4. Read o the spectrum by m eans of a level decom position.

A s steps 2, 3,and 4 can be autom atically carried out on the com puter [38], this approach is very
sin ple to carry out in practice. W e willnow take a close look at each of these steps.

The 1rststep is to determ ine the G =K (G ) scalar coset sigm a m odel in three din ensions for
the toroidally reduced supergravity in question, where K (G ) is the m axim al com pact subgroup
of G . If there is no such a sigm a m odel, which often is the case for theories w ith less than 16
supercharges, the K ac{M oody approach com es to a standstill. But when the coset does exist, as
is the case form axin aland half{m axin al supergravity, we can go on and take the very extension
G***=K (G**" ). The rstextension corresponds to the (untw isted) a ne version ofG , which
has been shown to be the symm etry group of various supergravities in D = 2 [39]. Also the
second (over) extension and the third (very) extension are con gctured to be symm etry groups
of m axin al supergravity: the form er has been enployed for a D = 1 coset [34{36] while the
latter has been used for non-linear realisations of the higherdin ensional theory [7{9].

Once G***=K (G**" ) has been constructed, we are in the position to oxidize back to
3 D Dpyax dinensions using group disintegrations. T he vald disintegrations forG*** are
awaysofthetypeGp SL (D ;R),whereGp istheduality group n D din ensionsand SL (D ;R )
refers to the spacetin e sym m etries. Extended D ynkin diagram s are a useful tool to visualize
these group disintegrations: the disintegrations then correspond to ‘disabling’ certain nodes of
the diagram in order to obtain two dispint parts, of which one isthe SL (D ;R ) gravity line and
the other is the Gy duality group. A s an exam ple we give the cases of m axin al supergravityy in
D = 11;10 In gure ﬂ N ote that the duality group G p contains an extra R* factor whenever
there is a second disabled node. T his explains why the duality group of ITA supergravity isR*
and why those of IIB and D = 11 supergravity do not have such a factor.

Them axin um oxidization din ension is determ ined by the largest SL (D  ax ;R ) chain possi-
ble starting from the very extended node In the (extended) D ynkin diagram ofG*** [40,41]. In
our conventions these w ill alw ays start at the right hand side of the extended D ynkin diagram .
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o+

() Egq decom posed asA;1  Ag.

+ 4+ +

Figure 1: The Dynkin diagram s of Eg (a), the very extended Eg (b), and its decom positions cor—
responding to 11D (c), ITA (d) and IIB (e) supergravity. In these decom positions the black nodes are
disabled, the w hite nodes correspond to the gravity line SL (D ;R ) and the gray node in the last diagram
corresponds to the duality group A1 .

The lower lin it on the oxidization dimn ension stem s from the fact that below D = 3 the du-
ality group Gp becom es in nitedin ensional, and there are currently no com puter{based tools
available to analyze these cases.

A fter the group disintegration has been xed, the generators of G ¥ =K (G*** ) can be
analyzed by m eans of a level decom position [34,35]. A level decom position com es down to a
branching of G *** w ith respect to theGp SL (D ;R ) disihtegration. T he disabled nodes then
induce a grading on G*** which willbe ndicated by the socalled levels. W hen G* "% is of
real split form , ie. m axin ally non-com pact, m odding out by the subgroup K (G*** ) in plies
truncating all the negative levels in the representation and generically also m odding out the
scalars at level 0 by the com pact part of the duality group Gp . For clarity we w ill restrict our
discussion to the gplit form s, although w ith som e slight m odi cations everything also holds for
the non—-split cases, as follow s from [42]. Indeed, we have veri ed for various non-split cases that
the com puter calculations give rise to the general results discussed In this paper.

T he spectrum is obtained by associating to each generator a supergravity eld in the sam e
representation. T his leads to the follow Ing elds at each level: At the lowest levels the physical
states of the supergravity we started out w ith appear together w ith their duals’. The duality

relations them selves are not reproduced by the level decom position: in the absence of dynam ics

’M ore precisely: corresponding to any p{form generator we also nd a (D p  2){form . In addition there
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these relations have to be In posed by hand (for a discussion of dynam ics in the context of
E10 and Eq1, see eg. [11,34,36] and [7,8] respectively). At higher levels there are the so-
called \dual" generators, which can be Interpreted as In nitely m any exotic dual copies of the
previously m entioned elds [37,43]. T he rem aining \non-dual" generators do not correspond to
any physicaldegrees of freedom . Am ongst these arethe (D 1){ and D {form potentialswe are
Interested In.

In short, once the relevant G =K (G ) coset in three dim ensions is known, allwe have to do
is consider the di erent decom positions of its very extended D ynkin diagram . T he deform ation
and top{form potentials can then be read o from the spectrum the com puter has calculated.

3. The p{form algebra

In this section we w illconsider the bosonic algebra that thedi erent p{form K ac{M oody genera—
torsw ith p > 0 satisfy am ongst each other. Subsequently it w illbe shown how the sam e algebra
arises In supergravity. In the follow ing two subsections we w ill discuss two classes of special
generators. Frequently, we w ill clarify general features of the algebra by the exam ple of m axi-
m al supergravities. In the next section we w illdiscuss the case of m atter{coupled half{m axin al
supergravities.

3.1 Truncation to p{form s

Tt is convenient to introduce a special algebra, which we call the \p{form algebra". Tt can be
obtained as a truncation from the very extended K ac{M oody algebra in a particular Gp
SL (D ;R ) decom position by deleting all generators except those at positive levels in a purely
antisymm etric SL (D ;R ) tensor representation of rank> 1 P D . Embedded within the
K ac{M oody algebra this is generically not a proper subalgebra (it is not closed), but on its own
it nonetheless is a Lie algebra. W hat one ends up w ith after the truncation is an algebra of
generators represented by com ponents of p{form s that satisfy com m utation relations of the form

m 1 P;B 1 q]: C 1 p 1 q: (3-1)
Suppressing the SL (D ;R ) Indices, we w ill w rite thism ore concisely as
bigl=r: (32)

H ere we have introduced the shorthand notation p,which w illbe used throughout this paper®.
In the above com m utator the ranks of the p{form sadd up: r= p+ g. In other words, the rank
of the third form is equalto the sum of the ranks of the rst and second fomm s.

An In portant property of the p{form algebra is the existence of \fundam ental" p-form s
whose m ultiple com m utators give rise to the whole algebra by using the Jacobi dentity. T hese

isa (D 3;1){form with m ixed symm etries and possbly (D 2){form generators, which are interpreted as the
dualgraviton and dual scalars, respectively.

*0 ne coud also include the p= 0 or scalar generators, which are the generators of the duality group Gp .

‘N ote that p Indicates the com ponents of p{form s and not p{form s them selves. In this way we avoild the
anti{com m utators which are used in [331].
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fundam ental p{fom s correspond to the positive sin ple roots of the disabled nodes in the K ac{
M oody algebra. From the decom posed D ynkin diagram one can thus deduce the num ber and
type of these findam ental p<om s: any disabled node connected to the n® node of the gravity
line (counting from the very extended node) gives rise to a (D n){form . Furthem ore, if the
disabled node in question is also connected to a node of the duality group the (D n){fom
carries a non {trivial representation of the duality group.

In the sin plest case when there is only one disabled node, and thus only one fundam ental
p{fom ,we can schem atically w rite for each p{fom

p;:::;[q{[g;q]]:::}h P (3.3)

‘ tin es

w here q is the rank of the fundam ental form and p= ‘qg. T he num ber of tin es the com m utators
are applied corresponds to the level * at which the pform occurs in the level decom position of
the K ac{M oody algebra. By de nition the fiindam ental generators occur at level one. This is
the structure of eg. 11D supergravity, which only has a fundam ental three{form 3, see gure
E. In addition there is a six—-form 6 , which can be obtained from the 3 by the com m utation
relation

[3;3]1=6": (34)

A ccording to the de nition above the 6{form generator occurs at level ‘ = 2. Note that this
p{fom algebra isde ned in any din ension D . It is only after we in pose dynam ics, ie. duality
relations, that we should restrict to D = 11 In order to m ake contact with D = 11 supergravity.

A nother exam ple m ght further clhrify the above. Consider again the D ynkin diagram of
E 11 and the embedding of an SL (10;R ) graviy line that corresponds to IIB supergravity, see

gure E W e now associate to each generator a supergravity eld. T here are two nodes outside

of the white gravity line. One is the grey node not connected to the gravity line. This node
corresponds to the SL (2;R ) duality symm etry. The other is the black node attached to the
gravity line at the 8th position counted from the right, and hence corresponds to a fundam ental
two—form . Since this node is also connected to the intermal sym m etry node the two—-form is in
a non {trivial representation of SL (2;R ): the IIB theory contains a doublet of NSNS and RR
twoform s. W e denote these two{form s by 2 . Using the sam e notation for the higherrank
form s we have the follow Ing p{form algebra

o + ‘107;

where all SL (2;R ) representations are sym m etric and is the Levi€ vita tensor. T here are
other non-zero com m utators but, due to the Jacobi dentity, they follow from these basic ones
Involving the fundam ental 2 {form generators. T he com m utators @) gpoecify the level ‘ at
which each generator occurs. This level can be read o from these com m utators by counting
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the num ber of tim es the fundam ental generators 2 occur in the multiple com m utator that
expresses the generator in termm s of the fundam ental ones. In this way we obtain that the
generators 4 ;6 ;8 ;10 and 10 occur at kevel ‘= 2;3;4;5 and 5, respectively.

The p{form algebra contains generators corresponding to the follow Ing IIB supergravity

elds: a doublet of two{fom s, a singlet fourform potential, the doublet of sixform potentials
that are dualto the two-om s, a triplet of eight#form potentials that are dualto the scalars® [44]
and, nally, a doublet and quadruplet of ten-form potentials [6].

