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A bstract

W e discuss the behaviour of nonperturbative superpotentials in 4d N = 1 type IT com —
pacti cations (and orientifolds thereof) near lines of m arginal stability, where the spec—
trum ofcontrlbuting BP S D Jrane instantons changesdiscontinuously. T he superpotential
is nevertheless continuous, in agreem ent w ith its holom orphic dependence on the closed
string m oduli. T hem icroscopic m echanisn ensuring this continuity involves novel contri-
butions to the superpotential: A s an instanton becom es unstable against decay to several
nstantons, the Jatter provide a m ultiHnstanton contribbution which reconstructs that of
the single-instanton before decay. T he process can be understood as a non-perturbative
lifting of additional ferm ion zero m odes of an instanton by interactions induced by other
Instantons. These e ects provide m echanisn s via which instantons with U (1) symm etry
can contrbute to the superpotential. W e provide explicit exam ples of these e ects for
non-gauge D brane instantons, and for D -brane gauge instantons (where the m otions in

m oduli space can be interpreted as H iggsing, or Seiberg dualities).
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1 Introduction

N on-perturbative e ects in string theory are a key ingredient in the proper under-
standing of the theory, and in particular of the dynam ics of com pacti cations to four
din ensions. A Iready in the early tin esnon-perturbative e ects (in the form of strongly
coupled eld theory sectors) were considered to underlie m oduli stabilization and su-—
persymm etry breaking [1,[2]. The form al developm ents on euclidean brane instanton
e ects (see eg. [3,[4,[3,[d]), in particular D brane instantons in type II com pacti —
cations (or F /M —theory duals) have led to a variety of (in som e cases very explicit)
applications to eg. m oduli stabilization [7,[8,9] and the generation of perturbatively
forbidden couplings [10,[11] (see also [12,[13,[14] and [13] for related applications).
D brane instantons in local D orane m odels have also been explored, recovering eld
theory gauge instanton e ects [16,[17,[18,[19,[20], and with realizations of od and
new m odels of supersym m etry breaking [21/,[22,[23]. O ther form al aspects of D -brane
instantons have been recently discussed in eg. [24,125].

In this paper we discuss an interesting form al aspect of non-perturbative super—
potentials generated by instantons in string theory. In 4d N = 1 supersymm etric
com pacti cations of string theory, non-perturbative contributions to the superpoten—
tial arise from brane instantons w ith two ferm ion zero m odes, which are saturated by
thed? superspace integration. T hese m ust necessarily be 1/2-BPS branes, so that the
ferm ion zero m odes are given by the G oldstinos of the two broken supersym m etries.

Hence, the non-perturbative superpotential depends on the precise list of BPS
branes (satisfying certain additional constraints, lke the absence of extra ferm ion
zero m odes) at a given point in m oduli space. Now it is a wellknown fact that the
soectrum of BPS branes can jum p discontinuously across lines of m arginal stability
26,[27,28,129,[30,31]]. Nam ely, in type IIA com pacti cations the spectrum of super—
symm etric D 2-Jorane instantons m ay jum p as one m oves in com plex structure m oduli
Space (w ith the geom etric interpretation that a supersymm etric 3cycle m ay split in
two independent supersymm etric 3—<ycles when the com plex structure is changed);
sin ilarly for D ©orane Instantons in type IIB com pacti cations as onem oves in K ahler
m oduli space.

Tt is therefore a natural question whether the non-perturbative superpotential is
continuous across these lines of m arginal stability. T his is expected, given that super-
potentials are protected quantities. In fact, an abrupt change in the superpotential
would correspond to a non-holom orphic dependence on the m oduli (since m arginal

stability walls are typically of codim ension one), which is not com patible with su-



persymm etry. Tt tums out that the m icroscopic explanation of the continuity of the
non-perturbative superpotential is related to a wealth of previously unnoticed surprises
In D Jbrane instanton physics. W e devote the present paper to uncovering them 1n a
faw illustrative exam ples, leaving a system atic discussion for future work.

The rst interesting novelty is that m ultizinstanton processes can contribute to the
non-perturbative superpotential. C onsider an instanton A that contributes to the non—
perturbative superpotential, and which reaches a line of m arginal stability where it
gplits into two instantons B and C . A fthough the instantons B and C do not in gen-
eral contribute to the non-perturbative superpotential by them selves, the 2-instanton
process Involving B and C sin ultaneously does lead to a contrlbbution to the superpo—
tential. A key ingredient is that extra zero m odes of the two individual instantons are
saturated against each other, In such a way that only two ferm ion zero m odes are left
over for the com bined systam , see Figure[d. A lthough m ultiHnstanton processes have
been extensively studied forN = 2and N = 4 supersym m etric gauge theories (see [32]
for a review ), the possibility to have them generate non-perturbative superpotentials
in N = 1 theories has not been considered in the past. M oreover, our result in plies
that the usual strategy to com pute the non-perturbative superpotential by summ ing
all contributions from suitable BPS instantonsm ay m iss In portant contributions, due
to m ultiHinstanton processes. W e present several explicit exam ples of this phenom enon,
for D Jorane Instantons w ith or w ithout interpretation as gauge theory instantons.

A second interesting novelty arises from regarding the above 2-instanton process
as a non-perturbative lifting of ferm ion zero m odes. In considering the e ective 4d
Interaction generated by say the instanton B, one needs to consider the possible inter-
action term s which m ay lift ferm ion zero m odes (at the G aussian level). T he above
m echanism corresponds to a non-perturbative contribution to the interactions of the
ferm ions zero m odes of the instanton B induced by the instanton C , so that the form er
can contribute to the superpotential. This w ill be m ore explicitly discussed in several
exam ples.

A nal interesting surprise is related to non-gauge D brane instantons (these are
standard D Jorane Instantons, but refer to them as non-gauge, or som etin es exotic, to
distinguish them from D borane instantons w ith gauge eld theory interpretation). It
is usually considered that, for a D brane instanton in a perturbative type IIm odel to
contribute to the superpotential, it m ust have Chan-Paton symm etry O (1), so that
the ordentifold pro fction elin nates som e of the universal ferm ion zero m odes (arising
from an accidental N = 2 supersymm etry in the relevant open string sector). W e



how ever present several exam ples where instantons with U (1) sym m etries contribute
to the superpotential, w ith the extra zero m odes being saturated by interactions in the
Instanton world-=rolum e e ective action.

A s a last ram ark, the continuity of the non-perturbative superpotential, com bined
w ith string duality will lead to new interesting properties of non-perturbative super-
potentials In F-theory com pacti cations across certain topology changing phase tran-—
sitions, as we discuss in Section [d.

B efore entering the discussion, we would lke to present the problem of the con—
tinuity of the non-perturbative superpotential in termm s m ore fam iliar from the m odel
buiding viewpoint, In the context of the recent approaches to use non-perturbative
superpotentials to stabilize K ahler m oduli in type IIB com pacti cations [1]. For con—
creteness, consider a com pacti cation w ith a gauge sector arising from stack of D 7-
branes. In general, such con guration of branes is supersymm etric at a point (or
Iocus) P in Kahler moduli space. At other points or loci Q in moduli space, the
D 7-branes have m isaligned BP S phases and recom bine to form bound states, which
correspond to BPS branes at point Q . The eld theory Interpretation is that K ahler
m oduli couple as FayetTliopoulos termm s to the D Joranes, which trigger processes of
H iggsing/unH ggsing in the gauge theory. In any event, the gauge sector arising from
the D 7-boranes is di erent at the points P, Q . Consider that the gauge sector at P
develops a non-perturbative superpotential for the K ahler m oduli, such that the re-
sulting scalar potential stabilizes the m oduli at the point Q . If the non-perturbative
superpotential would not be continuous across the line of m arginal stability, we would

nd ourselves In the paradoxical situation that them nimum lies at a point w here the
original potential is no longer valid. N eadless to say, such behavior would enomm ously
com plicate the problem ofm oduli stabilization . H appily, superpotentials are far better
behaved quantities, which can be usad universally all over m oduli space.

In this paper we focus on non-perturbative superpotentials. On general grounds
we expect that other quantities, such as higher derivative F-tem s, arising from BPS
Instantons w ith additional ferm ion zero m odes, are also continuous all over m oduli
Space. W e leave a systam atic understanding for future work, and w ill be happy to
constrain ourselves to the discussion of the continuity of the superpotential in a serdes
of Mustrative exam ples.

T he paper is organized as follow s. In Section [ w e discuss som e relevant background
m aterial on Instantons, both gauge and non-gauge, and we Introduce the geom etric
backgrounds we w ill consider. In Section [§ we discuss the continuity of the superpo-



tential for non-gauge instantons, explaining the role of m ulti-instanton processes. In
Section[4dwe go on to discuss continuity and m ultiHnstanton e ects for gauge instantons
In string theory. In particular we describe the continuity of the superpotential under
Seiberg duality. Tn Section |5 we study m otions in m oduli space that convert gauge
nstantons Into non-gauge nstantons, and vice versa. In Section [d we describe the dual
realization of the processes we study in F and M theory. Section [1 contains our con—
clusions, and nally A ppendix [A] discusses som e exotic geom etric processes that evade

the assum ptions in this paper, and m ight lead to discontinuities in the superpotential.

2 Som e background m aterial

2.1 Instanton e ects

In dealing with euclidean brane instantons in string theory com pacti cations, it is
convenient to m ake som e general classi cations and distinctions, which are useful for
future reference. For concreteness we focus on D -brane instantons, although the e ects
can arise from other brane instantons in dualpictures (a prototypical exam ple are eg.
euclidean D 3-Jorane instantons in type IIB on CY -threefolds describbed as M 5-brane
nstantons in M -theory on CY -ourfods [4]).

A  rst class of D brane instantons corresponds to those whose intemal structure is
exactly the sam e as som e of the 4d space 1ling branes in the background. N am ely, in
geom etric setups, Euclidean D pdbranes w rapping the sam e (p+ 1)-<ycle (and carrying
the sam e world-=volum e gauge bundle) as some D (p + 4)dbranes in the background
con guration (in more abstract CFT temm s, they should be described by the sam e
boundary state of the intemal CFT ). Such D brane instantons correspond to gauge
Instantons on the corresponding 4d gauge sector, and thus reproduce non-perturbative
e ects arising from strong gauge dynam ics.

211 Superpotentials from gauge D -brane instantons

A prototypicalcase, which w illappear in our exam ples, is the generation of the A eck-
D ine-Seiberg superpotential

1
3N N¢ Nc Ng

W = W. N _ 21
( £) et (2.1)

on a st of 4d space 1ling branes whose low -energy dynam ics corresponds to SU (N )
SQCD with N¢ avours (with dynam ical scale ; here M denotes themeson elds).



