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NPR of four-fermion operators inf\N 2 QCD Carlos Pena

1. Introduction

Hadronic matrix elements (HMES) of four-fermion operatbes/e long been essential input
guantities for Flavour Physics. Reliable estimates of alemof HMES are crucial in the study
of CP violation via CKM unitarity triangle analyses, or ofcsustriking experimental findings as
the enhancement of hadronic decay amplitudes by longrdisteffects (as e.g. in thid = 1=2
rule). The only known technique to compute HMEs from firstipiples is lattice QCD. However,
lattice QCD results have long been hampered by the diffi¢dolgliminate a number of systematic
uncertainties. Most notably, the high cost of including akyrical quark effects in lattice QCD sim-
ulations has enforced for many years either the quenche&pmtion, or the use of dynamical
quark masses far too heavy to allow for a well-controlledalation to the physical regime. In
some cases, e.g. the computation of the kaon bag paraBjetguenching effects are indeed the
last remaining uncontrolled systematic uncertaifify [1].

As technigues for the simulation of light dynamical quarksdwitnessed dramatic progress
in the last few years (see e.{] [2]), it becomes increasiimgportant to bring to this environment
the technigues to control other sources of uncertainty,rieioto aim at precision computations
of physical quantities. In the context of HMEs, one of the mm®minent examples is non-
perturbative renormalisation (NPR) (see eld. [3]). The aisénite-size scaling techniques has
allowed to control fully both the renormalisation group (R@nning and the matching of lattice
to renormalised observables in the quenched approximéiirambroad class of four-fermion oper-
ators [1[b[6]. The aim of the present work is to extend thesalts toN; = 2 QCD. In particular,
we will discuss 1. the RG running of left current-left curteelativistic four-fermion operators, 2.
the RG running of alAB = 2 operators with static heavy quarks, and 3. the matchingeodbove
operators to renormalised continuum operators for somgcpéar choices of the regularisation.
Immediate applications, as we will point out later, ariseéhiea computation of the bag parameters
Bk andBg. Preliminary results had been presented at last year'scende [[J7].

2. Definitions and setup

2.1 Renormalisation of four-fermion operators

We will consider two different classes of operators:

1 _

Or,r, X)= E[(t.Ul(X)rlll’z(X))(W3(X)F2W4(X)) 23 41; (2.1)
1 _

Or 1, X)= E[(t.Uh(X)rlll’z(X))(tllﬁ(X)rzlﬂMX)) 23s M) (2.2)

Inthe above expression is a relativistic quark field with flavour indek (4, ; are static (anti)quark
fields, ') are spin matrices, and the parentheses indicate spinfctlces. All the fields are
interpreted to be in the valence sector of the theory. Thim&tism of distinct quark flavours
will allow us to isolate scale-dependent logarithmic dgeces from eventual mixing with lower-
dimensional operators that may appear for specific choitgaark masses and/or flavour content.
The above operators mix under renormalisation as detedrbgehe symmetries of the regu-
larised theory. If we restrict ourselves to the parity-o@dtsr, complete bases of operators in the
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relativistic and static cases are given by
Qk 2 O, a Ous av iOsp psiOsp.psiOrii 5 Qk 2 OpniOn niOsp psiOsppsi i (2.3)

respectively, in standard self-explanatory notation fier¢hoice of spin matricds. A full analysis
of the renormalisation of these operator bases with reddiivWVilson fermions has been performed
in [B,[8]. One particular conclusion is that, contrary to theity-even case, discrete symmetries
protect all the above operators from extra mixings undepmeralisation due to the breaking of
chiral symmetry. Recall that the RG of these operators artteif parity-even partners is identi-
cal, as in the continuum limit (CL) chiral symmetry holds. @ other hand, the connection to
observables involving matrix elements of parity-even ap@s is non-trivial.

From now on, we will consider the subset of operators

Q i 2 2 25,90 +492;,;:9,+29, ;25 29; : (2.4)

All these operators renormalise multiplicatively — i.elyen an operato© 2 £Q, ;Qli+ g the cor-
responding operator insertion in any on-shell renormdlisarrelation function is given by

Or (X H) = lim Z(gosau)Ox o) ; (2.5)

wheregg ;a are the bare lattice coupling and the lattice spacing, misedy. The RG running of
the operator is controlled by the anomalous dimengiatefined by the Callan-Symanzik equation

9
H@Ow;u): y@W))OR X M) ; (2.6)

which is supplemented by the corresponding Callan-Syrkaggiiation for the renormalised cou-
pling

