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Multifield Dirac-Born-Infeld inflation and non-Gaussianities
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We analyze the trajectories for multifield Dirac-Born-Infeld inflation, which can arise in brane inflation
models, and show that the trajectories are the same as in typical slow roll inflation. We calculate the power
spectrum and find that the higher derivative terms of the Dirac-Born-Infeld action lead to a suppression of
the contribution from the isocurvature perturbations. We also calculate the bispectrum generated by the
isocurvature perturbation, and find that it leads to distinctive features.
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I. INTRODUCTION

Scalar field theories with noncanonical kinetic terms
provide novel realizations of the inflationary paradigm
[1]. One interesting class of such models which have
been studied extensively in recent years is DBI inflation
[2,3], characterized by kinetic terms which arise from the
Dirac-Born-Infeld (DBI) action. A particularly appealing
phenomenological feature of DBI inflation is that it can
lead to strong and unique non-Gaussian signatures in the
cosmic microwave background (CMB) [3,4]. The DBI
action is ubiquitous in string theory, e.g., as an effective
theory for world volume degrees of freedom on branes.
When embedded in brane inflation [5], the inflaton field in
DBI models can be given a natural geometrical interpreta-
tion as the position of a D-brane in extra dimensions. DBI
inflation arises when the D-brane moves in a highly warped
region of the internal space where the speed limit is small,
and reduces to the usual slow-roll brane inflation (with
canonical kinetic term) when the brane is moving non-
relativisitically with respect to the local warp factor. Since
the position of the brane in each compact direction is
described by a scalar field, brane inflation is naturally a
multifield inflationary model.

Multifield models are characterized by their trajectories
in field space and can in general be decomposed into an
adiabatic field, which parametrizes motion along the tra-
jectory, and isocurvature fields, which describe the direc-
tions perpendicular to the trajectory. Features in the
trajectory, such as a sharp turn, can convert isocurvature
perturbations into adiabatic/curvature perturbations (even
on superhorizon scales) and can give rise to interesting
features in the primordial power spectrum and non-
Gaussianity.

In this paper we study the effects of multiple fields in
DBI inflation. In particular, we study the multifield DBI
trajectories and show that they are identical to the usual
slow-roll multifield case in which the trajectory is domi-
nated by the field with the largest slope of the potential. We
calculate the power spectrum for multiple DBI fields in the
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limit the trajectory makes a sharp turn and show that the
contribution of the isocurvature perturbations to the power
spectrum is suppressed by the sound speed. Finally, we
calculate the non-Gaussianity in the sharp turn limit and
find that the non-Gaussianity is dominated at leading order
in the sound speed by the usual single field DBI contribu-
tion, but has new multifield features at subleading order.
We conclude by commenting on the impact of our results
for DBI model building.

II. MULTIFIELD EQUATIONS OF MOTION

Consider a 10-dimensional warped throat background
with the metric

ds® = F12(y)g,dxtdx” + f12(0)gdy"dy" (1)

common to type IIB string compactifications [6,7], where
f(y) is called the warp factor of the throat which can in
principle depend on all of the coordinates of the internal
space .

A D3-brane in this background is described by (to low-
est order in string coupling and to all orders in '),

Sper = — jd“xﬁ
X [%(\/1 + f(¢i)gMVZa,u¢iaV¢i - 1)

- V(@)} @)

where the warp factor is rescaled f(¢;) = Tpif(y(¢:),
and the real canonical scalar fields associated with the
motion of the brane are given by

b = 2)/32)’;' (3)

where i = 1,...6. The potential V(¢;) can arise, for ex-
ample, from interactions with D3-branes, D7-branes, or
from the breaking of the local isometries of the compact
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space, and we will leave it to be unspecified for the
moment.

We will define the sound speed during inflation to be the
inverse of the “Lorentz factor” of the DBI action for
spatially homogeneous fields,

e = 1= f(8)Y ¢} )

We will be interested in the small sound speed limit ¢, < 1
where the non-Gaussianity is observable. In the following
we will use the convention that the y; measure the distance
from IR “tip” of the throat and that the D3 brane moves
towards the tip, so ¢; < 0.

