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Abstract

We start with longitudinal instabilities of bunched beams and in-
troduce first the concept of impedance by approximating a cavity
resonance with a RLC-circuit. The response of such a resonator
to a pulse excitation gives the wake potential or Green function
while a harmonic excitation reveals the concept and properties of
the impedance. The interaction of a stationary circulating bunch
with an impedance leads to an energy loss and a shift of the inco-
herent synchrotron frequency. The spectrum of a bunch, executing
a synchrotron oscillation, has revolution harmonics with side bands
spaced by the synchrotron frequency. The voltage induced by these
spectral lines in a narrow band impedance has a memory and can
act back later on the same or an other bunch. This can lead to
a coupled bunch instability, also called Robinson instability. Its
growth rate is determined by the impedance values at the upper
and lower side bands. This can be generalized for a more compli-
cated impedance, for the case of many bunches and also for higher
modes of longitudinal oscillations. A broad band impedance with
only short memory does not cause coupled bunch instabilities but
produces some single passage effects like frequency shifts and bunch
lengthening. To treat the corresponding instabilities of betatron os-
cillations we introduce the transverse impedance in which the bean
induces a deflecting field. Using the same formalism as for the lon-
gitudinal case, we get the growth rate of the transverse instability.
The tune dependence on energy deviation, called chromaticity, pro-
duces a phase shift of the betatron oscillations between front and
back of the bunch which can lead to an instability, called head-tail
effect.

1 INTRODUCTION

The motion of a single particle in a storage ring is determined by the external guide
fields created by the dipole and quadrupole magnets and the RF-system, and also by initial
conditions and synchrotron radiation. The many particles contained in a high intensity
beam represent a sizeable charge and current which act as sources of electromagnetic fields
called self fields. They are modified by the boundary conditions imposed by the beam
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Figure 1: Induced field acting on the bunch the next turn
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surroundings (vacuum chambers, cavities, etc.) and act back on the beam. This can lead
to a frequency shift (change of the betatron or synchrotron frequency), to an increase
of a small initial disturbance, an instability, or a change of the particle distribution, e.g.
bunch lengthening. These phenomena are called collective effects since they are caused
by a common action of the many particles in the beam.

As an introductory example we consider a bunch circulating in a storage ring and
going through a passive cavity where it induces electromagnetic fields, Fig. 1. These fields
oscillate and decay slowly. In the next turn the bunch might find some field left, having a
phase such that a small initial synchrotron oscillation amplitude is increased, leading to
an exponentially growing instability.

In most cases the fields created by the beam are small compared to the guide fields
and their effects can be treated as a perturbation. This is done in three steps:

e First, the motion in the guide field and the stationary particle distribution are
established.

e A small disturbance of the bunch from its stationary motion is considered (betatron
or synchrotron oscillation). The fields caused by this disturbance are determined
taking the boundary condition imposed by the beam surroundings (impedance) into
account.

e The effect of these fields on the initial disturbance is investigated. If its amplitude
is increased we have an instability, if it is decreased we have damping, or, if the
frequency of the oscillation mode is changed, we have a frequency shift.

For the case of small self-fields, considered here, the particle distribution in the
bunch is given by external conditions (machine parameter, initial condition, synchrotron
radiation) and is usually Gaussian in electron machines. As disturbances of the stationary
distribution we consider some modes of oscillation which are orthogonal (independent of
each other) and investigate their stability.

Strong self-fields, however, modify the particle distribution and also the modes of
oscillation, such that they are no longer independent. A self consistent solution has to be
found, which is usually only attempted for the case of bunch lengthening.

We distinguish between single and multi-traversal collective effects. For the first
kind no memory of the induced field over the time interval between the bunch passages is
required. An example of a single-traversal effect is bunch lengthening. For multi-traversal
effects the impedance needs a memory to make an interaction between bunches or turns
possible which can be provided by cavity-like objects with a large quality factor Q).

Finally, we have longitudinal effects involving synchrotron oscillations and longitu-
dinal impedances, and transverse effects involving betatron oscillations and transverse
impedances. In both cases the longitudinal particle distribution (bunch length) is impor-
tant, because it can be “resolved” by the impedance, while the transverse distribution is
usually not resolved and does not affect the instability.

The most important longitudinal single traversal effects are synchrotron frequency
shifts and bunch lengthening. In the transverse case the effect of the chromaticity is
important which can lead to head-tail instabilities.

2 IMPEDANCES, WAKES AND LONGITUDINAL DYNAMICS

2.1 Cavity resonance

Impedances and wake potentials are treated extensively in the literature, e.g. [1].
We illustrate here some of their essential properties based on the simple example of a
cavity resonance.

Cavity-like devices are the most important objects which can cause coupled-bunch
mode instabilities, because the induced fields oscillate for a relatively long time and pro-
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Figure 2: Cavity resembling an RLC-circuit
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Figure 3: RLC-circuit equivalent to a cavity resonance

vide a memory over the time interval between bunch passages. Such a cavity can be of
a form which resembles an RLC-circuit as shown in Fig. 2, and can be treated as such.
The RLC-circuit has a shunt impedance R, an inductance Land a capacity C, Fig. 3.
In a real cavity these three parameters cannot easily be separated. For this reason we use
some other related parameters which can be measured directly: The resonance frequency
wy, the quality factor (Q and the damping rate «:

1 C RS w’r’ Q RS
r = T = = Ry\|— = :Rscra :_702—7[/: .
n @ V L Lo, Yo @ 20Q) wy R w, Q)

If this circuit is driven by a current [ the voltages across each element are

1 dI
Vi = IxR. cha/lcdt, Vi= L2k

and have the relations
Ve=Ve=V, =V, Ig+Ilc+1, =1

Differentiating with respect to ¢ gives

. . ) . Vv .V
I=1 I I; = — .
rR+ 1o+ 1L Rs—f-CV-f-L

Using L = R,/(w,Q) and C = Q/(w,Ry) gives the differential equation

.. W - w.R. -
V4=V 4wV = =]
Q Q
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The solution of the homogeneous equation is a damped oscillation

V(t) = Ve ™ cos (wr 4é22 ¢>

V(t)=e (Acos( ,/1—4—(;2t> +Bsin< ,ll—ﬁt»

2.2 Wake potential

We now calculate the response of the RLC-circuit shown in Fig. 3, representing a
cavity resonance, to a delta function pulse (very short bunch)

I(t) = qo(t)

The charge g induces a voltage in the capacity

or

wy R, ,
Q@

V(o) =

Ql=

The resulting energy stored in the capacity

- 97_2 _ erqu _ V(o)
2C ~ 20 2

must be equal to the energy lost by the charge. Here we introduced the parasitic mode
loss factor for a point charge

I U wR

TR 2Q

which is the energy loss normalized for the charge q. The charged capacitor C' will
discharge first through the resistor Rsand then also through the inductance L

: i I 1 V(0o* wy Ry 2wy kpm
V)= -—L - R (07) _ @B 20kpmo,
C C C R, Q? Q
The voltage in this resonance circuit has now the initial conditions
: 2w, kpm
V(0) = 2hpod and V(0%) = =750

We take the solution of the homogeneous differential equation and its derivative

Vi) = e (Acos<wr,/ 4(;2 >+Bsm< 1/1—4int>>
V() = e_at<<—Aa+Bw”/1—@>cos <wr —41@0
- (BaJrAwM/l _ ﬁ) sin <wr,/1 - t))

and satisfy the above initial conditions by

_ 1 QCUT]{? m0 _
A =2kpn0q¢ and — Ao+ Buw, 1—@:— Qp
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Figure 4: Wake potential and longitudinal field

The voltage in a resonator circuit excited at the time ¢ = 0by a d-pulse I(t) = ¢dt becomes

V(t) = 2qkpmoe” " (cos <wr 1— 1

2 1 1

Q 2Q,/1 - &=
This voltage induced by charge g at t = 0 is seen by a second point charge ¢
traversing the cavity at ¢ and loosing or gaining an energy U = ¢V (f) as shown in

Fig. 4. This energy gain/loss per unit source and probe charges is called point charge
wake potential or Green function G(t). For our resonator (cavity resonance), we have

1 sin (wp /1 — -5t
G(t) = 2kpmoe—at Cos <wr 1-— — t) _ ( \/74Q2 ) _
@) e
For a high quality factor, () > 1, this simplifies to
G(t) = 2kpmoe™ ™ cos (wyt)

The wake potential is related to the longitudinal field £, by a field integral over
the object length. Since the field changes during the traversal, this integration has to
follow a particle going with nearly the speed of light through the object and taking the
momentary field value

22

V= — / Eu(st)dz=—f, [ Eu(2)ds = — (B

21 z1

with the transit time factor f; correcting the instantaneous integral over z. We use a wake
potential being positive where the particle loses energy consistent with the sign used for
resistors.

2.3 Impedance

We use now a harmonic excitation of the circuit in Fig. 3 with a current I = I cos(wt)
which is described by the differential equation

. WO - w R~
V4 =V 4wV = —-"ZJwsin(wt).
0 0 (wi)
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The solution of the homogeneous equation is a damped oscillation which disappears after
some transient time and we are left with the particular solution of the form V() =
Acos(wt) + Bsin(wt). Inserting this into the differential equation and separating cosine
and sine terms gives

Wyw wywRg -

I.

wrwA:

Q Q

The voltage induced by the harmonic excitation of the resonator becomes

(w? — WA+ B=0 and (w?—w?)B—

. cos(wt) — Q%_TWQ sin(wt)

Vi) = IR—— ey

Wrw

This voltage has a cosine term which is in phase with the exciting current. It can absorb
energy and is called the resistive term. The sine term of the voltage is out of phase with
the exciting current and does not absorb energy, it is called the reactive term. The ratio
between the voltage and current is called impedance. 1t is a function of frequency wand
has a resistive part Z.(w)and a reactive part Z;(w)

B 1 B QL
ey YT e

The resonance can be excited either by a current I(t) = Icos(wt) or I(t) = I sin(wt)
resulting in the voltages V()

I(t) = [Icos(wt) — V(t)=
I(t) = Isin(wt) — V(t)=

(Z,(w) cos(wt) — Z;(w) sin(wt)),
(Zy(w) sin(wt) + Z;(w) cos(wt)) .

