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W e construct a classical non—relativistic string m odel In 3+ 1 din ensions. The
m odel contains a gpurion tensor eld that is responsible for the non-com m utative
structure of the m odel. Under double dim ensional reduction the m odel reduces to

the exotic non—relativistic particle in 2+ 1 din ensions.

I. INTRODUCTION

T he free m assive non—relativistic particle In D din ensions has as a symm etry group, the
G alileigroup, w ith a central extension associated to them ass of the particle. Tnstead, in 2+ 1
dIn ensions, there is a two-fold central extension B,B,BJ, w here the second central elem ent

is Interpreted as a non-com m utative param eter. T hese central extensions are related to a
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nontrivial E ilenberg-C hevalley cohom ology of degree two. In fact every closed invariant 2-
form that locally is the di erentialofa 1-form , which isnot invariant, produces an extension
of the algebra, see for exam ple 4,15,61.

The exotic (2+ 1)D G alilei symm etry has appeared in the context of non-com m utative
geom etry and condensed m atter physics [4,18, 19,110, 11, 114, 113,114, (15, (16, [17]. Tt is
a symmetry of a free relativistic particle in a non-comm utative plane in a special non-
relativistic 1 it [,[11,[12].

Instead, if one consider the non—+elativistic 1im it of a relativistic particle n the AdS in
2+ 1 din ensions, one nds a system with an exotic Newton-H ooke symm etry [18]. The
system has three essentially di erent phases [19], depending on the values of the two central
charges, w hich are present in them odel. T he subcritical and supercritical phases (describing
2D isotropic ordinary and exotic oscillators) are ssparated by the critical phase (onesm ode
oscillator).

N on—relativistic extended ob fcts has been recently considered in the literature. Tn par-
ticular, non—relativistic string theory 20] (seealso 21]) In  at space isa consistent decoupled
sector of the bosonic string theory, whose worldsheet, in the conform al eld theory descrip-
tion [20], possesses the appropriate G alilkan symm etry. Non—+elativistic string theory can
be derived as a certain decoupling lim it of the original relativistic theory, even though the
theory can be w ritten down w ithout any reference to the original parent theory. T he basic
dea behind the decoupling lim it is to take a particular non—relhtivistic 1m it, In such a way
that only states satisfying a G alilan invariant dispersion relation have nite energy, while
the rest of the states decouples.

T he action of non—+elativistic bosonic string theory, fora atD din ensional space—tin e,
can be obtained w ith them ethod of non-linear realizations 22 ]asaW essZum lno (W S) term
of the appropriate (string) G alilean group [23,124]. T he extended algebra has non-central
elam ents that transform non-trivially under the stability group.

Particlem odels can be obtained by a double-din ensional reduction of stringsm odels. Tt is
naturalto ask if it ispossible to construct an exotic non-relativistic string in 3+ 1 din ensions,
w ith other additional extended charges, such that by reduction one could obtain the exotic
particle m odels appeared in the literature [1,18,[11,12]. To this end we construct the
classical action for exotic G alilean non—+relativistic strings, using the m ethod of non-linear

realizations. W e st construct the exotic string G alilei algebra in 3+ 1 din ensions. This



algebra contains new extra extended generators. A s we w ill see, the param eters associated
to these new extensions are related to non-com m utative param eters. T he string action is
constructed from a 2-form , which is the product of two invariant M aurerCartan M C) 1-
form s of the exotic extended string G alilei algebra. T he param eters of the string action are
the tension and a tensor param eter (spurion), generalizing the m agnetic eld in the case of
a particle.

W e perform a classical Ham iltonian analysis of the m odel. T he ham iltonian tums out to
be non-local in the origihal variables. If we Introduce an appropriate change of variables,
we can elim inate the non—-locality, ending w ith a theory form ally equivalent to the ordinary
non-relativistic one for particular boundary conditions. T herefore, in this last case, the
symm etry group of them odel In the new variables is the non-exotic G alilei group.

