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W e analyze the trajctories form ulti eld DBIin ation,which can arise in brane in ation m odels,
and show that the tra fctories are the sam e as in typicalslow rollin ation. W e calculate the power
spectrum and nd that the higher derivative temm s of the DB I action lead to a suppression of the
contrbution from the isocurvature perturbations. W e also calculate the bispectrum generated by
the isocurvature perturbation, and nd that it leads to distinctive features.

INTRODUCTION

Scalar eHd theories w ith non-canonical kinetic term s
provide novel realizations of the in ationary paradigm
\ﬂ ]. One interesting class of such m odels which have
been studied extensively in recent years isDBI in ation
@,E ], characterized by kinetic term sw hich arise from the
D iracBom-Infeld (DBI) action. A particularly appeal-
ing phenom enological feature of DBT in ation is that it
can lead to strong and unigue non-G aussian signatures
in the Coam icM icrow ave B ackground (CM B) E,E]. The
D B Iaction isubiguitous In string theory,eg.,asan e ec-
tive theory forwordvolim edegrees of freedom on branes.
W hen em bedded in brane in ation [E], the in aton ed
in DBIm odels can be given a natural geom etrical inter—
pretation as the position of a D brane in extra din en—
sions. DBI in ation arises when the D brane m oves in
a highly warped region of the intemal space where the
speed 1m it is am all, and reduces to the usual slow roll
brane In ation (with canonical kinetic term ) when the
brane is m oving non—relativisitically w ith respect to the
localwarp factor. Since the position of the brane in each
com pact direction is described by a scalar eld, brane
In ation isnaturally a multi eld in ationary m odel.

M ulti eld m odels are characterized by their tra jecto—
riesin eld space and can in generalbe decom posed into
an adizbatic eld,which param eterizesm otion along the
tra ctory, and isocurvature elds, which describe the
directions perpendicular to the tra fctory. Features in
the tra fctory, such as a sharp tum, can convert isocur—
vature perturbations into adiabatic/curvature perturba-—
tions (even on superhorizon scales) and can give rise to
Interesting features in the prin ordialpow er spectrum and
non-G aussianity.

In this paper we study the e ects of multiple elds in
DBIin ation. In particular,we study themulti ed DBI
tra pctories and show that they are dentical to the usual
slow vollm ulti eld case in which the tra fctory is dom i-
nated by the eld with the largest slope of the potential.
W e calculate the power spectrum formultiple DBI elds
in the lim it the tra fctory m akes a sharp tum and show
that the contrdbution of the isocurvature perturbations

to the pow er spectrum is suppressed by the sound speed.
Finally, we calculate the non-G aussianity in the sharp
tum lin it and nd that the non-G aussianity is dom i-
nated at leading order in the sound speed by the usual
single eld DB I contribution, but hasnew multi eld fea—
tures at sub-leading order. W e conclude by com m enting
on the In pact of our results for D B Im odelbuilding.

MULTIFIELD EQUATIONS OF M OTION

Consider a 10-dim ensional warped throat background
w ith the m etric

ds? = £172 (y)g dx dx + £72(y)om ndy™ dy® (1)

com m on to type IIB string com pacti cations [E, ﬂ],where
£(y) is called the warp factor of the throat which can in
principle depend on all of the coordinates of the internal
space v .

A D 3-brane in this background is described by (to low —
est order In string coupling and to allorders in  ?),

Z
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where the warp factor is rescaled £( ;) = TDéf(y( i),
and the real canonical scalar elds associated with the
m otion of the brane are given by

A 3)

where i= 1;::6. The potentialV ( ;) can arise, for ex—
am ple, from Interactions w ith D_SJoranes, D 7-branes, or
from the breaking of the local isom etries of the com pact
space, and we w ill leave it to be unspeci ed for the m o-
m ent.

W e willde ne the sound speed during in ation to be
the inverse of the \Lorentz factor" of the DB I action for
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spatially hom ogeneous elds,

£(41) = (4)

i

W e will be Interested In the anall sound speed lim it
Cs 1 where the non-G aussianity is observable. In the
follow Ing we w ill use the convention that the y; m easure
the distance from IR \tip" of the throat and that the D 3
brane m oves tow ards the tip, so = < 0.