Tt was shown in [45] that the algebra of bosonic gauge transform ations of I1IB supergravity
can be brought to precisely the form (3.9). This was achieved after m aking a num ber of rede —
nitions of the eldsand gauge param eters, as was also done in the \doubled" form alism of [32].
T he correspondence goes as follow s. T he p{form gauge transform ations of IIB supergravity can
be written as [45]

b
Il

@) @) 7
Ay = @t B @) 7
Ae= ©F @whe 2 ohwi
( RN (36)
Aey= @ ©Pe 2B ) 7
A = + Coa)og Ca )
(10) (10) 8) () )78 '
_ 5 20 2 )
Auny= ant 27 e P e) 2 oBet @B 3 ehw:

Here we use the notation  (yy @ (n1) » ollowing [32]. By de nition each param eter is
closed . In contrast to [45]we have rede ned the gauge param eter of the doublet ten {form poten—
tial such that the gauge transform ations of this potential precisely agree w ith the K ac{M oody
algebra or its truncation to p{form s. This can always be done for top{form transform ations.
N ote that the sam e structure also follow s from a superspace calculation [46].

In order to com pare w ith the p{form algebra we now truncate the bosonic gauge algebra to
a nite{din ensional subalgebra as follow s:

(2n) 1S constant or on1) =X @) (3.7)

w here it isunderstood that the spacetin e coordinatex iscontracted w ith the rstindexof (5.
N ote that this indeed is a consistent truncation due to the fact that the local gauge param eters
2n1) = (n1) (X)alWwaysoccursn the transfom ation rules (@) w ith a derivative acting on
it. Furthem ore, we could have included a constant part n  (,, 1) , but this drops out of the
gauge transform ations for the sam e reason.
T he com m utator algebra corresponding to @ ), for constant , isnow precisely of the form
(3.9) provided we associate to each p{form in ) the gauge transform ation, w ith param eter
(p)r Ofa p{fom potentialin ). Thep{form algebra arisesasa L ie algebra truncation,de ned

5Supersym m etry will In ply a single constraint on the nine{form eld-strengths in order to produce the correct
counting of physical degrees of freedom dual to the scalars [44].
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K ac{M oody algebra | Bosonic gauge algebra

N /

(1 p D){fom C onstant gauge
truncation param eters = @

NS

| p{fom algebra

Figure 2: The p-om algebra as the respective lin its of the K ac{M oody and the bosonic gauge algebra.

by (@), of the bosonic gauge algebra® , see gure 2. The p{fom gauge el transform ations
) can now be viewed as a nonlinear realisation of the p{form algebra (@) 7. Note that the
p{fom gauge eldsnot only transform under their own gauge transform ations but also under
those of the other gauge elds. Consequently, the curvatures of these gauge elds w ill contain
Chem-Sim ons lke temm s.

W e would like to stress that the truncation of the bosonic gauge algebra to a p{form Lie
algebra is only possible in a particular basis of the supergravity theory. In particular, the
gauge transform ations need to be expressed only in term s of the gauge potentials and not their
derivatives. Tt w illnot alw ays be possible to bring the gauge transfom ations of any supergravity
theory to such a form . An exam ple of thisw illbe discussed in section E in the context of gauged
and m assive supergravities.

T he above reasoning can be applied to any very extended K ac{M oody algebra. It provides
a useful truncation to the part of the spectrum that contains all p-form potentials, ncluding the
deform ation and top-fom potentials, which w illbe discussed next.

3.2 D eform ation potentials

W e now wish to discuss som e properties of the deform ation and top—formm potentials in the Iight
of the p{form algebra introduced above. W e rst consider the deform ation potentials. It has
been argued in, eg., [2,4,13,14] that deform ation potentials are in one-to-one correspondence
w ith deform ations of the supergravity theory, such asgaugings orm assive deform ations. Indeed,
theD {fom curvaturesofthe (D 1){fom potentialscan be seen as the duals of the deform ation
param eters: in the presence of a deform ation, one can only realize the supersym m etry algebra
ona (D 1){fom potential provided its eld strength is the H odge dual of the deform ation
param eter. A s far as the deform ation param eters are concermed one can distinguish between
gauged and m assive deform ations, as we w ill discuss below .

°T he relation between the bosonic gauge algebra and the p{form algebra, in the sense that the latter isa Lie
algebra truncation of the form er, can also be Introduced for di eom orphism s. R estricting the general coordinate
transform ations to x !  x,where isa constantGL (D ) m atrix, these span a Lie algebra.

"N ote that the gauge transfomm ations ) contain no tem s that are higher order in the potentials, as would
occur In a generic non {linear representation. It tums out that allhigher order temm s (but not the 0™ order one)
can be elim inated by m aking appropriate eld rede nitions.
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The m ost fam iliar class of deform ed supergravities are the so—called \gauged" supergravi-
ties. They are gpecial in the sense that the deform ations can be seen as the result of gauging a
subgroup H of the duality group G . Not all deform ed supergravities can be viewed as gauged
supergravities. In the case of m axin al supergravity there is one exception: m assive ITA super—
gravity cannot be obtained by gauging theR* duality group [5]. T he gauged supergravities can
be seen asthe st in a series of \type p deform ations". T here isa a sin ple criterion thatde nes
to which type of deform ation param eter each deform ation potential gives rise to. T he central
observation is that to each (D 1){form one can associate a unigue com m utator

;D p 1)l= (D 1); (3.8)

where p corresponds to a fundam ental p-form and where we have suppressed the representation
of the duality group. T he deform ation potential corresponding to such a deform ation generator
gives rise to a type p deform ation param eter.

W e observe that each type p deform ation is characterized by the fact that a fundam ental
p{form gauge el becom esm assive. For p = 1 this leads to gauged supergravities, in which
a vector can becom e m assive by absorbing a scalar degree of freedom 8. Note that other non-
fundam ental gauge eldsm ay becom e m assive as well. The case p = 2 entails a fundam ental
two{form that becom esm assive by \eating" a vector. T he prin e exam ple of this ism assive TIA
supergravity in ten din ensions [5]. A nother exam ple is the non-chiralhalf{m axin al supergravity
In six din ensions [47]. An example of a p = 3 deform ation is the half{m axin al supergravity
theory of [48]where a fundam ental three-form potential acquires a topologicalm ass term . D ue
to the restricted num ber of din ensions it can be seen that there areno p 4 deform ations of
supergravity theories.

Fundam ental It is interesting to apply these general observations to the case

D p{fom s of m axim al supergravity. In that case all deform ations are gauge

deform ations except m assive IIA supergravity. This can be easily
H 3 understood from the Kac{M oody approach. In D 9 all funda-
A Li2 m ental p{fom s are vectors (see table El) and thus one can never
gI{Bg . realize the com m utation relation (@)ﬁarpé 1.0ny inD = 10we

have a fundam ental 2{form m aking m assive supergravityy possible.
Table 1: Fundamentalp{ In D = 10 a defom ation potential is a 9{form and eg. (@) be—
fom s for maximal super- comes [7;2 1= 9. Instead we have that [8 ;1 ] vanishes. Note that
gravity [7,8,13,14]), where 1t gypergravity allow s a m assive deform ation but IIB supergravity
Wel have suppressed the du- does not. The reason for this, from the K ac{M oody point of view ,
ality group indicesand mul- | . L L
tiplicities. is that in writing the comm utator [7 ;2 ]= 9 it is understood that
there is either a fundam ental 7{fom , which is not the case, or this

representation can be written as a m ultiple com m utator of fundam ental p{form s. T he Jatter is
only possble if there is at least one fundam ental p{form w ith an odd num ber of indices. This
condition is only satis ed In the case of TTIA supergravity.

Note that in D = 11 we have a single fundam ental 3{form ,but in D = 11 a deform ation
potentialisa 10{form which cannotbe w ritten as a m uliple com m utator of 3{form s. T herefore,
there isno m assive deform ation n D = 11.

®In the p= 0 case there is only a m assive vector when an isom etry of the scalar m anibd is being gauged.
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3.3 Top{form potentials

Finally, we consider the top{form potentials and point out an ntriguing relation w ith the defor-
m ation potentials and param eters. G iven a supergravity theory w ith deform ation param eters in
di erent representations of the duality group, it is not obvious that these deform ation param —
eters can be tumed on all at the sam e tin e. In fact, in the case of gauged supergravities it is
known that the deform ation param eters satisfy certain quadratic constraints [16,18].

To illustrate the nead for quadratic constraints on the deform ation param eters and observe
the relation w ith the top{form potentials it is instructive to consider D = 9 m axin al gauged
supergravity with duality group R* SL(2;R) [23]. There is a triplet m of deform ations,
corresponding to the gauging of a onedin ensional subgroup of SL (2;R ), and a doubletm of
deform ations, corresponding to an R* gauging:

9
SO (2) 2

3, m : SO (1;1) 2 SL(2;R) -IB (and m ITA ) origin. (39a)
R* i

2, m R - IIA origin. (3.9b)

A 1lcom ponents of the triplet and of the doublet can be obtained via generalized Scherk {Schw arz
reductions of IIB and of m assless IIA supergravity, respectively. In addition, one com ponent
of the triplet, corresponding to the R* 2 SL (2;R) gauging, can be obtained via a K aluza-
K lein reduction of the m assive TTA theory. Note that it is In possible to perform a generalized
Scherk {Schwarz reduction In the m assive case, since the m ass param eter breaks the relevant
scale symm etry.

Due to the di erent origins of the triplet and the doublet it is In possible to obtain them
sim ultaneously from ten dim ensions. However, one m ight wonder whether they can be tumed
on at the sam e tim e, Independent of any higherdim ensional origin. This question has been
answered in the negative [23], which can be summ arized by in posing the follow Ing quadratic
constraint:

quadratic constraint: m m =0 , 3 2 = 4 + 2: (3.10)

T hese constraints occur In the 4 and 2 representation which are in one+to-one correspondence
with two of the three representations of top{fom s, as can be seen in [13,14]. So for each
constraint there is a corresponding top {form potential.