2.4 Complex notation
We have used a harmonic excitation of the form

e]wt + e—jwt

I(t) = I cos(wt) = I 5

with 0 <w < o0,

using positive frequencies only. A complex notation

I(t) = I/ with — oo <w < 00
involving positive and negative frequencies leads to more compact expressions and is often
convenient. The real solution can be obtained after, by taking half the sum of the solutions

for e*. We take the differential equation

Wy

Q

of the resonator voltage with the excitation I(¢) = I exp(jwt) and seek a solution of the
form V (t) = Vhexp(jwt), where V4 is in general complex and get

w, R

V+=V4w=""1
Q

‘ : , ‘ wwR, -
— et 4 j%"voeﬂwt + WVt = j%[eﬂwt.
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The impedance, defined as the ratio V/I, is given by

2 2

v " | _ ot
Z(w) = _AO :Rs 2 jQQ YWl = S JQ :}wTQ 2 = Zr<w)+jZZ<w)
S A

and has a real and an imaginary part. For a large quality factor ) the impedance is only
large for w ~ w, or |w —w,|/w, = |Aw|/w, < land can be simplified

1 — 5202

Z ~ R, .
(w) 1+4Q2 (%)2

The resonator impedance has some specific properties:

w = w, — Z.(w;) has a maximum while Z;(w,) =0
lw| < w, — Zi(w) >0 (inductive) (1)
lw| > w, — Z;j(w) <0 (capacitive)

and some properties which apply to any impedance or wake potential

Z(w) = Z(~w) , Ziw)=—-Z(-w),

20) = [T Gear | G(t) = % " 2o, 2)
t < 0, — G(t) =0 no fields before particle arrives. (3)

Impedance and Green function are related by a Fourier transform with a factor unity
or 1/(2m) in front of the integral instead of the factor 1/4/27 used elsewhere. Caution;
sometimes one uses I(t) = Ie " “!instead of I(t) = Ie/**, this reverses the sign Z;(w).

In Fig. 5 the Green functions and impedances are shown for two resonators of dif-
ferent quality factors.

2.5 Review of the longitudinal dynamics

A particle with a momentum deviation Ap has a different closed orbit which is
radially displaced by Az = D,Ap/p with D, being the dispersion. As a result the orbit
length L, the revolution time Ty and the revolution frequency wg are changed

AL Ap  Awg ATy < 1 ) Ap Ap
— =0, —— =/ = |0 5 | — = —Ne—
L P wo Ty ) p "
with a. being the momentum compaction and 7, = a,—1/72. There is a transition energy

Er = moc*yp with yp = 1/a? for which the dependence of the revolution frequency on
momentum (or energy) changes sign

1

E > Er — — < Qe — N> 1 — wgydecreases with AFE
8
1

F < Er — — > = 1 < 1 — wpincreases with AFE.

We will assume in most cases that the particles are ultra-relativistic in which case Ap/p ~
AE/E =€ and 1. =~ «.
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Figure 5: Green function and impedance of a resonance
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In the presence of an RF-system and an energy loss per turn U due to synchrotron
radiation or an impedance, a circulating particle has according to Fig. 6 each turn a gain

or loss 0F in energy of

ts

Figure 6: Longitudinal beam dynamics

SE = eV sin(hwo(t, + 7)) — U
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or in relative energy JF/E = de

0E S — eV sin(woh(ts + 7)) U

E E E
with t, being the synchronous arrival time of the particle in the cavity and 7 =t — ¢, the

deviation from it. We introduce the synchronous phase angle ¢, = wphtsand assume
7 < Ty which allows us to develop the trigonometric function

_eVsin(qﬁs) woheV cos ¢, U
de = 5 + 5 T %

The energy gain per turn is usually very small, §F < E, and we can make a smooth
approximation

oF 27
0e = f = ETO = Ew—o
_ weeVsing,  wiheV cos dg wo U
— G 4
¢ 2K + 2rE 7 2t K (4)

The energy loss U suffered by a particle is in general a function of its deviations € and 7
from the nominal energy and synchronous time and can be developed to first order as

oU oU
U(E, T) ~ UO —I— 8_EAE —f- ET.

This leads to an expression for the time derivative of the energy loss

_ weeVsing,  wiheV cos dg woUy  wodU — wy 1dU
€= + T—— === €— ————

2nE 2nE 2n E 2w dFE 2 F dt T

To have equilibrium for the synchronous particle, e = 0, 7 = 0, we must have

Uy = €V sin ¢.

With this and using 7 = woATy/2m = 1.6 we get a system of two first order differential
equations

. 2he\7 COS Qg wo dU wo 1 dU
€ = Wy—————T — ———€— ———T

2rE 2rdFE 2 F dt
T = 7E.

They can be combined into one second-order equation

wone AU . wghncef/ COS g wone AU
o dE orE | 2nE dt |

which describes a damped oscillation. Using the unperturbed synchrotron frequency wgg
and the damping rate a;

=0

hn.e V cos g 1won dU

2 2

= — s = = s 5
“s0 TR T Yo dE 5)

seeking a solution of the form e/*! with complex w and assuming o, < ws we get

. wo Ne AU
—w? + J2was + (wfo -+ %EE) =
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. wo Ne AU . lwy n. dU
= jos (W2 + — ) — 02 & oy & (wag + mem e )
R \/(w50+27rEdt) aixjasE ot 5o )
Calling
lwy n. dU
Aw, = —— —
T Y waE dt
gives

ce= A (e(—as-i-j(wso-i-Awr)t + Be(—as—j(wso—i—Awr)t) )
For the initial conditions €(t) = €, é(0) = —ay¢ we get A = B = ¢/2 and
€(t) = € e ™" cos((ws + Aw,)t).
In the absence of any energy loss U we have
e(t) = € cos(wyot + &)
with .
o elmeVcos,
s0 0 wmE
In order to get a stable oscillation we need w?, > 0 which leads to the conditions
E>Frn<0 —cosps <0, E<Ern.>0 — cosps > 0.
For stability in the presence of an energy loss U we need in addition
1 won dU
s==———>0.
T 3% dE

In other words, the energy loss U has to increase for a positive energy deviation of the
particle.

3 A STATIONARY BUNCH INTERACTING WITH AN IMPEDANCE
3.1 Spectrum of a stationary bunch

We consider now a bunch in a single traversal with the current I(¢) time and I(w)
in frequency domain

T(w) = # | rtwerar (6)
We assume the bunch form to be symmetric

I(=t) = I(t)
which leads to a Fourier transform having only a real part and being symmetric in w
I(—w) = I(w).

This assumption is not necessary but is here used for convenience to reduce the number
of terms which have to be carried along in some calculations. Since, in most practical
applications, the bunches are to a good approximation symmetric, this represents a mi-
nor restriction which could easily be removed. The current of a bunch with Gaussian
distribution as a function of time and frequency is illustrated in Fig. 7 and given by the
expressions

w2

I(t) = —L—¢ 7 ; [(w)= me‘% (7)
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I(t) ' time domain
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Figure 7: Single passage of a bunch in time and frequency domain

where ¢ = Nye is the total charge of the IV particles in a bunch. The RMS width of the
bunch and its spectrum are o; and o, which are related by
1

o= —.
Uw

Next we investigate the case of a circulating bunch having repetitive passages at a
given location with frequency wy = 27/Tj. For a stationary bunch, having no synchrotron
oscillations, the observed current can be written in this, slightly unusual form

L) = S I(t—FkTy). (8)

k=—o00

which is not convenient for applications. Since the current is periodic it is natural to
express it in a Fourier series using either a complex notation with positive and negative
frequencies or trigonometric functions involving positive frequencies only

I(t) =Y Le™ = Iy + 2 " I, cos(pwot) (9)
—o00 1
with
1 [To/2 o L [To/2 .
I, = —/ I(t)e 7Peot = —/ I(t) (cos(pwot) — 7 sin(pwot)) dt (10)
Ty J-10/2 To J-10/2

where the sine term vanishes for our symmetric bunch passages. The bunch current
component at zero frequency is just its average value

Iy = (1) = ~ /m I(#)dt = 2 (11)
0= N TQ —To/2 - TQ.

The multiple bunch passage is illustrated in Fig. 8 in time domain on the top, and
in frequency domain in the middle using positive and negative frequencies and on the
bottom with positive frequencies only. For the latter the current components are twice
as large except for the one at zero frequency.

Comparing the Fourier transform (6) with the terms of the Fourier series (10) we

find the relation o
I, = —1(pwy).

P \ 2T

For a Gaussian bunch (7) we get

]p = Ioe 290

At low frequencies pwy < o, we have [, = Ij.
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Figure 8: Multiple passage of a bunch in time and frequency domain

3.2 Voltage induced by the stationary bunch

In the presence of a cavity resonance, or any general impedance Z(w), the circulating
stationary bunch induces a voltage. Using the Fourier series (9) of the bunch current we
have to multiply each frequency component with the corresponding impedance

Vi(t Z I, 7 (pwp )e/Pwot = Z L(Z(pwo) + 3 Z;(pwg ) e?P<ot,
p=—00 p=—00
By combining positive and negative frequencies and observing the symmetry conditions
Z(—w) = Z,(w) , Zi(—w) = —Z;(w)and the fact that Z(0) = 0, we get a real expression

= Z +(pwo) cos(pwot) — Z;(pwo) sin(pwot)) . (12)
We calculate the induced voltage (V') averaged over all particles in the bunch

— [ A

V)= —
< > I()TO —To/2

With the expressions (9) for the current and (12) for the voltage we get
I/
h%ZZ

p=1p'=1

To/2
(Zr(pwo/ ’ cos(p'wot) cos(pwot)dt—Zr(pwo)/
—Ty/2

~To/2

To/2 / .
cos(p'wot) sin(pwot)dt | .
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The first integral vanishes except for p’ = p in which case it has the value 7;/2, and the
second integral always vanishes. This leads to

£ % LR Z) = 23 L2 ). (13)

(V) =

Only the resistive impedance Z,(w) contributes to this average voltage while the voltages
induced in the reactive impedance Z;(w) averages out.