Consider a FRW universe with four-dimensional metric,

3
ds* = —dr* + a(0) > dx}. )
i=1

The Friedman equation and equations of motion for the
fields ¢; are (with H = ¢

e - L (1 |
MH? = dn-)(cs 1>+V(¢,), ©)
1 d AN L
i@ ) = =S8 + 1(@) e~ 1)

)

Distributing the time derivative, the equation of motion (7)
can also be written

b;+3Hp; - %d’z + Csaqb[(‘/ +Q> =0. (8

Clearly the equation of motion for a homogeneous scalar
field with a canonical kinetic term is obtained from (7) and
(8) in the limit ¢, — 1.

We define the multifield DBI inflationary parameters as
(4]

e=—— )

0404V

Mij = Mjyes—— (10)

When these parameters are much smaller than 1, the equa-
tions of motion (8) take a form similar to that of a slowly
rolling field

_ 2] tanﬁijnij + €

31 I+ 0, V() + e = 1)
~3Hp; + c,d4, V() + f ey, — 1) =0, (11)

where tanf;; = 6¢jV/6¢,iV to leading order in the DBI
inflationary parameters (9) and (10).
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As a specific example, for the “‘standard case” of an
AdS warp factor that depends only on one of the fields
f(é,) = A/p* and a separable potential of mass terms
V =13 m?¢?, it can be shown that for small sound speed
¢y <X 1 and a large mass hierarchy (m; > m; for some i, j)
the multifield DBI inflationary parameters are of order

O(e).

III. TRAJECTORIES IN MULTIFIELD BRANE
INFLATION

To simplify our analysis we will restrict ourselves to a
two field model (¢, ¢,), but it is straightforward to
generalize our analysis to any number of fields.

We will parametrize the classical trajectory by an “adia-
batic field” o that represents the component of the field
motion along the trajectory [8] (see Fig. 1),

o = (cosh); + (sinf)eh,. (12)

The angle 6 parametrizes the angle the classical trajectory
makes with one of the field directions (here chosen to be
¢1) and should not be confused with the angular position
of the D3 brane in the compact space, which is parame-
trized by the fields ¢;. The “entropy field” s transverse to
the classical trajectory gives rise to isocurvature fluctua-
tions which are given by

s = —(sinf)6 ;| + (cosB)S ¢o. (13)

By definition, the entropy field is constant, § = 0.

Using this parametrization, we can rewrite the exact
equations of motion (8) as (in particular, the multifield
DBI parameters are not necessarily assumed small for

b1 5,

0o

o1

FIG. 1. The trajectory of a multiple field inflationary system
can be decomposed into an “adiabatic’’ field o with components
along the trajectory and an ‘“‘entropy’’ field s orthogonal to the
trajectory.
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this expression),
o 3Ho ¢
CS Cs Ky

o+ d,(V+fe,—1)=0 (14)

6o =04 (V+flc,—1))sind
— 94, (V + f71(cy — 1)) cos. (15)

It is clear from (15) that the angle of the trajectory has a
“fixed point™ trajectory in field space # = 0 defined by

dg,(V+ e, = 1)
9, (V+f ey = D)

Furthermore this fixed point is stable to leading order when
the slope of the potential is positive and dominates over the
slope of the warp factor since small variations 06 are
driven to zero (notice that ¢ < 0). This fixed point can
also be seen from the equations of motion (11) in the “DBI
slow-roll regime” [e.g. when the multifield DBI parame-
ters (9) and (10) are small],

_ by _96,(VH e, — )
b1 dp(VH e, — 1)

We see then that being in the DBI slow-roll regime is
equivalent to being at the stable “fixed point” of the
trajectory, thus DBI slow-roll is an attractor solution.

Let us examine (16) in more detail. First, we note that for
an inflationary solution we require that the potential energy
dominates over the kinetic energy, e.g. V(¢;) > 1/(c,f),
so that for small c;, V(¢;) > ¢,/ is automatically true.
The trajectories (16) are now the same as in standard
multifield inflation, in particular, the angle of the trajectory

02

tanf,. =

(16)

A7)

radial

diagonal

angular

1

FIG. 2. Multifield models have a number of different trajecto-
ries, depending on the curvature of the potential for the fields.
The sharpness of the turns is controlled by the ratio of the
curvatures.
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is controlled by the ratio of the curvatures of the potential:
the trajectory follows the direction with the largest curva-
ture. When the field with the largest curvature reaches its
minimum the trajectory makes a sharp turn in field space,
with the sharpness of the turn given by the ratio of the
curvatures.

