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Mass ordering of differential elliptic flow and its violation for φ mesons
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We simulate the dynamics of Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) with a hybrid
model that treats the dense early quark-gluon plasma (QGP) stage macroscopically as an ideal fluid but models
the dilute late hadron resonance gas (HG) microscopically using a hadronic cascade. By comparing with a
pure hydrodynamic approach we identify effects of hadronic viscosity on the transverse momentum spectra and
differential elliptic flow v2(pT ). We investigate the dynamical origins of the observed mass ordering of v2(pT )
for identified hadrons, focusing on dissipative effects during the late hadronic stage. Within our approach, we
find that, at RHIC energies, much of the finally observed mass splitting is generated during the hadronic stage,
due to buildup of additional radial flow. The φ meson, having a small interaction cross section, does not fully
participate in this additional flow. As a result, it violates the mass-ordering pattern for v2(pT ) that is observed
for other hadron species. We also show that the early decoupling of the φ meson from the hadronic rescattering
dynamics leads to interesting and unambiguous features in the pT dependence of the nuclear suppression factor
RAA and of the φ/p ratio.
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I. INTRODUCTION

A presently hotly debated question is whether the quark-
gluon plasma (QGP) created in Au+Au collisions at the Rel-
ativistic Heavy Ion Collider (RHIC) [1] represents a “perfect
liquid” [2–5], i.e., a fluid whose shear viscosity to entropy
ratio η/s is at or close to the conjectured [6] lower bound
η

s
= 1

4π
. A key observable in this context is the elliptic flow

v2 of hadrons emitted anisotropically in noncentral collisions
[7]. At the highest RHIC energy of

√
s = 200 A GeV, the

observed v2 values near midrapidity (|η| <∼ 1), for not too large
impact parameters (b <∼ 7 fm) and transverse momenta (pT <∼
1.5 GeV/c), agree well with predictions from ideal fluid
dynamics [2] (i.e., assuming zero viscosity), including [8,9] the
predicted dependence of v2 on the transverse momentum pT

and hadron masses [10]. Evidence for nonzero shear viscosity
in the collision fireball is obtained from deviations from ideal
fluid dynamical behavior. This is manifested in the experimen-
tal data via a gradual breakdown of the ideal fluid description
when collisions are studied at larger impact parameters and
at lower energies [11] or when measurements are made away
from midrapidity [12–14]. In previous work [15] we have
shown that a large (and possibly the dominant) fraction of
these deviations from ideal hydrodynamics is due to “late
viscosity” caused by dissipative effects in the dilute hadronic
rescattering stage that stretches between hadronization of the
QGP and final kinetic freeze-out. The question whether there is
also non-negligible “early viscosity” in the dense QGP phase
remains open. An answer to this question requires a proper
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viscous hydrodynamic treatment of the QGP fluid, which is
presently being pursued vigorously [4,5,16]. It also depends
on still unknown details of the initial conditions in heavy-ion
collisions, in particular the initial spatial eccentricity of the
fireball [15,17–19].

In this article we report additional results from the hybrid
model study presented in Ref. [15], focusing our attention on
a detailed investigation of dissipative effects during the late
hadronic rescattering stage. The early QGP stage, including
its hadronization, is described by ideal fluid dynamics. Specif-
ically, we address the questions of (i) how radial and elliptic
flow evolve during the hadronic stage when it is described by a
realistic hadronic rescattering cascade, rather than by an ideal
fluid; (ii) how these differences affect the shapes of the finally
observed hadronic pT spectra and their differential elliptic
flow v2(pT ); and (iii) whether the differences between ideal
fluid and realistic kinetic behavior during the late hadronic
stage are similar for all hadronic species or whether different
magnitudes of their scattering cross sections translate into
measurably different characteristics of their observed spectra
and elliptic flow.

The article is organized as follows: For completeness, we
begin in Sec. II with a short review of the hybrid model [15]
employed in this study. Our results are presented in Sec. III, in
three subsections organized along the questions raised in the
preceding paragraph. We close the article by presenting our
conclusions and some perspectives in Sec. IV.

II. THE MODEL

Our study is based on a hybrid model that combines an ideal
fluid dynamical description of the QGP stage with a realistic
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kinetic simulation of the hadronic stage [15]. Relativistic
hydrodynamics is the most relevant formalism to understand
the bulk and transport properties of the QGP because it directly
connects the collective flow pattern developed during the QGP
stage with its equation of state (EOS). It is based on the key
assumption of local thermalization. Because this assumption
breaks down during both the very anisotropic initial matter
formation stage and the dilute late hadronic rescattering stage,
the hydrodynamic model can be applied only during the
intermediate period, between initial thermalization after about
1 fm/c [2] and the completion of the quark-hadron transition,
which, in central Au+Au collisions at RHIC energies, happens
after about 10 fm/c.

In absence of a nonequilibrium dynamical model for the
early pre-equilibrium stage of the collision, its output is
replaced by a set of initial conditions for the hydrodynamic
evolution that are tuned to experimental measurements of
the final state in central (b = 0) collisions [2]. To describe
the breakdown of the hydrodynamical model during the late
hadronic stage, due to expansion and dilution of the matter, one
has two options: One can either impose a sudden transition
from thermalized matter to noninteracting, free-streaming
hadrons through the Cooper-Frye prescription [20], imposed
at a suitable value of the decoupling temperatureTdec or
decoupling energy densityedec [2], or make a transition from
the macroscopic hydrodynamic description to a microscopic
kinetic description at a suitable value for the switching
temperatureTsw where both descriptions are simultaneously
valid [15,21–24], letting the subsequent kinetic decoupling
play itself out automatically by following the microscopic
evolution until all interactions have ceased. We here use both
approaches alternatively to isolate effects that are specifically
caused by dissipative effects in the hadron rescattering cas-
cade.