We will also need the average voltage slope

av 1 [To/2 dVi(t
_:?_/ngk“a
In this case the contribution induced in the resistive impedance averages out to zero and

the average voltage slope is determined by the reactive impedance only. Using the same
method as above for the average voltage we obtain the averaged voltage slope

<%> Z Pl * Zi(pwo) = 2;)0 >_ P Zi(pwo)-

p=—00 0 p=1

3.3 Energy loss per turn of a stationary circulating bunch

The energy W, lost by the whole circulating stationary bunch in one turn due to
the impedance Z(w) can be obtained from the average voltage (13)

Wo= (V) = 23 1,2 ()

where ¢ = eN, is the total charge of the bunch. The average energy loss U per particle
in the bunch is

Wb 2e & 2T0
— I,)*Z,
N = 7o 2 b2 peo) =

pf

U= ZIIIpro)

We can normalize the loss W} by the square of charge (the charge inducing the voltage
and the same charge suffering an energy loss) to get the so-called parasitic mode loss
factor of a bunch

Wy, U 2Ty & >
kym=—=—= L,|*Z, (pwo) L Z, (pw
m=g == L) = 2 3 b7 ).

This parameter depends on the bunch length. For a short bunch the spectrum extends to
higher frequencies. The parameter k,,, is therefore expected to increase with decreasing
bunch length.

If the impedance is broad band and does not contain resonances of bandwidth smaller
than the revolution frequency, the above sum can be approximated by an integral

1 oo -
%WELQMWZ@W

The above relation is often used to measure the resistive impedance of a ring. By
observing the change of the synchronous phase ¢ with current the energy loss U, and
therefore the loss factor k,,, can be determined from the relation

U = eV sin ;.

This gives a a convolution between impedance and power spectrum of the bunch. By
doing this experiment for different bunch lengths, we get information of the impedance.
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3.4 Incoherent synchrotron frequency shift

We take now the case of a stationary bunch in the presence of an impedance Z(w) =
Zp(w) + jZ;i(w). As we saw before, the bunch induces an average voltage in the resistive
part of the impedance

V)= 7 22 b7 ) (1)

and an averaged voltage slope in the reactive part

=) = —E ST I P Z (pw), 15
<ﬁ> TS bl Z ) (15)

both being independent of the energy deviation e. We have to include these voltages in
the equation of the synchrotron motion

eV sin Dswo n wghef/ COS Qg wo 6<V> wope [ dV
T — —(—))T
27E 2rE 21 E  27F \ dt

With the condition eV sin ¢y = e(V) we find

P w2hchos<;5sT+ woe [ dV .
- Y orE 2rE \ dt

T = 7€,

or, combined into a second-order equation,

_ <w8hncef/ COS Qs L Te Wo <ﬂ>> c—0

2rE E 27T dt
2win.e &
2 2 07c 2
_ _ 127,
w: = w nElL pE:1p| »|°Zi(pwo)

_ 2
- wsO

2
(1 + m ZPU *Z; (pwo)) (16)

where we used the unperturbed synchrotron frequency given in (5). There is a shift of
the incoherent synchrotron frequency. For a small effect this shift can be expressed as

Awy; 1
e I? Z;(pw
Ws0 IOhVCos bs p Zp (o)

= — 127, (pw 17
2[0thos<;5S p;wp i(peo) (17)

For a predominately inductive impedance Z;(w) > 0 this frequency shift is negative above
transition energy cos ¢, < 0 and positive bellow transition energy. The longitudinal
focusing is reduced in the first case and increased in the second case. This leads to a
change of the bunch length being to first order for electrons

AO’S Aa}s@'

Os Wso
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and for protons

AO’S . / Aa}s@'
Os Ws0
We have taken an average slope to calculate this tune shift. In reality the induced

voltage is not linear and will make this incoherent tune shift amplitude dependent leading
to a spread in synchrotron frequencies.

4 ROBINSON INSTABILITY, QUALITATIVE

4.1 Introduction

The interaction of a bunch executing a synchrotron oscillation with a narrow cavity
resonance can lead to a growing amplitude, called Robinson instability, [2]. We will treat
it here in some detail because it can be generalized to describe all multi-turn instabilities
in storage rings. In order to gain some understanding of the physics involved we start
with some qualitative treatment and proceed later to the quantitative investigation which
involves some lengthy derivations.

4.2 Qualitative treatment

4.2.1 Modulation of the revolution frequency of an oscillating bunch

AN :
B

Wr Pwo w bwo Wr w
Figure 9: Qualitative treatment of the Robinson instability

We consider a single bunch circulating in a storage ring with revolution frequency
wo. Its harmonic pwy excites a narrow cavity with resonance frequency w, ~ pw, and
impedance Z(w) of which we consider only the resistive part Z, as shown in Fig. 9.

The revolution frequency wy of the circulating bunch depends on its relative energy
deviation AFE/E = ¢

Awy AE (1 )
—— = —)e—= = —1).€ Or wy = wp (1 — nee).
%o e 7 0 0 Y
While the bunch is executing a coherent dipole mode oscillation €(t) = €cos(wst) its

revolution frequency is modulated. Above transition the revolution frequency wyis small
when the energy is high and wyis large when the energy is small. If the cavity is tuned to
a resonant frequency slightly smaller than the revolution frequency harmonic w, < pwy,
as shown in Fig. 9 on the left, the bunch sees a higher impedance and loses more energy
when it has an energy excess and it loses less energy when it has a lack of energy. This
leads to a damping of the oscillation. If w, > pwy this is reversed, as shown in Fig. 9
on the right, and leads to an instability. Below transition energy the dependence of the
revolution frequency is reversed which changes the stability criterion.
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4.2.2 Effect of the fields induced by the side bands

turn k T, turn k+1

| Oscillating bunch

ZCPAN @.- 02 M”/\
t t
1(t) | Stationary bunch 1(¢) |
- s
0 [0
i + i
t t
L(t) | Perturbation L(t) |
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Bunch oscillation represented by a perturbation
Ez A | Wy = (2 + Qs)wo n
i 3 - i 7
E. | Wy = (2 - QS)WO |
P S .
— L
Cavity field induced by the two side bands
€ be

G

t v <7 SV

Phase motion of the bunch center

Figure 10: Qualitative understanding from the voltages induced by the two side bands

The simple picture of energy exchange between the oscillating beam and the narrow
band impedance and the resulting stability condition illustrates the underlying physics.
However, it can not easily be extended to a quantitative treatment. The use of revolution
frequency which changes in time represents a mixture of time and frequency domain
which is not easily treated by the standard mathematical methods. A bunch executing
a synchrotron oscillation is presented in frequency domain by a spectrum consisting of
harmonics pwy of the revolution frequency with side bands spaced by +w, around them.
This will be discussed later in detail.

The oscillating bunch creates frequency components of the current at the carrier
pwy with side bands at +ws which excite the cavity resonance. The latter is assumed to
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be sufficiently narrow such that only one value of p has to be considered. We take as
an example a bunch with Qs = ws/wy = 0.25 and show its oscillation on top of Fig. 10
on two successive turns. This oscillation can be presented as a stationary bunch plus a
perturbation. This perturbation induces a voltage in the cavity impedance which will act
back on the bunch. It is shown in the center for p = 2 and the frequencies w = (2 4+ Q¢)wy
corresponding to the upper or lower side band. After one turn the first one results in
a positive and the lower frequency gives in a negative field. At the bottom the bunch
motion is presented in the phase space coordinates € and 7. Taking the first case v > yr
above transition energy the bunch has a positive energy deviation after one turn. The field
induced by the upper side band is positive leading to an increase of this energy deviation
and therefore to a growing oscillation. The field due to the lower side band is negative
and reduces the energy deviation leading to damping of the oscillation. Below transition
energy, 7 < 7r the bunch rotates in phase space in the opposite direction which reverses
the stability condition. Obviously the special value Qs = 0.25 was chosen to make the
stability situation already visible after one turn. For a more realistic smaller value for
Qs the oscillation would have to be followed over several turns making the picture more
complicated.

5 ROBINSON INSTABILITY, QUANTITATIVE

5.1 Spectrum of an oscillating bunch

We consider a bunch which executes a rigid synchrotron oscillation with frequency
ws = wols. This means that the bunch as a whole executes this oscillation without
changing its longitudinal distribution. It results in a modulation of its passage time ¢ at
a cavity in successive turns k as illustrated in Fig. 11

ty = kTo+ 1, T = Tcos(2mQsk),

where kis the revolution number and 7 the amplitude of the modulation. The current
represented by this oscillating bunch is given in time domain by

I(t) = i I(t—kTy — 1) = i I(t — KTy — 7 cos(2mQsk)). (18)

k=—o00 k=—o00

This resembles much a phase oscillation and we expect a spectrum having side bands at
Fwp@s of the revolution harmonics pwy. However, here the modulation does not occur
with respect to time ¢ but to the turn number k. This makes a minute difference which
could be neglected without much loss in accuracy. However, we will use here the correct
treatment which will lead to a result being easier to compute.