ForN¢ = N 1 this arises from classical 4d instanton el con gurations, and has
been recovered from D -brane instantons in several Instances w ith di erent levels of
detail (33,134, [13,[17]. For other values of N; < N, it does not arise from classical
4d eld con gurations, and is obtained indirectly. A ltematively, it can be obtained by
considering the theory on S!, where there exist suitable 3d classical eld con gurations
(som etin es denoted calorons) leading to a 3d superpotential, which can be argued to
survive In the 4d decom pacti cation lim it (with a m icroscopic description in tem s of
putative ob fcts denoted \fractional instantons" or \m erons"). T he Jatter description
ts perfectly with the string theory realization. Indeed, the com putation of eg. the
euclidean D 3-orane instanton superpotential in type IIB con gurationsw ith gauge sec—
tors on D 7doranes on 4-cycles is usually described by invoking com pacti cation on a
circle in order to use an M —theory dual. Upon com pacti cation, onem ay use T duality,
leading to a picture where instantons are D Joranes stretched along the circle direction,
and gauge D Joranes are pointlke on it. In this picture the superpotential is generated
by \fractional" D -branes, which are sugpended between the gauge D foranes and thus
stretch only a fraction of the period along the circle direction [35]. Equivalently, in
the dualM —theory picture, the gauge D 7-boranes tum into degenerations of the elliptic
bration, such that the ber over the 4—cycle on the base is a sausage of 2-sgpheres. T he
AD S superpotential isgenerated by M 5Joranesw hich w rap the 4<ycle tin es a 2-sphere
(leading to \fractional” ob Fcts, In the sense that the standard 4d gauge Instanton cor—
responds to an M 5-brane w rapping thewhole ber) [34]. W e w ill often abuse Janguage
and regard the 4d A D S superpotentialasgenerated by (fractional) nstantons, although
strictly speaking only the 3d AD S superpotential has such a m icroscopic description.
Tt is Interesting to point out thatm any of them anipulations in theanalysisofN = 1
supersym m etric eld theories usually carried out in term s of the exact e ective action,
can be carried out m icroscopically in temm s of the physics of the relevant (possbly
fractional) Instantons. For Instance, an in portant point in working w ith gauge instan-
tons In our exam ples below is the derivation, from the Instanton physics view point, of
the m atching of scales In processes lke integrating out m assive 4d m atter etc. Let us
describe this in a sin ple exam ple. Consider an SU (N ) theory with N¢ < N, avours
with mass (matrix) m ,with dynam icalscale = (e =9 )=CNe N¢) Consider the sim-
ation where we neglect the e ect of them ass term on the Instanton physics. T hen the
instanton feels N ¢ m assless avors and the non-perturbative dynam ics is described by



the e ectofa ﬁ—ftactional nstanton, leading to the total superpotential

3Nc Nf ﬁ
W = N N.) — +mQQ (2.2)
detQ O

W emay want to use an altemative description where we include the e ect of the

m ass term s from the start. From the spacetin e view point, we integrate out them assive

avours. From the instanton perspective, the instanton feels that the 2N ¢ ferm ion zero

modes ; associated to the avors (In the D Jbrane picture, open strings stretched

between the Instanton brane and the avor branes) are actually m assivell. Integrating

out theterm Sy =m in the instanton action leads to a prefactor of detm in the
am plitude for the leftover N—lc—ﬁ:actjonal Instanton. T herefore the superpotential is

1
W = N, Ne¥:detm ¥e (2.3)

T his is the standard N—lc—ftactjonalmstanton am plitude fora SYM sectorw ith e ective
scale °de ned by

0Ne —  Ne Nt qetm (2.4)

Note that (Z3) in fact agrees w ith (2.J) upon integrating out the m assive avours in
the latter. A 1o, them atching of scales is the fam iliarone in  eld theory.

For future reference, let us m ention that D brane Instantons associated as above
to 4d space 1ling D branes, can lead to non-perturbative superpotentials despite the
fact that there are 4 universal zero m odes in the Instanton-instanton open string sec-
tor. Indeed, two of these ferm ion zero m odes have cubic couplings to the bosonic and
ferm jonic zero m odes in them ixed open string sector (strings stretched between the in—
stanton and the gauge D Joranes). T heir role can be regarded as in posing the ferm ionic
constraints to recover the ADHM instanton m easure [16]. The two leftover ferm ion
zero m odes are G oldstinos of the N = 1 supersymm etry, and are saturated by the d?
integration involved in the induced superpotential.

2.1.2 Non-gauge, \exotic" or \stringy" instantons

In general an euclidean D Jbrane Instanton does not have the sam e intemal structure
as any gauge D brane In the con guration. Such D Jbrane instantons do not have any

known gauge eld theory interpretation, and are thus dubbed \exotic" or \stringy"

IThis Hllow s from the fact that the m assive avours are open strings from the color to the avor

branes, and that gauge brane instantons w rap exactly on top of the color branes.



instantons. BP S instantons of this kind lead to superpotential termm s only if they have
two ferm ion zero m odes, w ith additional ferm ion zero m odes forcing m ulti-ferm ion in—
sertions leading to higher F—temm s as described below (additional ferm ions zero m odes,
w ith couplings to 4d chiralm ultiplets, are regarded here as non-zero m odes, since they
are lifted by background values of the latter; equivalently, integration over these zero
m odes leads to Insertions of the 4d chiralm ultiplet in the Induced superpotential). W e
are thus interested in stringy instantons w ith two ferm ion zero m odes.

In the sam eway as for gauge Instantons, there are 4 universal ferm ion zero m odes in
the instanton-instanton open string sector. H owever in this case, there are no bosonic
zero m odes which can lift the two non-goldstino m odes. In the absence of other lift-
Ing m echanian s (lke closed string ux backgrounds), the only m echanism which can
elim inate these extra m odes in type II perturbative m odels is an orientifold pro pction.
T herefore, only Instantons invariant under the ordentifold action, and with a Chan-
Paton action leading to an O (1) symm etry, have two universal ferm ion zero m odes,
and have a chance of leading to a non-perturbative superpotential (of course if they do

not have extra ferm ion zero m odes in other sectors).

2.1.3 Higher F-term s from D -brane instantons

Besides D brane Instantons generating superpotentials, BPS D “brane Instantons w ith
additional ferm ion zero m odes lead to higher Ftemm s in the e ective action. These
have been considered n [36,[37], and lead to operators w ith one insertion of D for

each additional ferm ion zero m ode. R oughly speaking they have the structure
Z

d*xd® w.- ( )D gk ..p "D O° (2.5)

17 ::ﬂnan

where the tensor w ( ) depends holom orphically on the 4d chiral multiplets. The
sin plest situation is an instanton w ith two additional ferm ion zero m odes, which is for
instance realized for gauge instantons n N¢ = N, SQCD . T he corresponding operator
has the above structure with n = 1 and In plem ents the fam iliar com plex deform ation
of the m oduli space (in an intrinsic way, in the sense of the m oduli space geom etry).

T he study of the Interplay between non-perturbative higher F-termm s and lines of
m arginal stability isbeyond our scope in thispaper, although we expect that itadm itsa
sim ilarm icroscopic description in termm sofm ulti-instanton contributions after instanton
selitting. In any event, even for the analysis of superpotential tem s, such instantons
will play an interesting role in som e of our exam ples. W e refer to these instantons as
Beasky-W itten Instantons.



2.2 A useful fam ily of geom etries

Here we describe a set of geom etrdes which we use In several of our explicit exam ples
below . They are non-com pact geom etries, but they su ce to study instanton e ects
and transitions as long as they involve just the local structure of com pact cycles (see
footnote[d for one exam ple w here non-com pactness is relevant to the discussion).

Let us consider the follow ing class of local C alabi¥Y au m anifolds, described by.

¥
Xy = (z &)
k=1
,fo
XY=z B (2.6)
k0=1

This kind of geom etry is a particular case of those considered In [38]. It describes
two C  brations, param etrized by x;y and x%vy° varying over the com plex plane z,
degenerating at the locations a;, by respectively. In this geom etry on can construct
Lagrangian 3-cycles by considering segm ents pining pairs of degeneration points on
the base, and bering the two S!’s in the two C  bers. Segm ents pining pairs of
a-type degenerations or pairs of btype degenerations lead to 3—<ycles w ith topology
52 St . Segm ents Ppining a-and btype degenerations lead to 3-cycles w ith topology
S°. Let us Introduce the notation [p; ;p,] for the 3-cycle associated to the pair of
degeneration points p;, ., whatever their type.
Introducing the holom orphic 3-fom

= — —dz 2.7)
x x0

the 3-cycle [or ;p, ] is calbrated by the form €' ,where is the angle of the ssgm ent
o1 ;P2 ] with the real axis in the zplane. Namely Im (€' )jp, p,1 = O, where Jo p,
denotes restriction to the 3—cycle. Hence, segm ents which are parallel in the zplne
de ne 3—<ycles which preserve a comm on supersymm etry. W e will be interested in
con gurations where all degenerations are on (or near) the real axis.

W e will consider stacks of 4d gpace 1ling D 6-branes and/or euclidean D 2-doranes
w rapping the di erent 3—<cycles, and describe the non-perturbative superpotentials aris-
ing from these con gurations. T he open string m odes and their interactions are easy to
detem ine. For instance, each stack of N D 6-braneson a 3<ycle leadstoa U (N ) gauge
group in a vectorm ultiplet of N = 1 supersymm etry for 3-cycles of S° topology, and of
N = 2 supersymm etry or 3-cycles of S S topology. The angle  introduced above
determ ines the precise supersymm etry preserved by the corresponding set of branes.



A 1so, two D 6-branes w rapping two 3-cycles involving one com m on degeneration point
lead to a vector-like pair of bifundam ental chiralm ultiplets, arising from open strings
in the intersection of 3-cycles (which is topologically S, com ing from theC thatdoes
not degenerate at the intersection).
A sdiscussed in [38] one can perform T -dualities along the two S! directions, and
m ap the con guration to a Hanany-W itten setup of P N S-branes (along 012345) and P °
N S~branes (along 012389),w ith D 4-branes (along 01236) sugoended am ong them , In a
at space geom etry w ith a noncom pact x° direction (in contrast to the usualH anany—
W itten con gurations describing system s such as the conifold). The gauge theory
content described above follow s from the standard rules in this setup (see [39]). This
picture also facilitates the com putation of the superpotential, whose generaldiscussion

we skip, but which we present in our concrete exam ple below .

3 N on-gauge D brane instantons

In this section we consider \exotic" D ‘brane instantons (ie. instantons arising from D —
branes w rapping intemal cycles di erent from those wrapped by the spacetin e 1ling
branes In the m odel). For sin plicity we restrict oursslves to perturbative type IIA
CalabiYau com pacti cations in the absence of uxes. The aimm of this section is to
show the continuity of the non-perturbative superpotential across the lines of m arginal
stability for the Instantons. W e show that the m icroscopic m echanisn underlying this
continuity reveals interesting new properties of D Jorane Instanton physics, including
m ulti-sinstanton processes and non-perturbative lifting of ferm ion zero m odes.

W e have already m entioned in Section that in perturbative type II m odels
(and In the absence of additional ngredients like 3-form uxes), for instantons to have
Just the two ferm ion zero m odes required to contribute to the superpotential they
should bem apped to them selves under the orientifold action and have an O (1) Chan-
Paton symm etry. This constrains the possble splittings of the instanton in walls of
m arginal stability, for instance an O (1) Instanton cannot split Into two O (1) instantons,
aswe show in Appendix[A]. Still, there is enough freedom to have non-—trivial splitting
of Instantons that contrlbute to the superpotential, as we now discuss in a smple

exam ple.
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Figure 1: Exam ple ofan O (1) instanton A ( gure a) gplitting into an O (1) Instanton B and
a U (1) lnstanton C and jtsjmageco ( gureb).

3.1 O(1l) instanton splitting as O (1) U (1) instantons
3.1.1 Con guration and m arginal stability line

In this section we consider one sin ple exam ple of an O (1) instanton A, which con-
tributes to the non-perturbative superpotential, and can reach a line of m arginal sta—
bility on which it splitsasan O (1) instanton B and a U (1) instanton (described as a
brane C and its in age C Y).

C onsider a geom etry of the kind introduced in Section [2.7, w ith tw o degenerations

ai, b located at z = =2, with t 2 R, and two degenerations g, I, located at
z = s=2+ i ,withs; 2R ,and s< tforconcreteness, see Figurlel. Nam ely
2 2 .
X+ vy = (z+ =2)(z s=2 i)
X+ y® = z+s2 i)z =2 (31)

C onsider m odding out the geom etry by the ordentifold action R ( 1)f',whereR is
the antiholom orphic involution

z! Tz ; x;v)$ W) (32)

The sest of xed pointsde nesan O 6-plane along the In aginary z axis. T his ordentifold
exchanges degenerations of a and b type. T he param eters s;t; belong to chiralm ul-
tiplets associated to com plex structure m oduli invariant under the ordentifold action.
W e choose the O 6-plane charge such that it leads to O (1) Chan-Paton symm etry for
D 2-brane instantons on 3—cycles de ned by horizontal segm ents crossing it.
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For generic non—zero  there are two O (1) instantons In this con gurations, cor-
responding to D 2-branes on the segm ents [a; ;b ] (denoted instanton A ) and [ ;a,]
(denoted instanton B ). Each has just two ferm ion zero m odes, and therefore leads to
a contribution to the non-perturbative superpotential

W = fle * + f2€ S (3.3)

where T ;S are the closed string chiral m ultiplets whose real parts are given by the
m odulit;s controlling the size of the w rapped 3—<cycles. H ere f; are prefactors given by
one-loop determ inants, which depend on the K ahler m oduli (but not on the com plex
structure m oduli).

