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Abstract 
The principle of phase stability was established independently and almost 
simultaneously by V. Veksler [1] and E.M. McMillan [2]. The first electron 
synchrotron which was designed by McMillan  and built at the University of 
California came to full energy (320 MeV) operation early 1949.  

1.  INTRODUCTION 

The phase stability occurs in synchronous accelerators where the acceleration is made by using radio-
frequency electric fields. If successive accelerating gaps (radio-frequency cavities) are arranged such 
that a given particle always sees the same RF phase and gets the same energy gain, that particle is 
called synchronous particle. In the case of a synchrotron a single cavity will be successively traversed 
by the particles turn after turn and for the particular case of ultra-relativistic electrons a fixed RF 
frequency can fit the revolution frequency.  

          Other particles, either deviated in phase or in energy from the synchronous one, will oscillate in 
phase and energy with respect to the synchronous particle (also called reference particle) and this is 
the mechanism of phase stability. However stability requires specific input conditions as it will be seen 
in the present lecture.  

2.  RADIO FREQUENCY ACCELERATION 

2.1  Energy gain 

In relativistic dynamics the total energy ( ), the rest energy ( ) and the momentum 
(
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which by differentiation gives: 
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From Newton-Lorentz force: 
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and the energy gain due to the electric field component Ez is: 
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where V is the voltage across the accelerating gap. 
 

Considering an oscillating accelerating electric field ( TM mode in a cavity) one can write: 
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Neglecting the transit time through the gap one can also write: 
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and φ  represents the RF phase as seen by the particle while going through the gap. 

2.2   Principle of phase stability 

Considering now periodic gap crossings and a reference particle for which the synchronism condition 
is satisfied for an entrance phase sφ , the energy gain in each gap can be represented by the RF signal 
shown on Fig. 1. 
 

 
 

 
 

Fig. 1  Energy gain versus RF phase during gap crossing. 

 

There are two possible synchronous phases ( sφ  and sφπ − ) per half accelerating periods, which 
repeat every period. Particles P1, P2 …Pn  are called synchronous particles and at each gap they get the 
amount of energy that bring them to the next gap with an identical phase. 

As for other particles which are deviated from the synchronous ones they will get a different 
story. For example particle M1 which has arrived later in time in the first gap is getting more energy 
gain so it will run faster (assuming right now that an increase in energy, followed by an increase in 
velocity, reduces the time it takes to reach the next gap) and it will get closer to the synchronous 
particle at the next gap and so on. Particle N1 arriving earlier in the first gap is getting less energy gain,  
hence will slow down compare to the synchronous one and get also closer to it at the next gap. It gets 
clear that the tendency for non synchronous particles is to oscillate in phase and energy around the 
synchronous one. That is true on the positive slope of the RF signal but the same type of approach 
made for particles M2 and N2 shows the reverse process as they tend, gap after gap, to go further away 
from P2. 

The capture phenomena which occurs around P1 is called “phase stability” and is similar to a 
focusing effect where the focusing force is just the slope of the RF signal. Since it applies on the phase 
and energy variables it can be called “longitudinal focusing” by analogy with magnetic focusing in the 
transverse plane. 
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2.3   Consequence of phase stability 

Noticing that a particle which is behind the reference one ( 0<∆z ) arrives later in the accelerating 
gap ( ); hence the positive RF slope which gives stability is translated into a negative slope 
when changing variable:  
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According to Maxell’s equations: 
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leading to: 
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showing that one or another (or both) of these two gradients has to be positive leading to a transverse 
defocusing. 

3.     THE ELECTRON SYNCHROTRON 

3.1   Principle of operation 

The synchrotron, as sketched on Fig.2, is a synchronous circular accelerator and the reference 
(synchronous) particle, at nominal energy, travels on a fixed closed orbit. In order to do so, while 
ramping in energy, the synchronous particle is such that its synchronous RF phase provides the exact 
amount of energy gain, at each turn, that fits the increase of the magnetic fields. 
 

The cavity located in a straight section will give a synchronous
energy gain: 
                                                                       

sVeE φsinˆ=∆  
 

In order to stay on the given circumference C Rπ2= , where R
is defined as the physical radius, the following relation needs to
be satisfied: 
 

peB =ρ  

where B  is the bending field, ρ  the bending radius and p the 
particle momentum. 