We assume the oscillation to be small 7 < T and consider it as a perturbation
making the approximation

o0

I(t) = i It—kIy—m) =~ > (I(t—k:To)—

k=—o00 k=—o0

dI(t — KTp)
_
dt b

as illustrated on the top of Fig. 10. The form of this expression is not very useful for
application. The current [ (t) is not periodic but it consists of a periodic function with
a modulation and can be expressed as Fourier series giving a spectrum having lines at
pwo with side bands at £Q,wy around them. As mentioned before the modulation occurs
not in time but with respects to turns k£ which makes the following calculation somewhat
complicated.

To express the approximate equation describing an oscillating bunch in a more
transparent way we need two properties of the Fourier transform.

155



A.HOFMANN
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Figure 11: Oscillating bunch in time and frequency domain

First, the shift theorem relates the Fourier transform of a time delayed function to
the one of the function itself

1 oo ot
fl) = —= | fe

flw) = f(t—T7)e?¥dt =
folw) V 27T/ V2
The delay introduces a phase factor exp(—jwr).

Second, the Fourier transform of the time derivative of a function can be obtained
with an integration by parts and related to the one of the function itself

—JjwT [e¢)

Ft—1)e 74t — 1) = e 77T f(w).

) iotgy — L / U'Vdt — UvIe. — / UV’) dt
vV 27'(' —00 |_OO —00

1
= 7z
with U'(t) = dI(t)/dt, U(t) =1(t), V(t)=exp(—jwt), V(1) = —jwexp(—jwt). Using

also I(+o00) = 0 we get for the Fourier transform of the derivative
d~[ /

—(w)

dt \/ 2w 00 dt

With this we obtain the Fourier transform of the current (18) representing an oscil-
lating bunch

L(w) = I(w) i e IR0 (1 — Gt cos(2mQsk))

e Tt = ju—— / t)e Wt = jwl(w).

k=—o00
— f(CU) Z le_jWkTo . j% (e_jkTO(W—WS) + e—jkTo(w+WS))‘|
k=—o00
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with wy = wp@s being the synchrotron frequency. It consists of lines at revolution fre-
quency harmonics pwy caused by the stationary bunch motion and of side bands caused
by the bunch oscillation. This is expected since this oscillation resembles a phase modu-
lation. The sums over exponentials appearing above ad up to infinite if the exponent is
of the form j27n, with n being an integer, and average out to zero otherwise. This leads
to the relation between sum over exp (jkx) and a repetitive d-function (comb function)

[e.9]

Yoo = N e =21 Y 5z —2mp)

k=—o00 k=—o00 p=—00
Using also the property d(ax) = 6(x)/a of the d-function gives

~ ~ > wT

Li(w) = wol (W) Y. [0(w—pwpy) — j— (6w — pwo — wy) + 8(w — pwo + ws))| . (19)

p=—00 2

We get this current in time domain by an inverse Fourier transform

L.(t) w)etdw (20)

-7 L

giving the current of a rigid bunch oscillation

[k(t [ pwo ejp“’ot

rp,_oo

F (0= Q) — Q)™ M0 (p+ Q) ((p + @s>wo>ej<p+Qs>“°t>] |

To make the equation more compact we introduce the abbreviations for the frequen-
cies, current components and impedances at the harmonics pwy and their side bands

wp = pwo Wep+Q) = (piQs)wo
I, = f(pwo) I(piQ) = ((piQ)WO)
B 27 B V2T (21>
Zy, = Z(pwo) ZptQ) = Z(p+Q)wo)
Zp = Zr(pwo) Zr(piQ) = Z ( iQ)WO)
Zip = Zi(pwo) Ziprq) = Zi((p*£ Q)wo)

This gives the current of the oscillating bunch in complex and, by combining terms with
positive and negative values of p, with I (w) = I (—w), also in real presentation

[ 7 | |
L(t) = > lfpew —J5 (0 = Quolpe™ P + (p + Q)wof(erQ)e”erQ)“Ot)] _
p=—00
Ii(t) = Io+2> [I,cos(pwot)+ (22)

w>0

%% (P = Q) p-gysin((p — Qwot) + (p + Q) 1) sin((p + Q)wot))] '

The latter spectrum is shown at the bottom of Fig. 11.
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5.2 Voltage induced by an oscillating bunch
We calculate the voltage induced by the current I (¢)in an impedance Z(w). The
Fourier transform of this voltage is given by
Vk(w) = fk(w)Z(w).

and the corresponding expression in time domain is obtained from (22) in complex and
real notation
oo

Vit) = Y [L2e (23)
5 (0= Q) -0 Zp-0@ 0 + (0+ Q) i) Zprar® (”Q)Wtﬂ
Vi(t) = 2 Z{ (Zypcos(wpt) — Zip sin(wyt)) + (24)
w>0
2 (0= QM- -y 5n((p — QUent) + (0 + Q) ipscr Zrtrr sin((p+ Qo) +

@—@ﬂwm&WQwa@—@mw+@+@MWQzWQaM@+@wwﬂ

The real notation (24) can also been obtained from the complex one (23) by combining

terms with positive and negative values of p and observing the symmetry relations I (w) =
I(—w), Z,(w) = Z,(—w) and Z;(w) = —Z;(—w). The current of an oscillating bunch and
the voltage induced in the resistive and reactive part of a narrow band impedance are
shown in Fig. 12 in frequency domain.

This voltage Vi(t) has been induced in the impedance by the bunch current over
many turns. We calculate now its effect on the bunch itself in a single traversal during
turn k and calculate the resulting energy exchange AW of the whole rigid bunch

AW = /fo I(t — kT — 73) Vie(t)dt =~ /:)o <I(t — kTo)Vi(t) — Tkwﬁ(tg dt.

Since here voltage and current can be in phase or out of phase with respect to each other
AW has to be understood as a generalized energy transfer which might contain a reactive
part. We wrote this single traversal integral as one with infinite limits since due to the
finite bunch length I(¢) vanishes outside an interval smaller than +75/2. For the voltage
Vi(t) we can use either the complex (23) or the real (24) notation. We chose the first and
encounter integrals of the form

/_ O:O I(t — KTp)e™tdt = 2rl(—pwy) - i—:[p

/O:o I(t — kTyp)eP=@«otqt = \/ope 2RI [(—(p — Q)w,) = i—:e_szl(pQ)
/O:o I(t = KTp)d/Pr@otdt = 2™ ) [(—(p+ Q)uwo) = i—:ejmws[(m@)
/_O:o o (;t o) nertdt = —jV2mw,md(wy) = —J i_:Tkwp[p-

We neglect terms of higher order than linear in 7 or 7, and get for the generalized energy
exchange during the turn &

AW = TO Z |:|Ip|2er_27—]gwp|Ip|2Zp+ (25)
p=—00
‘Wka k270, ——
17 ((0 = Q- Zo-@re ™% + (0 + Q) s Zipr ™ )]
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Collecting terms with positive and negative values for p and satisfying the symmetry
relation for the impedance we can express this in real notation

WQT
2

(0= Qo0 Zi-a) + (0 + Q) pra)*Zipray ) cos(27Q,) —
(0= QM- Zrp-a) — (0 + Q)0 Zrpra)) sin(27Qs) )|

We started with a synchrotron motion expressed as a function of turns

AW = 2TOZ[\IP\QZTP

w>0

<2p\[ 1 Z;, cos(2mQ )+ (26)

T = T cos(2mQ k).

We make now a smooth approximation and express this motion as a function of time
27Q k =~ wst with wy = W@, and get for the synchrotron motion

)

We divide the energy loss AW of the whole bunch by the total bunch charge ¢ = Tyl to
get the average voltage per particle (V') due to the impedance

7 cos(2mQsk) = Tcos(wst) = 7(t) , Tsin(2nQsk) ~ 7 sin(wst) = —

AW 2
V) = L[*Z, 27
(V) T foU;' o|*Zrp (27)
TwO 2 2
—T (0= -0/ Zir-) = 0+ Qi) Zo i)
40 w>0
TWo
A 2012 Zip — (0 = Q-0 Zep-) + (P + Q) pi0) [ Zepi))|
w>0
TW
= (V)o+ —=(V)y + Twp(V);
with
(V) = —Z\II ZIT\
0 w>0 p*—oo
1 2 2
(V) = T ((p—Q)|[<p—Q>| Zeip-0) — (0 + Do) *Zepra)
w>0
1 o
= P+ Qo) Zrpro) (28)
p=—00
1
Wy = 4 2 22152+ (0= Q-0 Zip-a) + (0 + Q0 Zipra)]
w>0
1 o

= - =PI 20 + (0 + Q1) Zipro)

This induced average voltage has a first term (V)q which is independent of the
oscillation and leads to an energy loss of the stationary bunch we treated before. The
next term 7wy /ws(V), is proportional to 7, which leads to a growth or damping of the
oscillation as will be shown later. The last term 7wy (V'); is proportional to 7 and can lead
to a change of frequency. The first part of this term depends only on the impedance at
the revolution harmonics pwy. This voltage is induced by the stationary bunch and leads
to an incoherent frequency shift we discussed before.
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Figure 12: Voltage induced by an oscillating bunch in a narrow band impedance

5.3 Robinson instability due to a narrow cavity resonance

We consider now first the interaction of the oscillating bunch with a single cavity
resonance which is sufficiently narrow such that only one revolution harmonic p with its
side band pair induce a voltage as shown in Fig. 12. In this case the above equation does
not contain a summation but only a single value for p.

The bunch executes a synchrotron oscillation which is approximately described as
7 = 7 cos(wst) and produces side bands to the revolution frequency harmonics of the
bunch. The average voltage

7"(4)0

(V)= V)o+ — (V) + 700 (V)i

Ws

seen by the bunch, due to its interaction with this impedance, is now given by a single
summation index p of the expression (27). It contributes to the energy loss of the particle
in the bunch and we include this induced voltage in the equation (4) for the energy gain
and loss.