T he organization of the paper is as follow s. In Section ITwe consider the extended exotic
G alilei algebra. In Section ITTwe introduce the string action and in Section IV we study the
dynam ics in the static gauge, show ing that there are second class constraints in the m odel,
then we proceed to evaluate the D irac brackets. T his analysis show s that the D irac brackets
of the position variables are not zero, giving rise to a non-com m utative theory. Tn Section
V we show that it is possible, through a change of variables, to m ake the m odel equivalent
to the non relativistic string m odel, only for particular choices of the boundary conditions.

W e conclude w ith an outlook and a discussion In Section V I.

IT. EXOTIC EXTENDED GALILEISTRING ALGEBRA

Let us consider a non+elativistic string In a D dim ensional at space tim e.

W e will denote by x%;x! and x?;ux” ! the bngiudinal (along the string) and trans-
verse coordinates respectively. T he sym m etry algebra of this system is the extended G alilei
algebra,G 23] 241, which is given by

IM ab;Pc] = l( acpb bcpa) 7

MapMgl= {aMpat wMac adM ke oM aq )i (2)



H—V-[ ;M c]: l( M c M c); M a;Mbc]: l( abM c acM b); (3)
Pa;M b]_ labZ ’ |.Ma;M b]ziab Z; (4)
and
P ;z2 1= 0;
P;z]l= +1 Z ; 5)
Z M 1= 1 [2, Z,M 1= 0: (6)
In these expressions P ; = 0;1, are the longitudinal transhtion generators, P,;a =

2;:D 1 are the transverse ones, M ;M , ;M ., are the generators of the boost transfor-
m ation along the longitudinal direction, generalized boosts and rotations in the transverse
Space and 7 ;Z are the extended elam ents. O ur conventions for the m etric tensor are:

= 4+, ap=+*;+;u+ . [ Imeansantisymm etry in the interchange of the two indices

. The Levi€ ivita tensor isde ned with % = + 1.

O bserve that the commutator ofM  and M is zero. This is due to the fact that in
2 dimnensions ( ; = 0;1) there is only one generator of Lorentz transform ations, and no
rotations.

T he action of non—+relativistic string can be obtained by the m ethod of non-linear realiza—
tions 23,124,125]. Let us consider the coset G=H , w ith the stability group H generated by
™M M ).

Locally we param etrize a coset elam ent as 28]

ix P x*P, v *M L _ic Z _icz

g= € e e e e (7)

T he (G odstone) coordinates of the coset depend on the param eters ; of the world-sheet,

TheM C 1-om isgiven by
: 1 a a 1 1 a
= 1ig "dg=L P + L°P,+ L Ma+§L M +5LbMab+LZZ + L,7Z; (8)

w here



L,=dc + dx v, dx® %dxvava;

L, = dc+ v oodv @ (10)

1
2
In the case of a four din ensional spacetin e the extended G alilei algebra has a further
extension. In fact, ow ing to the existence of the two dim ensional LeviL vita tensor, we can
construct a non-trivial closed nvariant 2-form , , that transformm s as a sym m etric tensor

of order two under the stability group

$ )= LLOL P = d( pvidv P): (11)

The 1-om v 2dv ? is not invariant, therefore the Eilenberg-C hevalley cohom ology of
degree two is non trivial [4,15,16]. This Inplies the possibility of further extending the
algebra. W edenote thenew generatorsofthealgebraby 7Z( ) ,where ( )m eanssymm etric
w ith respect the Interchange of and
T he new non vanishing com m utation relations are
M ;M pl=1a 2+ 17 ;7 (12)
h i

Z();M zi[Z( )]+i[2( )] * (13)

In the new extended algebra theM C 1-fom has onem ore tem , given by %EZ Z( y,and

the coset elem ent is
g= & e Fag gt 2 glen izt VT, (14)

where ¢! ) are the group param eters associated to generators 27 . The new tem in the
M C 1Hfom is given by
1
') =de + 5 oA dv P (15)