W hen istaken to zero, the four degenerations align, and the instanton A reachesa
line of m arginal stability, and splits into an instanton of type B ,and a U (1) instanton
corresponding to a D 2-dorane on [a; ;b ]and its ordentifold im age on [a; ;1o ] (denoted C
and C ' regpectively ). Since the com plete superpotential should behave continuously in
thism otion In m oduli space, there should be suitable instanton processes reproducing
it. There are only two basic instantons, nam ely the O (1) instanton B on [, ;a; ], which
indeed reproduces the e ° term in (33), and the U (1) instanton C (with its in age
C’),which has four ferm ion zero m odes and does not contribute to the superpotential.
Hence, there is no mnstanton which reproduces the e T term . In analogy with the
analysis in Section (4) for gauge D -brane instantons, the resolution of the puzzle lies
In understanding the mutual In uence of di erent instantons, and can be understood

in di erent ways as we now describe.

3.1.2 The 2-instanton process

In order to show that the 2-instanton process contributes to the superpotential, we
have to discuss the structure of zero m odes In the 2-nstanton con guration, and how
they are saturated. This will Involve the saturation of additional zero m odes due to
higher order interactions on the instanton world-volum e e ective action.

Letusbrie y describe the structure of zero m odes in the di erent sectors. W e refer
to the Instantons C ,B as 1, 2 in this section.

In the 11 sector (and its 11° in age), the open string sector feels a background

with 8 supercharges, half of which are broken by the instanton. W e have a U (1)
gauge symm etry (although there are no gauge bosons), four bosonic zero m odes x;
corresponding to the 4d transkhtional G oldstones, and four fem ionic zero modes , ,
", corresponding to the G odstinos. Note that the Lorentz symm etry under which
these are chiral spnors is a global sym m etry from the Instanton volum e view point.
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T he 22 sector is sensitive to the orjentifold action and hence feels a background
w ith 4 supercharges, half of which are broken by the Instanton. T he orientifold pro jc—
tion truncates part of the spectrum , as com pared w ith the above U (1) instanton case.
There isan O (1) Z, gauge symm etry, and four bosonic zero m odes x, .

Considernow the spectrum from open string stretching at the 12 intersection (and
its mage 12). Locally around it, the background adm its 16 supersym m etries, half of
which are broken by the D boranes. The m assless m odes thus form a hyperm ultiplet
under the unbroken 8 supersymm etries. W e have two com plex bosonic zero m odes
"1, " o1, with charges +1 and 1 under the U (1) gauge symm etry of the instanton
1, and four ferm fonic zero modes, ,,, ,;, with charges +1 and 1 under U (1).
A Irematively, these can be conjugated to ™, ,™ ;, ,with charges 1,+1.Letuscall
the chiral super elds in the hyperm ultiplet 1, and ;.

Let us now describe the couplings of these m odes on the volum e of the instanton.
T hey are analogous (upon din ensional reduction) to the couplings that would appear
ifwewould have D 6-branes instead of D 2-branes. There isa rst term which describes
them ass term s of the open strings between the two Instantonsw hen they are separated
n the 4d direction

Spimetic = %, %)V (Ff+ )+ ix, %)f7, 1 T, a9 (34)

T hese temm s are related to the couplings to gauge bosons in the D 6-D 6 system . T here
are also term s involving the neutral ferm ion zerom odes ,~ (analogous to the couplings
to gauginos in the D 6-D 6 systam ), given byH.

S = (12001 21 15 (21 (1 N ot 122 T ) (35)

N otice that the com bination 1+ , isdecoupled, and corresponds to the two G oldstinos
of the com bined two-instanton system . W e also have a D term potential (the sam e
arising in a D 6-D 6-brane system ):

Sp = (F12F  FauF ) (3.6)

F inally, there are quartic couplings involring the elds in the 12 sector. T he local inter-
section preserves 8 supercharges, but the Interaction is induced by e ects that preserve
only 4 supercharges (due to the di erent nature of degenerations at the intersection
and ad pcent to it). T he interaction can be obtained from a superpotential of the form

W " (1 ) (3.7)

281in ilar couplings In the context of a D 2-nstanton intersecting its orientifold in age have been
described in [40].
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This in fact dentical to the superpotential that would be obtained for D 6-branes. T he
underlying reason is that both D 2-and D 6-Jbranes have dentical boundary states of
the ntemalCFT (and a i of DD to NN boundary conditions in the 4d part), thereby
leading to essentially the sam e correlation functions.

Thus we obtain ferm lon-scalar interactions of the form

— 14 4 4 14 14 14
Sz2i2= 12721 12"+ 2 12 21"12"2n+ 12 1"12 1 +he (3.8)

and the F-temm scalar potential

Sp = ¥’ af+ T2’ a’ad (3.9)

Let us now consider the role of this com plete instanton e ective action in the
generation of a non-perturbative superpotential. Notice that the contrdbution to the
superpotential is dom inated by con gurations of overlapping instantons, nam ely when
X1 % = 0, as follows. A large non—zero ssparation gives large m asses to the open
strings betw een the instantons (consistent w ith the equation (3.4))), so we can integrate
out these elds and set their vevs to zero, m aking the couplings in (3.3) vanish. Then
we cannot saturate the , zero m odes, and the integral vanishes. So let us focus
Ersinp]jcityH in thecasex; % = 0. In this case we have an Instanton action given
by Soimse = S + Sp + S 2.2+ Sp . The pleces relevant for the saturation of zero m odes
willbe S and S 2,2. W e can soak up ( ; ») by bringing down two insertions of
(12(1 2)) 4, from S . Sinilarly wecan soak up ~ by bringing dow n two Insertions of
(T1,7) 2. Thisalso saturates the zerom odes 1, ;,. Theram aining zerom odes 1,
—,; can be soaked up by bringing down two insertionsof "1, 2171, 2 from S 2 2 and
two Insertions of its com plex conjigate operator. Bringing everything together, and
Integrating over the (saturated) ferm ionic zero m odes, we get the follow Ing 2-instanton
contribution : 7

dx. @ Jepf §  S97F .7 (3.10)
wherex, = X1+ X, , = 1+ , arethe surviving zero m odes of the instanton. N ote

that the ' integral converges since there are no at directions In the (' 1,5;" 21) space,

as is easily seen from the form of S; and Sy . There are other sim ilar contributions

3In fact it is possble, and not m uch harder, to carry out the com putation allow ing for arbitrary
X1  Xp;. Namely one can perform the G aussian integration over these bosonic zero m odes, and
conclude that the result is localized (with som e exponentially vanishing tail) onto x; = x,. W e om it
the detailed analysis since the conclusions are essentially unchanged, and the sin pli ed discussion is

enough to show that the 2-instanton process at hand provides a non-trivial contribution.
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Figure 2: Schem atic picture of a m ulti-instanton con guration contributing to the superpo-
tential. A num ber of additional ferm ion zero m odes are saturated against each other, due
to Interaction term s in the world-volum e e ective action of the 2-instanton system . The two
leftover ferm ion zero m odes are the G oldstinos of the overallBP S D -brane Instanton system ,
and are saturated against thed? integration in the induced 4d e ective action superpotential
term .

from other com binatorics of soaking up zero m odes. The overall result is a non—zero
contribution to the superpotential from the 2-instanton process.

T he above m echanian is very sim ilar to the lifting of accidental zero m odes by
workd-volum e interactions in other situations. For Instance In the study of instanton
e ectson 4d N = 4 supersymm etric theories, where a world-=volum e 4-ferm ion inter—
action lifts ferm ion zero m odes in groups of four (and allow s m ulti-instanton processes
contribute to the sam e 4d e ective action temm s as single-instanton ones). T he analogy
could bem ade m uch m ore explicit by integrating over the bosonicm odes above, gener—
ating world-=volum e 4-ferm jon interactions. T his is, to our know ledge, the rst explicit
realization of a sim ilarm echanisn in the com putation of non-perturbative D forane n—
stanton superpotentials n N = 1 theordes. N otice also the interesting fact that in such
situations the usual recipe of adding the contributions from the indiridual instantons
m isses these new contributions.

T he spacetin e picture of the above m echanisn is of the kind shown in Figure[d,
w ith two ferm jon zero m odes of each instanton saturated against each other, and two
leftover ferm ion zero m odes.

A sa last comm ent, note that the above system tsnicely w ith the concept of quasi-
nstanton asdescribed In [32]. Nam ely the bosonicm odes ’/ can be described as quasi-
zero m odes, and they param etrize a quasi-m oduli space of quasi=instantons, in the sense
that they correspond to am oduligpace of instantons, w hich are lifted by a world-=volum e
potentialwhose e ects can be studied perturbatively In the value for the bosonic elds.
A ITthough strictly speaking such con gurations do not correspond to BP S instantons,

they can provide the dom inant dynam ical e ect in the sam iclassical approxin ation
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to certain quantities. Note that the additional G oldstinos (those associated to the
supersym m etries preserved by BP S instantons) are not tumed on in the rst correction,
and the e ect of larger values for thebosonic elds is suppressed due to the exponential
dam ping.

3.1.3 N on-—perturbative lifting of zero m odes of the U (1) instanton

O ne can interpret the appearance of the non—rivial contribution to the superpotential
as the instanton 2 generating an e ective interaction tem for the additional zero m odes

of the instanton 1. Indeed the piece
Z

S pen= & ,d" d expl(: )’ + 7T+ P4 v(’)]  (311)

of the Integral above can be regarded as com puting the non-perturbative contribution
of the Instanton 2 to the e ective action of the Instanton 1. T he result corresponds to
an e ective mass tem (of non-perturbative strength e °) for the extra ferm ion zero
m odes of the instanton 1. Hence the am plitude of the instanton 1 is sketchily of the
form

Suq ! d'xd® &~ exp( T e® ™)
7 v4
= d*xd® eSe ™ = d*xd® e’ (312)

nam ely the appropriate superpotential temm .

In Section (4.2.7) wew illprovide yet another view point regarding the non-perturbative
lifting of ferm ion zero m odes.

Tt isvery Interesting that U (1) Instantons can contribute to non-perturbative super-
potentials via thism echanian of non-perturbative lifting of the extra zero m odes. W e
also expect other instantons w ith additional universal ferm ion zero m odes, like Sp(2)
instantons, to sim ilarly contribute under special circum stances. Tt would be interesting
to use this m echanism to revisit the role of interesting U (1) and Sp(2) instantons in
m odel buiding applications, like the instanton scan in [14]. In fact, m ultiznstanton
processes can already arise in sin ple toroidal ordentifolds (see [41l] for an explicit T®=7 5

exam ple).

3.1.4 4d charged m atter insertions

The bottom Iline of the above Sections is that non-perturbative superpotentials for
non-gauge D “brane instantons are continuous across lines of m arginal stability. The
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m icroscopic Instanton physics m echanisn relies on the fact that additional zero m odes
In multi-nstanton processes can be saturated by interactions, leaving only a few zero
m odes to be saturated by extemal insertions in 4d correlators. T he initial instanton
am plitude is thus fully reconstructed by a m ultiznstanton am plitude.

Letuscom m enton the situation w here the initial nstanton intersects som e of the 4d
space 1ling D branes in the system . T here are ferm ion zerom odes charged under the 4d
gauge group at those Intersections. In order to contribute to the superpotential, these
additional ferm ion zero m odes should be coupled to operators involving the 4d charged
m atter elds, so that upon integration over them (or pulling down these interactions)
onegenerates Insertions of the 4d charged m atter eldsin the 4d e ective superpotential
as discussed In [42,[10,11,[13]. The appearance of the sam e insertions In the multi-
instanton am plitude at the line of m arginal stability is easy to show : Notice that
the hom ology charge of the contrlbuting D borane instanton system is preserved In the
process of reaching the line of m arginal stability. This ensures that the num ber of
charged ferm ion zero m odes is preserved in the process, and that the nsertions of 4d

elds are suitably generated. W e refrain from delving into a m ore detailed discussion

in concrete exam ple, and prefer to m ove on.

