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RCs for N = 2 Wilson fermions and tree-level improved gauge action P. Dimopoulos

1. Introduction

We compute quark bilinear renormalisation constants (R8a$ed on the ETM®; = 2
dynamical quark action which consists of a tree—level impcoSymanzik gauge action and twisted
mass (tm) Wilson fermions at maximal twi§i [1]. Our resulte automatically improved in the
spirit of ref. [@]. In section 2 we present a new (non-peraiie) method for the calculation of
the scale independent RC&, andZp=Zs, based on the use of two valence quark actions and a
standard calculation afy, within the tm valence quark sector. In section 3 we desctiteeRI-
MOM calculation of all RCs (both scale dependent and scaegandent ones).

2. Calculation of the scaleindependent RC

In this section we present a calculation of the scale indé@enRCs, namelyy, Za, Zp=Zs.
The evaluation o®y is based on the PCAC Ward identity method (see réffs. [3] fai. This
calculation leads to very precise results. The computatiorethod forZy andZp=Zs is new. Itis
based on the use of two regularisations for the valence caeiigns. One is the standard twisted
mass action, while the other is the Osterwalder—Seiler (@8ant [4]. In the so called physical
basis these actions can be compactly written in the form:

Sar= @S PoOD g Wer + pg)p ) ; (2.1)
X
withWer = 55, 0,04+ M r= 1), ¢ = d)7, r = diag(ry rq)andpq = diag(ly Hg)- The
twisted mass case correspondsie= Iy= 1, while the Osterwalder-Seiler case is obtained
takingry=rg= 1. Sea quarks are regularized in the standard tm framework.

Consider that, for the two different choises of the matrjxve perform the following two
axial transformations of the quark fields, namely,d) = expi (ygT3n=4)](uO;d°) and u;d) =
expli (yf57r=4)](uO A, respectively. Each of the actior{s {2.1) transforms reyy into an ac-
tion with the Wilson term in the standard form (9 and nots). This is a rotation into the tm
basis at maximal twist. However the tm action has a mass tértineoform i[.lLIIOySTgl,UO, while
the OS one haguyysy’. Consider, now, an operat@®r defined in the physical basis. Under the
two axial trasformations this operator transforms into tperators, calle®; andOF, which, in
general, are not of the same form. However the respectivermealised matrix elements between
given physical states have to be equal upt@?) effects. This is due to the fact that in the con-
tinuum limit each of them should coincide, up(tlja2 ), with the corresponding matrix element of
the unique physical operatddr. Therefore, if we callo, andZoF the respective renormalisation
constants for the two operators, we have:

2o HOp ™ = Zo. 10z i%%+ 0@) : (2.2)

Renormalisation constants are named, as usual, after #ig ibawhich the Wilson term has its
standard form. For maximal twist, the operator renormélmapattern in the physical and twisted
bases is shown in Table 1 for both OS and tm formalisms. Thaegatioperators refer to the tm
basis while the unprimed ones to the physical basis and we d&dopted the notatio@r = ul'd,
for both the primed and unprimed case.
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OS case tm case
ARy ud = ZaAuud = ZAAZ ud AR)uud = ZvALud = iZ/Vﬁ ud
VR)uud = ZvVyuud = ZVvﬁ ud VR)uud = ZaVuud = iZin, ud
(Pr)ud = ZsPud = iZsSf,d (Pr)ud = ZpRug = ZPPljd

Table 1: Renormalization pattern of the bilinear quark operatorgtie OS and tm case at maximal twist.

Calculation of Zp=Zs: Our method is based on comparing the amplitgde- < 0P 7>,
computed both in tm and OS formalisms. We start by consigenmthe physical basis, the correla-
torCpp(t) Sy < Uysd (x)d_ygu (0)>, which at large times behaves ligp () ng,j:- exp( mt)+
exp( m(T 1))} Inthe twisted basis, this correspond<}go ) in the OS case anGpopo (t) in
the tm one. Based on Talle 1, this translates into

Or " = Zoigd M+ O@) = Zslgl PS+ 0@?) ; (2.3)

from which the ratiaZp=Zg is extracted.

Calculation of Za: We undertake the calculation ¢f in both OS and tm regularisations. In
the tm case we use the Ward identity evaluation of the decagtant: f}Tm = 2qun=m,21. Note
that in this case no renormalisation constant is neefledTBlis the pion decay constant can be
extracted from the large time asymptotic behaviou€g# (t ) as it is discussed above.