Also In lower din ensions, both for m axin al supergravity in 3 D 7 [15,16,18] and
half{m axim al supergravity in D = 3;4;5 [17,49], the quadratic constraints have been calculated
w ith the embedding tensor approach. In each case we observe that there is an exact one-to-
one correspondence between the quadratic constraints and the top {form potentials in term s of
representations of the duality group.

In the em bedding tensor approach this correspondence can be explained as follow s. Starting
w ith a gauged supergravity Lagrangian L g4 One can always replace the constant em bedding
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tensor by a scalar eld that is constant only on{shelldue to the eld equation of a deform ation
potentialA 1, ,seealso eg. [4,33]. Furthem ore, for each quadratic constraint one introduces
a top{form Lagrangemultiplier A  , In the sam e representation to enforce the constraint®. The
total Lagrangian thus becom es (suppressing duality group indices)

L=LagrntApi1 @ +Ap, ; (311)

where is the embedding tensor. O nem ight wonder how a gauge eld can act as a Lagrange
multiplier. It tums out that the gauge transform ation of the top{form in ) is cancelled by
adding an extra term to the gauge transform ation of the deform ation potential in the follow ing
way

Ap1y =@ po2y + o1 (312)

Ap)=€ (1

The eHd equation for the embedding tensor eld leads to a duality relation of the form (L 2)).
T his provides a concrete way of explaining why the deform ation potentials and the em bedding
tensor m ust be in the sam e representation of the duality group, and sin ilarly for the top{fom
potentials and the quadratic constraints.

W e conclude that one can divide the top{form potentials into two classes: the rst class
consists of all top{fom s that are Lagrange m ultipliers enforcing quadratic constraints on the
deform ation param eters, while the second class contains all the other independent top{form s
whose role is unclear from the present point of view . Exam ples of supergravity theories w ith
Independent top{form potentials are the half{m axin al chiral supergravity theory in six din en—
sions and IIB and D = 9 m axin al supergravity. The rst theory does not contain deform ation
potentials and hence no quadratic constraints. T he sam e applies to IIB which contains an inde-
pendent quadruplet of potentials that is related to the D 9{brane and an independent doublet
of top{form s that sofar has no brane interpretation. Fially, n D = 9 m axin al supergravity
there is another top{form representation, In addition to (), that does not correspond to a
quadratic constraint.

4. M atter coupled half{m axim al supergravity

W e now proceed with the case of m atter coupled half{m axin al supergravity. In subsection
41 we rst investigate the structure of the K acM oody and p{form algebras. In the next two
subsections we discuss the deform ation and top{form potentials that are contained In it.

4.1 K ac{M oody and p{form algebras

Half{m axin al supergravities, coupled to D 10+ n vector m ultiplets, reduce to the scalar coset
SO (8;8+ n)=S0O (8) SO (8+ n) when reduced to threedim ensions. In other words, the relevant
groups for supergravity theories w ith 16 supercharges are the B and D serdes in the above real

°W e thank H enning Sam tleben for pointing this out to us. See also the recent paper [50].
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form . O f these, only three are of split real form , ie.m axin ally non-com pact, which are given
byn= 1;0;+1. These correspond to the split form sof B, D g and B g, respectively.

W e are Interested in the decom position of the very extensions of these algebras w ith respect
to the possible gravity lines. An exhaustive list of the possibilities for the algebras of real split
form is given In table E A s can be seen from this table, these correspond to the unigue D —
din ensional supergravity theory with 16 supercharges coupled tom + n vector m ultiplets w ith
m = 10 D . The corresponding duality groupsGp In D dim ensions are also given in table E
N ote that there is no second disabled node and therefore no R* factor in the duality group for
the 6b case and in D = 3;4.

In appendix D] the result of the decom position of the D § ©* alyebras w ith respect to the
di erent SL (D ;R ) subalgebras is given. In addition, the decom positions of the other two split
form s B ;;g * can be found on the website of Sin pLie [38]. It can be seen that these decom -
positions give rise to exactly the physical degrees of freedom [9]. In addition there are the
deform ation and top-form potentials in the K ac{M oody spectrum . In particular, tableE sum —
m arises our results for the deform ation and top {form potentials for half{m axin al supergravity
In D din ensions.

To discuss the p{form algebra it iseasiest to startwith 8 D 10 din ensions w here there
isa uni ed result vald in any dimension D = 8;9;10. W e will refer to this as the \generic"
situation. In Jow erdim ensions thisgeneric pattem rem ainsbut there are extra generators speci ¢
foreach dimension D < 8, see tab]eE. W e w illnot discuss all the details of the low er dim ensions
but its should be clear that they follow the sam e pattem as the higher dim ensions except that
the expressions involved are a bitm essier.

In 8 D 10 dim ensions the p{form algebra is given by the follow ing generators and
com m utation relations. A s can be seen from tab]eg, except In a few special (lower{dim ensional)
cases to be discussed below , in each din ension the fiindam ental p{fom s of the algebra are a
1" and a (D 4). The fom er is In the fundam ental representation of the duality group Gp
while the latter is a singlet. T he other generators follow from the follow Ing basic com m utators
describing the p{form algebra:

n" ;o 4)1=@® 3);
n* ;o 3)Wi1= o 2)MNp MN(p 2,
nY ;o 2)NPh= MN @ 1)Ply o 1)MNFPI, (41)
nY ;o 2)1=@® 1) ;
n" ;o 1)Wi= MNp 4 pMNI.
[lM ;(D 1)ENPQ]]: MD\IDPQ]+DD\4NPQ];

where MV

is the SO (m ;m + n) invariant m etric and the straight brackets indicate anti{
symm etrization. In addition 1M ;2 ]vaniches. From these comm utators we read o the lev—
els (‘1;72) of the di erent generators. Here “;; is the number of tim es the fundam ental

(D 4);1M generators occur in the m ultiple com m utators expressing the generator in tem s
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and Bg w ith regpect to the possible gravity lines. T he duality groups Gp and them ultiplet

structures (where G is the graviton,V the vector and T the selfdual tensorm ultiplet) are also given.




of the fundam ental ones. Suppressing the duality indices we obtain that the generators 2,
(D 3), (D 2), (D 1) and D occur at the levels (0;2), (1;1), (1;2), (1;3) and (1;4),
respectively. T hese results are in agream ent w ith the tables in appendix C 9.

W ew illnow tum to the potentials associated to thedi erentgenerators. W ew i1l rstdiscuss
the potentials corresponding to the physical degrees of freedom of half{m axin al supergravity.
A summ ary of these can be found in appendix [B| and in particular tabk[§. A frerwards we w il
discuss the non {propagating deform ation and top-form potentials.

The 2 corresponds to the two-form potential, which is indeed present in any half{m axim al
supergravity. N ote that the rst comm utator in (g.1]) tells us that the twoformm potential trans-
form s in a C hem-Sin ons way under the vector gauge transform ations:

M N .
Agy=€ )+ @ o)Ay un* (42)

Hence, the K ac{M oody approach autom atically leads to the Chem {Sin ons gauge transform a—
tions that are crucial for anom aly cancellations in string theory [51]. The (D 3 )M , (D 2)
and (D 2 )[M N correspond to the duals of the vectors, the dilaton and the scalar coset, respec-
tively. N ote that the num ber of (D 2)M N 1y s exceeds that of the scalars, since the latter
take values In the scalar coset G =K and hence arem odded out by the com pact subgroup K ofG .
T herefore, we expect that there w ill be a num ber of linear relations between the eld strengths
of the (D 2){fom s, sin ilar to what has been found for the 8{fomm s of IIB supergravity [44].

E xtrem e cases occur w hen the sym m etry group is com pact, ie.m = Oorm + n= 0. These
correspond to ten din ensions or pure supergravity, w ithout vectorm ultiplets, regpectively. T hese
theories do not have any other scalars than the dilaton and hence one expects supersym m etry
to require all of the eld strengths of the (D 2)M N o s to vanish. A Ythough we are not
aware of a discussion of this phenom enon in the context of half{m axin al supergravity, it has
recently been encountered In pureD = 5,N = 2 supergravity [52].

W e should also m ention two exceptions that di er from the above pattemm. The D = 10
theory w ithout vector m ultiplets and the D = 6b theories do not contain any vectors. R ather,
the sin ple roots correspond toa 2 and a 6 in theD = 10 caseand toa 2" in theD = 6bcase.
T hese generate the follow ing gauge transform ations:

for the ten-dim ensional theory and

( R ;2% )= aMl;
D = 6b: (44)
[ZM ;4[NP]]: M[N6P]+ 6(M[N)P].

4

10N ote that we refer to the generic situation. T here are special cases. For Instance, pure D = 10 half{m axin al
supergravity has no 1{form generators and the fundam ental generators are a 2{form and a 6{form . A nother
exception is pure D = 9 half{m axin al supergravity which has an R SO (1;1) duality group. W e now need
three level num bers (“1;“2;“3) In order to distinguish between the di erent Poincare dualities under SO (1;1).
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for the six{din ensional case.

In yet lower dim ensions a sin ilar pattem occurs. Them ain di erence, how ever, is that for
half{m axim al supergravity in D 5 din ensions, all findam ental p{fom s are vectors. This is
In contrast to higher dim ensions w here there are also fundam ental p{form s of higher rank. T he
explicit form ulae are a bit m essier in the lower dim ensions, as can also be seen from tab]e@, and
hence we will refrain from giving them . It should be stressed that they follow exactly the sam e
pattem as above. T he sam e applies to the deform ation and top-form potentials discussed in the
next two subsections where there is a plethora of representations in the lower dim ensions, see
tabk 3.

This nishes the discussion of the physical degrees of freedom and their duals [9,27]. The
generators corresponding to these potentials are already present in the a ne K ac{M oody ex-—
tension [41]. Potentials of yet higher rank do not correspond to propagating degrees of freedom
and only occur in the over{ and very{extended K ac{M oody algebras. W e now discuss the
deform ation and top{form potentials of half{m axin al supergravity.