ITI. EXOTIC STRING ACTION

T he ordinary non—+elativistic string action can be w ritten as the pullback on the world-

sheet w ith coordinates ( ; ) of the nvariant 2-form 24]
b b 1 a
5 = L L = dx dc de+devav : (1o6)
In four din ensions we can also consider a tensor valued 2-form 29]

1
» =LC ) =ax ad VD avitav (17)



which allow s us to construct an action for an exotic string. Ifwe elin inate the closed 2-fom
dx de and we add the antisymm etric part in  ; ,which isa closed form ,we get

, =dxvedv® ,: (18)

N otice that

; =d(, )=LL°%L" (19)

is a closed Invariant 3-form . Since , isnot an invariant 2-form of the unextended string
G alilei algebra we conclude that the E ilenberg-C hevalley cohom ology of degree three is not
trivial.

T he string action is obtained by taking a linear com bination of the pullback ofthe previous
2-form s on the world sheet. T is the string tension and is a spurion tensor el that
generalizes the m agnetic eld appearing in the case of a particle In amagnetic ed in 2+ 1

dIn ensions.

z z
S=T d detle] vieex®+ %vava + d® detle] eviev®® :  (20)
Here @; = (@=Q@ ;@=@ ). The m etric tensor is as before = ( 1;+1). Theeg = @;x
are the zwebein, ¢ are the hverse zwebein, and detle] = detle; ] is the corresponding
determ inant. Notice that [T 1= “ 2 and [ ]= ‘! . In the previous equation is a spurion
tensor.
If we want to get by double dim ensional reduction the action for the exotic particle
,8,49,10,11,12,113,[14,/15,16] we have to m ake a particular choice for the param eters
. By perform ing the dim ensional reduction of the exotic term n eg. (20) we nd
z
d ‘veev?® . (21)
to be com pared w ith the exotic term of the action for the particle
z
d V2@ v (22)
T herefore the unique choice is to take

= ; (23)

with ;= 0.0 ther possible form s of the spurion eld will not be discussed in this paper.



IVvV. DYNAM ICSOF THE EXOTIC STRING

In this section we will study the dynam ics of the exotic string that under din ensional
reduction produces the exotic particle. W e willuse eg. (23) without the restriction on
In the static gauge, where we m ake the denti cation x%;x*)= ( ; ), the com plete string

action becom es

z z
1
S=T dxdx’ v,@ x*+ Evava + dx"dx* Qvyv, P (24)

T he Lagrangian equations of m otion are
T(@xa+va)+ Cuvp® @v, ™=0; (25)
@ v, = 0: (260)
T he boundary conditions in general in ply
(( Tvia £+ va ™ up)f = 0; (27)

where L is the lenght of the string.

T hese conditions can be satis ed, for exam ple, In the follow iIng ways

1. By choosing both x* and v ¢ as periodic fiinctions.

2. By choosing x* periodic and v * with xed values at the boundaries.
3. By choosing periodic v # and x* with xed values at the boundaries.
4. By choosing both x* and v @ with xed values at the boundaries.

5. By choosing v @ = 0 at the boundaries.

N otice that the cases 1) and 5) correspond to a closed and an open string respectively
(case = 0). Notice too that, for = 0, one can elin inate the variables v, which are
essentially the derivative of the vardiable x.

In order to understand which are the physical degrees of freedom of the m odel and their
dynam icswe will now study the ham ittonian form align .