A. Ideal hydrodynamics

For the space-time evolution of the perfect QGP fluid
we solve numerically the equations of motion of ideal fluid
dynamics, for a given initial state, in three spatial dimensions
and in time [(3+1)-d ideal hydrodynamics [13]:

∂µT µν = 0, (1)

T µν = (e + p)uµuν − pgµν. (2)

Here e, p, and uµ are energy density, pressure, and four-
velocity of the fluid, respectively. Due to its smallness at
collider energies, we neglect the net baryon density. As
an algorithm to solve the above equations we choose the
piecewise parabolic method (PPM) [25]. It is known to be
a very robust scheme for solving nonrelativistic gas dynamics
including shock wave formation and has been employed in
many fields. We first applied it in [26] to solve Eulerian
hydrodynamics for relativistic heavy-ion collisions, Eqs. (1)
and (2). Use of this algorithm enables us to describe the
space-time evolution of relativistic fluids accurately even if
the matter passes through a first-order phase transition. The
PPM is a higher-order extension of the piecewise linear
method employed, for example, in the relativistic Harten-

Lax-van Leer-Einfeldt (rHLLE) algorithm [27]. We solve
Eq. (1) in (τ, x, y, ηs) coordinates [13] where τ = √

t2−z2)
and ηs = 1

2 ln[(t+z)/(t−z)] are longitudinal proper time and
space-time rapidity, respectively, adequate for the description
of collisions at ultrarelativistic energies. The grid sizes are
�τ = 0.3 fm/c,�x = �y = 0.3 fm, and �ηs = 0.3. We have
checked the grid size dependence of our final results and
observed sufficient convergence with the given choice of grid
parameters, as long as smooth initial conditions such as those
discussed below are used.

B. Equation of state

For the high-temperature (T > Tc = 170 MeV) QGP phase
we use the EOS of massless noninteracting parton gas (u, d, s

quarks and gluons) with a bag pressure B:

p = 1
3 (e − 4B). (3)

The bag constant is tuned to B
1
4 = 247.19 MeV to ensure a

first-order phase transition to a hadron resonance gas at critical
temperature Tc = 170 MeV. The hadron resonance gas model
at T < Tc includes all hadrons up to the mass of the �(1232)
resonance. Systematic studies with various models of the EOS,
including a more realistic cross-over one, will be discussed
elsewhere.

For a meaningful discrimination between the ideal fluid
and hadron cascade descriptions of the hadron phase, and
a realistic direct comparison of hydrodynamic results with
experimental data, our hadron resonance gas EOS implements
chemical freeze-out at Tchem = Tc = 170 MeV, as observed
in RHIC collisions [28]. This is achieved by introducing
appropriate temperature-dependent chemical potentials µi(T )
for all hadronic species i in such a way that their num-
bers Ñi , including all decay contributions from higher-lying
resonances, Ñi = Ni + ∑

R bR→iXNR , are conserved during
the evolution [14,29–33]. [Here Ni is the number of the ith
hadron, and bR→iX is the effective branching ratio (a product
of branching ratio and degeneracy) of a decay process R →
i + X.] In this “PCE model” [14] only strongly interacting
resonances with large decay widths (whose decays do not
alter Ñi) remain chemically equilibrated below the chemical
freeze-out temperature.

The hadronic chemical composition described by hydro-
dynamics using the PCE model EOS is roughly consistent
with that of the hadronic cascade models, as long as the latter
are initialized at Tsw with thermal and chemical equilibrium
distributions [34]. This is crucial for a meaningful comparison
between hydrodynamic and kinetic descriptions of hadronic
matter because the chemical composition of the hadron
resonance gas has a significant influence on the hydrodynamic
evolution of the hadronic transverse momentum spectra [3]:
although the nonequilibrium hadronic chemical potentials
µi(T ) do not affect the EOS p(e) of the hadronic phase [14],
and thus lead to almost identical evolution of radial flow and
total momentum anisotropy as for a chemically equilibrated
hadron gas, they significantly alter the relationship between
energy density and temperature, leading to cooler temperatures
and hence to steeper transverse momentum spectra at identical
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kinetic decoupling energy densities [14]. This effect is seen
most dramatically in the time dependence of the mean
transverse momentum for pions [3]: 〈pT 〉π decreases with
proper time after chemical freeze-out, whereas with continued
hadronic chemical equilibrium it would increase with time.
Clear conclusions about hadronic dissipative effects on the
shapes of the transverse momentum spectra can therefore be
drawn only from a comparison with hydrodynamic models
that implement chemical and kinetic freeze-out separately.

C. Initial conditions

Contrary to Ref. [15] where we studied both Glauber model
and color glass condensate (CGC) type initial conditions,
for the comparative study presented here we concentrate on
the Glauber model, suitably generalized to account for the
longitudinal structure of particle multiplicity [15,36]. We
assume an initial entropy distribution of massless partons
according to

dS

dηsd2x⊥
= C

1 + α
θ (Yb−|ηs |)f pp(ηs)

×
[
α

(
Yb−ηs

Yb

dNA
part

d2x⊥
+ Yb+ηs

Yb

dNB
part

d2x⊥

)

+ (1−α)
dNcoll

d2x⊥

]
, (4)

where x⊥ = (x, y) is the position perpendicular to the beam
axis, C is a normalization factor, the “soft fraction” α is
explained below, the parameter Yb is the beam rapidity, and
f pp is a suitable parametrization of the shape of rapidity
distribution in pp collisions:

f pp(ηs) = exp

[
−θ (|ηs |−�η)

(|ηs |−�η)2

σ 2
η

]
. (5)

We study Au+Au collisions at
√

s = 200 A GeV and use C =
24,�η = 1.3, and ση = 2.1, so chosen as to reproduce the
charged hadron pseudorapidity distributions measured in these
collisions [37]. N

A,B
part and Ncoll are the number of wounded

nucleons in each of the two nuclei and the number of binary
nucleon-nucleon collisions, respectively. These are calculated
from the Glauber model nuclear thickness function TA,B(x⊥)
[38]:

dNA
part

d2x⊥
= TA(r+)

[
1 −

(
1 − σ in

NN TB(r−)

B

)B
]

, (6)

dNB
part

d2x⊥
= TB(r−)

[
1 −

(
1 − σ in

NN TA(r+)

A

)A
]

, (7)

dNcoll

d2x⊥
= σ in

NN TA(r+) TB(r−). (8)