17}
—0 =B@ : 2.7
Ho 9w B@w) (2.7)
In mass-independent renormalisation schemes, the battdaorand all anomalous dimensions do
indeed depend only on the renormalised couplingThey admit perturbative expansions of the
form

g!' o0 g'o

B@) 9 bo+ g+ bpgt+ ::r 5 y@) & Yo+ NP+ gt ;o (2.8)

in which the coefficientdg ;b1 ;yp are renormalisation scheme-independent. Upon formajiate
tion of Eq. (2.), one is left with the renormalisation grdopariant (RGI) operator insertion

Yo 7
N gz(“ ) %o g(u) v(Q) Yo
OX)= Or(X; ex dg — — : 2.9
)= OrOGH) =5 Py 99 54 b (2.9)
while the RG evolution between two scales;Li is given by the operator
fow y@g) Z (goaH2)
U (U ;1) = exp dg = lim =———= . (2.10)

guy B@  al0Z(@au)
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2.2 Schrddinger Functional renormalisation schemes

Eq. (2.Ip) is the starting point to compute non-perturtedyithe RG evolution of composite
operators. To that purpose we introduce a family of Schi@glif-unctional (SF) renormalisation
schemes. The latter are defined by regularising the theoaysymmetric lattice of physical siz¢
with SF boundary conditions (see e.[g][10] for an introdueto the SF setup). The renormalisation
scale is set to be the infrared cutoff, i.¢t = 1=L. Renormalisation conditions for relativistic
operators have the form

Fxo) F®xo)

z Goart) o o tree level ' (2.11)
and are imposed in the chiral limit. In the above expresdtors a four-point correlation function
of the form
1
E
where &'T ] are bilinear interpolating fields living on the time bouridar and® is a suitable
boundary-to-boundary correlation function that divides the ultraviolet divergences associated to
these bilinears. Similar renormalisation conditions to @dqL]) are set up for static-light operators,
with flavours 1 and 3 substituted Iyandh. Full details are provided if](4] §} 91. For now it is just
important to mention that the renormalisation scheme iy figtermined by fixing the parameters
involved in the SF boundary conditions; the poigtat which Eq. [2.7]1) is imposed; the Dirac
matricesl agc entering boundary bilinears and the normalisation fact@®. Specific schemes
have been introduced iff] [, B, 9]. Here we will concentratéhi cases which have been found
to be best behaved in the quenched study, namely schemeQ; fand scheme 8 foR, in the
notation of [#[b], and the reference schemes for statiutlaperators defined if][6].

A crucial observation is that all the above renormalisaschemes are mass-independent by
construction, and the resulting renormalisation facteesflavour-blind. It then follows that they
can be used to remove the logarithmic divergences from amyf@&mion operator with the consid-
ered structure, irrespective of its specific flavour contente eventual subtractions due to mixing
with equal- or lower-dimension operators have been prggestformed.

F o) W1 MaAVssTe R X)OgsTcli; (2.12)

2.3 Step-scaling functions

The basic objects to study the RG evolution of compositeaipes non-perturbatively are the
step-scaling functions (SSFs)

Z(goa=(2L))

2Uusa=L)=
Z(gosa=L) -§d-L)=u

; (2.13)

which can be computed at several values of the lattice spdoinfixed physical size (inverse
renormalisation scald). The corresponding values @f are indeed fixed by requiring that the
renormalised SF coupling?, and hencé., are kept constant. It is then possible CL extrapolation

(2.14)

i ] ) — 1, 1 .
o) g!rnOZ(u,a—L)—U((ZL) L ),S(H_):u.

LAt vanishing external momenta, there are 5 possible naatmhoices that preserve cubic symmetry.
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Onceo (u) is known for several different values of the squared gauggloag u, it is possible
to reconstruct the RG evolution factor(Lnad;Hpt) between two extreme scal@sag, in the range
of a few hundred MeV, angly in the high-energy regime. This in turn allows to compute (&l
operator of Eq.[(2]9) in a way free from large uncontrolledteynatic uncertainties. It is enough to
consider the exponential on the rhs of Hg.](2.9) evaluatgd-atunag and split it as

Z = 7

9 (Hhad) v@) Yo g (Hpt) Y(Q) Yo

ex dg — — = ex dg — —
o U B@ g P o % B@ b
The second factor on the rhs is known non-perturbativelyjeathe first factor can be safely com-
puted at NLO in perturbation theory, provided the sgaleis high enough so as to render NNLO

effects negligible.

U (Uptithad) : (2.15)

3. Non-perturbative computation of the RG running

SSFs have been computed using the non-perturbativedy hproved Wilson action, and
a HYP2 action for static quarks, at six different values & 8F coupling, corresponding to six
different physical lattice lengthl. For each volume we have simulated at three different values
of the lattice spacing, corresponding to lattices witka = 6;8;12 (respectivel\L=a = 12;16;24)
for the computation o (L) (resp. Z(2L)). We used thdé\; = 2 configurations generated by the
ALPHA Collaboration for the determination of the RG runniafjthe quark masgJlL1]. All the
technical details concerning the dynamical simulatiomsdiscussed in the mentioned work.