3.2 0O(1) splitting as U (1) instanton

In this Section we would like to consider another possible splitting ofan O (1) instanton
acrossa line ofm arginalstability, in which it splitsasa U (1) instanton and its im age. In
fact thiskind of process was considered in [40], w ith the conclusion that such instantons
cannot contribute to the superpotential due to the presence of additional zero m odes.
In fact our explicit exam ple evades this nogo result: there exists an F—+em interaction
n the world<olum e of the instanton (not considered in [40]) which lifts the additional
ferm Jon zero m odes.

T he geom etry In thiscon guration is sim ilar, but slightly di erent from those intro—
duced in Section [2.7. It is therefore better to introduce the con guration in temm s of a
type ITA Hanany-W itten setup. Consider a N S-brane along 012345, and two N Sranes
along 0123 and rotated by angles and n the planes 45 and 89 (so we denote them
NS and NS ). One can discuss the relevant part of the geom etry by depicting the
positions of the di erent branes in the z = x° + ix’ plane,as shown in Figure[d. I our
con guration, the NS-brane is located at z= 1 ,whilke the NS -branes are located at
z = t,with t; 2 R . W e consider instantons arising from euclidean D O-Jbranes sus—
pended between the di erent N S5-Joranes, thus corresponding to segm ents between the
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Figure 3: Con guration ofan O (1) instanton gplitting asa U (1) instanton (and its orientifold
In age). Interpreted asa HW setup,thedotsb,a ,denote the locations in the 67 plane foran
unrotated N S-brane, and N S5-branes rotated by angles In the 4589 directions. Interpreted
as D 1-brane Instantons in a threefold geom etry, the dotsa , b denote a profction of the
degenerations lociof a C ber. D l-drane instantons wrap 2-cycles obtained by bering
the latter over segm ents de ned by such degenerations, and are supersymm etric when the
segm ents lie horizontally.

di erent N S5-brane locations in the z-plane. BP S instantons corresoond to horizontal
segm ents.

T he above kind of con guration can be T -dualized using [43] into a type IIB ge—
om etry sim ilar to those in Section [22 (and sim ilar to those studied in [44,[45]). Asa
com plex variety, the geom etry can be described as an unfolding of an A , singularity

xy=uu+ v)u V) (3.13)
with = tan . Tt can be regarded asa C bration over the (u;v) space, and de-
generating at the lociu = 0,u = v. The directions u, v are closely related to the

directions 45 and 89 in the HW setup, and the degeneration loci correspond to the
N S5-brane volum es in those directions. The geom etry contains non—rivial 2-cycles,
obtained by bering the circle in the C  over a segm ent pining two degeneration loci.
T here are D brane instantons arising from D 1-dranesw rapping these 2—cycles. The de-
scription of the geom etry as a com plex m anifold provided in (3.13) does not encode the
param eters ;t,which areK ahler param eters and control the lines of m arginal stability
of our Instantons. W e w ill rather use pictures lke F igure[3, which can be regarded asa
depiction of the blow -up structure of the above geom etry, or the representation of the
67 plane In the HW con guration. Since the spectrum of instanton zero m odes and
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their interactions can be obtained from the latter using standard rules, we stick to this
language, although it is straightforward to translate into the geom etric one.

Let us Introduce an O 6-plane along 0123789 in the HW setup, which thus corre—
goondsto a xed line along the vertical axison the zplane. T he O 6-plane Intersects the
N S-brane (in an intersection presarving 8 supercharges) m apping it to itself, while it
exchanges the NS Jranes. W e choose the O 6-plane charge such that it leadsto O (1)
Chan-Paton symm etry on instantons along horizontal segm ents crossing the O 6-plane.

Consider the con guration for non—zero , see Figurel3a. The only BPS instanton
isgiven by a D O-brane stretched between theNS and NS branes. TthasO (1) Chan—
Paton symm etry and has just 2 ferm ion zero m odes (fornon—zero ), and thus leads to
a non-perturbative superpotential contrbution W ’ e ?,with T the chiralm ultiplet
w ith realpart t.

Consider the con guration for = 0,where the previous instanton reaches a line of
m arginal stability and splits into a U (1) instanton 1 (a D O-branebetween theNS and
the N S branes) and its orientifold in age 19 (between the NS and NS branes). At the
G aussian level, the instanton hasm any additional zero m odes beyond the required set
of two ferm ion zero m odes, hence naively it would not contribute to the superpotential.
H owever, it is easy to go through the analysis of zero m odes and their interactions, and
realize that the additional ferm ion zero m odes are lifted. T he argum ent is very sim ilar
to that in previous Section, so our discussion is sketchy.

In the 11 sector of open strings w ith both endpoints on the instanton, there are
four translational G odstone bosonic zero m odes x , and four femm ionic zero m odes,
two of them associated to Goldstinos ofthe 4d N = 1, and two ~ associated to
the accidental enhancement to N = 2. In the 11° sector of open strings between the
instanton and its In age, we have a hypem ultiplet (given by the pair of chiral eld

and °i N = 1 language) of zeromodes ’,’?% , ° with U (1) charges 2 for
unprin ed/prin ed elds. The couplings between the 11 and 11° elds are

S = (T TU0 (3.14)

From the HW construction it is possible to derive that there are interactions am ong

elds in the 11° sector. G #en the am ount of susy, it is possble to describe them by a
superpotentialW ' (  %?.Nam ely, there are scalar potential tem s (nvoling also a
D “4ermm contribution)

v o (FF 75y
Vi r jl Ioljz + jIOI Iojz (3.15)
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and m ost in portantly couplings to the 11° form ions
g, ’ IOIO+2 ’ OIO+ rr 00 (3.16)

A s discussed in previous exam ples, all additional zero m odes can be saturated by
pulling down interaction term s from the instanton e ective action. The only leftover
farm jon zero m odes are the two G odstinos , hence the U (1) Instanton contributes
to the superpotential. N ote that in contrast w ith the previous exam ples, the lifting of
zero m odes of the U (1) Instanton is purely perturbative (although is rem iniscent of the
non-perturbative lifting in previous section when regarded in the covering space).

Since the volum e of the instanton and its In age add up to the volum e of the original
O (1) Instanton, the com plete superpotential is continuous.

4 G auge D brane instantons

Let us proceaed to systam s which are m ore fam iliar, nam ely con gurations where the
non-perturbative superpotential can be regarded as generated by gauge theory instan—
tons. The dea is to consider a sim ple exam ple of gauge sector w ith a non-perturbative
superpotential, engineered via D boranes, and to consider its fate as one crosses a line of
m arginal stability. T he general lesson of this exam ple is the follow Ing. In this kind of
setup, the crossing of lines of m arginal stability in m oduli space is basically described
n tem s of a H iggsing/unH ggsing in the eld theory. A lso, the dependence of the
superpotential on the relevant m oduli is encoded in the dynam ical scales of the gauge
factors associated to the 4d gpacetin e 1lling D ‘branes (since they control the gauge
couplings). T hus the statem ent about the continuity of the superpotential across lines
of m argihal stability corresponds to the fam iliar m atching of dynam ical scales of a
gauge theory in a H iggsing/unH iggsing process, at energies above and below the rel-
evant vevs. G wven this interpretation and the construction and discussion below , it is
easy to nd other exam ples of sin ilar behaviour.

41 Anexample ofN¢g< N.SQCD non-perturbative superpo-
tential

41.1 Con guration,m arginal stability, and the spacetim e picture

Letusdescribe a systam of D 6-branes crossing a line a m arginal stability in a geom etry
of the kind introduced in Section [2.J. Consider the geom etry in Figure[d, having two
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Figure 4: a) M arghally stable con guration. b) M oving a; away from the horizontal axis
renders the con guration nonsupersym m etric, so it can c) decay to a supersym m etric con g-

uration by brane recom bination.

a-type degenerations and one btype degeneration, ordered as bj;a;j;a, from Ilft to
right along the real axis. W e consider a set of N D 6-branes wrapped on the 3—<ycle
Ci1 = [ja;]and N D6-braneson C, = [a;;a;]. This con guration is supersym m etric
as long as the degeneration a; is aligned with the other two. M oving a; away from
the horizontal axis forces the D 6boranes on C; and C, to m isalign, and their tension
Increases. The system of branes can relax by form ing a bound states, described by
N D 6-branes on the 3<cycle C = [b;a;]. Nam ely, the locus in m oduli space where a;
alignsw ith b;a, corresponds to a Iine of m arginal stability fora D 6-braneson C ,which
becom e unstable against decay into D 6-braneson C,,C,.
T he above phenom enon of brane dynam ics has a counterpart in classical gauge

eld theory. The system of N D 6-braneson C;,C, leadstoa U (N ); UNJ)N =1
supersym m etric gauge theory (see later for a discussion of the U (1) factors),w ith chiral
multipletsQ ,Q i the (0;;0,), @:;0,),and in theadpintofSUN ),. There is a
classical superpotential

W = trQ Q@ 4.1)

T he param eters of the gauge theory are the gauge couplings g;, and theta angles ;,
which are classically related to C; by

Z Z
1 ) 1 )
Ti= —2+ 1; = — + 1 A3 (4.2)
g 9s ¢, ci

where A3 is the type TTA RR 3-form . In the quantum theory, these param eters are
traded for dynam ical scales

T L2 (43)
= ex ; = ex
' N o2 Px
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T he change In the com plex structure associated to moving a; o the horizontal
axis corresponds to tuming on a FayetTliopoulos param eter  for the di erence of the
two U (1)’s. This triggers a vev for the bifiindam ental avours Q or Q', depending on
the sign of , and breaking the gauge group to the diagonalU (N ). A ssum ing that Q
acquires the vev, the eldds , Q becom em assive by the superpotential and disappear.

Weare leftwith a U (N ) pure SYM gauge theory, w ith com plex gauge coupling
Z Z

T =T+ T, = + A (44)
C C

T his agrees w ith the picture of the D 6-branes recom bining into D 6-Joranes w rapped on
C.

Tt is worth noting that the U (1) generators have BF Stuckelberg couplings w ith
closed string m oduli, which m ake the gauge bosons m assive, so the U (1) factors are
really absent from the low energy e ective theory. Thism odi es the above discussion
very m id}y. Nam ely, instead of tuming on a F I param eter, the above transition can
be regarded asm oving along the baryonic branch of the SU (N ); SU (N ) theory, to
yied a pure SU (N ) SYM theory.

W e would now lke to consider the non-perturbative superpotential in these two
systam s, and In show ing that it is continuous across the line of m arginal stability.
Interestingly, the non-perturbative e ects have a m icroscopic description In term s of
D 2-brane instantons on the relevant 3-cycles, along the lines described in Section[2.J]. Tn
the discussion w e stick to the description in gauge theory Janguage. A 1so for convenience
we use the description where the U (1)’s are not Included in the low -energy dynam ics.

Consider rstthe systam ofN D 6-braneson C . Since it corresponds to a pure SYM
theory, it con nes and develops a gaugino condensate. There is a non-perturbative
superpotential

W = 3= (eT=3N )3 (45)

Considernow the situation when the instanton reaches the line ofm arginal stability.
W e consider the system ofN D 6-braneson C; and N D 6-braneson C,, S0 we essentially
have to study the dynam ics of the SU (N ); SU (N ) gauge theory. Let us focus in
the regin e where 5,0 the dynam ics of SU (N ); dom inates.

In this case the SU (N ); group con nes rst. Tt hasN ¢ = N, so the instanton on
C, isaBeaskyW itten Instanton,which induces a quantum deform ation on them oduli
gpace. Instead of using the intrinsic picture iIn m oduli space and inducing an operator
of the form (2.5), we prefer to work asusualin el theory analysis, by in posing the
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deform ation by a quantum m odi ed constraint. W e describe the system is in term s of
mesonsM and baryons B B', w ith superpotential:

W= M+ 2x detMm BB )

where we have introduced the scale  to keep the dim ension of the operator in the
superpotential invariant. T his dynam ical scale willbe of the order of ;, S0 we use it
n what follow s.