 
 
 
 
 

Fig. 2 The synchrotron 

Ramping in energy, while ρ  remains constant, also means: 
 

                                                                              Bedt
dp &ρ=  

 

where dt
dBB =& . 

PHASE STABILITY

43



Since generally the revolution period, T , and the momentum gained per turn, , are 
rather small quantities one can approximate as follows: 

r ( )turnp∆

 

( ) v
BReTBep rturn
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& ρπρ 2=≈∆  

 
where  is the particle velocity. v
 

 Since: 
pvE ∆=∆  

 
one gets the relationship between the required synchronous phase and the ramping rate of the magnetic 
field: 
 

sVBR φπρ sinˆ2 =&  
 

which can be fulfilled if V is sufficiently large. ˆ

Let’s also mention that since, in general, the synchronism requires a constant phase sφ  at each 
turn, the RF frequency needs to be an integer multiple of the revolution frequency ( rRF hωω =  ). In 
practice the RF frequency needs to be varied to follow the increase of the particle velocity. However in 
the case of electrons ,which are ultra-relativistic, their velocity will remain constant ( ) during the 
energy ramping and consequently the RF frequency will be kept constant. 

cv =

3.2   Dispersion effects due to the bending magnets 

Since bending magnets, like spectrometers, will analyze particle energies, any particle which is 
slightly shifted in energy (or momentum) with respect to the reference particle will perform a different 
orbit. Fig. 3, though the sketch is very rough, is intended to show the change in circumference due to 
an energy deviation. 

 

 

It is usual to introduce two parameters to describe the 
dispersion effects. The “momentum compaction factor” 
gives, to first order, the relative change in the 
circumference due to a relative momentum deviation: 
  

dp
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R
p=α  

 
while the parameter “η ” gives the corresponding 
relative change in the revolution frequency, which takes 
also account of the change in velocity: 
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f
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Fig. 3 Orbit versus energy  

 

3.2.1  Momentum compaction 
 
Consider two particles, with different energies, going through a bending magnet as shown on Fig. 4. 
To a momentum deviation corresponds an orbit shifted by an amount  in the plane of 
curvature. The corresponding relative change in path length is: 

dp )( 0sx
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Integrating over the whole circumference gives: 
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leading to: 
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where the subscript « m  » tells that the integral is 
performed only in the bending magnets where ρ is finite.
Introducing the dispersion function  , property of the 
lattice arrangement: 

xD
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Fig. 4 Orbits  in bending magnets 

 
 
 
the momentum compaction simply becomes: 
 

R
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3.2.2  Revolution frequency versus momentum 
 

Since R
cfr π

β
2=  , with c

v=β , a relative change in the revolution frequency can be expressed as: 
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Expressing the momentum: 
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one gets for its relative change: 
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and finally: 
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From the definition of the parameter η  one gets: 
 

αγη −= 2
1  

 
showing that there is an energy, called “transition energy”, for which the synchrotron gets isochronous 
( 0=η ): 
 

α
γ 1=tr  

 

3.3   Phase stability in an electron synchrotron 

Since in an electron synchrotron γ  is generally very large, one can easily assume that αη −≈ . Since 
all operating electron synchrotrons have a positive momentum compaction they do have η  < 0  and so 
they stand above transition energy. 
 

In such conditions a small positive momentum deviation ( > 0 ) will be followed by a small 
negative revolution frequency change ( < 0 ), or in other words by a longer revolution time. This is 
explained by the fact that the velocity of the particle is no longer depending on the energy ( 

dp

rdf
cv ≈ ) 

and then the revolution time only depends on the circumference, which indeed gets longer for a small 
increase in energy. 
 

Back to Fig. 1, if P1 still represents a synchronous particle for the synchrotron, then particle M1 
which arrives later in the cavity will have a higher energy gain, hence a longer revolution period, and 
will be delayed even more with respect to the reference particle; as for particle N1, a similar story will 
happen and it will get more and more deviated from P1 as they travel around the synchrotron. Clearly 
P1 has become an unstable reference point. 
 

It is straightforward to demonstrate that the reverse process will occur around P2 , which turns 
out to be the stable reference now. In other words the phase stability in an electron synchrotron is 
obtained on the negative slope of the RF signal. The stable synchronous phase has become sφπ − . 

