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1. Introduction

We compute quark bilinear renormalisation constants (RCs), based on the ETMCNf = 2
dynamical quark action which consists of a tree–level improved Symanzik gauge action and twisted
mass (tm) Wilson fermions at maximal twist [1]. Our results are automatically improved in the
spirit of ref. [2]. In section 2 we present a new (non-perturbative) method for the calculation of
the scale independent RCs,ZA andZP=ZS, based on the use of two valence quark actions and a
standard calculation ofZV within the tm valence quark sector. In section 3 we describe the RI-
MOM calculation of all RCs (both scale dependent and scale independent ones).

2. Calculation of the scale independent RC

In this section we present a calculation of the scale independent RCs, namelyZV , ZA, ZP=ZS.
The evaluation ofZV is based on the PCAC Ward identity method (see refs. [3] for details). This
calculation leads to very precise results. The computational method forZA andZP=ZS is new. It is
based on the use of two regularisations for the valence quarkactions. One is the standard twisted
mass action, while the other is the Osterwalder–Seiler (OS)variant [4]. In the so called physical
basis these actions can be compactly written in the form:

Sval = a4∑
x

ψ̄(x)(γ∇̃� iγ5 r Wcr + µq)ψ(x); (2.1)

with Wcr = � a
2 ∑µ ∇�

µ∇µ + Mcr(r = 1), ψ = (u d)T , r = diag(ru rd)andµq = diag(µu µd). The
twisted mass case corresponds toru = � rd = � 1, while the Osterwalder-Seiler case is obtained
taking ru = rd = � 1. Sea quarks are regularized in the standard tm framework.

Consider that, for the two different choises of the matrixr, we perform the following two
axial transformations of the quark fields, namely(u;d)= exp[i(γ5τ3π=4)](u0

;d
0

) and (u;d)=
exp[i(γ5π=4)](u0

;d
0

), respectively. Each of the actions (2.1) transforms respectively into an ac-
tion with the Wilson term in the standard form (noγ5 and noτ3). This is a rotation into the tm
basis at maximal twist. However the tm action has a mass term of the form iµψ̄0γ5τ3ψ0

, while
the OS one hasiµψ̄0γ5ψ0

. Consider, now, an operatorOΓ defined in the physical basis. Under the
two axial trasformations this operator transforms into twooperators, calledOΓ̃ andO ˜̃Γ, which, in
general, are not of the same form. However the respective renormalised matrix elements between
given physical states have to be equal up toO(a2)effects. This is due to the fact that in the con-
tinuum limit each of them should coincide, up toO(a2), with the corresponding matrix element of
the unique physical operator,OΓ. Therefore, if we callZOΓ̃

andZO ˜̃Γ
the respective renormalisation

constants for the two operators, we have:

ZOΓ̃
hOΓ̃i

tm
= ZO ˜̃Γ

hO ˜̃Γi
OS
+ O(a2

) : (2.2)

Renormalisation constants are named, as usual, after the basis in which the Wilson term has its
standard form. For maximal twist, the operator renormalization pattern in the physical and twisted
bases is shown in Table 1 for both OS and tm formalisms. The primed operators refer to the tm
basis while the unprimed ones to the physical basis and we have adopted the notation,OΓ = ūΓd,
for both the primed and unprimed case.
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OS case tm case
(AR)µ;ud = ZAAµ;ud = ZAA

0

µ;ud (AR)µ;ud = ZVAµ;ud = � iZVV
0

µ;ud

(VR)µ;ud = ZVVµ;ud = ZVV
0

µ;ud (VR)µ;ud = ZAVµ;ud = � iZAA
0

µ;ud

(PR)ud = ZSPud = iZSS
0

ud (PR)ud = ZPPud = ZPP
0

ud

Table 1: Renormalization pattern of the bilinear quark operators for the OS and tm case at maximal twist.

Calculation of ZP=ZS: Our method is based on comparing the amplitudegπ = < 0jPjπ > ,
computed both in tm and OS formalisms. We start by considering, in the physical basis, the correla-
torCPP(t)� ∑x < ūγ5d(x)d̄γ5u(0)> , which at large times behaves likeCPP(t)’

jgπj
2

2mπ
[exp(� mπt)+

exp(� mπ(T � t))]. In the twisted basis, this corresponds toCS0S0(t)in the OS case andCP0P0(t)in
the tm one. Based on Table 1, this translates into

[gπ� ]
cont

= ZP[g
0
π� ]

tm
+ O(a2

) = ZS[g
0
π]

OS
+ O(a2

) ; (2.3)

from which the ratioZP=ZS is extracted.
Calculation of ZA: We undertake the calculation offπ in both OS and tm regularisations. In

the tm case we use the Ward identity evaluation of the decay constant: f tm
π� = 2µqgπ=m2

π . Note
that in this case no renormalisation constant is needed [5].Thus the pion decay constant can be
extracted from the large time asymptotic behaviour ofCPP(t)as it is discussed above.