Let us start by evaluating the canonicalm om enta:

_eL . eL
a_@\Lar TEDa_@>£a

; (28)



One nds the follow ing prin ary constraints:

a = oa t Vp = 0;
a = 1a= 0;
1
a — p? (pa+ TVOa): O; (29)

where , are them om enta conjugated to v, and P, the ones conjugated to x,, where, for
ageneric ed ,—=Q =@t=@ @, withx’= t.
T he canonical H am iltonian density tums out to be:

1
a 0 0 0 1 0 .
He= paxa t+ a\¥y L= 5 Vga Vfa TvlaXa VoaViy ab ViaVyy ’ (30)

w here a prim e denotes derivative w ith respect to (or x; ).
It is easily verd ed that the follow ing com binations of prim ary constraints
( 1y b—
Ka:_p?—‘l'labb"' T a (31)

are st class. By taking the independent com binations

(17 P— 5
Ss = - T b b 1a 7 22=T+ 17 (32)

one sees that the prin ary constraints separate as the rst class, K 5, and the second class
ones ( 5754).

Them atrix of the Poisson brackets am ong the second class constraints, ( 4;S.), isgiven
by:
2 3 Sz S3

20 ZOOZ
529 0 =z
820 Z 0

o o O

83 Z 0 0

The detem inant of the ; °independent part of thism atrix tums out to be proportional to
z*. W e can now evaluate the D irac brackets w ith respect to these constraints. R em em ber
that the general form for the D irac brackets, given a set () of constraints, w ith a Poisson
bracket m atrix given by C ; , is

X
fA;Bg = fA;Bg fA; oC ;£ ;Ba: (34)



Just to give an exam ple, considering the set ( 5;S.),we nd the follow Ing result

2 0
B (% )9 = —w D)
" 2 01 #
fva (i )ive( % )g = Z_zab (o 1+ 1 o)t 2 11 ( %);
1 " 2 01 #
(i Jive (% )9 = S ot — 1 (O (35)

Z Z

By requiring the stability of the prim ary constraints, that isby requiring that the Poisson
brackets of the prim ary constraints w ith the ham iltonian be zero, one nds the follow ing
secondary constraints:

a=T (vip + xg) e t V2. = 0: (36)

W ith these two constraints the prim ary rst<lass constraints (K ,; ) becom e second—<lass.

In fact, the D irac m atrix of the constrains

K, K3 2 3
K, 0 0 0 T
K5 0 0 T 0 (O (37)
o o E
st o0 2L o

has a detemm inant proportionalto T* 6 0. W e now iterate the procedure to evaluate the
nal D irac brackets, including the new sst of second class constraints. The nal result is

(we write only the non vanishing D irac brackets)

2 0
a0 9 = w0
0 1 0
fx.0 7 )ig( 5 g = T ( ); (38)
fx.(; el % )9 = . ( %;
0
.0 7 )i ool % g = T o %; (39)

with the brackets evaliated as in (34), using the inverse of them atrix (37). A t this point
we can use the full set of constraints and the nalphase space can be taken as (X, ;0. )-

N otice that using the constraints , we can form the com bination

0 0.,0

B 2 ab 1 0 ab_ Q.
Vio 3 oviz = Tv, + Tviax; Voa Vib ViaVyy, & = 0O: (40)
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By taking the canonical ham iltonian, see equation (30)
H.= d Hg; (41)

we see that the Jast three term s of the previous dentity coincide w ith the last three term s in
H ., except fora sign and a totalderivative in  , containing only the v ® variables. T his total
derivative is zero for periodic boundary conditions and it is a constant for xed boundary

conditions. T herefore, apart from this constant, we get

T 2
He=— d Vo + v ¢ (42)

V. EQUIVALENCE W ITH THE FREE NON-RELATIVISTIC STRING

In order to express the ham iltonian in term s of the ndependent variables x* and p, one
has to solve the constraints , and .. Since these constraints in generaldepend on v'_, the
ham iltonian density that one gets is generally non—local. See appendix A for the expression
in tem s of x%;p.. However, we can show that this non-locality can be elin inated by a
convenient change of variables. Let us start considering the sin pler case ; = 0, where the
constraints do not depend on vfa . By solving the constraints we get

0 0

0 0 0 0
Vig = Xy EPB; Viz = X3t szz (43)

T herefore the ham iltonian is given by
"w #
Z 02 0
1, 1 2, L o ab_0. 0
H = d _2T pa + E—T 3 pa + EXa + ? Xapb : (44)

From (43) we see thatde ning

0 0
Yo = Xo + Fpﬁ Y3 = X3 szi (45)

the ham iltonian can be w ritten as
|
) !
[N T
H.= d —+ — : 46
© or | 2Ya (46)

Since the variables vi, (and correspondingly y.) have zero D irac brackets w ith them selves,
the theory is equivalent to a non relativistic free string 27 1.