W eVsing,  wiheV cos ¢, woe
N 2rE + 27K T 2rE V)

T = 7).

Using the equilibrium condition

. 2127,
eVsings = e(V)o = p]—
0

160



BEAM INSTABILITIES

and combining the two equations gives

. wan.e (VY# + (wgnchef/ COS Qs wgncea/)i) i

B 2rEw, 2rE - 2rE

With the unperturbed synchrotron frequency wyg

2 _ anhef/cosqﬁs
Wso = w0—27rE

we get the second-order equation

Wso

1
+ (V)i + w1 = ——(V); | T =0.
2hV cos ¢

RV cos ¢, '
Its solution is an oscillation
€ = e " cos(wst + )

2
s

1
Q= ——0 V), w? =Wl (1 - A—<v>i> . (29)
2hV cos ¢ hV cos ¢

with damping or growing rate o, and frequency square w

We express the average voltage component (V), and (V); with their expressions (28)
taking only a single value of the harmonics p and get

I (0 + Q0 PZrpr) = (0 = Q-0 [*Zr-0)) (30)
° 2[0h‘7 COS Qs
29122, ((0+ Q)i Zivra) + (0 = Q-0 Ziv-0)

Wi = wy - - .
IyhV cos ¢, IohV cos ¢,

The growth rate of the Robinson instability is given by the difference of the resistive
impedance at the upper and lower synchrotron side band, Fig. 13. Above transition energy
we have cos ¢y < Oand a, > 0, ie. stability if Z,,_g) > Z,p+q) as we found already
from qualitative arguments.

The RF-cavity itself has a narrow-band impedance around hwy which can drive an

instability. Since the bunch length is usually much shorter than the RF wavelength we
have I(p1q) ~ Ip—q) = I, = I = I so that

~ WSOIO(ZT(IZ-I—Q) _ ZT(p‘Q))
2V cos ¢

Qs

The shifted synchrotron frequency shift (30), due to the reactive part of the im-
pedance, has a second term which only depends on the impedance at the revolution
harmonic pwy and not on the one at the side bands. It is present also in the absence of
a coherent motion and produces a change of the incoherent synchrotron frequency which
will be discussed later in more detail

2p|1,12Z.
wsi — wso M .
IyhV cos ¢,
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Figure 13: Quantitative treatment of the Robinson instability

The coherent synchrotron motion produces a further shift compared to wy;

) (w2 2 ((p + Q)+ * Zipro) + (0 — Q) |1 (p—Q)|2Zi(p—Q))>

o 0 Iy RV cos Os

CUS:

For a small effect, the shift of the coherent frequency with respect to the incoherent one
Aw, = wy — wy; 1s given by

Aw, (04 QI Zipra) + (0 = Qe Ziv-0)

Ws0 - 21ohV cos s

5.4 General impedance

So far we assumed a narrow, resonant type impedance which covers the side band
pair (p + Qs)wp of a single harmonic p of the revolution frequency. If the impedance is
more broad it can cover several side band pairs as shown in Fig. 14. The oscillating bunch
induces now voltages in each such side band which have to be included to calculate their
effect on the bunch. The growth rate and frequency are now obtained from (29) by using
the complete expression (28) for the average voltage (V),.

This gives the growth (or damping) rate of the instability containing a kind of

convolution between power spectrum and impedance expressed with positive frequencies
only and both side bands

u‘OQSO 2 2
_—A—E + Q)| A — (0= Q)| p-)|"Zp—
2h1yV cos ¢s =0 ((p Mo Ze+a) — (v Mo-a)l Ze Q)>

A

as shown in Fig. 14, or with positive and negative frequencies but only upper side bands

wolso ad )
YT WLV eoso, QM Zr 31
2h1yV cos ¢, p:z—:oo@ Q)+ Zrp+@) (31)

= 0 S Q|+ @)

) Zr W + s )W
AhlyV cos ¢s p=—oo (wo(p + Qs)wo)

as shown in Fig. 15.
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Since the growth rate depends on the difference in resistive impedance between the
upper and lower side band, a smooth broad band impedance will not result in a strong
instability. This is consistent with the time domain picture which demands a memory of
the fields between bunch passages

We also find the synchrotron frequency for this broad band impedance by using the
summation in (30)

[e.9]

2

ws

W =0l = —=2—3" ((p+ Q1) Zirra) + (0 = Q)0 *Zip-c))  (32)
IohV cos s =1

with the incoherent synchrotron frequency w,; now given by

1 o0
2 2 2
o= W 1 4 I Zi ,

COs (bs p=—00

Aw,; 1 >
LS _ L1*Z.,. (33
Wso 2I5hV cos ¢ p:zjoom ol Zip- (33)

It should be noted that this incoherent frequency was derived before (16) for a stationary
bunch in the presence of a reactive impedance.

Assuming a small effect due to the impedance we get for the coherent synchrotron
frequency shift Aw, = ws — wy;

onso 2 2
00 L QI Zicoror + (0 — Qoo > Zicr
SLAV cos %WZ;O((IJ Q1) Zipra) + (0 = Q-0 Zip-a))

0 s0 2
_ . “0%s0 “AQ S (p+Q|I Zi(p+0 34
2I0hV cos ¢y p——foo(p ) v Q)| Q) i

o ngsO = T
47ThIOV COS ¢s pZoo(p i QS)wO ‘[«p " Qs>w0)

Aw, =

Zi((p+ Qs)wo)

}2

A broad band impedance changes little between the side bands and we can approx-
imate Z;,—q) & Zip+q) = Zip. Furthermore, also the current components are about the

same at these three frequencies I,_g) = [,1q) = I, and @, < p. In this case we can
approximate the coherent frequency shift Aw,

Aw 1 > Awyg;
L — . L1?Z, ~ ——=. 35
Ws0 2I4hV cos ¢ p:z_:oop‘ o2 Ws0 (35)

For a broad band reactive impedance the incoherent and coherent frequency shift are of
opposite sign but of about the same magnitude. This results in a coherent frequency
being not or only little different from the unperturbed one, ws ~ w4y, but in a separation
between coherent and incoherent frequencies.

5.5 Complex notation

Some times the growth rate g given in (31) and coherent frequency shift Aw, given
in (34) are combined into a complex frequency shift

. Ws0 > 9, . )
Aw = Aw, + joy = ————— + O Z iz
/ 21yhV cos ¢ p;oo(p Qo)+ (12rwr0) = 1 Zipra)

to obtain a more compact formula. This frequency shift is put into the general solution
of the synchrotron oscillation in the presence of an impedance

T(t) — 7A'e'7Wt — 7A-e,7(wsi+Aw)t — f_ej(wsi—f—Awr—l—jas)t.
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Figure 14: Convolution of power spectrum and general impedance using positive frequen-
cies with upper and lower side bands
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Figure 15: Convolution of power spectrum and a general impedance using positive and
negative frequencies with upper side bands only

+w

Combining the solution for positive and negative frequencies e™! we get

7(t) = e~ " cos((ws; + Aw,)t).

Using also the complex impedance Z = Z, 4+ jZ; we can express the complex frequency
shift

o0

Ws0 9
2L hV cos 0. + @)1 Z
2ot e 2= P T @Moral Zpro

Aw = Aw, + jas =7

which contains growth rate and coherent frequency shift in a compact form.
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5.6 Many bunches
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Figure 16: Robinson instability extended to many bunches

With M circulating, equidistant bunches there are M independent modes of coupled
bunch oscillations, labeled with 0 < n < M — 1 being related to the oscillation phase
difference A¢ between adjacent bunches n = A¢/(2rM). Each mode n has one pair of
side bands in each frequency range of Mwy

Wptn,Q) = wWo(pPM £ (n+ Q5))

The growth rate of each mode n is given by a sum over the impedance differences of each
side band pair, [4, 5].

w
e _ S w n [2 n ZT‘ n — W(pn ]’2_n ZT- Y .
2h1yV cos ¢ywo zp:( (p+1.Q) L (p+n,Q) Zr(p+n.Q) ~ Wp—n.Q) p—n,@)Zr((p ,Q>)

O

In contrast to the one bunch case, the side bands of a multi-bunch mode n can be separated
by more than a revolution frequency. Even for a relatively broad band impedance there
can now be a significant difference in impedance at these frequencies resulting in a large
growth rate. Again, this is consistent with the time domain picture that the memory
of the impedance has to last now only for a bunch spacing and not for a revolution
time. This is illustrated at the bottom of Fig. 16 where the values M = 4, n = 1 and
Qs = ws/wo = 0.25 have been chosen as example. It is interesting that for the modes
n = 0 and n = 2 the side bands are close together making an instability less likely.
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5.7 Bunch shape oscillations

So far, we considered only dipole oscillations where the bunch makes a rigid oscil-
lation around the nominal phase without changing the form. There are higher modes of
oscillation, called bunch-shape oscillations, which can be classified as quadrupole (m = 2),
sextupole (m = 3), octupole (m = 4), etc. modes with frequencies

Wyt = wo(pM £ (n 4+ mQs)).

Each mode has a spectrum with side bands at a distance mws from the revolution har-
monics. Again, to calculate the stability of these modes we have to sum the products of
impedance times the square of the current components over these side bands.

5.8 Further generalization of the Robinson instability

We have assumed that the effect of the impedance is relatively weak such that the
changes in synchrotron frequency and growth rate are small compared to the synchrotron
frequency itself. For very narrow-band cavities with high shunt impedance, e.g. super-
conducting cavities, this might no longer be true. In this case we have to evaluate the
impedance not at the unperturbed side band w4 but at the shifted synchrotron frequency
ws. Furthermore, if we are interested in the growth rate we have to consider the cavity
impedance for a growing oscillation which is different as soon as the growth time of the
oscillation becomes comparable to the filling time of the cavity. Taking this into account
one arrives at a 4th-order equation for the frequency shift and growth rate resulting in a
more general stability criterion, often called the second Robinson criterion [2].