Consider a FRW universe w ith fourdin ensionalm et-
ric,

X3

dat + a(t)®  dx?: (5)

i=1

ds® =

T he Friedm an equation and equations of m otion for the

eds jare (withH = 2)
3M ‘H*= L 1 +V (i) (6)
° 1) o
1 d o=
7SE a:(a(t) g)
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@iv(i)+f(i) (s 1) (7)

D istrdbuting the tin e derivative, the equation of m otion
(ﬂ) can also be w ritten

1
%_i+cs@i V+(c37) =0: (8)
Cs

i+3H—_‘L £

C learly the equation ofm otion for a hom ogeneous scalar
ed with a canonical kinetic term is obtained from
.@) n the imitc ! 1.
W e de ne themuld ed DBI in ationary param eters

as@}
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W hen these param eters are m uch sm aller than one, the
equations of m otion @) take a form sin ilar to that of a
slow Iy rolling eld
P
jtan iy g+
3
+@, V(D+ T 1)

3H + 1

3Ho+c@, V()+fl( 1)=0;@11)
where tan i @,V=@ |V to leading order in the DBI
in ationary param eters (E—@).

A s a gpeci ¢ exam ple, for the \standard case" of an
AdS warp factor that depends only on one of the elds

vV = ¥ m? 2

561

]

FIG .1l: The trafctory ofamultiple eld in ationary system
can be decom posed into an \adiabatic" eld with com po-
nentsalong the tra fctory and an \entropy" el s orthogonal
to the tra fctory.

£( 1):}? = % and a separable potential of m ass term s

5 { i, 1t can be shown that for sm all sound
speed Cg 1 and a large m ass hierarchy (m ; m § for
som e i;j) themulti eld DBTI in ationary param eters are
oforder O ( ).

TRAJECTORIES IN M ULTIFIELD BRANE
INFLATION

To sin plify our analysis we w ill restrict ourselves to
atwo edmodel ( 1; 2), but it is straightforward to
generalize our analysis to any num ber of elds.

W e will param eterize the classical tra gctory by an
\adiabatic eld" that represents the com ponent of the

eld m otion along the tra fctory [E] (see Figure ﬂ),
_=(cos )m+ (sih )=: (12)
The angle param eterizes the angle the classical tra pc—
tory m akes w ith one of the eld directions (here chosen
to be ;) and should not be confused w ith the angular
position of the D 3 brane In the com pact space, which
is param eterized by the elds ;. The \entropy ed" s
transverse to the classical tra ctory gives rise to isocur—
vature uctuationswhich are given by,
s= (sih ) 1+ (cos ) 5: (13)
By de nition, the entropy el is constant, s= 0.

U sing this param eterization, we can rew rite the exact
equations of m otion (ﬁ) as (in particular, the multi ed
DB I param eters are not necessarily assum ed small for
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It is clear from (E) that the angle of the tra ctory has
a \ xed point" tra pctory n eld space — 0 de ned by

£l 1
22(V+ (cs )): 16)

tan =
V+ £l 1))

1

Furthemm ore this xed point is stable to leading order
w hen the slope of the potential is positive and dom inates
over the slope of the warp factor since am all variations

are driven to zero (notice that _ < 0). This xed
point can also be seen from the equations ofm otion )
in the \DBI slow roll regin " (eg. when the multi ed
DBIparameters(ﬁ ) are am all),

- @, V+flc 1))
tan = — :
4 @, V+H+fl 1)

17)

W e see then that being in the DBI slow roll regim e is
equivalent to being at the stable \ xed point" of the tra—
Ectory, thus DB I slow roll is an attractor soluition.

Let us exam Ine (@) in more detail. First, we note
that for an in ationary solution we require that the po—
tential energy dom inates over the kinetic energy, eg.
V(i) 1=(csf), so that for amall ¢, V ( ;) cs=f
is autom atically true. T he tra fctories ) are now the
sam eas in standard m ulti eld in ation, In particular, the
angle of the tra fctory is controlled by the ratio of the
curvatures of the potential: the tra fctory follow s the di-
rection w ith the largest curvature. W hen the eld with
the largest curvature reaches itsm inin um the tra fctory
m akes a sharp tum in el space, w ith the sharpness of
the tum given by the ratio of the curvatures.