TheF-+tem for enforcesM = 0,and viceversa. The eds andM arem assive,
O we can integrate them out. W e are left with a pure SU N ), SYM theory, with
dynam icalscale ¢, to be detem ined later. In addition we have the singletsX ,B , B,
w ith superpotential

W X (BB+ N

T he theory has a onecom plex din ensional baryonic m oduli space, but these singlets
do notm odify the theory otherw ise.

Thedynam icalscale ¢ isdetermnm ined by them atching, in analogy w ith the discus-
sion n (2.11), as

e = % 1 (4.6)

and is in fact the sam e as the nntroduced above.
In this leftover SU (N ), pure SYM theory, the e ect of the (fractional) instanton
on C, is sin ply to develop a gaugino condensate non-perturbative superpotential

W = f3 _ (e T=3N )3 (4.7)

in agreem ent w ith (4.3).

This exam ple provides a non-rivial and sin ple realization of the continuity of
superpotentials across lines of m arginal stability. T he instanton wrapping C reaches
the line of m arginal stability, at which it splits into two BPS instantons, w rapping
C, and C,. The instanton on C; is of Beasky-W itten type and deform s the m oduli
space. T he instanton on C,, once thee ect of the Instanton on C ; is taken into account,
Induces a non-perturbative superpotential. T he totale ect neatly addsup to thee ect
of the single instanton on C before crossing the line of m arginal stability.

For com pleteness, let us m ention that the discussion with U (1)’s in the e ective
action is sim ilar. T here are no baryonic operators, so there are no elds left out after
Integrating outM , . The onedim ensionalm oduli space is realized in thisview in the
closed sector, as the FI term for the relative U (1) corresponding to the position of a;

o the horizontal axis.
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Figure 5: Schem atic picture of the m ulti=nstanton con guration discussed in the text.

4.2 M icroscopic interpretation

In this Section we discuss the m icroscopic interpretation of the continuity of the non-
perturbative superpotential of the above con guration in term s of D orane instanton
physics.

4.2.1 The 2-instanton process

In analogy w ith the discussion for non-gauge instanton in Section [3.1.7, and from the
above discussion, it is clear that the superpotential contrdbution at the line ofm arginal
stability arises from a two-instanton process, involving the instantons C; and C,. In
fact, it is possible to com pute the set of zero m odes for the tw o-instanton system , and
their interactions.

W e skip the detailed discussion and jast sketch the result. T he contrdbutions to the
superpotential localize on con gurations of instantons coincident in 4d. In addition
the 3<ycle C; isnon—+rigid, and there is a bosonic zero m ode param etrizing a branch
where the Instanton on C; slides away from the D 6dranes on C;. A long this branch
the con guration has additional zero modes , ~ (the partners of ), which are not
saturated. Hence the contributions to the superpotential localize at = 0. At this
point one can easily check that all ferm ion zero m odes except for the two overall
G odstinos ; + , have non-xrivial interactions, which can be pulled down to saturate
the corresponding integrals.

T he whole process can be described in spacetin e in temm s of a diagram [§. The
instanton C, has six unsaturated fermm ion zero m odes, since it is a Beasley-W itten
Instanton with N = N, (thus leading to two unsaturated ferm ion zero m odes beyond
thetwo N = 1G oldstinos) and two additional ferm ion zerom odes ,chifrom being on
a non—rigd cycle. T he Instanton C; has fourunsaturated ferm ion zerom odes, since it is
an N¢ = N, Beaslkey-W itten instanton. In the two-instanton process, one can generate

Interactions between the zero m odes of the two instantons via the bosonic zero m odes
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charged under both, which allow to contract four fem ion zero m odes, leading to an

overall process w ith only two ferm ion zero m odes.

4.2.2 Non-perturbative lifting of ferm ion zero m odes

A Iong the lines of the discussion in Section [3.1.3, we would Ike to im prove on the
additionalview point of the process as a lifting of ferm ion zerom odes of the instanton C ,
by a non-perturbative e ect lnduced by the instanton C ;. In fact, for gauge instantons
them echanian can posed in a m uch sharper setup. C onsider a gauge instanton A , w ith

ed con guration A (x ;’; ),asa function of the sets of bosonic and ferm ionic zero
modes,’, .HereA denotesthe sstofalldd elds nvolved in the con guration. T he
classical e ective action for the zero modes S y,..(" ; ) can be obtained by replacing

R
the instanton el con guration on the 4d action S, R ]= d*xL A ], namely
Z

Sues("; )= dXLRA X ;'; )] (4.8)

From thispoint of view , any additional term in the 4d e ective action Sy;g[A ]induces

a corresponding term on the instanton e ective action Sy (”; ).
Z

Shee = d')x LA (X ;' ; )] (49)

W hen the additional term in the 4d e ective action S,y is nduced by another in—
stanton B, the term  Spq.(’ ; ) can in a very precise sense be regarded as a non-
perturbative interaction term for the zero m odes of A induced by the instanton B . In
particular interaction term s of this kind involving the ferm ion zero m odes of A are
non-perturbatively lifted by the instanton B . N otice that the g5 degpendence arranges
In such a way that the total 4d e ect is suppressed by the exponential factors of both
instantons A and B ,as n (3.12).

O n generalgrounds, wem ay expect that an Instanton B w ith k ferm ion zero m odes
induces a 4d F+em lading to contributions to Suy with k 4d ferm ion insertions.
Thisw il in general induce an interaction tem Sy .(’ ; ) on the Instanton A lifting k
ferm ion zero m odes. T he gpacetin e picture of the process is a two-instanton process
where k ferm ion zero m odes of the two instantons are contracted against each other. In
particular, in our gauge theory exam ple, the instanton C, induces a 4d e ective oper-
ator corresponding to a 4-ferm ion F-tem , which then induces a 4-ferm ion interaction
term on the e ective action for the zero m odes of Instanton C ;. Since the instanton C;
has six ferm ion zero m odes, the lifting of four leaves only the two G oldstinos, so that
there is a non—trivial contribution to the superpotential.
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To concluide, we would like to add yet another equivalent, but related, view point
on the non-perturbative lifting of zero m odes. The idea is based on a generalization
of the analysis In section 4.3 of [36], which discussed the e ects of a (perturbative)
superpotentialm ass term on instantons w ith additional ferm ion zero m odes. C onsider
an Instanton A w ith k = 2n ferm ion zerom odesbeyond the two G oldstinos, and leading

to a 4d higher F+term (2.3)
Z Z

d‘xd® o, = d*'xd® wis

i ::ﬂnan

()0 3 :::0h (410)

w ith

O5=D D (411)
T he operator O, is chiral (despite its appearance). In the presence of an additional
superpotentialW ( ), the supersym m etry algebra ism odi ed (since the ferm ion varia—
tions change, =F = m ) and O, isno longer chiral. Still, since the instanton
A ram ains BPS, it should induce an F-tem . Indeed, In [36] it was argued that (for
superpotential m ass term s), there is a suitable deform ation 07, of O, which is chiral

In the presence of the superpotential. T he instanton am plitude is now given by
Z Z

d*xd® 0, = AP we- o= ()OEE oRE (412)

iJq mda gy

w here, generalizing the result n [3d], O3 has schem atically the structure

09 -D D+ w3 (4.13)
Note that the total e ect is that the Instanton generate e ective vertices not only
with 2n ferm ionic extemal legs, but also with 2n 2p fem ionic extermal legs (w ith
p taking several possble values, depending on the detailed structure of W ). The 4d
interpretation is that 2p ferm ionic legs have been soaked up by p insertions of the
superpotential interaction.

In fact, one is lead to suspect a further generalization of the above argum ent.
Consider the instanton A in the presence, not of a 4d superpotential term , but of a
higher F+term (which could be of perturbative or non-perturbative origin). Consider
the Iatter to be of the form

Sy = d'%d® W= .- ()D D ’':x:D "D - (414)

Nam ely it leads to 4d interactions with 2m 4d fermm ions, and we assume m < n.
A Ithough we do not have a precise argum ent based on the supersym m etry algebra, we
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expect the am plitude of the instanton A to bem odi ed in the presence of such term
in the 4d action. Letusde nen=nmodm and r= (n n)=m ,hencen = m + n.

T he Instanton am plitude is expected to take the schem atic form

Z
4,42 e fh3,9 ...0fkJopy 'y Pl...p *rp T
d'xd™ Wei 3 g3, O :::0 D D :::D

w here fi;;},g denotes an m plet of indices g jJy1 ¢ tdgm Jm rand

0f — gihwhdh _ p D D "D " + W Ehh (4.15)

T he Interpretation is that in the presence of the 4d F—+term (4.14)), the instanton w ith
2n ferm ion zero m odes can generate e ective vertices with 2n  2m extemal ferm ionic
legs, by having sets of 2m  ferm ionic legs soaked up by the F-temm (4.14).

T he above discussion can be carried out to the situation where the m odi cation to
the 4d action is Induced by a second instanton B w ith 2m ferm ion zero m odes (which
could be a gauge Instanton or a non-gauge D Jbrane instanton). In the spacetim e
picture, we would have a m ultiznstanton process nvolving A and B, in which som e
of the farm ionic extemal legs of the instanton A are soaked up by the 4d e ective
interaction induced by B . A sin ple exam ple would be to consider the instanton B
to have two ferm ion zero m odes, so it generates a superpotential, thus tting into the
sitnation leading to (4.13). In fact, a particular case tting within the analysis in [36]
can be obtained by considering the instanton B to be a non-gauge D -brane instanton
inducing a superpotentialm ass term In the 4d action. Explicit exam ples of this have
been considered eg. In [18,[21],[41]]. O ur exam ple of gauge theory nstantons above
corresponds to a m ore general situation of the kind (4£.19), w ith the instantons A , B
given by the instantonsC;,C, (and n= 3,m = 2)

A s a last ram ark, we expect processes w ith non-gauge instantons to adm it a sim —
ilar interpretation. T hus the contribution to the superpotential arising from the two-
Instanton process involring the U (1) and the O (1) instantons can be regarded as the
4d e ective term induced by the U (1) instanton in the presence of the additional 4d
interaction induced by the O (1) instanton.

4.3 Adding sem i-in nite D Joranes

It is Interesting to consider som e sin ple m odi cations of the above discussion in the
presence of additional sam i=n nite D 6doranes sticking out of the C  degenerations.
From the eld theory viewpoint they correspond to the addition of extra avours for
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som e of the gauge factors. From the view point of the Instantons, they lead to additional
ferm ion zero m odes. In this section we consider a few possibilities

In the above situation we have focused on a case where the non-perturbative dy—
nam ics reduces to that of pure SYM . H ow ever, it is straightforw ard to m odify the setup
to SQCD with N avors. It su ces to introduce a stack of N : D 6-branes w rapping
the non-com pact 3-cycle obtained from a horizontal sem iHn nite line starting from
the degeneration a, (this can be regarded as a lim it of iIn nite 3—cycle volum e of a
geom etry with a second bype degeneration, located on the far right of the gure).
T he above argum ent goes through, and im plies the continuity of the non-perturbative
superpotential across the line of m arginal stability. N otice that in the particular case
of N¢g =N 1 the Instantons under discussion are fam iliar gauge theory instantons.

A nother straightforward addition of sam iHn nite branes is to consider adding K
D 6-branes stretching from the a; degeneration horizontally to the left in nity. Note
that for the con guration in F igurelda, these D 6-branes hit the b degeneration, so the
con guration can be regarded as K D 6-branes stretching along ( 1 ;b], N + K on
bja; Jand N on [a; ;a; ]. For the con guration in Figure[dc, we have N D 6-branes on
[b;a; ]and a disconnected set of K D 6-branes from left in nity to a;.

It iseasy to carry out an analysis sin ilar to the above to derive the continuity of the
superpotential. In the initial con guration, the gauge factor SU (N + K ) hasN ¢ = N,
and thus a BeaslkyW itten Instanton deform ing itsm oduli space and forcing the gauge
factor onto the baryonic branch. The ad pint of the SU (N ) factor pairs up w ith som e
of the m esons and becom es m assive, so the left over pure SYM theory develops a
gaugino condensation superpotential. O ne recovers the sam e result from the instanton
contribution in the nal con guration Figure [4c (upon m atching of scales along the
lines In Section [2.1]).