We have considered stability only for the case of an infinitesimally small oscillation
and we have calculated its initial growth or damping time. If, however, the oscillation am-
plitude becomes large, some non-linear effects should be included. The modulation index
of the phase oscillation will become large leading to side bands at twice the synchrotron
frequency. They have to be included in the sum over the impedance contributions. This
can lead to a situation where the beam is unstable for small oscillation amplitudes but
becomes stable again at large amplitudes. In practice, such cases have bunches oscillating
with finite but more or less constant amplitudes [6, 7).

6 BUNCH LENGTHENING

6.1 Broadband impedance

A ring impedance consists often of many resonances with frequencies w,, shunt
impedance R, and quality factors . At low frequencies, w < w,, their impedances are
mainly inductive

w2 w2
1-— jQ—T-WT N szw
S 2
L (%) 9w
The sum impedance at low frequencies of all these resonances divided by the mode number
n = w/wp is called

Z(w)=R

Rskwo

0_ & Qrwri

A
'— = Lwo.
n

with L being the inductance.
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Figure 17: Current and its derivative of a parabolic bunch

6.2 Synchrotron frequency shift and potential well lengthening of a parabolic
bunch

A bunch with current I,(¢) induces a voltage V; = —LdI,/dt which is added to the
RF-voltage
L dl,
V(t) =V sin(hwot) — L%.
Developing around ¢, calling 7 = ¢ — &,, ¢s = hwot; and using a parabolic bunch, shown
in Fig. 17, of half length 7 at the base, average current Iy, peak current I of the form

: 2\ 377, 2N\ 4L, 3wl
Ib(T):I<1—T—2> 7T°<1—T—2>,—b o

75 75 dr WoT;

2&)0 70

and Fourier transform

i 6mly sin(Tow) — Tow cos(Tow)

W)= Tomn CE

The total voltage becomes

) ’ 3r|Z 1
V(T) = Vsin gbs + V cos ¢3thT (1 4 — ﬂ-‘ /n|0 0 ) .
RV cos ¢s(woTp)?

It has a linear dependence on 7 and leads to a new synchrotron frequency given by

wQZWQhUCVCOSQbS <1+ 3n|Z/nloly ): 9 <1+ 3r|Z /n|oly )
° 2nE hV cos ¢s(woT)?3 * RV cos ¢s(woT)3)

(36)

S

Assuming a small change of the synchrotron frequency ws = wyy + Aw, we make a linear
approximation to the above equation

Aws N 37T|Z/77,‘0[0

wso  2hV cos bs(womo)?

(37)

Above transition energy, cos ¢s < 0, the inductive impedance reduces the synchrotron
frequency of the particles inside the bunch; below transition energy, cos ¢, > 0, this
frequency is increased.
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We compare this result with the incoherent frequency shift obtained earlier with

the Robinson formalism (33). We use the relation I, = wol(pwo)/v/27, replace the line
spectrum with a continuous one and the sum by an integral

A 53 1 i 1 00 ~
Wei _ S L2 ~ —/ (W) 2 Zi(w) dw.
Ws0 21yhV cos ¢s p=—oo AmlyhV cos ¢g /=0

We assume an inductive impedance which can be expressed as Z;(w) = wL = |Z/n|w/wy
and get for the frequency shift

A St Z 0 =4
wei _ __ 12/n] / T () Pdw.
Ws0 4mwolohV cos ¢g /—oo

Using also the expression for I(w) we get

Aws; 91| Z/n| /00 sin(Tow) — Tow cos(Tow) (o) 3nlo|Z/n|

= — Tow ) = =
Ws0 2hV cos s (woty)? /o0 (Tow)? ° 2hV cos ¢s(woTp)?

which agrees with (37).
V(1)
Pho--s .
bunch < E:T >
/I\‘\ /l\\ ;

N
N

N

Figure 18: Vanishing frequency shift of a coherent bunch oscillation

The above frequency change (decrease for v > 7, increase for v < y7) applies only to the
incoherent motion of individual particles. The coherent dipole (rigid bunch) mode is not
affected since it carries the induced voltage with it, as shown in Fig. 18. This separates
the coherent synchrotron frequency from the incoherent distribution and leads to a loss
of Landau damping. We found this result already before, (35), but here we give a more
physical explanation for it.

The reduction of longitudinal focusing leads also to a change of the bunch length. For
protons, with negligible emitted synchrotron radiation, the phase space area is conserved,
os0. = constant. This gives a relation between the change in bunch length and synchrotron
frequency and a linearized bunch lengthening (37)

70 Wso ATO -~ 37T|Z/’I’L|0]0

)

Too Wy Too 4hV cos ¢s(woTp)? .

For electrons, the energy spread is determined and fixed by synchrotron radiation, leading
to the corresponding relations

70 Ws0 ATO —~ 37T|Z/TL|0]O

I

T00 Wy T00 th COS (253((4.)07'0)3.
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Figure 19: Potential well lengthening of a bunch with Gaussian energy spread

If the effect is stronger we have to go back to the accurate expression (36) for the
change of synchrotron frequency which leads to a 4th-order equation for protons

4 3m|Z/n|od
(2)+ 7| Z[nolo (2)_1:0

700 RV cos ®s(woTop)® \T00

and to a 3rd-order expression for electrons

<Q>3 T N 3| Z/nloly

T00 T00 hV COS (253 (WOT()(])g

6.3 Potential well lengthening of a bunch with a Gaussian energy distribution

The above bunch lengthening expressions are based on a parabolic bunch form and
are therefore only approximations for electrons which have Gaussian bunches at vanishing
impedance. An inductance leads to bunch lengthening but contrary to a parabolic bunch
the Gaussian form is altered. A self consistent distribution for electron bunches with a
Gaussian energy distribution can be obtained [8] leading to an implicit and transcendent
equation

1(¢)eS1@/10(0) — 1(()81(0)/10(0) =¢*/25 (38)

where o4 is the RMS bunch length expressed in RF-phase and I(0) the peak current,
both in the absence of impedance, while ¢ is a parameter giving the strength of the effect

T40 V cos D503y

A

The above equation (38) determines the self-consistent current distribution I(¢) for a
Gaussian energy distribution in the presence of an inductive impedance. It has to be
solved numerically and the bunch form is plotted in Fig. 19 for 3 values of the strength
parameter &.
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Figure 20: Transverse impedance

7 TRANSVERSE INSTABILITIES

7.1 Transverse impedance

A transverse impedance is excited by the longitudinal bunch motion and produces
a deflection field. It is illustrated in Fig. 20 where a positive charge et goes through a
cavity of resonant frequency w and excites a mode (dipole mode) having a longitudinal
field E, with a transverse gradient OF,/0Jx. Since E, vanishes on axis this dipole mode
is only excited by a bunch with a transverse off-set giving a dipole moment [,Azx. After
1/4 oscillation the longitudinal electric field E, is converted into a transverse magnetic
field B, which deflects the beam in the z-direction. Maxwell’s equation in differential and
integral form

B=—culE /éda: . ]{Edg

gives R A
oFE 10F
E=F, = 2 cos(wt) — B =B, = e sin(wt)
To describe a general deflecting field we define a transverse impedance, Zr or Z,, in
analogy to the longitudinal one [1]

—

J(E@) +[0x B@)]),ds  w/(Ew) +[5x Bw), ds
Zr(w) = j To(@) =— i) )

using ' '
r =3 1= jwie.

The presentation of the impedance definition on the left relates the deflecting field to an
exciting dipole moment. If the two, the transverse excursion and force, are in phase there
is no energy transfer to the transverse motion, therefore the factor ’j’ in front. However,
if deflecting field and transverse velocity are in phase there is energy transfer which is
made clear in the second presentation on the right.

In our cavity mode the dipole moment [x induces first a longitudinal field which

indicates that the dipole mode has also a longitudinal impedance Z;. An excitation at a
distance xy gives a gradient of OF, /Ox which is related to Iz, by a factor k

OF,
ox

OFE,
= klxg and E,(z) = 5 %= klvor |, E.(zo) = klz}.
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The longitudinal impedance of this mode is

_J E.(x0)dz

ZL(I‘Q) = [

= kgl
( is the cavity length. With Maxwell’s equation

/édaz—fﬁdg

we obtain a relation between the electric field gradient and the deflecting magnetic field
it is transformed into

: OE,
Byal = —al pr
With () = I/ we get for the fields
: A OE.(t) OE, : 10E.(t) .10E, ,
B,(t) = Bjwet = -2 = _ T2t B () = Beiet = jmTon T et
y( ) Jwe al_ 837 ) y( ) ye jw 837 jw al_ €

With this we have a relation between the electric field gradient and the deflecting magnetic
field which can be applied to the two impedances

o) — (B +[Ex Bw)) ds Byt ¢ 287
W)= Ir(w) N jlxo_w Cw da?

Our transverse impedance is related to the second derivative of the longitudinal belonging
to the same mode. From this we get the symmetry relations

longitudinal : Z,(—w) = Z.(w) Zi(—w) —Zi(w)
transverse  : Zp.(—w) = —Zp(w) Zpi(—w) = Zpi(w)

While the above accurate relation applies to the same mode of oscillation there
exists also an approximate relation for the two impedances belonging to different modes.
Taking some average of different oscillation modes in the same vacuum chamber of radius
b and ring circumference of 2mr R one obtains the approximate but very useful relation [9]

2R Z()
T8 (w/w)

ZT(LU)

7.2 Transverse dynamics

The transverse focusing provided by the quadrupoles keeps the beam in the vicinity
of the nominal orbit. A particle executes a betatron motion around this orbit. This
motion has the form of an oscillation which is not harmonic but has a phase advance
per unit length which varies around the ring. Often this is approximated by a smooth
focusing given by

P+ wiQir =0

with wy being the revolution frequency and (), the horizontal tune, i.e. the number of
betatron oscillation executed per turn.