Here σ in
NN = 42 mb is the inelastic nucleon-nucleon cross

section, and r± = [(x ± 1
2b)2 + y2]1/2 (where b is the impact

parameter).
The soft/hard fraction α = 0.85 was adjusted to reproduce

the measured centrality dependence [39] of the charged hadron

multiplicity at midrapidity. At ηs = 0, Eq. (4) reduces to
dS

dηsd2x⊥
∝ 1

1+α
[α(nA

part+nB
part) + (1−α)ncoll], where n ≡ dN

d2x⊥
[40]; this parametrization is equivalent to the one used
in Ref. [41], ∝ [ 1−x

2 (nA
part+nB

part) + xncoll], with x = 1−α
1+α

.
From Eq. (4), we can compute the entropy density at the
initial time τ0 = 0.6 fm/c [2] of the hydrodynamic evolution,
s(τ0, x⊥, ηs) = dS

τ0dηsd2x⊥
, which provides the initial energy

density and pressure distributions through the tabulated EOS
described above.

Glauber model initial conditions have a long tradition for
hydrodynamic simulations of heavy-ion collisions. In our
previous study [15] we showed that with such initial conditions
“late viscosity” effects during the dilute hadronic rescattering
stage are sufficient to explain all observed deviations of elliptic
flow measurements from ideal fluid dynamical predictions.
No significant additional viscous effects during the early
QGP stage were necessary. We also noted, however, that
this conclusion depends crucially on this particular choice of
initial conditions, specifically the initial source eccentricity
predicted by the Glauber model. The good agreement between
theory and experiment disappears when one instead calculates
the initial conditions from the KLN model [17–19,41–43],
which is based on CGC ideas and, for the same impact
parameter, produces almost 30% larger source eccentricities.
If nature gives preference to such more eccentric initial
conditions, additional viscous effects and/or a softer EOS for
the QGP stage may be needed to reproduce the experimental
data [15,44]. Here, we will not pursue this line of thought
any further but focus on the case of Glauber model initial
conditions and the specific modifications of hadron spectra
and flow caused by “late hadronic viscosity.”

D. Hadronic cascade model

In our hybrid model simulations we switch from ideal
hydrodynamics to a hadronic cascade model at the switch-
ing temperature Tsw = 169 MeV. The subsequent hadronic
rescattering cascade is modeled by JAM [45], initialized with
hadrons distributed according to the hydrodynamic model
output, calculated with the Cooper-Frye formula [20] along
the Tsw = 169 MeV hypersurface rejecting inward-going
particles. We have checked [15] that switching from an
ideal hydrodynamic to a hybrid model description does not
entail a major readjustment of initial conditions: Keeping the
same initial conditions and hard/soft fraction α as previously
determined within a purely hydrodynamic approach (see
Refs. [2,14] for a detailed discussion of that procedure) we find
[15] that the centrality dependence of dNch/dη at midrapidity
remains consistent with the experimental data even if we
switch below Tsw to the hadronic cascade. Effects on the hadron
spectra and elliptic flow are significant, however, and will be
discussed in the next section.

As customary in hadronic cascade models [45–47], JAM
implements experimental hadronic scattering cross section
data where available and uses the additive quark model where
data do not exist, assuming the following formula for the total
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cross section:

σtot = σ tot
NN

n1

3

n2

3

(
1 − 0.4

ns1

n1

)(
1 − 0.4

ns2

n2

)
. (9)

Here σ tot
NN is the total nucleon-nucleon cross section, ni is the

number of constituent quarks in a hadron, and nsi is the number
of strange quarks in a hadron. For hadrons composed entirely
of strange quarks, such as φ = (ss̄) and � = (sss), the cross
sections become very small, due to the suppression factors
in brackets in Eq. (9). We calculate spectra for φ mesons in
Sec. III C; the decay channels for φ mesons are switched off in
the hadronic cascade calculations. Because the life time of φ

mesons (≈ 46 fm/c) is longer than the typical life time of the
system (∼10–20 fm/c), and the number of φ mesons is small
compared to pions, kaons, and nucleons, this prescription is
not expected to affect the bulk space-time evolution during the
hadronic stage. We stress that the prediction of a violation of
mass scaling of the differential elliptic flow v2(pT ) made in this
article crucially depends on the reduced hadronic rescattering
cross section for φ mesons and thus presents an important test
of this widely accepted assumption.

III. RESULTS

In Ref. [15] we investigated the effect of hadronic dissipa-
tion on elliptic flow and found that it significantly suppresses
the pT integrated v2 at forward and backward rapidity and
in peripheral collisions. In the following we explore the
origins of this finding in more detail, by investigating hadronic
dissipative effects on hadron spectra and differential elliptic
flow v2(pT ). We finally explore specifically the spectra and
elliptic flow of φ mesons as an example of a hadron that is
only weakly coupled to the rest of the expanding hadronic
fireball.

A. Hadronic dissipative effects on spectra and elliptic flow

In this subsection, we compare results from the hybrid
model with the ones from ideal hydrodynamics. In ideal
hydrodynamic calculations it is assumed that even the late
hadron resonance gas phase is characterized by essentially
vanishing mean free paths and thus behaves as a perfect fluid,
all the way down to kinetic decoupling of the hadron momenta
at Tth = 100 MeV. (This value is obtained by a simultaneous fit
of the pion and proton spectra in central collisions that allows
us to separate the effects of radial flow and thermal motion
at kinetic freeze-out [2].) As discussed, chemical freeze-out
is implemented at Tchem = 170 MeV by using an EOS with
nonequilibrium chemical potentials that hold the stable particle
yields constant (and close to the ones in the cascade model
approach) during the hydrodynamic evolution of the hadronic
phase. The key difference between the hydrodynamic and
hybrid model approaches is, thus, the finite mean free path
for momentum-changing collisions in the hadronic cascade.