4.2 D eform ation potentials

Tuming st to the (D 1)-fom s, it follow s from (@) that in generic din ensions these occur
In a fundam ental and an antisym m etric threeformm representation. In dim ensions 8 D 10
this is the com plete story as well

In lower dim ensions, how ever, there are m ore possibilities. For exam ple, In D = 7 one can
generate an additionaldeform ation potential6 from am ultiple com m utator of the dualtw oform
D 4 ,which isa 3 in this case. T his corresponds to the singlet in tab]eE. In addition there
is another top—formm representation 7 . T he additional com m utators are:

. ( Bi31=6; A
D=7: Bt = 7Y (4.5)
In fact, also the commutator [IY ;6] is non-vanishing and leads to a 701, However, this
comm utator is related to the one above by the Jacobi identity and hence 7" and 7 M are
Iinearly dependent.

InD = 6 onehasD 4 = 2, ie. the dual of the two-fom is itself again a two-form . To
avold confiision, we w ill denote the fundam ental 2{form by 2 and the one com ing from the
com m utator of the vectors by 2 °. In this theory there are again a num ber of extra com m utators
that contribute to the deform ation and top-form potentials:

8
§ ;3% 1= 5% ;
< M N ] oM N ]
2 ;4 =6 ;
D = 6a: § 2l 6 (46)
M ;50N]= MNEO, cMN),

T here are also other non-vanishing com m utators but these are related by the Jacobi dentity.
W e now tum to the question to which types of deform ations the deform ation potentials
correspond. G ven that thereareonly a few of these, wew illstart w ith them assive deform ations.
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O  1){foms D {form s

p=1 p=2 p=3 constraintson p= 1 other
10,9,8 00 1H 4
7 00 1 1H H O
6a O [ 0 1H A 11 H

6b O

s |l e 2f G 3 B;E HH T

> | =BHE ]

Table 3: The representations of deform ation{ and top{form s in all half{m axin al supergravities. T he
representations refer to the duality group Gp given in table E . W e also Indicate which type p of defor-
m ations they correspond to, and to which top{formm s one can associate a quadratic constraint on type 1
deform ation param eters.

A s can be seen from the previous discussion, type 3 deform ations of half{m axim al supergravity
are only possible In D = 7, for the sin ple reason that only here there is a fundam ental 3-form .
T he deform ation is a singlet of the symm etry group R* SO (3;3+ n) and has been explicitly
constructed forn = 3 [48]. Sin ilarly, type 2 deform ations of half{m axin al supergraviy are
only possible n D = 6a and occur In the fundam ental representation of the sym m etry group
R* SO (4;4+ n). Thedeform ed theory has been explicitly constructed for the special cases of
n= 4 [47]and n= 16 [29].

A 11 rem aining deform ation potentials correspond to type 1 deform ations, ie. to gaugings.
Note that in every din ension D 4 there is a fundam ental and threeform representation of
such deform ation potentials. To be able to do m ore general gaugings one needsm ore space-tin e
vectors than only the fundam ental representation, which is present in all these din ensions. For
exam ple, in D = 5 an additional vector is provided by the dual of the two-form , giving rise
to an extra two-form representation of possble gaugings. In D = 4 the extra vectors are the
H odge duals of the original ones, leading to an SL (2;R ) doublet of possible gaugings. F inally, in
D = 3 scalars are dualto vectors. T his is the underlying reason for the sym m etry enhancem ent
In three dim ensions, and also gives rise to the m ore general possibilities of gaugings in this case.

M any of these gaugings have been obtained in the literature. Explicit calculations of the
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possible gaugings using the em bedding tensor form alisn in D = 3;4;5 have uncovered exactly
the sam e representations [15,49]. In addition, one can obtain com ponents of the three-form rep-
resentation ofgauging in any din ension D by a Scherk-Schw arz reduction from D + 1 din ensions
using the SO (m ;m + n) symm etry, see eg. [28,311].

A prediction that follows from the above analysis is that in the dim ensions where the
possble gaugings have not yet been fully analyzed, ie.n D 6,itwillbe possible to Introduce
a fundam entaland a three-form representation of gaugings. In temm s of the em bedding tensor,
which describes the em bedding of the gauge group in the duality group G [16,18], this would
read

N P N P N pj
f + ;
" . M (4.7)
0 _
N - N 7«
where y = yn Y and fy yp are the fiindam entaland three-form representations of gaugings,

respectively. T he notation here is as follow s: the subscript index M = 1;:::;2m + n refers to
the generators of the gauge group and the superscript indices £0;M N g label the generators of
the duality group R* SO (m ;m + n). The an bedding tensor thus encodes which subgroup is
gauged by the vectors 1" . Note that theR™* factor is crucial for the introduction of y ,as can
be seen from the y ° com ponent. The di erent components of  ¥F and  © specify which
linear com binations of the gauge edsare used to gaugeR * and a subgroup H SO (m ;m +n),
respectively :

MNPIM : H SO(mm + n);
NN R* : (4.8)

4.3 Top{form potentials

Subsequently, w e consider the top {form potentials and their relation to the quadratic constraints.

In generic dim ensions these top {form s occur In a singlet and antisym m etric two—and four—
form representations. U sing the em bedding tensor approach, an analysis of the quadratic con—
straints on the possble deform ations has been explicitly carried out in D = 3;4;5 [15,49]. It
tums out that the representations of the quadratic constraints exactly coincide w ith the repre—
sentations of the possible top-form s in these din ensions.

ForD 6 the em bedding approach has not yet been applied and the K ac{M oody approach
leads to a prediction. The generic top—form s occur in the sihglet, two- and fourform repre-
sentations. In addition, from the lowerdin ensional analysis [15,49] one would expect them to
correspond to a quadratic constraint. In termm s of the em bedding tensor these would take the
follow ing form :

P .
fuwne =0;

frmuwfeol = 2fMuwe 017 (49)
M N 0
M N .

T he prediction is that the m ost general gauging of half{m axin al supergravity in D 6 is
described by the em bedding tensor (4.]) subfct to the quadratic constraints $d). It would
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be interesting to explicitly construct these gauged theories. Note that the fundam ental repre—
sentation y cannot be non—=zero in D = 10, since the quadratic constraint requiring it to be
a null vector can not be satis ed for an SO (n) representations. The gauging w ith deform a—
tion param eters fy yp can be viewed as a gauging of a subgroup H SO (n) wih structure
constants fy yp . In this sense D = 10 halfm axim alm atter{coupled supergravity w ith gauge
groups SO (32) orEg Eg, ie. the low {energy I it of type I or heterotic string theory, can be
viewed as the gauged deform ation of D = 10 halfm axin al supergravity coupled to 496 M axwell
multiplet!!.

In addition, it would be interesting to investigate the possibilities of including the type 2
and 3 m assive deform ations In six and seven din ensions, respectively, in the gauged theories; in
other words, to see which types of deform ations can be tumed on sim ultaneously.

5. D eform ations

Up to this point we have only considered the role of the deform ation potentials in the K ac—
M oody or p{form algebra but not the deform ation param eters them selves. T hese param eters
can be seen as the duals of (the eld strengths of) the deform ation potentials, see egs. (@)
and ). This is in contradistinction w ith the lowersxank potentials in which case the p{form

algebra gives rise to both the potentials and their duals. In this section we w ill brie y consider
how the inclusion of the deform ation param eters In supergravity e ects the p{form algebra. In
particular, we w ill discuss how the bosonic gauge transform ations could be truncated to a Lie
algebra in the deform ed case, rst form assive I1A supergravity and in the next subsection for
gauged half{m axin al supergravity.

5.1 M assive IIA supergravity

For m assless TTA supergravity the fiindam ental generators are a 1-fomm generator 1 and a 2{
form generator 2 ,see gure @ T he other generators are the R R generators 3 ;5 ;7 ;9 and the
N SN S generators 6 ;8 ;10 ;10 0. T he basic com m utators are given by

2;1]=3; L;i71=28;
2;31=5; 2;i71=9;
[1;5]1=6; 2;81=10;
R;51=17; l;9]1=10": (51)

W e have not included the 0{form generator corresponding to the duality group R* . In fact,
also the comm utator [2 ;6 ]is non-vanishing and leads to an 8 O, How ever, this com m utator is
related to [1 ;7 by the Jacobi dentity and hence 8 and 8 Y are linearly dependent. A s can be
seen from (@), the TTA theory hasa type 2 deform ation potentialand two top{form potentials.
T here is no quadratic constraint associated to either of the top{fom s.

Letusnow tum to the realisation of this symm etry on the IIA potentials. In the follow ing
we w ill only consider the truncation to the low {level potentials corresponding to 1 ;2 ;3 as this

1Y e thank A xelK leinschm it for a discussion on this point.

{194



will be su cient for our purpose. T he gauge transform ations of m assless I1A supergravity are

given by
Agy= a7
Agy= (@7
Agy= @+ 3 Ao (52)

where the gauge param eters are all closed and hence () = @ (1) . The restriction to the
pfom algebra corresponds to constant  (,’s, or equivalently (1) ‘s with linear coordinate
dependence, as discussed around (@). It can easily be veri ed that this truncation to a Lie
algebra satis es the rst comm utator of (p.1l]). Sin ilarly, it is possible to include all potentials
of TTA and truncate to the p{form Lie algebra, that satis es the full (@) [451.

There are several form ulations of the m assive II1A theory. The original form ulation by
Rom ans [5] contains a constant m ass param eter m and no deform ation potential. Later, it
was shown that there is an altemative description w ith a scalar m ass function m (x) and a 9{
form deformm ation potential [4]. There is even a third form ulation [4]w ith only a deform ation
potentialand no param eter but the bosonic gauge transfom ations of this form ulation are highly
non-linear and have not been explicitly worked out yet. W e w ill consider the original R om ans
form ulation here.