A stationary observer, or impedance, sees the particle position z; only at one loca-
tion each turn k as indicated by the points in Fig. 21, and has no information of what the
particle does in the rest of the ring . Therefore, we have no information about the integer
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Figure 21: Betatron oscillation observed at one location in time and frequency domain

part of the tune ), = integer + ¢ but only about the fractional part ¢ with determines
the phase

A

xp = 2 cos(2mqk) , ) = _ﬁi sin(2mqk).
€T

We observe this motion as a function of turn k. We can make a harmonic fit, i.e. a
Fourier analysis, Fig. 21. For a single bunch circulating in the machine we find at the
revolution harmonic pwy an upper and lower side band. The distance of the side band is
given by the fractional part ¢ because the integer part cannot be observed. For a very
short bunch these side bands will extend up to very high frequencies, for longer bunches
they will get smaller and vanish with increasing frequencies. A transverse impedance (or
a position monitor) is sensitive to the dipole moment [ -z of the current and does not see
the revolution harmonics.

In general the betatron tune depends on the momentum deviation Ap of a particle
which is quantified by the chromaticity

Ap o AE
p

A finite chromaticity will influence the motion of a particle executing at the same time
betatron and synchrotron oscillations and make certain modes of oscillations complicated.
This will be discussed later while in this and the next section we assume Q' = 0.

8 TRANSVERSE INSTABILITIES WITH Q' =0

8.1 Qualitative treatment

We consider a positive charge e™ going at t = 0 through a cavity and exciting a
deflecting mode as with frequency w, = 27/T,, as illustrated in Fig. 22. At first, ¢ = 0, this
mode consists of a longitudinal field with a gradient OF,/Jx which is later, at t = T, /4,
converted into a magnetic field B = —B,;, pointing in the negative y-direction. A positive
charge going in the z-direction will obtain a Lorentz force in the positive z-direction. After
a further quarter cavity oscillation, at t = T,./2, we have again a longitudinal electric field
with a gradient but of opposite sign compared to the beginning. At ¢ = 37,./4 this will be
converted into a magnetic field pointing in the positive y-direction. The Lorentz force on a
positive charge going in the z-direction is now in the negative x-direction. The interaction
of a bunch with this cavity depends on the relation between its fractional tune ¢ and the
frequency of the cavity. For the latter also only its fractional part is of importance, as
an integer number k" of oscillations executed while the bunch is not in the cavity, has no
influence.

We discuss now the interaction between the bunch and the cavity and make some
simple choices to facilitate the illustration. For the fractional tune we take ¢ = 1/4. For
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Figure 24: Interaction with the cavity tuned to the lower side band

the cavity frequency we consider two cases: First, w, = (k' + 1/4)wp, in which case the
bunch having excited the cavity will find it after one turn in the situation ‘A’ as shown
in Fig. 23. Here, the Lorentz force is opposite to the particle velocity and reduces the
oscillation which leads to damping. Second, w, = (kK'+3/4)wo = (kK'+1—1/4)wp, the bunch
finds the cavity after one turn in the situation ‘B’ shown in Fig. 24 where the Lorentz
force is in the direction of the transverse particle velocity and increases the oscillation
which leads to an instability. As a result we find for one circulating bunch stability if the
cavity is tuned to the upper side-band.

The resistive impedance at the upper side band damps, the one at the lower side
band excites the oscillation. If we have a more general impedance extending over several
side bands wy(p + ¢) and wo(p — q) we expect that the growth or damping rate of the
oscillation is given by an expression of the form

1 .
— x> (M) 2 Zr (@) = Hpg) P Zrr(@ip—g)) ) With @iy = wo (p £ )
s p

where I,,; is the Fourier component of the beam current at the upper or lower side band.
It appears here as the square Ig since the instability is driven by the energy transfer from

the longitudinal to the transverse motion.
We can estimate some properties of the proportionality factor missing in the above equa-
tion. The product IgZT = P/y represents a power transfer per unit length. To get a
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growth rate we have to divide this by the energy of the bunch having N, particles which
can be related to the average current of the bunch Iy = eNywy /27

1 P ewo P

x = )
Ts  moc2yNy  2mmgycyly

8.2 Quantitative treatment

We consider a transverse impedance Zp(w) which interacts with a bunch executing
a rigid transverse oscillation with a tune (), = integer +¢. For convenience we assume the
impedance to be in a symmetry point with 5, = 0. We consider now a transverse rigid
bunch executing a betatron oscillation with the center-of-mass position and angle at the
impedance location as a function of turn number £ of the form

A~

xp = & cos(2mqk) , x) = _ﬁi sin(27wgk).

This motion in time (turn) and frequency domain is shown in Fig. 21.

To get the fields induced in the impedance we also have to consider the longitudinal
distribution and motion of the bunch treated before. In a single traversal it is (6)

1), I(w) = \/LQ_W [ O:O I(t)e7*tdt,

and illustrated in Fig. 7. For a stationary circulating bunch the current in time domain
expressed directly or as a Fourier series is according to (8) and (9)

L(t) =Y _I(t — kTy) = Iy + 2> I, cos(pwyt).
—00 p=1
and shown in Fig. 8.
The dipole moment of an oscillating bunch at turn k£ and as function of ¢ is

Dy =l , Dp(t) =12 > cos(2mqk)I(t — kTp) (39)

k=—o00
To express this in a series we form the Fourier transform of Iy ()
oo

1 el .
S I(t — kTy)e 7“tdt
= / L3 T KTe

1 o , N .
= F ZefkwTo / ](t _ k,TO)ef]w(tfkTo)dt — ](w) Z e*jku}To
7T =

—0o0

Ik(w) =

The Fourier transform of the dipole moment is

D,(w) = fcIN(w)ZCOS(Qﬁqk)e*jk“’To

_ il éw) i;o oM Trtame) | miuTo-2ea)]

The sums become oo if the exponent is of form 27p and vanish otherwise

> e ™ > 6(x —2mp) and d(ax) - (x) gives

k=—o00 p=—00
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(40)

wol (W) i [0(w— (p—qwo) + 0(w — (p+ q)wo)]

Di(w) = &
k(W) > 2
The inverse Fourier transform gives the oscillating dipole in time domain

a)oi'

Z {[N P+ Q)wp )l @HO«oD 1 T((p— g)uwyg)ed (- q)wot)}

—2[((p q)wo) gives

- (p - Q)w()a I(p:l:q) \/%

ej(t(p—q)u«))} ]

Using

(p+ qwo = (p+ qwo, (p—q)

Dy(t) = y Z {I(erq)

2 =

oJ(tp+a)wo) Lip—g)
Combining terms p > 0 from the first, p < 0 from second the part and vice versa, and

I(—w) gives

using I(w) =
=2 [Liprq) cos((p + q)wot) + Lp—q) cos((p — q)wot)].
w>0

A charge e going through the impedance element at turn k is exposed to a transverse
FrAs/c

force changing its momentum Apyg. = FrAt
= —jeDy(t) 2
5% B(w)]), ds = LD
T c

[ —
Apge = E/ [E(W) + [0
We get the momentum change of the whole bunch by a convolution between its charge
t

distribution given by the single traversal current I(t) and the deflecting field in turn k

) Di(t + kTy) Zrdt

Ap, = —j— /
LprqyZr((p + q)wp)ed PHa)wolt+hTo) 4

:_j_z/

p=—00
](p,q)ZT((p — q)wo)ej(p—Q)wo(t—I—kTo) d

This contains integrals of the form
I(t) —J(t+kTo) (p+a)wo Jt — +/ e—jTok(p-Fq)WOf( (p + C])wo)
wo

giving
A [ @ S I 2Z —j2nqk I 7 eJQqu
ph = —352 Y (s P2 (o a)en)e ™+ 1y P21 (0 = a)en)er™]
Combining terms p > 0 from the first, p < 0 from the second part and vice versa, using
= Zp.(—w), Zri(w) = Zri(—w) gives

relations Zp, (w)
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Apr= =23 [(Hpao) PZre (0 + @)wo) = Hpop|* Zrr((p — @)wp) ) & sin(2mqk)

(‘[(erq) |2ZTi<(p + Q)WO) + ‘[(pfq) |2ZTi<(p — q)wo)) T Cos(27qu)} .

using the form of the betatron oscillation we started from

A

T

Ty = & cos(2nqk) , T, = 3 sin(2mqk) , iy = cx), = —g sin(2mqk)
__jb 2 2 .
Api == 3 |(Hosa Zre((p + @)w0) = H-0)*Zre (9 — @)0)) Baci
w>0

+ (Moo Zri(p+ @)wo) + [T | Zri((p — q)wo)) ca] -

The transverse velocity and angle change with the transverse momentum

Az, Apy eApy
¢ Nomoye moyeloTy

r_
Ax) =

Agy =

=t 2 (Lol Zre (04 0) g P2 (0 = @)0)) B

w>0
+ (o) * Zrira) + o) *Zrio-a)) 2] -

The velocity change has a component proportional to velocity and resistive impedance and
one proportional to displacement and reactive impedance. The first leads to exponential
growth or damping, the second to a change of the betatron frequency.
We start with the first part alone and a smooth approximation and get an acceleration
¥ = Adwy/2m which we ad to the one due to focusing by beam optics

i+ 20,7 + Q2wi = 0, solution: x = zge” " cos(Quuot + ¢) if a < Quwo

ea@ﬁL

- 0w Iy |2 Zr, N o) * Zrr(p—a) ) - 41
Ao 1, Z <| wta)| Zrrwre) = Hp-o) | Zrr q)) (41)

1
s = —
T w>0
using (p — Q)wo = —(—p + Quwo for p < 0 and Zp,(w) = —Zr,(—w) gives a sum with
positive and negative frequencies

1 e“@ﬁ& >

s=— = Tipr o) 2 Zr (pra)- 42
@ T drmoc?yly p:z:oo| wrol Zrrora) (42)

The growth rate is given by a convolution between the power spectrum components and
the impedance at the betatron side bands.