In Fig. 1, pT spectra for protons and pions are shown for
both, the hybrid model and the ideal hydrodynamic approach.
For comparison, we also plot the pT spectra without hadronic
rescattering, obtained by setting all cross sections to zero
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FIG. 1. (Color online) pT spectra with and without hadronic
rescattering for (a) protons and (b) pions at midrapidity for Au+Au
collisions at b = 2 fm, compared with results from ideal hydrody-
namics decoupling at Tth = 100 MeV.

in the hadron cascade or by setting Tth = Tsw = 169 MeV
in the hydrodynamic approach (both procedures give the
same spectra, by construction). Note here that we include
contributions from all resonances (except for weak decays
unless explicitly noted otherwise) in ideal hydrodynamic and
hybrid-model results. One sees that hadronic rescattering in the
JAM cascade pushes the protons to higher pT in exactly the
same way as the growing radial flow does in the hydrodynamic
approach, if one chooses for the latter a kinetic decoupling
temperature of Tth = 100 MeV. The reasonable fit of the
measured proton pT spectra [48] up to pT ∼ 1.5 GeV/c by
the hydrodynamic model [2,14,32] thus persists in the hybrid
model approach (see Fig. 3 in the following subsection).

The lack of visible dissipative effects on the proton spectra
is probably an artifact caused by a judicial choice of the kinetic
freeze-out temperature Tth = 100 MeV in the hydrodynamic
approach, which was driven by the wish to reproduce the
measured proton spectra with this model. This accident does
not repeat itself for the pions, shown in Fig. 1(b). For pions,
the pT spectrum becomes slightly steeper when evolved
hydrodynamically (the steepening effects due to cooling are
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not quite compensated by the increasing radial flow), whereas
it gets hardened by hadronic rescattering effects in the hybrid
approach.

This pattern is consistent with theoretical expectations:
In the ideal fluid approach, pdV work in the longitudinal
direction reduces the transverse energy per unit rapidity
[49,50]. Because pions dominate the medium but their number
is fixed after chemical freeze-out, this leads to a decrease of the
average pT per pion [3], explaining the steeper pion spectrum
from ideal hydrodynamics. (This argument is not quantitative
because it neglects the shifting balance of transverse energy
carried by pions and heavier particles such as protons which
are more strongly affected by the developing radial flow [3].
Also note that it does not remain true if a chemical equilibrium
EOS is used in the hadronic phase where the pion number
decreases with temperature and the average transverse energy
per pion thus increases [3].) In contrast to the ideal fluid,
the hadron gas in the JAM cascade is highly viscous. Shear
viscosity is known to reduce the longitudinal and increase
the transverse pressure [16], reducing the loss of transverse
energy due to longitudinal pdV work and increasing the
transverse flow due to larger transverse pressure gradients [16].
In addition, there are viscous corrections to the (flow-boosted)
thermal equilibrium form of the distribution function at kinetic
freeze-out that lead to an additional viscous distortion of the pT

spectrum, which actually increases with p2
T [51]. For Bjorken

expansion of a homogeneous cylinder this distortion can be
written analytically as [51]

dN

pT dpT

≈
(

1 + �s

4τf T 2
p2

T

)
dN0

pT dpT

, (10)

where dN0
pT dpT

is the spectrum calculated from a boosted
thermal equilibrium distribution along the decoupling surface
at freeze-out time τf and temperature T , and the expression in
brackets preceding it is the p2

T -dependent viscous correction,
parametrized by the sound attenuation length �s = 4

3
η

sT
(where

η is the shear viscosity).
The viscous flattening of the pion spectrum relative to

the pure hydrodynamic approach seen in Fig. 1(b) receives
contributions from both factors in Eq. (10): dN0

pT dpT
is flattened

by the larger transverse flow generated by the viscously
increased transverse pressure, and additional flattening comes
from the factor in brackets, due to a nonzero value for �s in
a viscous fluid. We do not know which of the two effects is
larger; we note only that the pion spectrum from the hybrid
model can be fitted very well by simply multiplying the
hydrodynamic model spectrum with the factor in brackets in
Eq. (10), taking T = Tth = 100 MeV and adjusting �s/τf =
0.01. How meaningful such a fit is [given that the form (10)
makes unrealistic assumptions about the fireball expansion]
remains to be seen when realistic viscous hydrodynamic
studies become available.

Although these considerations provide a qualitative expla-
nation for the harder pion pT -spectrum from the JAM cascade
compared to ideal hydrodynamics, the same arguments should
also hold for protons where no such effects are seen in
Fig. 1(a). As already stated, this is presumably a consequence
of an accidental cancellation of delicate thermal and flow
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FIG. 2. (Color online) v2(pT ) for pions and protons in |η| < 1.3 at
b = 7.2 fm. Results for pions (solid) and protons (dotted) from ideal
hydrodynamics with Tth = 100 MeV are compared with the ones for
pions (dashed) and protons (dash-dotted) from the hybrid model.

effects with viscous corrections for our specific choice of Tth in
the hydrodynamic model. Again, a full understanding of these
results may require comparison with a viscous hydrodynamic
treatment [4,5].

Figure 2 shows the pT dependence of v2 for pions and
protons in semicentral Au+Au collisions (b = 7.2 fm) at
midrapidity (|η| < 1.3), comparing results from the hybrid
model with ideal hydrodynamics. Whereas, after an initial
quadratic rise that extends over a larger pT range for the heavier
protons than the lighter pions [10], the differential elliptic flow
v2(pT ) from ideal hydrodynamics increases almost linearly
with pT , this increase is tempered in the results from the
hadronic cascade. The differences between the two models
is seen to grow with increasing pT . Again, this is qualitatively
just as expected from shear viscous effects [4,5,51]. Obviously,
the different transport properties of the hadronic matter in JAM
and in hydrodynamics are seen more clearly in the differential
elliptic flow v2(pT ) than in the pT spectra.