As we do not implement full @) improvement for four-fermion operators, the only linear
cutoff effects that are removed frolgg ;a=L ) are those cancelled by the SW term in the fermion
action. Therefore, we expect SSFs to approach the CL Iyeaarb=L. In practice, it is often
observed that the data correspondingLtea = 8;12 are compatible within errors, whereas the
L=a= 6 datum, that is expected to bear the largest cutoff effectfi This suggests that a weighted
average of the results for the two finest lattices, as corsitli [13], may yield a good estimate
of the CL value. However, the lack of at least one extra valuae=t closer to the continuum,
that would allow a more precise control of the systematias led us to conservatively adopt
linear CL extrapolations involving all the data. It is wordmarking, though, that linear fits and
weighted averages lead to compatible results within onedstal deviation in most cases, as can
be seen in Fig[]1. The latter illustrates the extrapolatianall values of the coupling for two
selected operators. Finally, let us mention that autotarom times, which are included in the
error estimate, increase towards the CL, leading to amgldieors in the finest lattices.

The resulting SSF# (u) have been fitted to a polynomial form. For definiteness, wé wil
provide results for a fit tar u) = 1+ s;u+ U2 + s3u8, wheres; is fixed at the value predicted
by LO perturbation theory and, ;s; are left as free parameters. Once this continuous form of
the SSF has been obtained, it is possible to compute théorela¢tween the RGI operators and
the renormalised operators at the low-energy sgalg = L1, defined byg? (Lmax) = 461, as
explained e.g. in[[4]6]. This scale is chosen such that therrealisation constar (go ;atthad)
can be computed on accessible lattices in ranges of valuggsafmmonly used in large volume
simulations. The results for the operators under investigaare reported in Tablf 1. Note that
typical relative errors reach the 5% ballpark, which mayteis a sizeable error in HMEs coming
from renormalisation alone.
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Figure 1: CL extrapolation of the SSFs fap; (left) and Qi* (right) for one particular choice of the
renormalisation scheme (all boundary matrices st tepatial boundary conditions set By= 05,0 = 0
in the renormalisation condition fc@i+ (see E1|:|5[|9] for details). The renormalised coupling iases from
top to bottom and from left to right. Blue discontinued lireasd the blue point ad=L = 0 correspond to
weighted averages of the-a= 8;12 data, red lines and the radl = 0 cross to linear extrapolations&aL
of the three data.
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Figure 2: SSFs forQ; (left) ando@i+ (right) in the CL in the same schemes as considered in Figuiraill
red points ard\; = 2 results, open blue points are quenched results. The réeddgblue dotted) line is the
NLO N = 2 (N = 0) perturbative result.

4. Connection to hadronic observables

RGI operator insertions can be related to bare operatortiose via a total renormalisation
factorZ (go ), defined as

Z 9 (thao)

R (
Z(go)= Z(do Alhad) EXP Ve - W

B(@) bog

This is enough to remove all ultraviolet divergences, onvemtual renormalisation scale-independent
mixing with operators of dimensiod 6 peculiar to the specific flavour structure under consid-
eration has been taken into account via suitable subtrectidhe details of the mixing depend on
the regularisation in which bare correlation functions emenputed, as does the relation between
the latter and physical observables. For instance] h[[Rithas been explained how to extract
the bag parameteBix andBg (the latter in the static limit for thb quark) directly from three-point
functions involving the operato®] and.2;,, by using Wilson actions with suitable twisted mass

(4.1)
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operator ratio operator ratio

21" 072434

Q120166 25" 064732
Oy

Q, 055421 25" 0539

2;" 079620

Table 1: Ratios of RGI to renormalised ataq Operator insertions for the various operators in the refege
renormalisation schemes mentioned in the text.

terms. The computation of the RGI renormalisation fackxg ) at a number of values of the bare
coupling with an Qa) improved Wilson action is under way and close to completion.

5. Conclusions

We have presented a fully non-perturbative computatiorhefRG running of a wide class
of four-fermion operators il = 2 QCD. These results, together with the matching to specific
hadronic schemes, is a basic building block of &y 2 computation of such quantities Bg
andBg that aims at eliminating systematic uncertainties relatecenormalisation. On the other
hand, the precision of the results sets a potentially ustaatory lower bound for the final error
on weak matrix elements. Future refinement, e.g. by addingeatfiattice to our continuum limit
extrapolations, can be hence desirable. These issuesendisibussed in detail in our forthcoming
publication of the definitive results.
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