It tums out that the ITA bosonic gauge transform ations can be written as in the m assless
case:

Any= ")

Aegy= @i

Agy= ot 3 whei (53)
but with a di erent param eter ;) that isnotclosed: @73, = m ;). Note that, up to this

level, the m assive m odi cation of the gauge transform ations only occurs via ~(;,. The ;7
param eters can be expressed In term s of the local gauge param eters (1) as follow s:

Ty =@ 0 Mmooy
=€
=@ @ (54)

Ifweperform the sam e truncation (@) as in them assless case to ®) 'sw ith linear coordinate
de]_oendence12 , the m assive transform ation param eters reduce to

"= @ M ) (55)

and ;) and (3, with constant ;’'s.

2N ote that in the m assive case the constant part of (1), does not drop out, but it can be absorbed by a
rede nition of (). Hence we willnot consider this constant part.
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A new feature is the appearance of an explicit coordinate dependence in the m assive case.
Thishasbeen interpreted from the point ofview of the p{form algebra in the follow ing way. T he
coordinate x can be seen asa new potentialw ith itsassociated sym m etry being the translations
[53]. Usihg the tem fology of [33}° we willcallx a \(d){form potential". Follow ing [53]
the m assive deform ation param eter m can be ntroduced to the p{form algebra by inclding
an additional generator, which will be denoted by 1. Subsequently one must de ne the
com m utators between the translation generator and the fundam ental generators of the p{fom
algebra. In the case ofm assive IIA , the non—zero com m utators are [53]

2 ;1 1=m 1, (5.6)

)
T his com m utator is realized by the truncated m assive ITA gauge transform ations ) due to
the term w ith explicit coordinate dependence.

T he com m utator @), or equivalently the gauge transform ation (@), tells us that the
1{fom is transform ing w ith a shift, proportional to m , under the gauge transform ations of the
2{form . T herefore, the 1{form is \eaten up" by the 2{form and the two potentials (2;1) together
form a so{called Stuckelberg pair describing a m assive 2{form . T he com m utator (@) de nesa
deform ation of the direct sum of the p{form algebra and the transhtion generator [531].

It is not guaranteed that the truncation (@) is consistent in the m assive case, since (1,
also appears w ithout an accom panying derivative. T herefore, closing the algebra m ght force us
to Introduce m ore sym m etries. Indeed, we nd that the follow ing com m utator does not close:

[2;i 2B =3m&x [ %) x °% (5.7)

A Ythough the threeform potential transform s w ith a shift by a closed threefom , this is not
covered by the present Ansatz for the gauge parameter (), as it leads to a constant, x{
Independent, shift only. To obtain closure one m ust ntroduce an additional term of the form

= X + X X . ;) ~ = + %x . : (5.8)
T he algebra then closes provided

T 59)

T he additional param eter is anti-symm etric in the last threesindices and satises [, ; = 0.
In tem s of Lorentz representations, this corresponds to a (3 ;1 ) representation with m ixed
symm etry and its trace, which is a 2. Since the trace properties play no role here, we will
denote both together by (34 -

One can see the need to include such a symm etry also from the p{form algebra point of
view . G wen the com m utator (@) between the transhtion generator and the fuindam ental 2 ,
the Jacobi dentity between the £2 ;2 ; 1 g generators in plies

2 2 5 1 ]=m3 [ ;+m3 [ ;: (5.10)

Ba ctually, reference [33] proposes a di erent way of introducing the deform ation param eters which will be
discussed later.
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Hence, In them assive case, [2 ;2 ]mustbe nonvanishing. It is antisym m etric In a pair of
tw 0 antisym m etric indices and hence has% (D+1D (M 1) 2)componentsinD din ensions.
T his is equal to the num ber of com ponents of a (tracefill) (3 ;1 ) representation. T herefore we
w rite

2 2 1=m(3;1),, m(3;1) (511)

(7]
T he above Jacobi dentity is then satis ed provided

[(3;1), + 1 1= 3 (3 (512)

’

W e have checked that the rst comm utator of (@) together w ith (E), () and (b.19)
lead to a closed Lie algebra. Scham atically we have

2;1]1=3; 2; 1]=m1l;
2;2]=m (3;1); [(3;1); 11=3: (5.13)

Notethat 1 doesnotappearon the right-hand side ofany com m utator, ie. the com plem entary
generators form an ideal, and the form er can therefore be quotiented out. H owever, the sam e
cannot be said for the (3 ;1 ) due to the com m utator ().

W e conclude that a truncation of them assive TTA gauge transform ations forces us to consider
extensions of the p{form algebra w ith additionalm ixed sym m etry generators. It is expected that
m ore such generators are needed when also the higher rank potentials are included. It rem ains
to be seen whether a consistent truncation exists when all p{form generators are included.

It is interesting to com pare the present result w ith the approach of [33]w hich takes the sam e
m assive ITA gauge transform ation rules as their starting point. Before doing any truncation
one rst rew rites the m assive transform ation rules such that every param eter occurs w ith a
derivative, lke in the m assless case. Thism akes it possible to perform the sam e truncation as
In them assless case. For this to work it is crucial that one rst form ulates the transform ation
rules in tem s of form s and next form ally write the O{form m as the exterior dervative of a
\(-1){form potential" A  q,

m =dA ) : (5.14)

O nce every param eter occurs under a derivative one can w rite the transform ation rules as the
non-linear realization of an algebra that Includesa form al\ (-1){form generator". W e understand
that In this procedure one should not convert to com ponent notation in the presence of the (-
1){form potential. Only after all (-1){form potentials have been converted into deform ation
param eters a transition to com ponent notation can be m ade. In particular, one should not
consider a com ponent form ulation of ) since thiswould lead usback to our earlier discussion
w ith the need to Introduce extra m ixed symm etry generators. It would be interesting to see
w hether the \ (-1){form s" needed in this procedure can be given a rigorous m athem atical basis.
Sofar,wehavediscussed two ways to proceed In them assive case. E ither one starts extending
the direct sum of the p-form algebra and the transhtion generators w ith new m ixed sym m etry
generators or one extends the p{form algebra with the form al concept of a new \(-1){fom
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generator”". There is even a third way to proceed in the m assive case which uses E 1y instead
of E11 [B4]. The gpectrum of Eq1p lads to precisely the sam e representations as E1; except
for the top{form s which only follow from E 1. By using E g one is abl to not only consider
kinem atics but also dynam ics consistent w ith E ¢. By using the dynam ics the authors of [54]
seam to be able to derive the equations ofm otion ofm assive ITA supergravity w ithout the need
to Introduce new symm etry generators. It would be interesting to m ore carefully com pare the
di erent approaches and to obtain a better understanding of w hat the role of the dynam ics is.

5.2 H alfm axim al supergravity

W e now discuss the case of half{m axin al supergravity. For sin plicity we w ill consider only the
three{form representation fiy y» and not the m ost general deform ation. Thiswillbe su cient
for the present purpose.

T he starting point w ill be the original ungauged p{form algebra ofhalf{m axin al supergrav—
iy, which we truncate to the vectors 1™ . In addition we include the scalars 0 ¥ , which are
the generators of the special orthogonal part of the duality group Gp = R” SO (m ;m + n).
T hese generators satisfy

oM ;0P =1 BM ., (5.15)

while other com m utators vanish (including [1* ;1Y ]in this truncation).
Subsequently we introduce the threeform deform ation fiy yp , which is de ned by the f©ol-
Jow ing non {zero com m utators between the translation generator 1 and the fundam entalgen-—
erators, see also [131]:
oM; 11="yp ONF (5.16)

Basaed on our experience w ith the m assive TT1A case we do not expect the above deform ation to
lead to a closed algebra. Indeed, from the f1 ;1 ; 1 g Jacobiidentity it follow s that one is led to
extend the algebra w ith a new generator that transform s in the sym m etric (1;1) representation.
T he additional com m utators take the form

oYM g= 2%, ;1)

;1) 1 1= (1% (517)

T he above Jacobi dentity then vanishes.

Unlke in them assive TIA case, there are additionalnon—trivial Jacobi dentities, for exam ple
of the form f1,; 1;(1;1)g. To satisfy these one needs to introduce additional sym m etric
three-index tensor generators w ith com m utator relations sim ilar to ). Subsequently one

nds that there are Jacobi dentities nvolving the sym m etric three-index tensors, that require
the Introduction of sym m etric four-index tensors. T his iterative procedure does not term nate.
In temm s of the local gauge param eters ™ of the vector transfom ations, the new symm etries
can be understood as the expansion

Mo Moy Mxx+:::; (5.18)
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M and ; are the param eters corresponding to thel™ and (1 ;1 M generators, respec—

w here
tively. Hence it appears that the gauge transform ations of gauged halfm axin al supergravities
can only be truncated to an in nite num ber of generators.

Tt would be interesting to see if there exist an Interpretation (or m odi cation) of the ap-
proaches [13,33,53,54] that can reproduce all the results that follow from the em bedding tensor

m ethod [15,16,181].

6. Conclusions

In the st part of this paper we have re ned the correspondence between the K ac{M oody
goectrum of deform ation and top{form potentials and the gaugings and m assive deform ations of
the associated supergravity. It was shown that there is a truncation of the K ac{M oody algebra
to a Lie algebra of p{form s, which encodes all the relevant inform ation for the physical states
(apart from gravity and scalars) plus the non-propagating deform ation and top{form potentials.
A special role is played by the fundam ental p{form s, from which all other potentials can be
constructed via com m utators. In particular, one has com m utators of the form ) giving rise
to the (D 1){fom s, from which the corresponding type of supergravity deform ation can be
deduced. In addition, the p{form algebra contains com m utators leading to D {fomm s, and these
m ay be associated to quadratic constraints on the deform ation param eters. W e should stress
that the properties derived from (@) and the relation to the quadratic constraints are em pirical
observations. It would be interesting to understand how these follow from the bosonic gauge
transform ations of supergravity.