B. Spectra and elliptic flow for π, K , and p

In this subsection, we compare our results from the hybrid
model with experimental data for identified hadrons. In Fig. 3,
transverse-momentum spectra for pions, kaons, and protons
from the hybrid model are compared with PHENIX data [48]
for three impact parameters (centrality classes) as shown in
the figure. (The impact parameters are adjusted to give the
correct average number of participants for each centrality
class, as quoted in Ref. [48].) In all cases, the experimental
data are reasonably well reproduced by the hybrid model for
low transverse momenta to pT ∼ 1.5–2.0 GeV/c. Additional
components (such as thermal quark recombination and jet
fragmentation, including energy loss of fast partons in the
fireball medium) would be required to reproduce the data
above pT ∼ 1.5 GeV/c. It should be emphasized that, unlike
in the purely hydrodynamic approach where the pT slope is
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FIG. 3. (Color online) Centrality dependences of the pT spectra for (a) pions, (b) kaons, and (c) protons obtained from our hydro+cascade
hybrid model, compared with data from the PHENIX Collaboration [48] for 200 A GeV Au+Au collisions. Impact parameters are (from top
to bottom) b = 2.0, 7.2, and 9.7 fm, corresponding to the 0–5%, 20–30%, and 30–40% centrality ranges, respectively.

controlled by the choice of kinetic freeze-out temperature and
the correct hadron yields are ensured by appropriate choice
of nonequilibrium hadron chemical potentials (see Sec. II B),
the hybrid model has no adjustable parameters to reproduce
both slope and normalization of the transverse-momentum
spectra. Hadronic cascade processes automatically describe
both chemical and kinetic freeze-out.

In Figure 4, we compare the pT dependence of v2 for pions,
kaons, and protons with the STAR data for v2{2} [52] for
four centrality classes. For the 0–5% centrality class we show
only pions because the quality of the kaon and proton data at
this centrality is insufficient for a meaningful comparison with
theory. The hybrid model correctly describes the mass ordering
of the differential elliptic flow, vπ

2 (pT ) > vK
2 (pT ) > v

p

2 (pT ),
as seen in the data within the low-pT region covered by the
figure. Quantitatively, it provides a reasonable description up
to 50% centrality, except for the most central collisions: Our
result for pions at b = 2.0 fm is significantly smaller than
the data. This can be attributed to the absence of eccentricity
fluctuations in our model calculations [19,53].

To better understand the origin of the mass ordering in
v2(pT ), we compare in Fig. 5, for a selected impact parameter
of b = 7.2 fm, the above hybrid model result with a calculation
where all hadronic rescattering is turned off, allowing only for
decay of the unstable hadron resonances. Whereas just after
hadronization the differential elliptic flow v2(pT ) for pions
and protons looks very similar, the mass splitting gets strongly
enhanced by hadronic rescattering. The smallness of the pion-
proton mass splitting at Tsw is partially accidental, because the
splitting caused by the radial flow already established during
the hydrodynamic QGP phase [10] is significantly decreased
by the effect of resonance decays that reduces the pion elliptic
flow vπ

2 (pT ) by about 15% [26,54]. Hadronic evolution below
Tsw steepens the slope of v2(pT ) for pions [14], due to the
generation of additional (integrated) v2 and the reduction of
their mean transverse momentum 〈pT 〉π [3]. [Note that for
pions the slope of v2(pT ) can be simply approximated as
dv2(pT )/dpT ≈ v2/〈pT 〉 [3].]
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FIG. 4. (Color online) Transverse-momentum dependence of the
elliptic flow coefficient v2 for pions (dotted blue), kaons (solid red),
and protons (dashed green) from the hybrid model, compared with
STAR data for v2{2} from 200A GeV Au+Au collisions, in four
centrality classes [52].
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For heavy hadrons, however, radial flow reduces v2 at
low pT [10]. Assuming positive elliptic flow, v⊥(ϕ=0, π ) >

v⊥(ϕ=π
2 , 3π

2 ), the stronger transverse flow v⊥ in the reaction
plane pushes heavy particles to larger pT more efficiently
in the reaction plane than perpendicular to it. In extreme
cases [10] this can, for heavy particles, even lead to a depletion
of low-pT emission into the reaction plane when compared
with out-of-plane emission, i.e., to a negative v2(pT ) at low
pT (even though their pT -integrated total elliptic flow v2 is
positive). But even without going to extremes, this mechanism
generically reduces v2(pT ) at low pT for heavy hadrons. So it
is the generation of additional radial flow in the hadronic stage
that is responsible for (most of) the mass splitting of v2(pT )
observed in the low-pT region.

This mechanism works even if the (extra) radial flow is
not perfectly hydrodynamic, i.e., if (as is the case in the
hadron cascade) the system does not remain fully thermalized,
with locally isotropic momentum distributions. Any type of
anisotropic collective transverse motion will cause such a
mass splitting of v2(pT ) at low pT , as long as the hadron
in question participates in the flow. It is worth mentioning
that in hydrodynamic calculations about half of the final radial
flow in Au+Au collisions at RHIC is generated during the
hadronic stage (see Fig. 7 in Ref. [55] and Fig. 5 in Ref. [14]).
A similar increase in radial flow generated by the JAM cascade
is documented in Fig. 1(a).

From these observations we conclude that the large mag-
nitude of the integrated v2 and the strong mass ordering
of the differential v2(pT ) observed at RHIC result from a
subtle interplay between perfect fluid dynamics of the early
QGP stage and dissipative dynamics of the late hadronic
stage: The large magnitude of v2 is due to the large overall
momentum anisotropy, generated predominantly in the early
QGP stage, whereas the strong mass splitting between the
slopes of v2(pT ) at low pT reflects the redistribution of this
momentum anisotropy among the different hadron species,
driven by the continuing radial acceleration and cooling of the
matter during the hadronic rescattering phase.
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FIG. 5. (Color online) Transverse-momentum dependence of the
elliptic flow parameter for pions and protons. Solid (dashed) lines are
with (without) hadronic rescattering.
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FIG. 6. (Color online) Normalized distribution of freeze-out
times for pions (dashed), protons (dotted), and φ mesons (solid) for
|y| < 1 in Au+Au collisions at b = 2.0 fm.

C. Spectra and elliptic flow for φ mesons

As noted in Sec. II D, φ mesons (consisting of strange
quarks) have considerably smaller scattering cross sections in
JAM than nonstrange hadrons [56]. They are therefore expected
to show larger dissipative effects in our hybrid model and to not
fully participate in the additional radial flow generated during
the hadronic rescattering stage. In kinetic theory language, one
expects that the φ mesons decouple from rest of the system
earlier than other, nonstrange hadrons [57], thereby possibly
opening a window to extract direct information on collective
phenomena in the partonic stage from φ-meson spectra [56].