If we express the warped geom etry as a cone over an
angular base space X °,

On ndy" dy” = dr’ + dsg s (18)

we can dentify one of the elds ; as the radial coor-
dinate and the other eld . as one of the angular co-
ordinates on the base X ° of the D -brane. In this case
we can roughly classify the tra fctories based on which

eld dom inates at early tin es, as shown in Figure E: a
radially dom inated tra fctory iswhen the slope of the po-
tential n the angular direction , ismuch an aller than
the radialdirection ; and so the tra fctory isdom inated
at early tin es by m otion in the radial direction; a diag—
onal trafctory is when the slpes of potentials of the
two elds are approxin ately the sam e and so the tra—
Fctory is approxin ately a diagonal line com posed of a
linear com bination of the radial and angular directions;

radial

diagonal

angulan

b

FIG .2: M ulti eld m odels have a num ber of di erent tra jc-
tories, depending on the curvature of the potential for the

elds. T he sharpness of the tums is controlled by the ratio of
the curvatures.

and a angularly dom inated tra fctory iswhen the slope of
the potential in the radialdirection ; is the am allest so
the tra fctory is dom inated at early tim es by m otion in
the angular , direction. C learly the diagonal tra Ectory
doesnothave a signi canttum in el space,and so will
not contribute to a generation of curvature perturbations
as discussed above. In fact, the diagonal+ype tra fctory
is just a linear com bination of the elds and hence can
be com pletely described by a single eld,and so we will
not consider this possibility.

THE POW ER SPECTRUM OF MULTIFIELD DBI
INFLATION

T he equation ofm otion for the curvature perturbation

R in amulti ed modelwith elds ; can be solved

exactly using the N form alian ﬁ I, which states that

the curvature perturbation is equal to the di erence be-

tw een the num ber of e-folds of the classical tra ctory N
and the perturbation to the classical tra ctory N,

X
= dNe = N¢ Ne = N;i( 1) (19)

i

where N ; %N—e

foldings w ith relspect to the eld evaluated when the
mode exits the horizon . For two els, the power
spectrum is then given by,

is the derivative of the num ber of e—

4°P = h i= (N;)*h; i
+2(N )N 2)h 1 i+ (N 2)*h 5 2i;(20)

w here we have allowed for cross correlation between the

elds - for a canonical kinetic term , the cross coupling is
zero. W e see, then, that the pow er spectrum receives ex—
tra contributions in multi ed in ation, both from cross



couplings and from the extra two point correlation filnc—
tions of the additional elds.

W e would lke to analyze these extra contributions In
m ore detail. U sing the approxin ation that the DBImul-
ti eld param eters (E) are an all and that the potential
is separableV ( 1; 2)= Vi( 1)+ V2 ( 2) and dom inates
the energy density, the num ber of efolds from the tine
of horizon crossing to the end of In ation is @]

2 o
1 '
N, = — —d
M 2 CS@ 1V1
z.
1 v,
— d,: (21)
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Asin @},wecanwrjtethecurvamreperturbat'bn (E) in
amuch sin pler way by using a di erent set of m ulti eld
D B I param eters,

M Z v ?

- 22
> - (22)

w here a prin e denotes a derivative w ith respect to the ar-
gument. Notethat = H=H?= .+ ,.Thecurature
perturbation can now be w ritten,

3 1 VvV, + Z° )
M, 2, V !
f—p Vo ¥ ( 2) (23)
Mpt—’2—2 v 2 ’
w ith
ge V2§ WS 24)

w here the superscript e’ denotes evaluation at the end of
n ation. In the lin it that the tra Bctory is in the radial
or angular direction as shown above then at the end of
In ation the one of the el has settled into itsm inin a
(say, » forconcreteness) soZ® = V; = const. Form ass-
term dom nated potentials (or equivalently when the vac—
uum energy from  , issmallVy  V, ) then we can take
Z € = 0 and the expression for the curvature perturbation
sim pli es to include only the values of the potential and
the slow roll param eters evaluated at horizon crossing,

1 v,
= —F= — ( 1)
Mp 21 v
1 V,
+ —F—— — ( 2): (25)
Mp 22 v

T his sin ple expression for the curvature perturbation w ill
be useful later in evaluating the pow er spectrum .