For the OS case we use the correlatorsCPP andCA0P (with ru = rd = � 1). The large time
asymptotic behaviour of the former correlator has been discussed above, while the latter goes like

CA0P(t)’
ξA0P

2mπ
[exp(� mπt)� exp(� mπ(T � t))]. Combining these, we can extract the bare OS

estimate of the pion decay constant asf OS
π = ξA0P=gπ mπ . Since the tm and OS determinations of

the (properly normalized) decay constant satisfy the relation

[fπ� ]
cont

= f tm
π� + O(a2

) = ZA f OS
π + O(a2

); (2.4)

an estimate ofZA is readily obtained. Since all computations are performed at finite mass, the
final results forZA andZP=ZS are finally obtained by extrapolation to the chiral limit. Moreover,
maximal twist ensures that cut–off effects are of orderO(a2)([2],[4]).

2.1 Results

Our configuration ensembles forNf = 2 sea quarks have been generated at three values of the
gauge coupling,β = 3:80;3:90 and 4:05, corresponding to lattice spacingsa� 0:10;0:09 and 0.07
fm. We have performed 240 measurements for the two smallestβ -values and 150 measurements for
the highest one. In order to significantly reduce autocorrelation times, correlators were computed
every 20 trajectories (each having trajectory length equalto τ = 1=2). Five sea quark masses have
been simulated atβ = 3:90 and four at the other two couplings. The smallest sea quarkmass
corresponds to a pion of about 300 MeV and the higher one is just above half the strange quark
mass. Eight valence quark masses were used at each coupling;the lowest ones are equal to the sea
quark masses, whereas the others rise to the region of the strange quark mass. For the inversions in
the valence sector we have made use of the stochastic method (one–end trick of ref. [6]) in order
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β 3.80 3.90 4.05
ZA 0.72(2)(1) 0.76(1)(1) 0.76(1)(1)

ZP=ZS 0.47(2)(1) 0.61(1)(1) 0.66(1)(1)
ZV 0.5814(2)(2) 0.6104(2)(3) 0.6451(2)(3)

Table 2: The results for the scale independent RCs for three values ofthe gauge coupling.

to increase the statistical information. Propagator sources are at randomly located timeslices. This
turned out to be an optimal way to reduce the autocorrelationtime. Typical plots on the quality of
the signal for the RCs (for fixed values of the bare coupling and masses) are shown in Fig. 1.
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Figure 1: Asymptotic behaviour of scale independent normalisation constants

Three methods were implemented in the RC computation. The first consists in calculating the
RCs at fixed value of the sea quark mass for a number of valence quark masses and taking the
“valence chiral limit"1. Subsequently, the RCs were quadratically extrapolated tothe sea quark
chiral limit 2. The second method consists in inverting the order of the twochiral limits. The third
method is simply the extraction of the RCs from the subset of data satisfyingµval = µsea, which
allows to reach the chiral limit with one single extrapolation in the quark mass. Our results from
all three methods are compatible within one standard deviation. We present preliminary data from
the second method, which has fits of better quality, in Table 2. The first error is statistical while the
second is systematic coming from the difference between thecentral values of the various methods.
A final analysis will be presented in a forthcoming publication.

3. RI-MOM calculation

The RI-MOM method is a non–perturbative, mass independent,renormalisation scheme pro-
posed in ref. [7]. For a detailed presentation of various technical aspects see ref. [8]. In our case the

1First and second degree polynomial fits inµval have been performed.
2A quadratic dependence onaµsea is expected from the form of the sea quark determinant, assuming that lattice

artifacts on the RCs are not sensitive to spontaneous chiralsymmetry breaking. However we have verified that a linear
fit in µsea leads to compatible results.
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scheme consists in fixing the Landau gauge and computing the momentum space Green function

Gud
Γ (p;p0)= ∑

x;y
hu(x)(ūΓd)0d̄(y)ie�ip�x+ ip0�y

; (3.1)

for a general quark bilinear operator ¯uΓd (with Γ = A;V;S;P;T) and the propagator is written as,
Sq = ∑xhq(x)q̄(0)ie

�ip�x with q= u;d:
Then the forward amputated Green function,Λud

Γ = Su(p)�1 Gud
Γ (p;p)Sd(p)�1 ;is projected by a

suitable projectorPΓ (essentially a properly normalized Dirac matrix). The RCs,ZΓ andZq are
obtained by imposing the RI-MOM renormalization conditions

Zud
Γ (ZuZd)

�1=2 Γud
Γ (p)jp2= µ2 � Zud

Γ (ZuZd)
�1=2 Tr[Λud

Γ PΓ]jp2= µ2 = 1;Zq
i

12
Tr

"

6pSq(p)
�1

p2

#

p2= µ2

= 1:

(3.2)
The computation is done for fixed quark masses. The results are extrapolated to the chiral limit.
The renormalisation scaleµ has to satisfy the condition:ΛQCD � µ � π=a.