To study φ mesons in our hybrid model we stabilize them by
turning off their decay channels during the hadronic cascade.

Let us first check how early φ mesons decouple from the
rest of the system. Figure 6 shows the normalized distribution
of freeze-out times for pions, protons, and φ mesons near
midrapidity |y| < 1 in central collisions (〈b〉 = 2.0 fm).
Clearly, φ mesons decouple earlier than pions and protons.
The freeze-out time distribution for φ mesons has a prominent
peak at τ = 8 fm/c, roughly equal to the time of completion
of QGP hadronization in hydrodynamic simulations. This
indicates that only very few rescatterings happen for φ mesons
during the hadronic evolution. Similar results were obtained
with the RQMD cascade in Ref. [57] for � baryons at SPS
energies and in Ref. [58] for φ mesons and � baryons at
RHIC energies. The freeze-out time distributions for pions
and protons are broadened by both elastic scatterings and
resonance decays. The long resonance decay tails of the
distributions are important for interpreting the pion source
function that was recently reconstructed by the PHENIX
Collaboration [59] using imaging methods.

In Fig. 7, pT spectra for φ mesons from the hybrid
model are compared with PHENIX [60] and STAR [61] data.
Similar to the spectra for pions, kaons, and protons in Fig. 3,
we see good agreement with experiment at low pT (pT <

1.5 GeV/c). The discrepancy between our results and ex-
periment at larger pT may indicate the appearance of a
quark-antiquark recombination component in the intermediate
pT region [62,63]. In the presence of such a component
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FIG. 7. (Color online) Transverse-momentum spectra for φ
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compared with PHENIX [60] and STAR [61] data. Results from
semicentral and peripheral collisions are divided by 10 and 100,
respectively. Predictions from ideal hydrodynamics with Tth =
100 MeV are also shown as dashed lines.

it is questionable to use the φ-meson spectra over the
whole available pT region to extract the thermal freeze-out
temperature and flow for φ mesons [64]; such a thermal model
fit [65] should be restricted to the region pT < 1.5 GeV/c even
if data in that region are hard to obtain.

In the hydrodynamic model simulations with Tth =
100 MeV, shown as dashed lines in Fig. 7, the φ mesons
pick up more additional radial flow during the hadronic stage,
resulting in flatter pT spectra than in the hybrid model and in
the data in the low-pT region. As we will show further below,
better φ data at lower pT and a simultaneous analysis of the
differential elliptic flow in this region should allow to further
discriminate between different descriptions of the hadronic
rescattering stage.

The effects of radial flow, and the difference in how addi-
tional radial flow generated during the hadronic rescattering
stage is picked up by protons and φ mesons (which have
rather similar masses), can be enhanced by studying the pT

or transverse kinetic energy dependence of the φ/p ratio. A
thermalized medium without radial flow features mT scaling,
i.e., all mT spectra have identical slopes, and for such a static
fireball the φ/p ratio, when plotted as a function of transverse
kinetic energy KET ≡ mT −m0, would be a constant horizontal
line. For a thermalized expanding medium, mT scaling is
broken by radial flow (which couples differently to particles
with different masses), resulting in a nonzero slope of the ratio
φ/p(KET ). Perhaps somewhat counterintuitively, this slope
of the φ/p ratio does not grow monotonically with the radial
flow v⊥ but, after an initial rise, decreases again when the flow
becomes so large that the hadron mT spectra become very flat;
in the limit of “infinite flow” (i.e., γ⊥ = 1/

√
1−v2

⊥ → ∞)
the hadron mT spectra, and thus their ratios, become again
perfectly flat.

In Fig. 8 we show the φ/p ratio, both as a function of
transverse kinetic energy (right panel) and of pT (left panel).
It should be noted here that weak decay contribution is not
included in proton yields. In the latter case the connection
to radial flow is less straightforward, because the kinematics
of the transformation from mT to pT depends on mass and
introduces additional growth with pT for the ratio. In both
representations one sees, however, by comparing the curves for
the hydro+cascade model without rescattering (corresponding
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FIG. 8. (Color online) The φ/p ratio as a function of pT (left panel) and of transverse kinetic energy KET ≡ mT −m0 (right panel) for
different scenarios: central Au+Au collisions in the hybrid model, without hadronic rescattering, and in the hydrodynamic model with Tth =
100 MeV (dotted). The corresponding ratio for proton-proton collisions (extracted from the PYTHIA fit to the experimental data shown in
Fig. 10 below) is shown for comparison as the dashed line. See text for more discussion.
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to ideal hydrodynamics with Tth = 169 MeV) and for the ideal
hydrodynamic model with Tth = 100 MeV, that (i) the ratio
increases with pT or KET due to radial flow effects and that
(ii) the rate of increase drops when the freeze-out temperature
Tth is decreased, due to buildup of additional radial flow.
Surprisingly, the ratio increases even in pp collisions, but
for entirely different reasons, unrelated to collective flow: the
φ spectrum from pp collisions shown in Fig. 10 below is
considerably flatter than the proton spectrum, leading to the
prominent rise of the φ/p ratio with pT . The most interesting
feature of Fig. 8 is that the φ/p ratio from the hybrid model
does not at all increase with pT or KET (except at very
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FIG. 10. (Color online) Invariant cross sections as a function of
pT in nonsingly diffractive pp collisions for pions, protons, [72] and
φ mesons. Dotted, dashed, and solid lines are results from PYTHIA
for pions, protons, and φ mesons, respectively.

low pT < 500 MeV/c). Instead, it decreases over almost
the entire range of transverse kinetic energy shown in the
figure. This decrease is due to the flattening of the proton
spectrum by hadronically generated radial flow in which the
weakly coupled φ mesons do not participate. The comparison
with pp collisions and hydrodynamic model simulations in
Fig. 8 shows that the observation of such a decreasing φ/p

ratio would be an unambiguous signature for early decoupling
of φ mesons from the hadronic rescattering dynamics.