In the second part we have established that the correspondence also holds for half{m axin al
supergravity. In particular, in table E the spectrum of deform ation and top{form potentials
of the associated K ac{M oody algebras is sum m arized. T hese possibilities agree perfectly w ith
the known gaugings and m assive deform ations of half{m axin al supergravity and the ensuing
quadratic constraints, respectively. In addition it gives a prediction for them ost generalgaugings
né6 D 10: these are encoded in a fundam entaland three-form representation of the duality
groups sub fct to the quadratic constraints (@ ).

Note thatwehaveonly realized a nitedim ensionalpartoftheK acM oody algebra asa sym —
m etry. However, In di erentdin ensions, thisp{form algebra constitutes a di erent truncation of
the K acM oody algebra. T he latter contains all sym m etry groups of halfm axin al supergravity
in D dim ensions. T his show show the very extended K ac{M oody algebra SO (8;8+ n)*** plays
a unifying role in describing the sym m etries of half{m axin al supergravity coupled to 10 D + n
vector m ultiplets.

Finall, we considered the e ect of the deform ation itself on the p{form algebra. It was
found that in the deform ed case, the bosonic gauge algebra can not be truncated to a p{fom
algebra. Instead, to obtain a closed algebra, one neaeds to include additional generators w ith
m ixed symm etries whose role from the K acM oody point of view rem ains to be clari ed.

In addition to the open issues m entioned above, we see a num ber of Interesting venues to
extend the present results. First of all, a relevant question is w hether the above correspondence,
which holds form axin aland half{m axin al supergravity, can also be extended to theories w ith
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Jess supersym m etry. A num ber of such supergravities are given by a scalar coset G=K (G ) after
reduction to three din ensions. Restricting to groups G with a real split form these cosets
have been classi ed [40]. It is natural to investigate whether the over and very extensions of G
contan deform ation and top {form potentials corresponding to alldeform ations of the associated
supergravitiesaswell. Furthem ore, these cosetm odelsG =K (G ) are specialpoints in a landscape
of m ore general geom etries. It would be interesting to leam m ore about the deform ation and
top{form potentials associated to the general non{coset geom etries.

R ecently, an exam ple where the correspondence between supergravity and very extended
algebras does not hold straightforwardly was found in the theory that reduces to the coset
model G,=50 (4) in three dinensions. W hile mininal D = 5 sinple supergravity allow s for
a triplet of deform ation potentials, related to the gauging of a U (1) subgroup of the SU (2)
R -sym m etry, there are no such potentials in the associated K ac{M oody algebra G, " [52]. A
possible explanation for this phenom enon m ay be that in this case the R {sym m etry does not
act on the original bosonic elds of the theory [37]. A nother possibility m ay be that there is
an extension of G, " that does take the gaugihg Into account. It would be worthwhile to nd
m ore exam ples of this phenom enon and to understand it in m ore detail.

Tt would also be Interesting to study the brane interpretation of the deform ation and top{
form potentials. T hey naturally couple to dom ain walls and space{ lling branes, respectively. Tt
isknown that in ITTA supergravity the deform ation potential9 couples to the halfsupersym m etric
D 8{brane and that the top{form potential 10° couples to a halfsupersymm etric space- lling
brane whose string interpretation has yet to be clari ed [45]. The other top-form potential
10 couples to a non-supersym m etric space- lling brane. Sim ilarly, the quadruplet 4 of top{
form potentials of TIB supergravity couples to a half{supersym m etric nonlinear doublet of 9{
branes, including the D 9{brane [55]. The doublet 2 of top{form potentials couples to half{
supersym m etric space{ lling branes whose string interpretation is yet unclear. It would be
Interesting to perform a sim ilar analysis for the other din ensions as well and see how all these
branes t into string theory.

Furthem ore,while in thispaper the possibilities of add ing deformm ation and top {form poten-—
tials to m atter coupled supergravity theories have been discussed, onem ay ask whether m atter
m ultiplets not coupled to supergravity can be extended w ith such potentials as well. Tt tums
out that this is indeed the case. In fact, it has been suggested that a dom ain wall structure on
a D {brane, interpolating between di erent values of the brane tension, should be described by
a worlkdvolum e deform ation potential [56], sin ilar to the way strings ending on such a brane are
described by a worldvolum e vector. In the case of the D 9{brane thism eans that the D = 10
M axwell m ultiplet can be extended w ith a nine{form potential, which is indeed possble [56].
T his could correspond to the fundam ental representation of deform ation form s in table E . This
fundam ental representation does not correspond to a deform ation of supergravity due to the
third quadratic constraint In @) . W e expect that all fundam ental representations in table E
correspond to possible extensions of the D < 10 vector m ultiplets w ith deform ation and top{
form potentials as well. Tt m ght be worthwhile to consider the brane interpretation of these
possibilities in further detail.
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A . Term inology and notation
Below we shortly sum m arize the term inology we have introduced in this paper.

D eform ation potential A (D 1){form potentialin D dim ensions.
Top{form potential A D {form potentialin D dim ensions.

p{form algebra Truncation of the K ac{M oody algebra in a particularGp SL (D ;R ) decom —
position by restricting to only the generators at positive levels in a purely antisym m etric
SL (D ;R) tensor representation of rank 1 p D . A Iso arises by considering the bosonic
gauge algebra w ith constant gauge param eters of the associated supergravity.

Fundam ental p{form A p-form corresponding to a positive sin ple root of one of the disabled
nodes in the decom posad D ynkin diagram of the K acM oody algebra. G enerates the p{
form algebra.

Type p deform ation A deformm ation of the p{form algebra in which a fundam ental p{fom
becom es m assive.

Furthem ore we indicate com ponents of p{form sby a boldface italic num ber equal to their rank,
eg.5 stands for 5
resented w ith a boldface num ber equal to theirdim ension. O ur convention for the nomm alisation

;- This is not to be confused w ith group representations, which are rep-

1

of products of p{form s is the sam e as In [45]; In particular, we (anti-)sym m etrize w ith weight

one.

B . Physical states of half{m axin al supergravity

W e consider half{m axin al supergravity in any din ension and coupled to an arbitrary num ber
of vector m ultiplets. Starting w ith the graviton m ultiplet of D -dim ensionalhalf{m axin al super-
gravity, its bosonic part consists ofa m etric, m vector gauge edswithm = 10 D ,a two-fom

gauge eld and a sihgle scalar which is the dilaton. It has a global SO (m ) symm etry, under
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‘ D ‘ Cont g p=0 p=1 p= 2
10| Gv® |35 1|1 1 8 n 28 1
9 |Ggvrtlt 27 111 1+ (In+ 1) 7 M+ 2) |21 1
g8 |Ggvr2 |20 1|1 1+ (2n+ 4) 6 (n+4) |15 1
7 l6vrt3i14a 1|1 1+ (3n+ 9) 5 @m+6) |10 1
6a |GVFY| 9 1|1 1+ (4n+ 16) 4 (n+ 8) 6 1
6b| GT™*| 9 1|1 (5n+ 25) 6 2 (10+ n)
5 | 6v™e| 5 1|1 1+ (5n+ 25) 3 (n+ 11)
4 |Ggvrte | 2 11 (1;2)+ (6n+ 36;1) |2 (n + 12)
3 Gv™ 7| { 1|1 (8n+ 64)

Table 4: The physical states of allD = 10 m half{m axin al supergravities coupled to m + n vector
multiplets. The multiplet structures (where G is the graviton, V the vector and T the selfdual tensor
multiplet) are also given.

which the vectors transform in the fundam ental representation. T he only exceptionsareD = 4
and D = 3 where there are non“rivial hidden symm etries. In D = 4 there is one extra scalar
due to the duality of the two-form potential to an axionic scalar. Together w ith the dilaton this
leads to an enhanced SL (2;R) SO (6) hidden symm etry. Sin ilarly, in D = 3 there are 7 extra
scalars due to the duality in D = 3 din ensions between the vectors and scalars. In this case all
physical degrees of freedom are carried by a scalar coset SO (8;1)=SO (8).

T he other possible m ultiplet in generic din ensions is the vector m ultiplet, which contains a
vector and m scalars. The e ect of addingm + n vector m ultiplets is to enlarge the sym m etry
group from SO (m ) to SO (m ;m + n). The scalars param eterize the corresponding scalar coset
w hile the vectors transform in the fundam ental representation. In fourdin ensions the sym m etry
becomes SL (2;R) SO (6;6+ n) whil in three din ensions it is given by SO (8;8 + n). In the
latter case there again is symm etry enhancem ent due to the equivalence between scalars and
vectors. T he entire theory can be described In tem s of the corresponding scalar coset (coupled
to gravity).

T he above m ultiplets belong to non-<chiral half{m axin al supergravity and are the correct
and com plete story In generic dim ensions. In six din ensions, how ever, the half{m axin al theory
can be chiral or non-chiral, sin ilar to the m axin al theory in ten dim ensions. T he non-chiral
theory isdenoted by D = 6a and follow s the above pattemn. T he chiral theory, D = 6b, instead
has di erent m ultiplets. In particular, the graviton m ultiplet contains gravity, ve scalars and

ve selfdual plus one antiselfdual two-form gauge elds. The global symm etry is given by
SO (5;1). The other possble multiplet is that of the tensor, which contains an antiselfdual
wofom and ve scalars. Adding 4 + n of such tensor m ultiplets to the graviton m ultiplet
enhances the symm etry to SO (5;5+ n).

Upon dim ensional reduction over a circle, the graviton m ultiplet splits up into a graviton
multiplet plus a vector m ultiplet. A vector (or tensor) m ultiplet reduces to a vector m ultiplet
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In the lower dim ensions. This was the reason for adding m + n instead of n vector or tensor
m ultiplets in any din ension; it can easily be seen that n rem ains invariant under dim ensional
reduction. T hat is, a theory w ith a certain value of n reduces to a theory w ith the sam e value
ofn iIn lower din ensions.