The in ationary perturbation

In order to calculate the power specttum we need to
evaluate the two point correlation fiinctions for the per—
turbations of the scalar elds in (@). In order to have

analytic controlover our expressionswe w illassum e that
the tra Bctory ishighly radial, eg.
0
tan = —= = \\j—zo Cs : (26)
-1 1
U nder thisassum ption, the adiabatic perturbation is sin —
ply the perturbation in the ; direction and perturba-
tions in the , direction are just isocurvature perturba-
tions,
= 1 s= 2 27)

E xpanding the kinetic part of the Lagrangian in @) to

quadratic order in and s,we nd

3
a 2 2

L, = 2 2

2= o3l a’cd ¥l
a’® 2 5

+ —I[-s a? @ sfl (28)
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N ote that the isocurvature uctuations (eg. the uctu-
ations in the angulardirection) scale di erently w ith the
sound speed; we will see soon that this has in portant
consequences for the two point functions.

The quantization of the perturbations proceeds as
usualw ith

7
( x) = ! d’k
’ 2 )y
. . ik x .
u( ;klak)+u( ; k)E( k)e ;
. — H . ikc g
w here u( ,k)—p?(l-k ikcs e (29)
for the adiabatic perturbation and
7
() = — &’k
S X = (2 )3
ik x
v( ;kbk)+ v (; kB k)e ;
r
where v( jk)=H %(1+jk je (30)

for the isocurvature m odes. The creation and annii-
lation operators satisfy the usual com m utation relation
k)i’ k)= bk kD= 2 Pk K),ul k)
and v( ;k) are the solutions of the quadratic Lagrangian
whose nom alizations are xed by the W ronskian condi-
tions’,and = - isthe conformaltine.
It is now straightforward to calculate the two point
functions,
2
@ P+ ko)os

h (k) (k)i = 2o BD
c 2
hsk) ske)i= (2 ) P(ky+ Koo (32)

1

1 This can be checked by
[ (sx1)ip (5x2)] = 1°(x1
the canonicalm om entum .

com puting the
X2), where p =

com m utator
QL ,
@ —



Here (k) = ( 7k)J or sk)= s( ;k)j o, and
the H ubble param eter and sound speed are evaluated at
the tin e ofhorizon crossing. H ere w e see that the isocur-
vature uctuations generated by s are suppressed by a
factor of g 1 com pared to the adiabatic perturbations
generated by . This suppression can be traced back to
the di erent cg dependence found in the quadratic La-
grangin @). W e note that the exact sam e calculation
follow s through if the tra fctory is dom nated by the an—
gular direction after the replacement 1 $ 2. Finally,
notice also that in the lin it of a straight-line tra fctory
there is no cross correlation between the elds, so the
cross term in the power spectrum (@) vanishes. Un-
fortunately, non-straight line tra fctories are beyond our
analytic control so it is not clear if the cross coupling
w ill be signi cant, although we expect that in the diag—
onal lim it the two point function should reduce to that
of a sin ple single eld m odel where the results are well
known.

U sing the two point functions E) and the expres-
sion for the curvature perturbation ), the pow er spec—
trum (@) becom es,

n #
oo .8t 1 vt e v
4M2 2,V 2, V
HZ2 1 v, °
T2, v (33)
P 1

where in the last line we assum e that the second tem is
an all com pared to the rstterm in the smallcg lim it.

Since the contribution of the angular m odes to the
pow er spectrum  is highly suppressed by the sound speed
we nd thatmulti eld DB Ireduces essentially to the sin—
gle el case, in contrast tomultiple eld slow rollin a—
tion where additional eldsm ay becom e in portant w hen
the tra ctory m akes sharp tums in  eld space [m}.

M ulti eld N on-G aussianity

In the Pllow ng we study the non-G aussianities In

m ore details, and as it tums out there are som e poten—

tially observable di erences from the single eld DBI in—

ation. To com pute the non-G aussianities, we expand

the DB I Lagrangian to higher order. T he leading order
and subleading order cubic term s are

a?c —(r s¥] (34)

T he leading contribution to the non-G aussianity com es
from the rsttwo tem s, and their size is well know n

fni (35)

m(?\>||—‘

Since the angularm ode s is suppressed by a factor of
Cs com paring to the radialm ode , we see that the
third term In (@) contributes a non-G aussianity of order

1
e — (36)
Cs

A lthough it is sub-leading com paring to the st two
term s, it is still potentially observable by future experi-
m ents if the sound gpeed ¢ is sm all enough. In particu-—
lar, thise ect can be larger than the sub—-leading e ect of
order = com puted In @]when the sound speed satis es
Cs >

T he calculation of the threepoint function is standard,
seeg. E] for details,

X
h (k) (k) ()i= 12 7 7 ki)

N @N
v(0;k Ww(0;k)u(Ojks) —  —
1 @,
Z g
i ddu< ’k3)[( ki Kv ( ;k)v (k)]
cg_ ) a q Q 7K 712
+ce.+ cyclic: (37)

here \cyclic." m eans two other tem s by cyclically per—
muting k; ;ky k3. W e can see the non-G aussianity van-—
ishes in the sgueezed 1 it when one of the m om entum

ks ! O,sjnce%;kﬂ K and there is factor ofk; k.
Thisis the same as In single ed DBIin ation.