For the OS case we use the correlatGgp andCap (With ry=rq = 1). The large time
asymptotic behaviour of the former correlator has beenudised above, while the latter goes like
Cap ()’ i%: exp( mt) exp( mdT t))] Combining these, we can extract the bare OS
estimate of the pion decay constantf$: éap=0rMy. Since the tm and OS determinations of
the (properly normalized) decay constant satisfy the igglat

[fr P = "+ 0@%) = ZafP%+ 0@) ; (2.4)

an estimate o, is readily obtained. Since all computations are performefinde mass, the
final results forZy andZp=Zs are finally obtained by extrapolation to the chiral limit. Mover,
maximal twist ensures that cut—off effects are of or@ea?) ([B], [f]).

2.1 Reaults

Our configuration ensembles bk = 2 sea quarks have been generated at three values of the

gauge coupling@ = 380; 390 and 405, corresponding to lattice spacings 0:10;009 and 0.07

fm. We have performed 240 measurements for the two sm@lgatues and 150 measurements for
the highest one. In order to significantly reduce autocati@h times, correlators were computed
every 20 trajectories (each having trajectory length etmal= 1=2). Five sea quark masses have
been simulated g8 = 390 and four at the other two couplings. The smallest sea gueass
corresponds to a pion of about 300 MeV and the higher one isajpsve half the strange quark
mass. Eight valence quark masses were used at each coupérigyest ones are equal to the sea
quark masses, whereas the others rise to the region of dregstiquark mass. For the inversions in
the valence sector we have made use of the stochastic methedend trick of ref.[[6]) in order
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B 3.80 3.90 4.05

Za  0.72(2)(1)  0.76(1)(1)  0.76(1)(1)
Zp=Zs 0.47(2)(1)  0.61(1)(1)  0.66(1)(1)

Zy 05814(2)(2) 0.6104(2)(3) 0.6451(2)(3)

Table 2: The results for the scale independent RCs for three valuseajauge coupling.

to increase the statistical information. Propagator sesiare at randomly located timeslices. This
turned out to be an optimal way to reduce the autocorreldiioa. Typical plots on the quality of
the signal for the RCs (for fixed values of the bare coupling masses) are shown in Ffg. 1.
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Figure 1. Asymptotic behaviour of scale independent normalisatmmstants

Three methods were implemented in the RC computation. Tétecfinsists in calculating the
RCs at fixed value of the sea quark mass for a number of valemaek gnasses and taking the
“valence chiral limit%. Subsequently, the RCs were quadratically extrapolatetidcsea quark
chiral limit 2. The second method consists in inverting the order of thedw@l limits. The third
method is simply the extraction of the RCs from the subsetabé datisfyinguya = Uses Which
allows to reach the chiral limit with one single extrapdbatiin the quark mass. Our results from
all three methods are compatible within one standard dewiatWe present preliminary data from
the second method, which has fits of better quality, in Tﬁbréhé first error is statistical while the
second is systematic coming from the difference betweeneahtral values of the various methods.
A final analysis will be presented in a forthcoming publioati

3. RI-MOM calculation

The RI-MOM method is a hon—perturbative, mass independengrmalisation scheme pro-
posed in ref.[[7]. For a detailed presentation of varioubméral aspects see ref] [8]. In our case the

IFirst and second degree polynomial fitgigy, have been performed.

2A quadratic dependence @iseais expected from the form of the sea quark determinant, aissuthat lattice
artifacts on the RCs are not sensitive to spontaneous dyimainetry breaking. However we have verified that a linear
fitin psealeads to compatible results.
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scheme consists in fixing the Landau gauge and computing dneemtum space Green function

Gt (p;p”) - Qfueowrd lod ()i P <107V ; (3.1)

fora general quark bilinear operatalr d (with ' = A;V;S;P;T) and the propagator is written as,
S = TG0 P X with g - ud:
Then the forward amputated Green functidd = S, (p) 1 G¥ (p;p)Si (p) * ;is projected by a
suitable projectoP (essentially a properly normalized Dirac matrix). The RZs,andZ, are
obtained by imposing the RI-MOM renormalization condigon
" #
(p) *

_ _ [
ZHZZa) ETE ) ey B0 @Za) TP TUNCR o= 15 Zg 5T L

0 =1:

p2= 2
(3.2)

The computation is done for fixed quark masses. The resudtexrapolated to the chiral limit.
The renormalisation scaje has to satisfy the conditiomigcp Ut TT=a.