11

Com ing back to the action in eq. (24) for the generalcase ; 6 0, fwe Integrate by parts

the last term  (neglecting again the totalderivative for the reasons explained above) we get
7 " L #
s=T7 dxdx' v, @ x° @ v 2 +§vava ; (47)

By de ning now the new variables

y* = x° ?vbba; (48)

we see that the m odel is equivalent to the free non relativistic string 23]also for ' 6 0,
since the new action colncides with the rst tetm 1n eg. (20). A lso in this case the D irac
brackets of the ygs vanish m aking the theory a com m m utative one.

H owever we have to consider the boundary conditions discussed In Section IV . W hen x,
and vy, satisfy the sam e boundary conditions, as for instance In cases 1), 4) and 5), there is
a com plete equivalence of this exotic string w ith the ordinary one. In the cases 2) and 3)
the y, variables do not satisfy de nite boundary conditions and we loose the equivalence.
N otice also that, when the equivalence is realized, the invariance group (in the y, variables)
is isom orphic to the extended G alilei group w ithout the extended generator 7' , .

VI. DISCUSSION

In this paper we have constructed an exotic classical non—+relativistic string in 3+ 1 dim en—
sions. The m odel contains, apart from the ordinary non-relativistic action, an extra tem
with a spurion el that exists only in 3+ 1 din ensions. T he existence of this extra term is
associated to the existence of a new term in the extended G alilei algebra in 4 din ensions.
Tn general the m odel is non-com m utative in the sense that the D irac bracket of the physical
coordinates are not vanishing. Tt is possible to introduce a new set of coordinates in which
the m odel becom es com m utative if the boundary conditions of the old and the new coordi-
nates coincide. W e should point out that the transform ation properties of the old and the
new coordinates are di erent w ith respect to the G alilei transform ations.

T his exotic string by double din ensional reduction reproduces the exotic G alilei particle
n 2+ 1 din ensions.

Tt should be noticed that the m odel considered in this paper could be obtained from an

exotic relativistic m odel In 4 din ensions as non—relativistic 1m it.
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W e conclude by saying that it w illbe interesting to see if exists an exotic string theory for
a non— at case, In such a way that under double din ensional reduction it could reproduce

the exotic N ew ton-H ooke particle in 2+ 1 dim ensions.

APPENDIX A:THE HAM ILTONIAN DENSITY IN THE REDUCED

CANONICAL SPACE

From the constraints ., and . the variables v, can be obtained as a function of the
canonical coordinates of the reduced space £x%;p,g. To thisend wem ust solve the ollow Ing
di erential system

V()= twvis( )+ B ); V()= v )+ £ ); (A1)

w here

L=16 ) f= L&+ R (a2)
T he other variables vy, are easily obtained from the constraints .. In these equationswe
have put ! = T=1!. Observe that ! becomes in nite when ! is zero. In this lin it the
system degenerates to an algebraic systam , which was already discussed in Section V. T he
system (A1) can be easily integrated and the solution is

. .
Vo= B0t )i Vsl >=pl—§<w1 W,); (3 3)
w here
1., 2
W ( )=p—§el’ ) e (F.( 9 i Od %+ d ;o wa( )=wi( ): (A4)

In these equations the com plex constant of integration d is determ ined by the boundary
conditions discussed in Section IV . W ith these expressions one can evaluate the canonical
Ham iltonian H. (see eq. (42)). The resulting ham iltonian is m anifestly non-local in the
variables (x*;p. ).
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