G oing away from the squeezed I it, we can com pute
the above three point fiinction assum ing ki , ks , k3 are of
the sam e order of m agnitude. T he non-G aussianity has
a very interesting shape as the follow ing

k2(k?+ 3kiko+ kK3)( kK

A (k1 ko 5ks) = 38
(k1 7k2 ;k3) TSSE (38)

+ cyclic:

W e pbt the non-G aussianity as A (k; ;kz;1)=(k1k;) 1
Jow ing the convention of @] in FjgureE.

W e can see from Fjgureﬁ that the non-G aussianity
has a very interesting new feature, nam ely, the sign of
non-G aussianity is di erent in the m ddle of the \fbded
triangle" 1m it where ks = ki + k; from m ost of the other
region of the con guration space. For exam ple, one can
directly check for the con guration of a folded triangle
ki = ky, = %3, the shape is negative A (k1 ;ky;k3) =

1;(388 . This feature is not present in any other known
in aztjonary m odels, so it can be used as a distinctive
signature of multi eld DBI in ation. The sign of non—
G aussianity determ ines the sense of skew nessin theCM B
tem perature and m atter density, and thus this change in
sign can lead to potentially interesting observational ef-
fects 2. However, we should caution that since this is a

2 T he convention for the sign of fyy , (which characterizes the level



FIG . 3: The shape of non-G aussianity in multi edd DB I in—

ation is shown through a plot of A (ki ;k2;1)=(k1k2) In (@).
Notice that in the folded triangle lin it k; = k; = kz=2 the
bispectrum isnegative,and constitutes a distinctive signature
ofmulti ed DBIin ation In the smallcs lim it. T he presence
of opposite signs of the non-G aussianity m ay give rise to in—
teresting observational e ects.

Ea Ao

FIG .4: Thenegative part of the non-gaussianity in the folded
triangle lim it is shown.

sub-leading e ect, itm ight be di cult to disentangle the
signature from experim entaldata. It would be interest-
ing to extend this analysis to m ore than two elds,which
m ay lead to additional enhancem ents or suppressions of
the m ulti eld non-G aussianities @ 1.

of non-G aussianity) has been a source of confusion in the litera-
ture. See ] for a discussion.

D iscussion

W ehave shown that the tw o point fiinction of the extra
\angular" scalar eld direction during in ation is sup-—
pressed by a factor of ¢ com pared to the usual single

eld contribution, thus the multi eld DBI observables
sim ply reduce to the single el case (in the lin it where
one of the elds dom inates the tra ctory). T here have
been a lot of recent attem pts in building single ed DBI
In ation m odels consistent w ith allknown com pacti ca—
tion constraints and precision cosm ological observations
E]. In particular, these works nd that com bining ob—
servational constraints of the am plitudes and tilt of the
scalar and tensor perturbations and the prim ordial non—
gaussianity together w ith lin ifations on the eld range
com ing from com pacti cation puts severe constraints on
the viable param eter space of single eld DBI m odels,
ruling out the m ost sim ple m odels.

In general, since we see that the sm all sound speed In
multi ed DBIin ation suppresses themulti eld e ects,
multi ed DBI in ationary observables can be well ap—
proxim ated by their single eld values. Note that this
also In plies that the dram atic O (1) e ects expected at
the end ofmulti eld DBTI in ation due to the inhom oge-
nous surface of tachyon condensation exam ined in [@]are
now Instead suppressed by O (cs) and are subdom inant.

Variations of the basic DB Im odel, such as its IR ver—
sion [@, ], m odels involving w rapped branes @J or
di erent warped geom etries, m ay be able to evade the
strong constraints of E]; since we have not m ade ex—
plicit use of any particular m odel we expect our results
to hold in the an all sound speed 1im it of thesem odels as
well.

Note: As this manuscript was lkeing prepared, a
preprint J appeared which contains som e overlkp with
this work.
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