The RCs, calculated in the chiral limit in the way describbdwe, are0 (a) improved at large
momental[J8]. Moreover an analysis based on the symmetridsrof QCD and the O(4) symmetry
of the underlying continuum theory shows trl'#t’(p) and I'ﬁ“(p) are separatelyD (@) improved
for all momenta. In order to increase the statistical infation, we computed the following com-
binations:Zr = (Z49+ z8)=2 and Zy= (Z,+ Zg)=2

The scale dependent RC&(:Zs andZt) are obtained at a reference scale= a 1, by can-
celling the scale dependenge at a sufficiently high order in perturbation theory:

Zr @o)= (Zr @u)=Cr (1) )Cr (Lo) : (3.3)

HereCr = epr“ " da i (o )=B (a )]andyt ; B are the anomalous dimension of the operator and
the beta function respectively. They are known aL® for Zr and N'LO for Zs andZp [f]].

It is known that the RI-MOM estimate &p is contaminated by the presence of a Goldstone
pole [10]. In the twisted mass theory this problem also arfseZs, thoughO @) suppressed. All
these contaminations are removed in the subtracted Greetida [11]:

2. 2.
FSUb(pz,qul ity ) = Hq,TPs(P” il ) Myl ps(Pilg, ) (3.4)
“(h le

wherely, ;lq, are non—degenerate valence quark masses.

3.1 Resaults

The simulation parameters are the same as those of s¢cljoi2e RCs, computed at fixed
sea quark mass and several valence quark masses, are @estyliextrapolated to the valence
chiral limit. Subsequently, the sea quark chiral limit isaibed by linear extrapolation in2,, In
Fig.[2 we show the effect of the Goldstone boson subtractiodg andZs for which the subtracted
Green function of Eq[(3.4) has been used; we see that thiarhimsportant effect o@p, while Zs
is almost unaffected, as expected. Moreover, we note fr@n{Fihat once the scale evolution has
been perturbatively divided out, the scalar RC is indeetksndependent, while the pseudoscalar
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Figure 2: Goldstone pole subtraction gt= 390;Zr (aup) of Eq. ) is plotted againsau ).

B Zn Zp=Zs 2y Zp Zs Z7

380 0.75(3) 047(3) 0624 030(1) 0642  0.73(4)
3.90 0.76(2)(1) 0.63(2)3) 0.65(2)(3) 0.39(1)(2) 0.628)) 0.75(1)(2)
405 077(1) 065(2) 067(1) 040(1)  061(1)  0.79(1)

Table 3: RI-MOM results for the RCsZp, Zs andZr are calculated at scalg = a * (see Eq. (3.3)). The
results af3 = 380 and 4.05 are preliminary and the quoted errors are putaligscal in these cases.

one is still subject to large discretization effects. Thaseremoved by linear extrapolation, giving
a Zp final estimate as the intercept of the fit.

In Table[3 we show our preliminary results for the RCs; e 380 and 4.05 the results
correspond to the lighter value of the sea quark mass only.fFe 390 the results come from
a full analysis in the valence and the sea sector. The first esrstatistical and the second is
systematic due to an estimate of ®e¢a)-contribution to the quark propagator which induces an
O(@?) correction in the determination of the RCs. A better estewdtthe systematic errors will be
available once we finalize the analysis on all the three watdidattice spacing.

A first comparison fo3 = 390 between the results of Tablgs 2 §hd 3 shows that the values o
Zp andZp=Zs are in nice agreement and of comparable statistical acgufde correspondingy
results, though compatible within the quoted errors, shwat the PCAC Ward Identity estimate is
statistically more precise

We would like to note that combining the result #f=Zs from the first method with that
of Zs from RI-MOM, an alternative evaluation &fp can be obtained, in which the problem of
the pseudoscalar Goldstone boson pole subtraction is eoidcor example, foi3 = 390 this
calculation givesZp = 0:38 which is compatible, within the errors, with the corresging value

3A slightly different determination based on the same WI taketween two one—pion states gives very similar
results; for example, fo = 390 it is found,zy = 06109(2) [[L]]. Moreover from the Table 1 we find that the value of
the ratio (Za=2v )2;'{;:495 is consistent with the one found ip |13].

4We note in passing '[harp1 = Z,, is the quark mass renormalisation constant in the twistesbrtigeory.
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given by the RI-MOM calculation (see Table 3). The resulta pfecise statistical analysis will be
given in a forthcoming publication.
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