If we express the warped geometry as a cone over an
angular base space X°,

g mndy™dy" = dr* + ds3; (18)

we can identify one of the fields ¢ as the radial coordinate
and the other field ¢, as one of the angular coordinates on
the base X° of the D-brane. In this case we can roughly
classify the trajectories based on which field dominates at
early times, as shown in Fig. 2: a radially dominated
trajectory is when the slope of the potential in the angular
direction ¢, is much smaller than the radial direction ¢,
and so the trajectory is dominated at early times by motion
in the radial direction; a diagonal trajectory is when the
slopes of potentials of the two fields are approximately the
same and so the trajectory is approximately a diagonal line
composed of a linear combination of the radial and angular
directions; and a angularly dominated trajectory is when
the slope of the potential in the radial direction ¢, is the
smallest so the trajectory is dominated at early times by
motion in the angular ¢, direction. Clearly the diagonal
trajectory does not have a significant turn in field space,
and so will not contribute to a generation of curvature
perturbations as discussed above. In fact, the diagonal-
type trajectory is just a linear combination of the fields
and hence can be completely described by a single field,
and so we will not consider this possibility.

IV. THE POWER SPECTRUM OF MULTIFIELD DBI
INFLATION

The equation of motion for the curvature perturbation
R = { in a multifield model with fields ¢; can be solved
exactly using the 6N formalism [9,10], which states that
the curvature perturbation is equal to the difference be-
tween the number of e-folds of the classical trajectory N,
and the perturbation to the classical trajectory N,

g = dNe = Ne - Ne = ZN,i(6¢i)*: (19)

= 9N,
= 3¢
foldings with respect to the field evaluated when the
mode exits the horizon ¢;. For two fields, the power
spectrum is then given by

4P, = (L) = (N )X 1) + 2(N )N )b )
+ (N2 pachy), (20)

where we have allowed for cross correlation between the
fields—for a canonical kinetic term, the cross coupling is
zero. We see, then, that the power spectrum receives extra

is the derivative of the number of e-

where N;
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contributions in multifield inflation, both from cross cou-
plings and from the extra two point correlation functions of
the additional fields.

We would like to analyze these extra contributions in
more detail. Using the approximation that the DBI multi-
field parameters (10) are small and that the potential is
separable V(¢|, ¢,) = V(d;) + Vao(¢,) and dominates
the energy density, the number of e-folds from the time
of horizon crossing to the end of inflation is [10]

1 e \% 1 e V.
Ne:_—gf 7161(1)1_—2[ 2 d¢2
Mp * csa¢1V1 M]7 * Csaqsz

21

Asin [10], we can write the curvature perturbation (19) in a
much simpler way by using a different set of multifield

DBI parameters,
cMj, (VN2
€, = —_—
(7]

where a prime denotes a derivative with respect to the
argument. Note that e = —H/H? = €, + €,. The curva-
ture perturbation can now be written,

pq— (V“Ze)(acm)*

(22)

M, 2\ V*
1 (V;‘ - Zf> A
(2 )840)7, (23)
M,/2¢€, 14
with
o Vsei — vies o

66
where the superscript “e”” denotes evaluation at the end of
inflation. In the limit that the trajectory is in the radial or
angular direction as shown above then at the end of
inflation the one of the field has settled into its minima
(say, ¢, for concreteness) so Z¢ = V5 = const. For mass-
term dominated potentials (or equivalently when the vac-
uum energy from ¢, is small V§ < V7) then we can take
Z¢ = 0 and the expression for the curvature perturbation
simplifies to include only the values of the potential and the
slow-roll parameters evaluated at horizon crossing,

1 Vi . 1 %9
= —*(V—L)wcﬁl) T —(V—Z
M, \2€ M, 2€,
This simple expression for the curvature perturbation will
be useful later in evaluating the power spectrum.