4.     LONGITUDINAL DYNAMICS 

4.1   Energy and phase variables 

The RF acceleration process clearly emphasizes the correlation between the RF phase experienced by 
a particle and its energy gain. Since by definition there is a well defined synchronous particle which 
always feel the same RF phase at each turn, and which has the nominal energy, it is then sufficient to 
follow other particles with respect to that reference particle. Consequently, in what follows, one will 
make use of reduced variables: 
 

Revolution frequency:      rsrr fff −=∆  
                                                  Particle RF phase:            sφφφ −=∆  
                                                  Particle momentum :        sppp −=∆  

Particle energy :               sEEE −=∆  
                                                  Azimuthal angle :             sθθθ −=∆  
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4.2 First energy-phase equation 

The azimuthal variable θ  ( Fig. 5 ) is defined such that θRdds =0 , where  is the position along 
the nominal circumference 

0s
Rπ2
r

, no matter if the synchrotron is a pure circle or not. Introducing the 
angular revolution frequency rfπω 2= , one can write:  
                                                                                                 ∫= dtrωθ  

 
 
  
 
 

Since in the electron case ( ): cv ≈

Assuming the RF frequency is an integer multiple of the revolution 
frequency, rsRF hωω = , h being the harmonic number, then the RF 
phase will rotate h times faster than the azimuthal angle. Distance 
between two particles can now be either expressed through one or 
another variable: 
 

θφ ∆−=∆ h  
 
where the – sign just shows that a particle behind ( 0<∆θ ) arrives 
later in the cavity ( 0>∆φ ). For any particle with respect to the 
reference, one can write: 
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Fig. 5 Azimuthal variable 
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one gets a first order differential equation that relates the relative energy deviation to the time 
derivative of the phase deviation:  
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knowing that the synchronous phase is a constant. 

4.3   Second energy-phase equation 

The energy gained by a particle at each turn is , and when compare to the reference’s one it 
becomes: 

φsinV̂e

 
( ) ( )sturn VeE φφ sinsinˆ −=∆  

 
The rate of relative energy gain can be approximated to first order: 
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cfEdt
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leading to the second first order differential equation that relates the time derivative of the relative 
energy deviation to the phase deviation: 
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where it is assumed that is either constant or slow varying. sE

Note that in the case of an electron synchrotron the synchronous phase will be always finite, to 
compensate for the energy losses due to synchrotron radiation, even if is kept constant ( ). sE 0=B&

4.4   Small amplitude oscillations 

Considering small phase deviations from the reference particle one can expand the 
trigonometric function in the previous differential equation: 
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By differentiating the first energy-phase equation one gets: 
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keeping in mind that ( ) φφ &&=∆2

2

dt
d  since sφ  is constant. Combining the above two equations leads to 

a second order equation for the phase motion: 
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Provided  is a real and positive number the equation will describe a simple harmonic 

oscillation. Since 

2
sΩ
α  is positive, a stable oscillation needs cos 0<sφ , which corresponds to the 

negative slope of the RF signal ( πφπ << s2 ), as already mentioned before. Note that sin 0>sφ  is 

the choice previously made for having an  acceleration. 

Since the first derivative of the phase is proportional to the energy , the energy will oscillate 

around the nominal one  with a 2
π  phase difference as compared to the phase oscillation. In other 

words, when the phase deviation is at maximum the energy deviation is zero and vice versa. 

4.5   Large amplitude oscillations 

For large phase deviations the second order equation is non linear: 
 

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&&  

 
Multiplying by  and integrating leads to an invariant of the motion: φ&
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which, for small phase deviations, reduces to the quadratic form: 
 

( ) Is =∆Ω+ 22
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2
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Since 
sE
E∆∝φ& , the invariant represents a closed trajectory in the phase space (

sE
E∆∆ ,φ ). These 

trajectories are ellipses for the small amplitude case but they change shape as the amplitude gets larger 
and need to be numerically calculated. The corresponding curves, also known as Bohm and Foldy 

diagram [3], with normalized variables ( φφ ,
sΩ
&

 ), are shown on Fig. 6 for the particular case 

0150=sφ . 
 

 
 

 
 

Fig. 6 Bohm & Foldy Diagram 

 
In the second order equation of phase motion it can be seen that when the phase φ  reaches the 

value sφπ − , the driving force goes to zero and beyond it changes sign and become a defocusing type 
force. 

Hence sφπ −  represents an extreme amplitude for stable motion and the corresponding curve in 
the phase space is called the separatrix ( the outer curve on Fig. 6 ). Inside the area described by the 
separatrix the trajectories are closed curves. Outside they slip in phase showing that particles get out of 
synchronism ( Fig. 7 ) and in practice will be lost. 