44 G auge theory instantons and Seiberg duality

In this section we elaborate on an interesting point. It is a fam iliar fact that the
realization of Sedlberg duality in temm s of the D Jorane construction of gauge theories
corresponds to a m otion in m oduli space (in which D “branes typically break up and
recom bine) [46, (39, 47,48, [49] (see also [B0, [51],[52] for other related approaches).
T herefore they provide a large class of exam ples of m otion across lines of m arginal
stability in which the non-perturbative superpotential is continuous.

A comment is in order here. From eld theory experience we know that Selberg

duality involves a non-trivial change of variables In the 4d chiralm ultiplets. W e also
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know that treedevel superpotentials are crucial in m atching properties of two Seiberg—
dual theordes. Both properties are related to the follow Ing fact. Sedberg dualities in

the D brane realization of eld theories can be descrbed as a motion between two

points P and Q in moduli space, at each of which we have D Jbranes wrapped on

cycles, whose sizes control the gauge couplings and thus the strength of instanton

e ects. Thism otion typically involves a region in m oduli space larger than the radius

of convergence of the Instanton expansion at either point. In otherwords, the operation

can also bedescribed asa continuation past in nite coupling, in the sense that they can

be obtained by shrinking a cycle C on which 4d space lling branes wrap and grow ing

a cycle C’ which is in the opposite hom ology class [C %)= [C ]. The point O where
the cycle shrinks is strongly coupled from the viewpoint of the original instanton at
P, but a di erent weakly coupled description is available at Q (and vice versa). The

change of description has several e ects, which we be taken into account in plicitly in

our discussions below :

Tt relates the strengths of the nstantons ase’ = (e 7)) ', where T, T° control
the sizes of C , C °. T his underlies the fact that m atching of scales in the Seiberg duality
encodes the continuity of the superpotential as a function of the closed string m oduli.

It In plies a non—trivial change of variables in the 4d chiralm ultiplets, hence the
com parison of the superpotentials at P and Q requires expressing the open string 4d
m ultiplets in term s of gauge invariant operators.

Tt can m ap tree-level and non-perturbative superpotentials to each other. T hus
the continuity applies to the full superpotential.

The D Jrane realization of Seiberg duality for large classes of eld theordes thus
provides a large class of exam ples of continuity of the non-perturbative superpotential
across lines of m arginal stability (with the appropriate change of variables for the
charged m atter elds). W e restrict to the description of this phenom enon w ith sin ple
exam ples, which are illustrative for this whole class.

N otice that it iseasy to provide a D Jorane realization of the original Selbberg duality
53] using the above geom etries ©llow ing [38], as we review now , see F gurel[d.

Consider a geom etry w ith three aligned degenerations ordered as a; ;b;a, , and Intro—
duce N . D 6-braneson [a; ;b]and N ¢ on [bja, ], with N ¢ N., Figure[@a. T his describes
the electric theory of SU (N.) SQCD with N¢ avours, with a gauged avour group.
Now m ove up the degeneration a; . Them Inin alenergy con guration is obtained when

N . D 6-branes recom bine at b, so we have N . D 6-branes on thethtedH segm ent [a; ;a; ]

4T he tilthg breaks supersym m etry in the interm ediate steps of the argum ent; there are however
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Figure 6: Realizing Seberg duality in temm s of D franes: a) The electric con guration.
b) Wemove a; up a bit. The original branes are now nonaligned, so they recom bine to
m Inin ize their tension. ¢) Finally m oving a; all the way to the m iddle position we get the
m agnetic dual theory.

andN¢ N.on [bja; ], Figure[@b. Now m ove a; to the right and bring it dow n between
band a,. TheN,. Nf D6-braneson [bj;a,]split, oweare leftwith N N, D 6-branes
on [bja;]and N¢ on [a;;a,]. This describes the m agnetic theory (again w ith gauged

avour group). Note that the gauging of the avour group is just for the purposes of
Introducing con gurations to be used later; a realization of the pure Seilberg duality
can be obtained sin ply by sending the degeneration a, to right in nity.

C Jearly the possibility of em bedding Seiberg dualities in term s of D Jboranes provides
a huge class of exam ples of brane system s crossing walls of m arginal stability. The
continuity of the non-perturbative superpotential in these processes is autom atically
guaranteaed by the eld theory argum ent for them atching of scales, as discussed above.
W e will not delve Into a m ore detailed discussion, and sim ply discuss som e particular
exam ples related to systam s in other Sections.

Let us focus on som e particularly sim ple exam ples where the basic splitting pro-
cesses of the D 6-branes are of the kind analyzed in the previous Section. C onsider the
situation with N D 6-braneson [b;a; Jand no D 6-braneson [a; ;b]. The a; degeneration
hasno D 6-branes attached, so m oving it between the degenerations b, a, is exactly the
inverse process of the one in Figureld, studied in Section [4.]l.

For future convenience let us consider another exam ple, now involring sem i=n nite
D 6-branes. Consider the initial con guration w ith degenerations ordered as a;, b, a,
and introduce N D 6-braneson ( 1 ;a),no D 6-braneson [a;;b]and K D 6-branes on
[b;as ]. A sonem oves the a; degeneration between b, a,, itdragstheK sam iHn nite D 6—
branes, which end up split in the nalcon guration. In the latterwehave K D 6-branes

sin plem odi cations of the setup which allow to preserve supersym m etry throughout the process [38].
W e skip their discussion since they w ill not be needed in our exam ples below .
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Figure 7: The periodic con guration dual to the conifold. T he dotted vertical line denotes
the period. a) Final step of the cascade. b) O ne step up In the cascade. W e reach this point
by m oving all a degenerations one cell to the left.

on ( 1 ;b),N + K Dob6-braneson (b;a),and N D 6-braneson (a;;a,). T he splitting
process of the sam in nite D 6-branes is exactly as in the last systam of Section [43,
where we showed the continuity of the non-perturbative superpotential.

Asa nalexample based on the con guration In the previous paragraph, lt us
consider a type ITA con guration m irror to D -branes at the conifold, and (one of the
steps of) the celebrated K Jebanov-Strassler duality cascade [54]. Follow ing [43,[55], a
system ofD Joranesata conifold can be realized in term s ofD 4-branes suspended (along
a circle direction ) betw een two rotated N SJoranes. Equivalently, one can use an in nite
periodic array of rotated N S-branes w ith sugpended D 4-Joranes. This system s can be
m apped to one of our fam illar double C - bration geom etries by sin ply introducing a
periodic array of degenerations :::;a;b;a;b;:::, with D 6-braneson the nite segm ents,
as shown in Figure[d. T his is equivalent to (but easier to visualize than) a double C

bration over a cylinder, w ith one degeneration of each type.

Consider the con guration on Figure [Ja, with M D 6-branes on the intervals of
type [a;b], and no D 6-branes on those of type [b;al. This describes the theory at the
end of the duality cascade, and corregponds to SU M ) SYM , w ith a non-perturbative
superpotential induced by a 1=M —fractional instanton. Consider now the geom etric
operation that takes us one step up the cascade. This corresponds to m oving the a—
type degenerations once around the period, com ing back to its original position in the
periodically identi ed geom etry butm oving one perdod to the left In the covering space
we are draw ing. W e do this In the sam e way as above: m oving up the a singularity
a bit, taking it one cell to the left, and nally retuming it to its original vertical
position. T he resulting con guration is shown in Figure[lo and containsM D 6-branes
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on the [b;a]intervals and 2M D 6-branes on the [a;b] Intervals. T he geom etric process,
and in particular the splitting of branes, is exactly as that considered two paragraphs
above, or K = N M . The continuity of the superpotential is easily derived, by
show Ing (using the instanton interpretation of the eld theory analysis in [56]) that
the BeaskyW itten instanton of the SU (ZM ) theory (which has N¢ = N_.) deform s
the m oduli space of this theory and forces it into the baryonic branch, while the 121 —
fractional instanton on the left over SU (M ) theory (with scale suitably com puted by
m atching) generates the superpotential.

5 Exotic instantons becom ing gauge instantons

In the previous Sections we have argued continuity of the non-perturbative superpoten—
tial for gauge and non-gauge D brane Instantons, In several exam ples. In this Section
we would like to consider a slightly m ore general situation where the nature of the
instanton changes in the process of reaching lines of m arginal stability. Nam ely a non—
gauge D Jorane instanton ends up as a gauge D brane instanton after som e m otion n
m oduli space.

A prototypical situation where this takes place is In duality cascades [54] (see also
eg. [57,58,[59,[601) of quiver gauge theories, in which one of the nodes of the quiver
becom es eventually em pty of 4d space ling branes. D brane instantons which occu—
pied this node change from gauge to non-gauge instantons in the m otion in m oduli
Space associated to the cascade. Since we are interested in studying contributions to
the superpotential, one would need to consider cascades of orientifolded quiver gauge
theordes. In fact, this kind of analysis has been carried out in [61l] in one particular
exam ple, focusing on the relevant part of the superpotential for the infrared theory. In
Section we revisit the system in our language, and recover that the full superpo—
tential is wellehaved in the process. O ur analysis reproduces som e pieces dropped in
[61], which are irrelevant in the Infrared, but are still part of the full superpotential of
the theory.

Before revisiting the exam ple of the duality cascade, let us consider the sim plest

case where a non-gauge D brane instanton becom es a gauge theory e ect.

5.1 Dualizing the O (1) instanton

Let us consider a geom etry of the kind in Section 2.4, w ith an O 6-plane, see Figure
d. Let us wrap stack of D 6-branes on the di erent 3—<ycles corresponding to the
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Figure 8: Prototypical exam ple of a D -instanton e ect being equivalent to a gauge theory
e ect via Seberg duality. Figure a) show s the geom etry leading toa U Sp SU gauge theory
upon w rapping D 6-branes on the appropriate 3—cycles. T he dotted line denotes the ordentifold
plane. Figure b) show s the con guration after the m otion In m oduli space corresponding to
Seiberg duality. T here are no D 6-branes in the 3cycle [a, ;b ], but an nstanton (dashed line)
w rapped on it can contribute to the superpotential. W e have indicated the charged ferm ionic

zerom odes , between the D -brane instanton and the gauge D brane.

con guration in Figure[8a. The Iow energy dynam ics of this con guration is given a
SUMN) USpE2N 4) gauge theory, w ith quarks q 2 Osy ;0ysp), @2 Osy iOusp) and
superpotential

W = ooom (51)

Let us focus on the strong dynam ics for the USp theoryH. Asargued in [62], when
the U Sp node becom es strongly coupled the theory has an e ective description (cor—
regoonding to its Seiberg dual) in which the U Sp group con nes com pletely, and the
fundam ental degrees of freedom are the m esons:

MH=q q; Pﬁ =g g; M=9 g (5.2)

w here we have expressed them esons In termm s of the electric e]dsH ,and thedotdenotes
contraction in theU Sp indices, w hich antisym m etrizes the elds. T he subindex denotes
the representation of the SU (N ) group under which the m eson transform s. T here is

ST here are additional non-perturbative e ects from the SU (N ) factor, which can also be followed
along the transition below , in analogy w ith our exam ples above (In fact, they m ap to 2-instanton

e ects after the transition). W e skip their discussion in order to em phasize the m ain point.
®W e have om itted here them eson siglet under the SU (N ). In the stringy setup isw illget a m ass

due to a coupling related by the N = 2 susy to the one giving m ass to the U (1) gauge boson.
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also a superpotential in plem enting the classical constraint betw een the m esons, w hich

can be w ritten as 0 1

MH MAdj
W,= pfd A (53)
MAdj ME

A dding the original superpotential in termm s of the m esons we obtain
W =WO+MEMH (54)

W e can solve the equations of m otion for the m assive m esons M E,M H Just by setting

them to zero. T he resulting superpotential is then given by:
|
woope O My _ detM 5q5: (5.5)
Ma g5 0
W e can now perform a brane m otion taking the con guration to that in Fig.[8b,
w here there is no brane stretching on the 3—¢ycle [a; ;b 1. This result takes into account
the brane creation e ects due to the presence of the orientifold planes, as discussed in
[38]]. D espite the non-trivial change in the brane con guration, the superpotential is
continuous. Nam ely the above superpotential is still generated, but now via an exotic
O (1) instanton on [a; ;b Jwhich can contrdbutel]. T he calculation in this case is sin ple.
In Figure[8b, the theory on the SU (N ) brane is ocally N = 2, in particular it has an
ad pint, which we dentify w ith the ad pint m eson of the gauge analysis (in both cases
it param etrizes sliding the D 6-branes along the two btype degenerations, and their
In ages along the a-type ones). The zeromodes , between the D 2-brane instanton
and the SU (N ) brane couple to this ad pint via a term

S=:1:1+ Mag (56)

in the instanton action (this has the sam e origin as the usual coupling between the
adpint and the avors n N = 2 theories). Integrating over the ferm ionic zero m odes
gives us the determ inant operator we found in equation [5.H. W e thus recover the sam e
kind of superpotential, w ith an exponential dependence on the closed string m odulus
associated to the 3—<ycle de ned by the degenerations by and a,. Thus the result is
continuous across them otion in m oduli space, in w hich gauge and non-gauge instantons

tum into each otherl(d.