The reactive impedance alone gives an angular change Ax) = Ady/c proportional
to xg. This represents a focusing element of strength

1 Az) e
f o x mecyl

Z (|I(p+q)|QZTi(p+q) + |I(p—q)|2ZTi(p—q))) Lk

w+>0
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Figure 25: Interaction of a bunch with a narrow band resonance

which results in a change AQ, = (,/(4nf) of tune and Awg = wyAQ, of betatron
frequency

. €W05x 9 9
Awg = —m;()(ﬁ(mq)\ Z1ip+a) T Hp—g)] ZTZ-(p,q))
GWOBJ: s
Z |[(p+q)‘QZTi(p+q)- (43)

 drmg Ayl »

—=—00

An inductive impedance Zp; > 0 is defocusing giving negative tune shift.

8.3 Instability due to the resistive impedance
The transverse motion of the bunch is a damped or growing oscillation of the form

z = zpe” " cos((Quwo + Awp)t + @) if a, K Quwy
with the rate given according to (41) by a sum over positive frequencies

1 €Wo ﬁm

_ L WPz 2 B 9
== T, WZ;O (Horol Zrrra) = oo Zrrio-0))) -
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Figure 26: Frequency shift due to a reactive impedance

as shown on the upper part of Fig 25. We can also express the damping or growth rate
by a sum over positive and negative frequencies with upper side bands (42)

EWo Bx s

2
O = T p;oo i) Zro (o))
ews B, SN 2
= 2 3 [Hwolp+ )| Zro(wo(p + 0)-

2 2
8mmogcyly oo

as shown on the lower part of Fig. 25

To drive this instability we need a narrow band impedance with a memory lasting
at least for one turn. It is worthwhile to note that the growth rate is proportional to
the value of the beta function at impedance. For this reason one often tries to reduce
B, and 3, at the location of unavoidable impedances like RF-cavities. For a distributed
impedance we replace the local beta function by its average 3, ~ (6,) =~ R/Q, with R =
average ring radius.

8.4 Frequency shift due to the reactive impedance
We consider now the change Awg of the oscillation

z = z9e " cos((Quwo + Awp)t + ¢) if a < Quwy

executed by the bunch. According to (43) it is again given by a convolution of the power
spectrum of the bunch and the reactive impedance involving positive frequencies with
both side bands as shown in Fig. 26, or with both signs of p and upper side bands

€Woﬁz
B = ol & (Hool* Zrigra) + oo Zrip-o)
w+>0
ewolle 2
. OFE I Zri
r—— p:z_:oo | (p+q)‘ Ti(p+q)
= 2 St )| Zrelwnlp + ).
87T2m062’}/[0 p=—00

The betatron frequency shift can also be caused by a wide band impedance since
there is no cancelation between the upper and lower side band. A measurement of this
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Figure 27: Instability for many bunches

shift is often used to obtain a convolution between the impedance and the bunch spectrum.
Doing this for different bunch lengths, some information on the impedance itself can be
extracted. This frequency shift acts only on the coherent (center of mass) motion of the
bunch and has little influence on the incoherent motion of the individual particles and
there frequencies. The reactive impedance can cause a separation between the coherent
betatron frequency in the incoherent frequency distribution which can lead to a loss of

Landau damping.

8.5 Transverse instability of many bunches

M bunches can oscillate in M different modes n = MA¢/(27) with A¢ being the
phase shift between adjacent bunches. These modes have the frequencies and growth rate

wpt+ = wo (pM £ (n+ q))

1 GWOBJ:

as = = —
T drmyc?yl

w>0
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General mode number n for M =4

Figure 28: side bands of all modes

9 HEAD-TAIL INSTABILITY

9.1 Head-tail mode oscillations

The longitudinal synchrotron motion in energy and time deviation, AF and 7, can
also influence the transverse motion. Particles executing a vertical betatron oscillation
move at the same time frome the head to the tail of the bunch and vice-versa and go
through some deviations AF from the nominal energy as shown in Fig. 29. If the chro-
maticity Q' = dQ/(dp/p) vanishes the betatron tune does not depend on energy and there
is no systematic betatron phase shift between head and tail of the bunch as shown on the
left of the figure. However, for Q' # 0 the betatron frequency is different for the positive
and negative energy deviation the particle goes through. A particle can accumulate a
phase shift going from head to tail via AE > 0 which is again lost going back to the
head as shown on the right of the figure. For v > ~r it has an excess energy moving
from head to tail and an energy lack moving from tail to head. For @’ > 0, this gives a
phase advance in the first and a phase lag in the second step and vice versa for " < 0 or
V<7

The head-tail mode oscillation is shown in Fig. 30. On the left half we have Q' = 0.
The motion of the bunch y(t) is shown on the very left which consists just of a rigid
up-and-down motion. In the next row this motion is multiplied with the bunch current
giving the dipole moment y - I(¢) which induces the voltage in the transverse impedance.
On the right the same quantities are plotted for the case of )" # 0 which clearly show the
phase shift between head and tail. An experimental verification of this motion has been
done [10] and is shown in Fig. 31. For relatively long bunches this mode can be observed
directly with a fast position monitor giving a signal being proportional the instantaneous
dipole moment x(t) - I(t). Several superimposed traces on the scope are shown, each
corresponding to a turn of the oscillating bunch passing through the monitor. On the
left we have Q" = 0, on the right " > 0. This figure shows the same behavior as the
calculated plotted in Fig. 30.

9.2 Head-tail instability

A broad band impedance is excited by oscillating particles A at the bunch head
which in turn excite particles B at the tail with a phase shifted by A¢ compared to the
head. Half a synchrotron oscillation later particles B are at the head and while particles
A are at the tail oscillating with phase —A¢ compared to B (assuming Q" = 0). The
excitation by the head has the wrong phase to keep oscillation growing unless Q' # 0
producing a phase shift during a motion from head to tail or vice versa. The wake field
excited by the head of the bunch will affect the tail later. The tail oscillates therefore with
a phase lag compared to the tail. To keep the oscillation growing the head particle must
undergo a relative phase delay while moving to the tail and the tail particle a relative
phase advance moving to the head. We expect a possible instability if Q' < 0 for v > ¢
or if Q" > 0 for v < vp. The ’'wiggle’ of the head-tail motion is seen by a stationary
observer (impedance) as an oscillation with the chromatic frequency we which has to be
considered in calculating the head-tail instability.

s AP
Ap/p = Ap/psin(wst) , 7= —7cos(wst) with 7 = Ws 2P
Tle D
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Figure 29: Combined betatron and synchrotron motion
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Figure 30: Head-tail mode observed in steps of its period 7j/8, left:

Q' =0, right: Q" #0

ws = Qswp is the synchrotron frequency and 7. = a. — 1/’y2 with o, = momentum
compaction. The relative betatron phase shift of a particle executing part of a synchrotron

oscillation is

to Ap to
Apg = wo/ AQdt = wOQ'—/ sin(wgt)dt
: p

1 t1
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Q' >0

Figure 31: Head-tail mode m = 0 for vanishing and finite chromaticity

Ap wo@’

— —on,7 (cos(wsta) — cos(wsty)) =

) (12— 71)

This gives for the chromatic frequency

_ Agg _ wo @’
Weg = ——— = —.
AT Ne
This ‘wiggle’” of the head-tail mode shifts the envelope of the side bands by the chromatic
frequency we = Q'wp /1. as shown in Fig. 32. This results in current components

~ wn  ~

Wo 0
Lpiqre) = EI((P + Qo +we) lipgg) = EI((p — q)wo — we)

which can be very different for adjacent side bands. Since now the difference between
upper and lower side band is large even a broad band impedance can lead to an instability
with growth (or damping) rate [11]

€Woﬁz

= Trmoc T, > | Hprare) P2Zre (0 + q)wo + we) — Hip—g—e)Zre (P — Q)wo — we)] -

w>0

9.3 Higher head-tail modes

So far we considered a head tail mode in which for vanishing chromaticity all particle
move in phase up and down. It is also possible that oscillation of the head and tail oscillate
with opposite phase as shown in Fig. 33. Here, the particles move up and down with a
phase which depends on their longitudinal position resulting in a difference of m between
heat and tail. There are now two modes possible. In one the particle ahead has a phase
lag, shown on the left, in the other a phase advance, shown on the right of the figure.
The two modes are labeled by m = £1. Their frequency is different, in the first case an
extra betatron oscillation is subtracted, in the second case added per synchrotron period,
resulting in a frequency wg = (p £ ¢ £ Q)wo.

The projected position y(7) and dipole moment y - I(7) of this head-tail mode
m = £1 is shown in Fig. 34 in steps of T3/8. It should be noted that the project position
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Figure 32: Head-tail mode spectrum; top: " = 0, middle: @’ > 0 positive and negative
frequencies, bottom: )’ > 0 with positive frequencies only

in the center 7 = 0 vanishes always forming a node. Obviously the individual particle
still move at this position but their phases are opposite for £Ap resulting in a vanishing
projection.

There are higher head tail modes with the general frequencies

wp = wo(p £ ¢ £ mQs)
shown in Fig. 35
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Figure 33: Higher head-tail mode m = +1 for Q' =0
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Figure 34: Head-tail mode m = +1, @' = 0 seen in steps of T3 = Tp/q, left displacement
y(7), right: dipole moment y - I(7)
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m -2-10 1 2 , -2-10 1 2
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Figure 35: Detailed spectrum of higher head-tail modes w = wy(p £ ¢ + Q)
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