For the reader’s convenience we have given the physical states corresponding toD = 10 m
half{m axin al supergravity coupled tom + n vector (or tensor) m ultplets in tablefd, see, eg., [571.

C . G roup theory

In this appendix we w ill generalize the analysis of [14] to allow for non{simn ply laced D ynkin
diagram s. The key di erence between a sin ply laced and a non{sin ply laced diagram is that
for the Jatter the associated C artan m atrix is not sym m etric, and no longer fill 1ls the role of a
m etric on the root space. M oreover, the m etric on the weight space is no longer given by the
inverse of the C artan m atrix.

T he root gpacem etric is In portant in constructing the root system { one needs it to com pute
Inner products betw een roots. T heweight spacem etric plays a sin ilar role for the highest weight
representations, w hich are a necessary ingredient for the level decom position. W e w ill show how
both m etrics can be obtained from appropriate sym m etrizations of the (inverse) C artan m atrix.

W e start out from the de ning equation for the C artan m atrix, which reads

(13 9) .
(353 3)
Here ; arethe sinple rootswhich span thewhole root system ,and ( j ) isthenom inferred

A= 2 (C 1)

from the K illing nom . T he indices run over the rank of the associated Lie algebra.
Any root of can be expressed as a linear com bination of sim ple roots,

=m (€ 2)
w here contracted indices are being summ ed over. The values of m ' are also known as the root
labels.

Because the K illing nom is symm etric and bilinear, an inner product between two roots
=m?' ;and = n' ;can bewriten as

(3)=Bym™nl; C3)
where them etric B on the root space is de ned as

(53 3)
2
which is sym m etric by construction. Note that in this case the repeated index is not summ ed

over because it is not contracted.

From @) and (E) it is apparent that we must rst determ ine the nom s of the sin ple
roots before inner products on  can be com puted. To that end we reshu e the de ning
equation for the Cartan m atrix to obtain

Biy (1] §)= Ay ; (C4)
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A 45 .
(53 9): (C5)
A 37 3

(13 1)=

So once a nom alization for one of the sin ple roots has been chosen, all others are also xed.
A comm on nom alization is to choose 2 = 2 for the Jongest sin ple root (ie. the sin ple root
which has the highest nom ). Instead, we w ill adhere to 2 = 2 for the shortest sin ple root
(the sin ple root w ith the lowest nom ). T he latter nom alization is particularly convenient for
com puterbased calculations, because then the rootm etric B has only integer values.

W e now tum to the m etric on the weilght space. T he weilght space itself is spanned by the
findam entalweights *, which are de ned via

ty= 1k, C 6)

(2—31) . The basis speci ed by the fundam ental

weights is also known as the D ynkin basis. Every weight can be expanded on this basis as

w here the sin ple coroots ; are given by ;=

= p; (C.7)

T he values of the p; are also known as the D ynkin labels of the weight. T he relation between
the D ynkin labels and the com ponents of the root is given by

Pi= Z—\jimj: (C .8)

A s the D ynkin basis is the dualbasis of the sin ple coroots, them etric G on the weight gpace is
the inverse of the sin ple coroot m etric. T he latter is given by

(13 )= ———: (C9)
) (13 4)
T herefore G is given by
G <ijj>=%Al BE (€ 10)

By construction G is symm etric, just like the rootmetric B .

As explained in [9,35], the level decom position of In nitedin ensional Lie algebra entails
scanning for subalgebra representations at given levels. T he subalgebra representations are
de ned by their D ynkin labels, and have to satisfy three conditions:

(1) The Dynkin labels allhave to be integer and non-negative.
(il) T he associated root labels have to be integers.

(iii) T he length squared of the root m ust not exceed the m axin um value.

T he subalgebra is obtained by disabling’ nodes from the D ynkin diagram . W e can then
gplit up the index of the fullalgebra into i= (a;s), where a runs over the disabled nodes and s
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over the subalgebra. To see w hether condition |(ii) is satis ed for particular values of ps, we can
nvert equation (@) in order to obtain

1 ts
sub

(e TFRALe); (€ 11)

wherem ® are the root labels associated to the D ynkin labels ps, A g1 1s the Cartan m atrix of
the subalgebra, and I are the levels. C ondition [(iii} m ay be veri ed by decom posing (E) into
its contributions from the deleted nodes and the subalgebra:

= G%p Pbr BaAp PP + BPP Lo (€ 12)

m ax

Here G g1, is the weilght m etric of the subalgebra, and éax is given by the nom of the Iongest
sin ple root. N ote that for this form ula to be valid, we have to m ake sure that a long (or short)
root In the full algebra is also a long (short) root in the subalgebra, which in general is not
autom atically the case. Ludkily we are always free to choose a nom alization such that root
lengthsm atch.

W hen using () to scan for representations, it is in portant for G gy, to only have non-
negative entries. If this is not the case, then the root nom 2
function of the D ynkin labels ps at xed levels 1%, and one m ight m iss representations using a

sin ple scanning algorithm . H owever, as we always shallbe decom posing w ith respect to (direct

isnot a m onotonically increasing

products of) nite din ensional subalgebras, G g1, w illnever contain negative entries.

D.Low levelD,"" decom positions

4+

Herewe list the output of Sin pLie [38]at low Jevels, using the various decom positions of D g
as indicated by the D ynkin diagram accom panying the tables. T he regular subalgebra splits into
a part belonging to the gravity line A, (the white nodes) and a part belonging to the intermal
duality group Gp (the grey nodes).

In the follow Ing tables we respectively list the levels, the D ynkin labelsof A, and Gy , the
root labels, the root length, the din ension of the representations of A, and G , the m ultiplicity
of the root, the outer m ultiplicity, and the interpretation as a physical eld. T he deform ation {
and top{form potentials are indicated by de’ and “op’, respectively. W hen the intemal group
does not exist, we do not list the corresponding colum ns. In all cases the D ynkin labels of the
Jow est weights of the representations are given. A 1l tables are truncated at the point when the
num ber of indices of the gravity subalgebra representations exceed the din ension. T he order of
the levels, D ynkin labels, and root labels as they appear In the tables are determm ined by the
order of the node labels on the D ynkin diagram . T his ordering is always rst from left to right,
then from top to bottom .

T he interpretation of the representations at level zero as the graviton is, unlke the pform s
athigher levels, not quite straightforward. T he graviton em erges w hen one com bines the ad pint
representation of A, with a scalar com Ing from one of the disabled nodes, see [9,34]. W e have
Indicated these parts of the graviton by g and § , respectively.
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Figure 3: Dy

Table 5: Ay representations in D g

+ o+

decom posed as A 4

+ o+ o+

11

| 1 | Porav m | 2 | dyrav | m ult( )| elds |
0o|100000001|]0044144 4114114 2 99 1 1 g
00| 00000000000 OOOOOOOOO 0 1 11 2] 059
101010000000} 10 0 00O0O0O0O0O0OTGO 2 45 1 1 2
0100000100001 000O0O0O0O0OO0OTO 2 210 1 1 ‘2
111100000100} 112 011111000 2 1155 1 1 ?g
111000000010 11 122222100 0 45 8 1 0
211010000010 21122222100 2| 1925 1 1
2110000000121 133333210 0 99 8 1
211000000000 (21 2 4 4444321 2 1 45 1 top
1

3 4 5 6 7 9 10 11

Figure 4: D, " decomposed asAg

Table 6: Ag representationsin D ©*
[ 1 ] Dyrav m | g | mute( ) | eds |
o0oo0|10000001|0001414441411141 2 80 1 1 g
000l 00000000000 0OODOODOOODO 0 1 11 31054
1001 10000000100 00O0O0O0O0OO0DO 2 9 1 1 1
0101 00001000010 00O0O0O0O0OO0DO0 2 126 1 1 )
001110000000 001 00O0O0OCO0OOO0ODO 2 9 1 1 1
110100000100 110 11111000 2 84 1 1 1
1011010000001 101 1 00O0O0O0O0TO0 2 36 1 1 2
01100000100 012 121111000 2 84 1 1 1
11110000100} 1112 11111000 2 720 1 1 ?g
111100000010 111 22222100 0 36 8 2 ’0
211110000010 21122222100 2 315 1 1
211100000001} 211 33333210 0 9 8 1 de
112110000010 11222222100 2 315 1 1
1121 000000011123 3333210 0 9 8 1 de
212101000010 2123 2222100 2| 1215 1 1
212110000001 2123 3333210 0 80 8 2
212100000000 212 44 44 4321 2 1 45 2 top
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+ 4+

Figure 5: D g decomposed asA; A; A,

+ o+ o+

Table 7:A; A; A, representationsin D g
| 1] paw [ s | m | 2 [ dgeav [ de [ mul() ] eds |
00]1000001| 00 0000111114141 2 63 1 1|1 g
00] 0000000 02 0010 000O0O0O0O 2 1 3 1)1 0
0ojoo0o00000|20|-100000O0O0O0O0GO 2 3 1)1 0
00] 0000000]| 00 00 000O0O0OO0OODO 0 1 11| 2| 059
10 0001000| 00 01 000O0O0O0CO0O0DO 2 70 1 1)1 72
01(1000000| 11 0001 000O0O0CO0CO 2 8 4 1)1 1
111000010011 01011111000 2 56 4 1)1 1
2011000001 |00 02000123210 2 63 1 1)1
0210100000 | 00 10121000000 2 28 1 1)1 2
1211000100 | 00 11121111000 2 420 1 1|1 ‘g
121000001002 11022222100 2 28 3 1)1 70
1210000010 20 01122222100 2 28 3 1)1 70
120000010 | 00 11122222100 0 28 1 8| 1 0
131000010 11 11132222100 2 216 4 1|1
130000001 |11 11133333210 0 8 4 8| 2 de
1410100010 | 00 21 243222100 2 720 1 1|1
1411000001 02 21143333210 2 63 3 1|1
141100000120 11243333210 2 63 3 1)1
141100000100 21 243333210 0 63 1 8| 1
1410000000 02 21 14 4 4 4 4321 0 1 3 8| 1 top
14100000001 20 1124 4 444321 0 1 3 8| 1 top
141000000000 21 24 4 4 4 43 21 -2 1 1 45 | 2 top