 
The equation of the separatrix is simply obtained by injecting one known point of the curve into 

the general equation to find the corresponding value of the invariant. This point is ( sφπ −,0  ) 
leading to: 
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where the right hand side represent the maximum value of the invariant for stable oscillations. The 
second value mφ , where the separatrix crosses the horizontal axis is obtained by solving the 
trigonometric equation: 
 

( ) ( ) ssssmm φφπφπφφφ sincossincos −+−=+  
 

4.6   Energy acceptance 

From the equation of motion it is seen that  reaches a maximum when , which corresponds to φ& 0=φ&&

sφφ = . Introducing this value into the equation of the separatrix gives: 
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Using the first energy-phase equation gives the maximum acceptable energy deviation: 
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This “RF acceptance” strongly depends on sφ  and plays an important role for the electron 

capture at injection and for the beam lifetime. 
 
Fig 7 shows, for an electron synchrotron, the drastic reduction of the stable area when sφ  

approaches the value 2
π . This fact can be understood from the slope of the RF signal which vanishes 

at 2
π  and no restoring force is then available for stable oscillations. 

 
Note that the vertical coordinate which is shown on Fig. 7 has the following meaning: 

 

rs

EW ωπ ∆= 2  

 
and is often used in the literature.  
 

The stable area  limited by the separatrix is often called “bucket” and is maximum for πφ =s , 
which corresponds to no acceleration. However, such a case does not happen in an electron 
synchrotron since particles radiate part of their energy at each turn, while going through the bending 
magnets, which is automatically compensated by the RF system. The synchronous particle in this case 
is the one which enters the cavity at an RF phase which provides the necessary energy gain to 
compensate for the loss per turn. The above treatment remains valid for any other particles. 

 
The height of the bucket increases with increasing RF voltage, which allows the capture of 

larger energy spread from injected bunches. 
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The bucket also shows the phase extension of captured particles (bunch) and there will be h 
such bunches, equally spaced, circulating around the synchrotron. The distance between bunches equal 
the RF wavelength. 
 
 

 
 
 
 

Fig 7 RF acceptance versus synchronous phase angle  

 

5.     FROM SYNCHROTRON TO LINAC 

In an electron linac there are no bending magnets, hence there are no dispersion effects and 0=α . 
Provided the accelerating cavities are periodically spaced to fulfill the synchronism condition, the 
longitudinal dynamics treatment remains valid and one ends up with a phase oscillation frequency 

. In other words the distance in phase between particles is frozen, while the energy increases, 
which is simply due to a frozen velocity v

0=Ωs

c= . 
 

In an ultra-relativistic electron linac it is then important to concentrate the injected bunches on 
the crest of the RF signal such that all particles will get the same energy. 

 
However at small kinetic energies, where v c≠ , which is the case for heavier particles 

(protons, ions) or electrons generated at the gun voltage, the term 2
1
γ which appears in the definition 

of the η  parameter, can not be neglected anymore. Then, phase and energy oscillations will exist with 

γ −
2
3

∝Ωs  (neglecting the contribution from c
v=β ). Note that in a linac the distance between 

accelerating gaps will be mostly equal to an RF wavelength, which is more efficient, and then h=1. 
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6. ADIABATIC DAMPING 

Though there are many physical processes that can damp the longitudinal oscillations, one of them 
appears to be directly generated by the acceleration process itself. It will happen in the electron 
synchrotron when ramping from injection energy to operating energy, but not in the ultra-relativistic 
linac. 
 

As a matter of fact when  varies with time, one needs to be more careful when combining the 
two first order energy-phase equations into one second order equation: 

sE
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which after dividing by : sE
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shows the existence of a damping coefficient proportional to the energy ramping rate and from the 
formula giving the angular oscillation frequency one has: 
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This shows that the phase amplitude of the oscillation will be damped during acceleration, and 

the bunch length will be reduced provided all other parameters remain untouched.  
 

Considering an adiabatic ramping, which means slow enough compared to the longitudinal 
oscillation period, it can be shown that the area in the phase space remains constant which finally tells 
that the bunch energy spread will grow during acceleration, but not the relative energy spread. 

  
However this adiabatic damping of the longitudinal oscillations can hardly compete with the 

radiation damping that is generated by the synchrotron radiation in electron synchrotrons. 
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