"R ecall that the orientifold pro-ection acts oppositely on 4d space 1lling D 6-branes and D 2-brane
instantons, so an orientifold giving a U Sp gauge group will give a O (1) D -<instanton. This works in
the sam e way as for the perhapsm ore fam iliar D 5-D 9 system .

8 One may try to discuss a sin ilar con guration without the extermnal degenerations and w ith
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Figure 9: R elevant nodes of the quiver theory for the orbifolded conifold. W e have indicated

the ranks at the bottom of the cascade. T here can bem ore SU (N ) nodes to the right, ending
w ith another U Sp(N ) group. X ;5 denotes the bifundam ental from node i to node J.

5.2 A duality cascade exam ple

Let us proceed to the m ore com plicated case of the duality cascade studied in [61l], and
show the continuity of the non-perturbative superpotential along a com plicated chain
of Seiberg dualities.

T he theory under consideration is given by the quiver in F igure[d, w ith gauge group
at the bottom of the cascade given by U Sp(0) SU (1) SU (%) rirwith Nyjeoee
arbitrary. T he superpotential is given by:

N gactors |
W = () FRNED GHEFHPY GHPENED GRERE (5.7)
=1

T his theory can be easily realized in string theory by m odding out an orbifold of
the conifod [43] by a suitable orientifold action [63]. In term s of the geom etries in
Section [2.73, we can consider a periodic array of degenerations a; ;b jas ;b ;a3 ;5 ;a4 ;b
and Introducing an ordentifold quotient R ( 1) ,with R given by (3.2).

In term s of the geom etrical setup, the cascade of Seiberg dualities sin ply am ounts
to am otion in m oduli space, generalizing that discussed above. Tn this situation there
are also som e brane creation e ects due to the presence of the orientifold planes, as
discussed In [38]]. The con guration one step up in the cascade is given by the sam e

quiver but w ith di erent ranks:
USp(2N, 4) SU®M) SUMN, 1) SUM) ::: (5.8)

In particular all nodes are occupied so there are no non-gauge instantons at this level.

sem #Hn nite branes. Tn this case the com putation [Ba gives a non-zero superpotential, while in [8b
there are no dynam icalm esons to help saturate the ferm ion zero m odes of the instanton, hence there
is no superpotential. The m ism atch is related to the non-com pact D branes In the con guration
(see comm ent at the beginning of Section [2.J). Upon \com pacti cation" by adding the extermal

degenerations at a nite distance, one recovers the above filll agreem ent.
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T he detailed gauge theory analysis of [61] for the initial con guration show s that
the nonperturbative superpotential of the nitial gauge theory con guration can be
described in term s of the elds at the end of the cascade as

W DO = X 53X 5p + det(X 35X 43) + X 23X 34X 43X 32 + it (59)

where we have om itted som e quartic temm s of the sam e form as those in (8.7), which
are tree level from the point of view of gy, and thus not particularly interesting here.
W e rather us focus on the rst two tem s, which are nonperturbative. Our aim is
to recover them by studying possble D borane instantons in the nal con guration.
N ote that the determ nant term was dropped as frrelevant in [61]], since they were jast
interested in the infrared behaviour of the theory. W e are Interested in the continuity
of the full superpotential so we should keep it, since it carries an im plicit dependence
on the closed string m odulus controlling the corresponding cycle. For com pleteness,
et us reproduce here a sketch of the gauge theory analysis done in [611]:

5.2.1 The gauge analysis
W e will assum e for sim plicity a hierarchy of scales given by
1 3 1o 2 4 I (5.10)

W e w ill choose the ranks in such a way that the bottom of the cascade is described by
the quiver in F igure[d. This can be achieved by choosing the follow ing ranks:

N]_: 2N2 4 H N3:N4 1: (5.11)

D ue to the hierarchy of scaleswe have chosen, the rst node to becom e strongly coupled
is the USp one. This goes just as in Section [5]], and we end up with a USp(0)
group, som e m esons M 45 charged in the adjpint of SU (N,), and a nonperturbative
superpotential:

W np = detM a g (512)

Now we have to dualize the SU (N3) node. W e have N¢ = N, + N4, so the dual
description is in term s ofa SU (N ¢ Ne. = N, + 1) gauge group, and the dual quarks
and m esons. The m esons get a m ass due to the quartic tem s in the superpotential
[57, and they can be integrated out. A Iso, there is a m ass coupling com ing from the
superpotentialbetween M , 45 and them eson M 2(3) of SU (N 3 ) charged under the ad pint
of SU (N,). The relevant term in the superpotential looks like:

W = :::+ detM Adj + M Ade 2(3) + M 2(3)q23q32 (5.13)
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w ith g the dual quarks. Integrating the m esons out, we end up w ith a superpotential:

W = :::+ detpsthy + B3Thatusds (5.14)

where we have included a piece of the quartic superpotential that willplay a role In a
m om ent.

G oing down in energy, eventually the SU (N, ) node w ill becom e strongly coupled.
Tt hasN¢ = N, + 1, com ing just from the third node, so the gauge group con nes
com pletely (et us call the resulting node \SU (1)", as In the stringy picture of the
duality there is a sihgle brane rem aining). The description is in temm s of m esons
M 3(2) in the adpint of the third node and baryons B, B3 in the fuindam ental and
antifundam ental. T here is a superpotential given by:

W = :::4 BsM By detM.)” (5.15)

W hen the second node con nes the g3, Gsp quarks get con ned into baryons and
m esons. In particular, the superpotential[5.14 can be expressed as:

W o= :::4+ BaBs+ M Vg (5.16)

T he last step In the chain ofdualities, as faras the rst three nodes are concermed,
com es from dualizing the fourth node. T his is Im portant for our discussion as it gives
amass toM 3(2) via the dual of the Jast coupling in eg. [5.1d. A fter dualizing node 4,
we end up with a superpotential:

W o=t BsM OBy detMP 4 BB+ MM Y MR %, (517)
where we have denoted as X 34, X 43 the dual quarks of node 4 charged under node 3.
W e see that the m esons of node 3 get m assive as expected. Integrating them out, one
gets:

W = :::+ B3X 34X 43B\/3 detX34X 53+ B 333 (5 .18)

which is the sam e as the one in (£3) up to a relabeling of the baryons as X 53, X 32.

5.2.2 D -instanton e ects at the bottom of the cascade

Let usnow consider the nalcon guration, where the 4d space 1lling D 6-brane con—

guration gives rise to a structure U Sp(0) SU (1) SU () :::with N3;:::. There
are two Instantons which can contribute to the superpotential. There is a non-gauge
D brane instanton arising from the cycle corresponding to the node of the quiver w ith
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no 4d space 1Iling branes. A s argued In [61]] and we now review , it Jeads to the rst
mass temm s in (83). The instanton has O (1) symm etry and has two neutral ferm ion
zero m odes. In addition it has two ferm ion zerom odes and  from the open strings
going from the D -instanton to the SU (1) brane. T he instanton action contains a cou—
pling of the form X 53X 3, , arising from the sam e disk instantons that produce the
term s in (5.7). Integrating over these ferm ionic zero m odes, w e get a m ass contribution
to the superpotential:

W = :::4 d d X 23X 32
= 1:1:+ X 35X 3¢ (5.19)

T here is another D brane instanton which contributes to the non-perturbatie su-
perpotential, and which Involves a som ew hat novel e ect. It corresponds to a D Jrane
Instanton on the node w ith 4d group \SU (1)". T his instanton does not have a proper
gauge theory interpretation, but still it shares som e comm on features w ith gauge in—
stantons. Nam ely, since it isa U (1) Instanton, not m apped to itself by the ordentifold
action, it has four fem ion zero m odes. The two G oldstinos of N = 1 supersym m etry
rem ain, whilke the two accidental N = 2 G oldstinos have non-trivial couplings w ith the
bosonic and ferm ionic zero m odes in the sector of open strings between the instanton
and the SU (1)-Jorane. Forgauge D -brane Instantons, integration over these zero m odes
in poses the ferm ionic ADHM constraints [16], and reproduces the correct m easure on
Instanton (super)m oduli space. In the present setup, we lack an appropriate gauge
theory interpretation for the coupling, but its e ect of leading to the saturation of the
additional ferm ion zero m odes ram ains. W e are therefore left w ith the two G oldstinos

neaded for contributing to the superpotential. W e stillneed to saturate the charged
zero m odes going from the D -instanton to the SU (N 3) group, there are 2N . of these,
N . ofeach chirality. Letuscallthem ,3 and 3;. They can be saturated via the sam e
kind of quartic coupling ,3Y34Y43 32 asabove. Expanding the instanton action we get
a contribbution to the supeé:potentja];

W =z:::4 A 2]d 2] exp (233443 32)
Porrpd BERG KUG (YY) tir 3aas Vi s
o4 det(YayYys): (5.20)

which correctly reproduces the second term in the nonperturbative superpotentiall5.d.
W e see that there is a beautiful agreem ent between both com putations. C learly,
there are plenty of other system s where the agreem ent between the superpotential up
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in the cascade and at the lower steps can be checked. W e leave this analysis for the
interested reader.

6 Topology changing transitions in F—-theory

In this section we comment on an intriguing im plication of the continuity of the
non-perturbative superpotential, when considering the F-theory viewpoint on non-
perturbative e ects on system s of D 7-branes near lines of m arginal stability. The
process of D 7-branes gplitting/recom bining corregponds to a topology changing tran—
sition in F /M —theory, along the Ines of [64]. O ur results therefore in ply a non-trivial
relation betw een the non-perturbative superpotentials on topologically di erent C alabi-
Yau fourfolds.

W e restrict to a sin ple Jocal analysis of such D 7-Jbrane system , and of its F -theory
lift. Consider the type IIB D 7-brane realization of the D brane con guration studied
in Section[4.]l. T here are two stack ofD 7-branes w rapped on two holom orphic 4-cycles
C, and C,, Intersecting over a com plex curve . It is possble to consider concrete
exam ples of Calabi¥Yau threefolds and 4-cycleswith hy,(C1)= 1,h,5(C,)= 0,which
would t our exam ple, but it is not necessary to illustrate the m ain point. In fact,
the basic dea is already present in a Jocalm odel iIn a neighborhood of a point P in

. Using local com plex coordinates z;w ;u we have D 7-branes on C ; ,described locally
by w = 0 (and z;u arbitrary) and D 7doranes on C,, described locally by z = 0 (and
w ;u arbitrary). The curve is locally param etrized by u. In this local analysis, the
direction u is an spectator and we can ignore it in the follow Ing (although it can lead
to global obstructions in the com pact m odel). Thus we have a system of D 7-ranes
wrapped on the locus zw = 0.

