CERN Accelerating science

Article
Title Particle identification algorithms for the HARP forward spectrometer
Author(s) Catanesi, M G (Bari U. ; INFN, Bari) ; Catanesi, M G ; Radicioni, E ; Edgecock, R ; Ellis, M ; Robbins, S ; Soler, F J P ; Go Xling, C ; Bunyatov, S ; Chelkov, G ; Chukanov, A ; Dedovitch, D ; Gostkin, M ; Guskov, A ; Khartchenko, D ; Klimov, O ; Krasnoperov, A ; Krumshtein, Z ; Kustov, D ; Nefedov, Y ; Popov, B ; Serdiouk, V ; Tereshchenko, V ; Zhemchugov, A ; Di Capua, E ; Vidal-Sitjes, G ; Artamonov, A (CERN) ; Arce, P (CERN) ; Giani, S (CERN) ; Gilardoni, S (CERN) ; Gorbunov, P (CERN) ; Grant, A (CERN) ; Grossheim, A (CERN) ; Gruber, P (CERN) ; Ivanchenko, V (CERN) ; Kayis-Topaksu, A (CERN) ; Panman, J (CERN) ; Papadopoulos, I (CERN) ; Pasternak, J (CERN) ; Chernyaev, E (CERN) ; Tsukerman, I (CERN) ; Veenhof, R (CERN) ; Wiebusch, C (CERN) ; Zucchelli, P (CERN) ; Blondel, A ; Borghi, S ; Campanelli, M ; Cervera-Villanueva, A ; Morone, M C ; Prior, G ; Schroeter, R ; Kato, I ; Nakaya, T ; Nishikawa, K ; Ueda, S ; Gastaldi, Ugo ; Mills, G B ; Graulich, J S ; Grégoire, G ; Bonesini, M ; De Min, A ; Ferri, F ; Paganoni, M ; Paleari, F ; Kirsanov, M ; Bagulya, A ; Grichine, V ; Polukhina, N ; Palladino, V ; Coney, L ; Schmitz, D ; Barr, G ; De Santo, A ; Pattison, C ; Zuber, K ; Bobisut, F ; Gibin, D ; Guglielmi, A ; Laveder, M ; Menegolli, A ; Mezzetto, M ; Dumarchez, J ; Vannucci, F ; Ammosov, V ; Koreshev, V ; Semak, A ; Zaets, V ; Dore, U ; Orestano, D ; Pastore, F ; Tonazzo, A ; Tortora, L ; Booth, C ; Buttar, C ; Hodgson, P ; Howlett, L ; Bogomilov, M ; Chizhov, M ; Kolev, D ; Tsenov, R ; Piperov, S ; Temnikov, P ; Apollonio, M ; Chimenti, P ; Giannini, G ; Santin, G ; Hayato, Y ; Ichikawa, A ; Kobayashi, T ; Burguet-Castell, J ; Gómez-Cadenas, J J ; Novella, P ; Sorel, M ; Tornero, A
Affiliation (Università degli Studi e Sezione INFN, Bari, Italy) ; (Rutherford Appleton Laboratory, Chilton, Didcot, UK) ; (Institut für Physik, Universität Dortmund, Germany) ; (Joint Institute for Nuclear Research, JINR Dubna, Russian Federation) ; (Università degli Studi e Sezione INFN, Ferrara, Italy) ; (CERN) ; (Section de Physique, Université de Genève, Switzerland) ; (University of Kyoto, Japan) ; (Laboratori Nazionali di Legnaro dell' INFN, Legnaro, Italy) ; (Los Alamos National Laboratory, Los Alamos, USA) ; (Institut de Physique Nucléaire, UCL, Louvain-la-Neuve, Belgium) ; (Università degli Studi e Sezione INFN, Milano, Italy) ; (Institute for Nuclear Research, Moscow, Russian Federation) ; (P.N. Lebedev Institute of Physics (FIAN), Russian Academy of Sciences, Moscow, Russian Federation) ; (Università "Federico II" e Sezione INFN, Napoli, Italy) ; (Columbia University, New York, USA) ; (Nuclear and Astrophysics Laboratory, University of Oxford, UK) ; (Università degli Studi e Sezione INFN, Padova, Italy) ; (LPNHE, Universités de Paris VI et VII, Paris, France) ; (Institute for High Energy Physics, Protvino, Russian Federation) ; (Università "La Sapienza" e Sezione INFN Roma I, Roma, Italy) ; (Università degli Studi e Sezione INFN Roma III, Roma, Italy) ; (Department of Physics, University of Sheffield, UK) ; (Faculty of Physics, St. Kliment Ohridski University, Sofia, Bulgaria) ; (Institute for Nuclear Research and Nuclear Energy, Academy of Sciences, Sofia, Bulgaria) ; (Università degli Studi e Sezione INFN, Trieste, Italy) ; (KEK, Tsukuba, Japan) ; (Instituto de Física Corpuscular, IFIC, CSIC and Universidad de Valencia, Spain)
Publication 2007
In: Nucl. Instrum. Methods Phys. Res., A 572 (2007) 899-921
DOI 10.1016/j.nima.2006.11.071
Subject category Detectors and Experimental Techniques
Accelerator/Facility, Experiment CERN PS ; HARP PS214
Abstract The particle identification (PID) methods used for the calculation of secondary pion yields with the HARP forward spectrometer are presented. Information from time of flight and Cherenkov detectors is combined using likelihood techniques. The efficiencies and purities associated with the different PID selection criteria are obtained from the data. For the proton–aluminium interactions at 12.9 GeV/c incident momentum, the PID efficiencies for positive pions are 86% in the momentum range below 2 GeV/c, 92% between 2 and 3 GeV/c and 98% in the momentum range above 3 GeV/c. The purity of the selection is better than 92% for all momenta. Special emphasis has been put on understanding the main error sources. The final PID uncertainty on the pion yield is 3.3%.

Corresponding record in: Inspire


 Запись создана 2007-10-16, последняя модификация 2016-07-04