1 2

3 4 5 6 7 8 9 10 11

Figure 6: D, " decomposed asA; A,

Tablke 8: A3 A, representationsin Dy °
| 1] po | | m | 7 [ dyeav [ e | mule( ) | eds |
00]100001]000] 0OOOOOA1114141] 2] 48] 1 1]1] ¢
00| 000000110 10210000000]| 2 1| 15 11| o
00 000000| 000 00 000O0O0O0OODO 0 1 1 11| 2| 059
10001000000 01 00000O0O0O0DO 2 35 1 1|1 2
01(100000| 001 00001 00O0O0O0CDO 2 7 6 1|1 1
11000100001 01001111000 2 35 6 1)1 1
20| 000001|000 02000123210 2 7 1 1)1 de
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{331

02010000000 10122100000 2 21 1 1|1 2
211100001 |001 02001123210 2 48 6 1|1
211 000000| 001 02001234321 0 1 6 711 top
121100100000 11122111000 2 224 1 1|1 ‘g
121000010110 01012222100 2 21 15 1)1 70
121000010000 11122222100 0 21 1 8| 1 70
131100010001 11123222100 2 140 6 1)1
130000011020 11023333210 2 10 1|1 de
13000001200 01123333210 2 10 1|1 de
13000001001 11123333210 0 8| 1 de
1410100101000 21 2 44322100 2 392 1|1
1411000011110 11134333210 2 48 15 1)1
1411000011000 21 244333210 0 48 1 8| 1
141000000110 11134444321 0 15 8| 2 top
141000000000 21 2 44 4 4 43 21| 2 1 45 | 1 top
1 2
3 4 5 6 7 8 9 10
Figure 7:Dg " decomposed asD, A
Tabk 9:D, As representationsinDg ™"
L1] oo | n [ " [ doew [ e Jmum() [ [ ems
00]10001]0000] 00O OO0Ldd4d41] 2] 35| 1 1] 1 g
00|00000[0010|204121000000] 2 28 1] 1 0
00| 00000| 0000 00 00O00O0O0OOO 0 1 11| 2 | p= 059
10{01000| 0000 01 00000O0O0OO 2 15 1 1)1 72
01|10000| 0001 000001 0O0O0O0CO 2 6 8 1|1 1
11{00100| 0001 01000111000 2 20 8 1)1 1
02]01000| 0000 10122210000 2 15 1 1)1 2
211000010001 02000123210 2 6 8 1|1 de
12|100010|0010 01001222100 2 15| 28 1|1 70
121101000000 11122211000 2 105 1 1)1 ‘g
121000100000 11122222100 0 15 1 8| 1 70
221100010010 02001223210 2 35 28 1)1
221010100000 12122222100 2 189 1 1)1
221 00000] 0002 02000234321 2 1| 35 1|1 top
221100010000 12122223210 0 35 1 8|1
22100000|0010 02001234321 0 1] 28 711 top
22100000| 0000 12122234321 -2 43 | 2 top
131100100001 11122322100 2 84 1)1
13{00001|1100 01012333210 2 6 | 56 1|1 de
13|{00001|0001 11122333210 0 6 8 8|1 de
141100010010 11123433210 2 35| 28 1|1
14101010| 0000 21 2 44432100 2 189 1 1|1
14|100000|0200 11023444321 2 1] 35 1)1 top




141000002000 01123444321 2 1 35 1)1 top
141100010000 21 2 44433210 0 35 1 8| 1
141000000010 11123444321 0 28 8| 1 top
141000000000 21 2 4 44 44321 2 1 1 45 | 1 top
1 2
3 4 5 6 7 8 9 10 11
Figure 8: D, " decomposed asD g A
Table 10: D5 As representationsin D~ 7"
[ 1] porav P m | | dorav | de [mulk( )] [ ewds ]
0f00000|0001I0| 104122100000 2 1 45 1)1 0
0/10001| 00000 0100000141141 2 35 1)1 g
0l 00000|00O0O0O 000O0OO0O0OOOODQO 0 1 1 11 1 g
1/01000| 00001 0000O0OO01O0O0O0DQO 2 15 10 1]11]2;°2
2100010100010 01000122100 2 15 45 1)1 o)
2110100100000 10122221000 2 105 1 1] 1 ?g
3110001100100 01001233210 2 35| 120 1)1
3101010100001 11122232100 2 189 10 1] 1
3/]00000|00011 02000134321 2 1] 320 1)1 top
311000100001 11122233210 0 35 10 8| 1
3/]00000|1 00001 12122234321 -2 1 10 43 | 1 top
1 2
3 4 5 6 7 8 9 10 11
Figure 9:D; " decomposed asD . A,
Table 11: D5 A, representationsin Dy "
|1 ]| powv P m | " [dsmv [ s [mur() ]| | ews
oofo0000|100010| 10122100000 2 1 45 11 0
00100100000 0000000212114 2 24 111 g
00| 0000 000O0O 0000O0O00O0COOO 0 1 11| 2| p= 059
101000100000 01 00O000O0COO0OO 2 111 1
011000100001 0000O00O1LO0O0OO0CO 2 10 111 1
110100100001 01000011000 2 10 10 111 1
0210100100000 10122221000 2 10 1 1] 1 1
1210010100010 01000122100 2 10 45 11 70
1211100100000 11122221000 2 40 111 ‘g
1210010100000 11122222100 0 10 8|1 70
2210001100010 02000123210 2 5 45 111 de
2211010100000 12122222100 2 45 1 111
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130001100100 01001233210 2 51 120 111 de
1311010100001 11122232100 2 45 10 1 1
1310001100001 11122233210 0 5 10 8| 1 de
2311001100100 02001233210 2 24 | 120 1 1
2310000100011 02000134321 2 1] 320 1] 1 top
2310110100001 12122233100 2 75 10 111
2310000100100 02001234321 0 1] 120 71 1 top
2311001100001 12122233210 0 24 10 8 2
2310000100001 12122234321 2 1 10 43 2 top
1411001100010 11122343210 2 24 45 1 1
1410000111000 01 012344321 2 210 1 1 top
1410000100010 11122344321 0 45 8|1 top
1410110100000 21 2 4 444 3100 2 75 1 1 1
1411001100000 21 2 4 4443 210 0 24 8 1
1410000100000 21 2 4 4 44 43 21 2 1 1 45 1 top
1 2
3 4 5 6 7 8 9 10 11
Figure 10: D, " decomposed asD, A; A,
Table 12: D¢ A,; A representationsin Dy’ "
l| pgraV| Pe m | : | dgrav| dg |mu]t( )| | e]ds|
0/000]0000010] 1 012221000 0] 2 1] 66 111 o
0/101]0000000| 000000002111 2| 15 1 11| g
0/000|/0200000| 02 000000000]| 2 3 111] o
0] 000 00000CO0O 0000O0O0OO0OOOQO 0 1 11 ] 1 g
111000100001 0000O0O0O1LO0O0COO 2 24 1| 1)1;°1
210100000010 01 000012100 2 66 1] 1 ‘0
212000000000 11122222000 2 10 1 1 1 ?g
2101010200000 10122222100 2 3 111 70
3/]001(0100100 01000123210 2 440 111 de
3111010100001 11122223100 2 20 24 111
310010100001 11122223210 0 24 8 1 de
410000000101 02000124321 2 1| 2079 111 top
411010001000 02001234210 2 15 495 1] 1
410000201000 01001234321 2 1| 1485 1] 1 top
4110110000002 12122224210 2 15 77 1] 1
4102010000010 12122234200 2 20 66 111
411010200010 11122234210 2 15 198 1 1
411010000010 12122234210 0 15 66 8 1
4100010200010 11122234321 0 198 8| 1 top
410000000010 12122234321 2 1 66 43 | 2 top
4121010000000 22244444100 2 45 1 111
4102010200000 212 44444200 2 20 3 1 1
411010200000 212 44444210 0 15 3 8 1
411010000000 22244444210 2 15 1 44 | 2
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|4 oo00] 0200000 21244444321 ] 2] 1] 3] 45 | 1| top |

+ o+

Figure 11:Dg decomposed asDg A,

+ o+ o+

Table 13: Dy A, representationsin D g

(o] » " [ om [ & [muEr] ] =)
0Ol0 O0O|J00O0COOOCO1l | 1441422222000 2 1 120 1 1 0
0O0fl1 1100000000 000O0O0O0OO0O0C—LTA 2 8 1 1 1 g
0Ol0 0|l 0000O0O0OO0QOO 000O0OO0O0OO0OOO0ODO 0 1 1 11 1 ¢}
111 000000001 000O0OO0O0OO0OO1I OO 2 3 120 1 1 0
210 1100000100 01 000012210 2 3 1820 1 1 de
212 0100000001 11122222200 2 6 120 1 1
210 1102000000 10122222210 2 3 135 1 1 de
210 1 00000000O0 22244444210 2 3 1 44 1 de
3]0 001001000 01000123321 2 1 | 60060 1 1 top
3/1 1100010000 02001234310 2 8 8008 1 1
311 1 01000010 11122223310 2 8 7020 1 1
3]0 001000010 11122223321 0 1 7020 8 1 top
311 1100000100 12122234310 0 8 1820 8 1
3/]0 0|00000100 12122234321 2 1 1820 43 1 top
3/3 0100000001 222 44444300 2 10 120 1 1
311 1102000000 212 44444310 0 8 135 8 1
311 1100000001 222 44444310 2 8 120 44 2
3/]0 0| 02000000 21 2 444 443 21 2 1 135 45 1 top
310 O 00000001 2 22444 4 43 21 -4 1 120 195 1 top
311 1100000000 333660666310 -4 8 1 192 1
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