We now proceed to the discussion of dissipative effects
during the hadronic rescattering stage on the differential
elliptic flow v2(pT ). Figure 9 shows v2(pT ) from the hybrid
model for π, p, and φ. We consider semicentral collisions
(20–30% centrality), choosing impact parameter b = 7.2 fm.
In the absence of hadronic rescattering we observe the hy-
drodynamically expected mass ordering vπ

2 (pT ) > v
p

2 (pT ) >

v
φ

2 (pT ) [Fig. 9(a)], but just as in Fig. 5 (dashed lines) the
mass splitting is small. Figure 9(b) shows the effects of
hadronic rescattering: whereas the v2(pT ) curves for pions
and protons separate as discussed before (at low pT the pion
curve moves up while the proton curve moves down), v2(pT )
for the φ meson remains almost unchanged [66]. As a result
of rescattering the proton elliptic flow ends up being smaller
than that of the φ meson, v

p

2 (pT ) < v
φ

2 (pT ) for 0 < pT <

1.2 GeV/c, even though mφ > mp. Hadronic dissipative effects
are seen to be particle specific, depending on their scattering
cross sections that couple them to the medium. The large
cross section difference between the protons and φ mesons
in the hadronic rescattering phase leads to a violation of the
hydrodynamic mass ordering at low pT in the final state.

This is the most important new result of our work. Current
experimental data [67,68] neither confirm nor contradict this
predicted behavior, due to the difficulty of reconstructing
low-pT φ mesons from their decay products. If it turns
out that high-precision φ-meson v2 data at low pT show
violation of mass ordering, it will be evidence for strong
momentum anisotropy having developed already during the
QGP stage, with the contribution carried by φ mesons not
being redistributed in pT by late hadronic rescattering. At
intermediate pT , recent data [67,68] confirm the prediction
from the quark coalescence model [69,70] that there the elliptic
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flow should scale with the number of constituent quarks:
v

φ

2 (pT ) ≈ v
π,K
2 (pT ) ≈ 2

3v
p

2 (pT ), in spite of the similar φ and
p masses that are much larger than those of the pions and
K mesons. We hope that the present article motivates an
effort to extend these data to lower pT to test our prediction
here that, at low pT , v

p

2 (pT ) < v
φ

2 (pT ) in spite of mφ > mp.
Although the former observation suggests that at intermediate
pT (2 GeV/c < pT < 6 GeV/c) quark coalescence during the
quark-hadron phase transition controls the finally observed
elliptic flow of all hadrons, without measurable distortion by
subsequent hadronic reinteractions, confirmation of our pre-
diction would confirm the importance of hadronic rescattering
on low-pT hadrons, with results that depend on the magnitude
of the scattering cross sections of the various hadron species.

We close this section with a discussion of the implications
of our hybrid model results for the nuclear modification factor

RAA(pT ) =
dNAA

pT dpT dy

Ncoll
dNpp

pT dpT dy

=
dNAA

pT dpT dy

TAA
dσpp

pT dpT dy

. (11)

The observed suppression of pion yields at intermediate to
high pT [1] provides evidence of jet quenching in relativistic
heavy-ion collisions. For baryons, this suppression effect
is counteracted in the intermediate pT region by collective
flow effects that, at low pT , lead to a rise of the p/π

(or, more generally, heavy/light) ratio as a function of pT .
Collective flow effects extend into the intermediate pT region
2 GeV/c < pT < 6 GeV/c even though the hydrodynamic
picture is known to gradually break down above pT > 1.5–
2.5 GeV/c [71]. Quark coalescence is one of the key mecha-
nisms by which low-pT collectivity on the quark-gluon level is
transferred to the hadron spectra at intermediate pT during the
hadronization process [62,63,69], leading to (unsuppressed)
values of RAA (or of RCP, the ratio of yields per number
of binary collisions in central and peripheral collisions) of
order unity for baryons at pT ∼ 2–3 GeV/c [1,68]. We will
show that hadronic rescattering following QGP hadronization
affects RAA at low pT instead.

The PHENIX [60] and STAR [68] Collaborations have
recently measured RCP for φ mesons. The PHENIX data show
a suppression of φ mesons by about a factor 2 (with relatively
large error bars) in the region 1 GeV/c < pT < 3 GeV/c,
consistent with that of pions, whereas protons and antiprotons
are unsuppressed [60]. This seems to be in contradiction with
collective flow arguments that predict R

φ

CP > R
p

CP because

mφ > mp but consistent with the valence quark scaling
predicted by the quark coalescence model { [62,63,69]. The
more recent and precise STAR data [68], however, show an
RCP for φ mesons that follows the one for pions and exceeds
the one for protons for pT < 1 GeV/c but then follows the
rise of the proton RCP above the pion one for pT > 1 GeV/c,
lagging only slightly behind the protons and reaching a value
halfway between pions and protons in the region pT ∼ 2–
3 GeV/c, where R

p

CP peaks at a value of ∼1.
Given this somewhat contradictory experimental situation,

we offer a prediction from our hybrid model (cautioning
beforehand that this model does not include any quark-
recombination contributions that are expected to become
important above pT >∼ 1.5−2 GeV/c) in Fig. 11. To construct
this figure, we first fitted the experimentally measured pT

spectra for pions and protons [72] as well as for φ mesons [73]
in nonsingly diffractive (NSD) pp collisions (i.e., inelastic
collisions excluding single diffractive events). The fit, shown
in Fig. 10, is performed with the help of the event generator
PYTHIA 6.403 [74] that, once properly tuned, yields smooth
reference pT -spectra for pp collisions. PYTHIA is based
on leading-order perturbative QCD for semihard processes
combined with a Lund string fragmentation scheme for soft
particles. It works quite well for pions, protons, and φ

mesons with default parameters [74], except for a necessary
readjustment of the K factor to K = 1.8. We note that
here exceptionally this comparison includes all resonance
decays, including weak ones, because the STAR data show
the inclusive spectra. We take the resulting spectra as our
pp reference, after removing weak decay contributions and
multiplying them with the ratio σin/σNSD to correct for the
NSD trigger. For the required cross sections PYTHIA provides
the estimates σNSD = 32 mb and σin = 42 mb.