)(6¢2)*. (25)

A. The inflationary perturbation

In order to calculate the power spectrum we need to
evaluate the two point correlation functions for the pertur-
bations of the scalar fields in (20). In order to have analytic
control over our expressions we will assume that the tra-
jectory is highly radial, e.g.
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by _

V/
tanf = —= —% < c,.
W

(26)

Under this assumption, the adiabatic perturbation is simply
the perturbation in the ¢ direction and perturbations in the
¢, direction are just isocurvature perturbations,

So=08¢, Os=0d¢d, 27)

Expanding the kinetic part of the Lagrangian in (2) to
quadratic order in 6o and s, we find

a3

203

S

a .
+ —[6s% — a_z(V(Ss)z}
2¢,

L, = [5'02 4 2(Vs0)]

(28)

Note that the isocurvature fluctuations (e.g. the fluctuations
in the angular direction) scale differently with the sound
speed; we will see soon that this has important consequen-
ces for the two point functions.

The quantization of the perturbations proceeds as usual
with

So(r,x) =

et f & ku(r, K)a(k)

+ u*(r, —K)at (—k)]e* ¥,

H .
where u(7, k) = —=(1 + ikc,7)e e (29)

V2k3
for the adiabatic perturbation and

1 3

o5(r%) = [ BHv(r, K)b(K)
+v*(r, —K)bT (—=k)]e’* ™,

where v(r, k) = Hy[>5(1 + ikr)e ™ (30)
for the isocurvature modes. The creation and annihilation
operators satisfy the wusual commutation relation

[a(k), a® (k")]=[b(k),bT(k")]= 27)*6°(k — k'), u(r, k)
and v(7, k) are the solutions of the quadratic Lagrangian
whose normalizations are fixed by the Wronskian condi-
tions,! and 7 = — aiH is the conformal time.

It is now straightforward to calculate the two point
functions,

2
(So(k)50 (k) = QmP 5k, + ko), (1)

1

2
(851350} = QP 5k, + ko) S (D)

1

'This can be checked by computing the comrral%tator
[80(7, %)), Pos(T, X)] = i8° (X, — X,), where ps, = 552 is
the canonical momentum.
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Here do(k) = §o(7, k)|, Os(k) = 8s(7, k)|,_, and
the Hubble parameter and sound speed are evaluated at
the time of horizon crossing. Here we see that the isocur-
vature fluctuations generated by Os are suppressed by a
factor of ¢, < 1 compared to the adiabatic perturbations
generated by do. This suppression can be traced back to
the different ¢, dependence found in the quadratic
Lagrangian (28). We note that the exact same calculation
follows through if the trajectory is dominated by the an-
gular direction after the replacement 6¢| < 0 ¢,. Finally,
notice also that in the limit of a straightline trajectory there
18 no cross correlation between the fields, so the cross term
in the power spectrum (20) vanishes. Unfortunately, non-
straight line trajectories are beyond our analytic control so
it is not clear if the cross coupling will be significant,
although we expect that in the diagonal limit the two point
function should reduce to that of a simple single field
model where the results are well known.

Using the two point functions (31) and (32) and the
expression for the curvature perturbation (25), the power
spectrum (20) becomes,

H? 1 (VN2 ¢ (V5)2
re- ol ) + 5]
47 My, 2€;\V 26, \V
H?> 1 (V}\2
~ | — 33
4 M? 2e‘;<v*> (33)

where in the last line we assume that the second term is
small compared to the first term in the small ¢, limit.
Since the contribution of the angular modes to the power
spectrum is highly suppressed by the sound speed we find
that multifield DBI reduces essentially to the single field
case, in contrast to multiple field slow-roll inflation where
|

(€))L (k)L (Ky)) = —i(27r>353(2ki>“<0’ k(0 kau(® k3)<ﬂ>< 7 >2 1

0 *
Xf adTidu (7, ks)

—o0 dr

here “cyclic.” means two other terms by cyclically per-
muting ki, k,, k3. We can see the non-Gaussianity vanishes
in the squeezed limit when one of the momentum k; — 0,
since W ~ k% and there is factor of k; - k,. This is the
same as in single field DBI inflation.

Going away from the squeezed limit, we can compute
the above three-point function assuming ki, k,, k3 are of
the same order of magnitude. The non-Gaussianity has a
very interesting shape as the following

Ik + 3kiky + k3)(— Kk - k)
(ky + ky)?
+ cyclic. (38)

A (kl» k, k3) =
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additional fields may become important when the trajec-
tory makes sharp turns in field space [10].