T he F —+theory lift of this con guration is described by an elliptic bration over the
threefold, w ith degenerate bers (due to pinching ofa 1-cycle) over the 4-cycle w rapped
by the D 7-branes. W e can also work locally near the pinching of the elliptic ber, and
describe the geometry asa C  bration. For n, m D 7dranes on the two di erent
4-cycles, the Jocal description of the fourfold is thus given by the spectator direction u
tin es them anifold

xy = z'w" (6.1)

T his kind of geom etrdes were Introduced In [43]. Let us focus on the sin plest represen—
tative,n = m = 1, the conifold. In fact, the con guration corresponds to the resoled
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conifold, with the 2-cycle described as follows. The ber on top of the intersection
Iocus z = w = 0 on the base degenerates into two 2-gpheres touching at two points.
T he class of the 2—¢ycle corresponds to one of these 2-spheres (while the sum is the
class of the ber). For intersecting D 7-branes, the F /M -theory lift corresponds to the
Iim it of vanishing 2-cycle (and no background 2-form potentialcan be tumed on). W e
are thus at the singular conifold lin it, in which there are m assless states [69] (arising
from wrapped M 2-branes In the M -theory picture). These are nothing but the open
strings degrees of freedom between the two D 7-orane stacks.

Consdernow theD 7-dorane system away from the line ofm arginalstability. TheD 7-
branes recom bine into a single sm ooth one, w rapped on a 4-cycle w hich isa deform ation
of the above, namely zw = . In the localmodel, corresponds to a modulus,a at
direction for the eldsarising at the intersection of the D 7-branes. In the globalm odel
the at direction is obstructed by a D term condition, and the value of is xed by
the closed string m odulus m oving us away from m arginal stability. T he F-theory lift
of this con guration corresponds to the geom etry

Xy = ZW (62)

T his describes the deform ed conifold. This is expected, since the m assless charged
states have acquired a vev, thus triggering a topology changing transition [66]. The
behaviour of the arbitrary n = m case is sin ilar, using the deform ation xy = (zw n.

The local analysis show s that the crossing of a line of m arginal stability corre-
soonds to a topology change In the F /M —theory fourfold. The continuity of the non-
perturbative superpotential in this case in plies a non—rivial m atching between topo-
logically di erent spaces.

It would be interesting to have a m ore m icroscopic derivation of this result. W e
conclude by m entioning a few key points to this ain . The relevant instanton in the
IIB picture is a D 3Jorane wrapped on the 4-cycle which splits at the line of m arginal
stability. A s em phasized, the continuity of the process requires a non—rivial contri-
bution from a 2-instanton process in the intersecting D 7dorane con guration. In the
F /M —theory lift, the e ect arises from an M 5-brane instanton w rapping a 6-cycle w hich
selits, and there should exist a non-xrivial contrdbution to the superpotential arising
from a 2-instanton process involving the two M 5-brane instantons wrapped on the
tw o com ponents of the split 6—<ycle. T hus our analysis of superpotentials from m ulti-
Instantons should apply to M 5Jorane instantons on M —theory on CY fourfolds. C learly
this goes beyond the analysis in [4], sihce one would require a suitable generalization to
M 5-brane instantons on singular 6—cycles. In this respect, notice that one can rephrase
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them ulti-instanton process as a non-perturbative lifting of zero m odes of oneM 5-Jbrane
(A') by the e ects of a second M 5Jrane (B). This is not inconsistent w ith the argu-
m ents In [4], which were bassd on counting ferm ion zero m odes chiral w ith respect to
the U (1) symm etry acting on the nom aldirections transverse to the M 5-brane A . Tn—
dead the second M 5-brane B can induce couplings w hich violate thisU (1) (which acts
on directions along the volum e of the M Jorane B ). T hus the non-perturbative lifting
m echanisn is powerfuil enough to allow the appearance of contributions from instan-
tons w hich violate the celebrated arithm etic genus condition in [4]. C oncrete exam ples
of this are provided by suitable F /M -theory versions of the type II m odels studied in
this paper.

7 Conclusions and outlook

In thispaperwe have studied them icroscopicm echanian s via which D brane instanton
com putations Jlead to non-perturbative superpotential continuous across m oduli space.
T his understanding has revealed interesting surprises, including the interesting role
of m ulti=instanton contributions to the superpotential, and its interpretation as non-—
perturbative lifting of farm ion zero m odes.

These results go In the direction that D brane instanton e ects are subtler, and
m ore abundant, than hitherto considerad. It would be interesting to revisit som e of
the m odels considered In the literature and look for additional contributing instanton
processes of the kind we have introduced.

T he com putation of m ultizinstanton processes to the superpotential are involved,
and require the precise know ledge of the zero m ode Interactions. It would be Interesting
to use the continuity of the non-perturbative superpotential to system atize or short—
cut such com putations. For instance, consider a set of BPS instantons fC;g at a
point P in moduli space. If these instantons can form an irreducible bound state
C somewhere else In moduli space (at a point Q ), and if C has only two ferm ion
zero m odes, then In the theory at P there is a non-trivial m ultiznstanton process
hvolving the instantons £C;g. Sin ilarly, if the instantons form a bound state, but it
has m ore than two ferm ion zero m odes, the corresponding superpotential (at Q and
hence at P ) vanishes. T his seem Ingly innocent statem ent is in fact very powerful. For
Instance i m ay be feasible to system atically construct instantons contributing to the
superpotentialat som e tractable point in m oduli space, and translate the corresponding
instanton processes to the corresponding (possibly m ulti-)instanton processes in other
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regions. For instance, BP S instantons on type TIB m odelsm ay be constructed as stable
holom orphic gauge bundles in the Jarge volum e regin e. Such contrbuting instantons
could subsaquently be translated into m ulti-Hnstanton processes at other interesting
points like orbifold Iim its or G epner points.

T he non-perturbative superpotential isan interesting quantity w hich iswelloehaved
all over m oduli space, In a non“rivial way. It would be interesting to gain a deeper
understanding of the m icrophysics underlying this result in general, beyond the con—
crete exam ples we have analyzed. W e expect further insights from m ore powerfiil
approaches, for instance using the category of holom orphic D Joranes, which is another
Interesting ob fect w ith universal properties over m oduli space. T his category does not
Include the Inform ation about the stability conditions on D Jranes, nam ely on the D —
term contributions to the world—=rolum e action. H owever our results suggest that the
full superpotential is rather insensitive to the stability properties of ndividual BP S
nstantons: as soon as an instanton becom e unstable and decays into sub-ob Fcts, the
latter can reconstruct the sam e contribution via a m ulti-instanton process.

W e expect our results to shed light on the physics of non-perturbative superpoten—
tials in string theory, both from the view point of its form al properties, and for physical
applications in concrete exam ples.
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A No splitting O (1)! O(() O(1)

In the m ain text we have described exam ples where an O (1) instanton decays into a
set of two instantons of U (1) O (1),ora U (1) nstanton and its ordlentifold im age.
In this appendix we show that it is not possible to have one O (1) instanton decay
Into two O (1) Instantons (orm ore generally, that an Instanton m apped to itself under

the ordentifold action cannot decay into two instantons invariant under the orientifold
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action). The argum ent is general, and applies to any BP S instanton, contributing to
the superpotential or to higher-ferm ion F—temm s.

The general argum ent that forbids such instantons from crossing such m arginal
stability lines goes as follow s. In order to contribute to F-tem s, the instanton m ust
be BPS, so0 the cyck it wrapsmust calbrated by € with som e constant phase ' :

arg j = ': @A d)

The phase ’ of the calbration determ Ines what is called in the -stability literature
the grading of the brane, we w ill adopt this term inology here. T his grading determ ines
the supersym m etry conserved by the brane, and also the m ass of the lightest bosonic
string m ode between the decay products ; and , at them arginal stability line:

("1 '5): A 2)

W hen thegradings’ 1 and ’ , ofthedecay productscoincide ; and , aremutually
supersym m etric, the boson is m assless, and we are on the m arginal stability wall.
Oncewem ove slightly o the wall, the gradings w ill becom e di erent and bound state
form ation becom es possible. W hether we have a bound state or a stable superposition
of two m utually non-supersym m etric branes depends on the sign of the boson m ass: on
one side of the wall it w ill becom e tachyonic, triggering bound state form ation, while
in the other side of the wall it w ill be m assive, and the superposition of ; and , is
stable.

Here the m ain point of interest for our discussion is that the ! action of the
orientifold actson these gradingsas ’ ! !, s0 Invariant instantonsm ust have integer
grading. T his obstructs the decay of the O (1) Instanton into two O (1) factors: there
is no question of continuity of the nonperturbative superpotential since the gradings
of the branes are frozen by the orientifold.

It is possible to argue the sam e thing in a slightly di erent way. Im agine D 6 branes
wrapping the sam e cycles in the intemal space as the instantons. In this case the
process of brane recom bination is typically seen as a H iggsing, triggered by a Fayet-
Tliopoulos term . T he Interpretation of the discussion above In term s of the gauge theory
living on the brane is that due to the ordentifold, the gauge group on the brane gets
reduced from U (1) to O (1), and the Fayet-Iliopoulos is profcted out. There is no
contihuous way of Higgsing O (1) O (1) to O (1).

W e concluide by pointing out that our argum ent above does not exclude other
m ore exotic possibilities to split an instanton invariant under the orientifold action
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Figure 10: Splitting an Instanton invariant under the orientifold action into two invariant

Instantons via a process involving a singular con guration.

Into two instantons invariant under the orientifold action. In fact, there is a sinple
exam ple of such transition, which is related to those In [67], as we now describe.
Consider a geom etry of the kind consdered in Section [2J, as shown in Figure [10.
The con guration inclides an orientifbld plane associated to the action R ( 1),
with R given by

z! Z ;5 y)! X% ;0 &Y @Y A 3)
or
z! 72 ; xy)! &%) o5 &) &P A 4)

T he two choices Jead to ordentifold planesw hose pro fction on the z-plane is the horizon—
talaxis. They act di erently on the C  bers, and lead to slightly di erent structures
for the ordentibld profction H Nam ely the O 6-plane de ned by (A_J3) is split when
it encounters a C  degeneration, and it changes from 06" to 06 (and vice versa).
The O 6-planede ned by (A_4) isnot split and hasa xed RR charge. T his distinction
w il not be relevant for us, and for concreteness we focus on an orientifold of the kind
(&_4), and choose the ordentifold to Jead to O (1) symm etries for D 2-branes instantons.

Consider the transition shown in Figure[I0. W e consider the fate of the O (1)
Instanton arising from a D 2-brane on the 3—<ycl [a;;b ]. As the two degenerations
a,, az approach the orientifold plane (in a way consistent w ith the orientifold action),

°The two choices correspond in the HW dualto introducing O 4—or O 8-planes, respectively.
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we reach a singular con guration, F igure [10b, where the O (1) instanton is split into
two O (1) instantons. At this point a new branch em erges, where a,, a; can ssparate
along the horizontal axis, and the original instanton is split into three O (1) instantons
(for the ordentifbd action (&_J3), them ddle 3-cycle would Jead to an U Sp instantons).
Tt is thus possible to split O (1) Instantons by a physical process, but which is in fact
unrelated to (and m ore exotic than) lines ofm arginal stability. Indeed, notice that the
transitions is not triggered by a Fayet-Iliopoulos param eter.

In fact, it is questionable that the transition has a sim ple description from the
view point of the instanton world-volum e. N otice that the transition involves passing
through a singular con guration, on which the 2-sphere of the 3—<yclk [a; ;a3 ] shrinks to
zero size. T his is an ordentifold quotient of the singular CF T point of the A, geom etry,
where the theory (at least before orientifolding) develops enhanced gauge sym m etry,
w ith additionalm assless gauge bosons arising from wrapped D 2-branes. Tt is unlkely
that the transition point adm its a standard description from the viewpoint of the in—
stanton world-volum e. W e thus expect that the non-perturbative superpotential can
be discontinuous across this kind of transition. Indeed, In [67] sin ilar transitions lead
to discontinuous phenom ena, lke chirality changing phase transitions, not com pati-
ble with a local eld theory description. Tt would be interesting to investigate these
transitions in m ore detail, perhaps along the Iines n [63].
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