With these reference spectra the nuclear modification
factors RAA can now be calculated from the results shown
in Figs. 1, 3, and 7. For pions, protons, and φ mesons they are
shown as functions of pT in Fig. 11, for Au+Au collisions
at impact parameter b = 3.2 fm (i.e. 0–10% centrality).
Figure 11(a) shows the predictions for the hybrid model.
Although for pions RAA(pT ) is almost flat, Rπ

AA ∼ 0.15−0.25,
the RAA(pT ) curves for protons and φ mesons increase with pT

as expected from radial flow arguments (radial flow hardens
the pT spectra for heavy particles). The rate of increase for
the φ mesons is very similar to that for protons, culminating
in a peak value of ∼60% at pT ∼ 1.2–1.4 GeV/c for φ’s,
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whereas the RAA for protons peaks at a value of ∼60% near
pT ∼ 1.8 GeV/c. Figure 11(b) shows the corresponding curves
for the ideal fluid dynamical simulation with Tth = 100 MeV.
For pions and protons, the differences to the hybrid model
are minor (at least in the pT range covered in the figure),
reiterating the observation made in connection with Fig. 1 that
the buildup of additional radial flow during the hadronic stage
is similar in both models and viscous effects become clearly
recognizable only at larger pT . For φ mesons one observes a
much faster rise of RAA(pT ) in the hydrodynamic approach,
resulting in a larger peak value of ∼105% at a larger pT value
(∼1.7 GeV/c) than for the hybrid model. The reason for these
effects is obviously the larger amount of radial flow picked up
during the hadronic stage in the hydrodynamic model and the
resulting hardening of the φ spectrum. The much weaker rise
of R

φ

AA(pT ) in the hybrid model can thus be traced directly to
the lack of φ meson rescattering during the hadronic stage.

We note that, even in the hydrodynamic model, the nuclear
modification factor RAA(pT ) does not show a monotonic mass
ordering at low pT . Naive expectations based on the mass
ordering of the spectral slopes (that reflect radial flow effects)
are invalidated by the fact that the φ pT spectra from pp

collisions are flatter than the corresponding proton spectra.
Because these spectra enter the denominator of RAA, they
distort its pT dependence differently for protons and φ mesons.

We also comment that at pT ∼ 2 GeV/c, the characteristics
of the observed mass-scaling violation in Fig. 11(a) are
qualitatively similar to those expected (and observed) in the
quark coalescence picture at intermediate pT (2 GeV/c <

pT < 6 GeV/c) [70]. The differences are quantitative: our
prediction for RAA features neither a monotonic mass ordering
at low pT nor the strict valence quark scaling predicted by the
quark-coalescence picture at intermediate pT .

IV. CONCLUSIONS

We have studied effects of hadronic dissipation on the
spectra, differential elliptic flow, and nuclear modification
factor of pions, kaons, protons, and φ mesons from Au+Au
collisions at RHIC, using a hybrid model that treats the early
QGP phase macroscopically as a perfect fluid and the late
hadronic phase microscopically with a hadronic cascade. For
transverse momenta below 1.5 GeV/c and not too peripheral
collisions, the hybrid model gives a reasonable description of
the measured pion, kaon, proton, and φ meson pT spectra. In
peripheral collisions (b = 9 fm and larger) the model spectra
tend to be somewhat steeper than measured. The centrality
dependence of the differential elliptic flow v2(pT ) of pions,
kaons, and protons is better described by the hybrid model
than in a purely hydrodynamic approach.

For pions, kaons, and protons, which have relatively large
scattering cross sections, hadronic rescattering is seen to
generate additional collective transverse flow but not so for

the much more weakly interacting φ mesons. However, even
for pions and protons the extra hadronic transverse flow effects
are not “ideal” but exhibit obvious viscous features: Their pT

spectra are hardened, whereas the growth of their elliptic flow
v2(pT ) with increasing pT is tempered by viscous corrections
whose importance is in both cases observed to increase with
transverse momentum. The well-known mass splitting of the
differential elliptic flow v2(pT ) observed in hydrodynamic
models is seen to be mostly generated during the hadronic
rescattering phase and to be largely due to a redistribution
of the momentum anisotropy built up during the QGP stage.
This redistribution is caused by the mass-dependent flattening
of the transverse-momentum spectra by additional radial flow
generated during the hadronic stage. The much more weakly
interacting φ mesons do not participate in this additional
radial flow and thus are not affected by this redistribution
of momentum anisotropies: their differential elliptic flow
remains almost unaffected by hadronic rescattering. The net
result of dissipative hadronic rescattering is therefore that the
differential elliptic flow v2(pT ) of protons drops below that of
the φ mesons, in violation of the hydrodynamic mass ordering.
A similar violation of the mass ordering is seen in the nuclear
modification factor RAA(pT ) at pT ∼ 2 GeV/c, where, after
hadronic rescattering, the curve for φ mesons ends up between
those for pions and protons even though the φ is heavier than
both of them. For the φ/p ratio, the lack of interaction between
the φ mesons and its accelerating hadronic environment should
manifest itself in an unexpected but unambiguous decrease
with increasing transverse kinetic energy.

The results presented here underscore the conclusion of
Ref. [15] that hadronic dissipation may be very important at
RHIC and at lower beam energies and should be properly
accounted for in attempts to quantitatively account for the
experimental data collected from heavy-ion collisions. With
v2(pT ) and RAA(pT ) for low-pT φ mesons and the dependence
of the φ/p ratio on pT or transverse kinetic energy KET , we
have identified three additional critical observables that should
be helpful in sorting out the interplay between hydrodynamic
evolution during the early QGP stage and dissipative hadronic
expansion during the late stage of the hot and dense fireballs
created in these collisions. An accurate extraction of the value
for the specific shear viscosity η/s of the QGP created at RHIC
requires a proper accounting for effects from late hadronic
viscosity. Here, an attempt has been made to do this, by
coupling the hydrodynamic model to a hadronic cascade.
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