The RCs, calculated in the chiral limit in the way described above, areO(a)improved at large
momenta [8]. Moreover an analysis based on the symmetries ofMtmLQCD and the O(4) symmetry
of the underlying continuum theory shows thatΓud

Γ (p)andΓdu
Γ (p)are separatelyO(a) improved

for all momenta. In order to increase the statistical information, we computed the following com-
binations:ZΓ = (Zud

Γ + Zdu
Γ )=2 and Zq = (Zu+ Zd)=2 :

The scale dependent RCs (ZP;ZS andZT) are obtained at a reference scaleµ0 = a�1 , by can-
celling the scale dependenceµ , at a sufficiently high order in perturbation theory:

ZΓ(aµ0)= (ZΓ(aµ)=CΓ(µ))CΓ(µ0): (3.3)

HereCΓ = exp
Rα(µ) dα [γΓ(α)=β(α)]andγΓ;β are the anomalous dimension of the operator and

the beta function respectively. They are known at N2LO for ZT and N3LO for ZS andZP [9].
It is known that the RI-MOM estimate ofZP is contaminated by the presence of a Goldstone

pole [10]. In the twisted mass theory this problem also arises forZS, thoughO(a2)suppressed. All
these contaminations are removed in the subtracted Green function [11]:

Γsub
P;S (p2

;µq1;µq2)=
µq1ΓP;S(p2

;µq1)� µq2ΓP;S(p2
;µq2)

µq1 � µq2

(3.4)

whereµq1;µq2 are non–degenerate valence quark masses.

3.1 Results

The simulation parameters are the same as those of section 2.1. The RCs, computed at fixed
sea quark mass and several valence quark masses, are first linearly extrapolated to the valence
chiral limit. Subsequently, the sea quark chiral limit is obtained by linear extrapolation inµ2

sea. In
Fig. 2 we show the effect of the Goldstone boson subtraction for ZP andZS for which the subtracted
Green function of Eq. (3.4) has been used; we see that this hasan important effect onZP, while ZS

is almost unaffected, as expected. Moreover, we note from Fig. 2 that once the scale evolution has
been perturbatively divided out, the scalar RC is indeed scale independent, while the pseudoscalar
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Figure 2: Goldstone pole subtraction atβ = 3:90;ZΓ(aµ0)of Eq. (3.3) is plotted against(aµ)2.

β ZA ZP=ZS ZV ZP ZS ZT

3.80 0.75(3) 0.47(3) 0.62(4) 0.30(1) 0.64(2) 0.73(4)
3.90 0.76(2)(1) 0.63(2)(3) 0.65(2)(3) 0.39(1)(2) 0.62(1)(5) 0.75(1)(2)
4.05 0.77(1) 0.65(2) 0.67(1) 0.40(1) 0.61(1) 0.79(1)

Table 3: RI-MOM results for the RCs.ZP, ZS andZT are calculated at scaleµ0 = a� 1 (see Eq. (3.3)). The
results atβ = 3:80 and 4.05 are preliminary and the quoted errors are purely statistical in these cases.

one is still subject to large discretization effects. Theseare removed by linear extrapolation, giving
a ZP final estimate as the intercept of the fit.

In Table 3 we show our preliminary results for the RCs; forβ = 3:80 and 4.05 the results
correspond to the lighter value of the sea quark mass only. For β = 3:90 the results come from
a full analysis in the valence and the sea sector. The first error is statistical and the second is
systematic due to an estimate of theO(a)-contribution to the quark propagator which induces an
O(a2)correction in the determination of the RCs. A better estimate of the systematic errors will be
available once we finalize the analysis on all the three values of lattice spacing.

A first comparison forβ = 3:90 between the results of Tables 2 and 3 shows that the values of
ZA andZp=ZS are in nice agreement and of comparable statistical accuracy. The correspondingZV

results, though compatible within the quoted errors, show that the PCAC Ward Identity estimate is
statistically more precise3.

We would like to note that combining the result ofZP=ZS from the first method with that
of ZS from RI-MOM, an alternative evaluation ofZP can be obtained, in which the problem of
the pseudoscalar Goldstone boson pole subtraction is avoided4. For example, forβ = 3:90 this
calculation givesZP = 0:38 which is compatible, within the errors, with the corresponding value

3A slightly different determination based on the same WI taken between two one–pion states gives very similar
results; for example, forβ = 3:90 it is found,ZV = 0:6109(2)[12]. Moreover from the Table 1 we find that the value of
the ratio(ZA=ZV)

2jβ= 4:05 is consistent with the one found in [13].
4We note in passing thatZ�1

P = Zµ is the quark mass renormalisation constant in the twisted mass theory.
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given by the RI-MOM calculation (see Table 3). The results ofa precise statistical analysis will be
given in a forthcoming publication.
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