B. Multifield non-Gaussianity

In the following we study the non-Gaussianities in more
details, and as it turns out there are some potentially
observable differences from the single field DBI inflation.
To compute the non-Gaussianities, we expand the DBI
Lagrangian to higher order. The leading order and sublead-
ing order cubic terms are

3
L= as _[603 — a2c280(Véo)?
2cy0
—a2c260(Vés)?] (34)

The leading contribution to the non-Gaussianity comes
from the first two terms, and their size is well known

1
S~ ) (35)

CS
Since the angular mode &s is suppressed by a factor of
\/¢; comparing to the radial mode 6o, we see that the third
term in (34) contributes a non-Gaussianity of order

1
Sae ~— (36)

CS
Although it is subleading comparing to the first two terms,
it is still potentially observable by future experiments if the
sound speed ¢, is small enough. In particular, this effect
can be larger than the subleading effect of order C—Eg com-

puted in [4] when the sound speed satisfies ¢, > €.
The calculation of the three-point function is standard,
see e.g. [4] for details,

Ipi\og3) clo

[(=K; - K)v*(7, k))v*(7, ky)] + c.c. + cyclic. (37)

[
We plot the non-Gaussianity as A (ky, ky, 1)/(kk,) fol-
lowing the convention of [4] in Fig. 3.

We can see from Fig. 4 that the non-Gaussianity has a
very interesting new feature, namely, the sign of non-
Gaussianity is different in the middle of the ‘““folded tri-
angle” limit where k3 = k; + k, from most of the other
region of the configuration space. For example, one can
directly check for the configuration of a folded triangle
ky =k, =%, the shape is negative A(kj, ko, k) =

2
—LO8 This feature is not present in any other known
3

inflationary models, so it can be used as a distinctive
signature of multifield DBI inflation. The sign of non-
Gaussianity determines the sense of skewness in the
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FIG. 3 (color online).

The shape of non-Gaussianity in multi-
field DBI inflation is shown through a plot of A (ky, k,, 1)/(kk,)
in Eq. (38). Notice that in the folded triangle limit k; = k, =
ks/2 the bispectrum is negative, and constitutes a distinctive
signature of multifield DBI inflation in the small ¢ limit. The
presence of opposite signs of the non-Gaussianity may give rise
to interesting observational effects.

CMB temperature and matter density, and thus this change
in sign can lead to potentially interesting observational
effects.” However, we should caution that since this is a
subleading effect, it might be difficult to disentangle the
signature from experimental data. It would be interesting to
extend this analysis to more than two fields, which may
lead to additional enhancements or suppressions of the
multifield non-Gaussianities [12].

C. Discussion

We have shown that the two point function of the extra
“angular” scalar field direction during inflation is sup-
pressed by a factor of ¢, compared to the usual single field
contribution, thus the multifield DBI observables simply
reduce to the single field case (in the limit where one of the
fields dominates the trajectory). There have been a lot of
recent attempts in building single field DBI inflation mod-
els consistent with all known compactification constraints
and precision cosmological observations [13]. In particu-
lar, these works find that combining observational con-
straints of the amplitudes and tilt of the scalar and tensor

>The convention for the sign of fy; (which characterizes the
level of non-Gaussianity) has been a source of confusion in the
literature. See [11] for a discussion.
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—Z o

FIG. 4 (color online). The negative part of the non-Gaussianity
in the folded triangle limit is shown.

perturbations and the primordial non-Gaussianity together
with limitations on the field range coming from compacti-
fication puts severe constraints on the viable parameter
space of single field DBI models, ruling out the most
simple models.

In general, since we see that the small sound speed in
multifield DBI inflation suppresses the multifield effects,
multifield DBI inflationary observables can be well ap-
proximated by their single field values. Note that this
also implies that the dramatic O(1) effects expected at
the end of multifield DBI inflation due to the inhomoge-
nous surface of tachyon condensation examined in [14] are
now instead suppressed by O(c,) and are subdominant.

Variations of the basic DBI model, such as its IR version
[15,16], models involving wrapped branes [17] or different
warped geometries, may be able to evade the strong con-
straints of [13]; since we have not made explicit use of any
particular model we expect our results to hold in the small
sound speed limit of these models as well.
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