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ABSTRACT '

. 2 2

The dependence of the counterterms ER and \@—'Rrv on
gauge parameters is calculated in the one-loop approximetion in

pure quantum gravity. Gauges sre found in which these counter-
terms are absent, i.e. the theory is finite evem off shell. The
role of classical equations of wotion and possible appliocations
of our method to other theories and, in partioular, to supergra-
vity sre digoussed.



In recent years investigations in quantum gravity and
supergravity [1] have been carried out mainly in the framework
of the baockground method of Ds Witt [2-6] However some theore-
tical questions connected with this method, in particular, a
complete renorwmalisation procedure and the role of classical
equations of wotion, have not been thoroughly investigated.
These questions become very important now in connection with
the investigation of ronorﬁnubuity {or non-renormalizadbi-
11ty), of gravity and supergravity. For example, 't Hooft and
Veltwan [ 4] have ahown that in the background method the one-
loop divergences of the S-matrix of pure gravity can be remove
ed since the divergences vanish on the classicul eguations of
motion (this weans, that pure gravity in the one-lcop approxiuma-
tion is finite on wass shell). These one-loop divergsnces can
be rewoved also by a somewhat ﬁnuuul renorsalization of met-
rie 9'“98_’”1"8 (oLRw+63W R ). The corresponding proce-
dure of eliminating divergsnces, which vanish on the equations
of motion, in higher spproximatiomphas not been investigated
in detail. Nevertheless ususlly it is supposed that th diver-
genoes,which vanish on the equations of motion.are irréelevant,
and for this reamon in the investigation of supergravity in the
om-,tvo-nad three-loop approximation these diversnneu have
not been amalyszed at nl:l..gin this connection we would like
$0 suphasise a upecial aspect of counterterms which vanish on
the equations of motion - their dipondonco on gauge conditions,
which makes it possible %0 choose gauges where the corresponding

divergences are absent gven off whdll. The simplest example is
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quantum electrodynamics where the counterterm Z (PJ D (p
vanishes on the equation of motion and Z4 is ;auge—dopandant.
As is known in the lowest approximetion in the transverse gau-
ge Z4’: Z;,Ffl . One can show also that in each order of
perturbation theory & gauge can be found where Z., = {1, At the
game time the chﬁrga renormalization '1/27 QZF’—A}? is gauge~inva=
riant since the corresponding counterterm does not vanish on
the equations of motion.

The dependence of the background functional\W on gauge
has been investigated in refs. [5.6] . In the VYang-Mille
vector field theory the counterterm X | v , that does
not vanish on the equations of wotion, turned out to be gauge-
independent, while the counterterm _D ,“v Hv: 8;,/} Af" e
which vanish on the equations of motion in background gauges
does not appear due to gauge invariance. In quantum gravity :l.n
the one-loop approximation two counterterms Fg_ R lhd
Fg R’M [4] are possible from general covariance and
on dimensional grounds, and they both vanish on the squations
of motion S;/\Wz r(RW i gf‘v R)-O since they nu be

represented in the form —S”"yg LR ama S IA(RP 3 R
respectively. Prom the results of tot. [5] (eq. (3. 13))11:

follows that every counterterm which vanishes on the equations
of mwotion ims not, in general, gauge-invariant. Therefore, when
beginning this work)we expected to find gauge dependence in
the abovementioned counterterms. It was not olear, howsvey,
whether this dependence is nontrivial enough to remove both

these divergences in mome gauges.

The present paper iw thus aimed at investigeting the

»



-4 -

dependence of W-functional on gauge parameters in pure gra-
vity x). This requires cumbersome calculations. In all pre-
vious calculations with internal Kravitgésggbpagatozl were
‘taken in the simplest forwm, in the Feynman gauge. In this
case one can use the 't Hooft-Veltmar algorithuw {4] +When
the~geugeAparametezs, that define the graviton propagator,
chenge, the problem becomes technically more complicated. The-
refore we do not perform direct calculations of the diagrame
for W in an arbitrary gauge. In one of the diagrams e.g.
there are approximately 3.10° terms. A roundabout way is to
calculate the variation W at infinitely msmall change of gau-
ge parameters. The corresponding diagrams are much simpler
and can be calculated in arbitrary gauge. The variations ob~-
tained can be integrated, and counterterms in an arbitrary
gauge can be determined with the aid of a boundasry condition-
cllculation in the Feynwan gauge [4] .

The paper is organized as follows, Section 2 gives the
regult of calculation of counterterms in an arbitrary gauge.
This repult is analysed, and the gauges are found where the
theory is tinite. Por the practical reader it is sufficient
to read this sec. and Conclusion. In mec.3 the method of

caloulations is presented and the general equatione for the

x) It has been shown in ref. [G} that a nontrivial dependence
‘on the gauge parameter connected with the scalar field exists
in counterterms of the background functional in the theory of
giavitonc interacting with the scalar field.
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variation of W under the change of gauge parameters are deri-
ved. In Sec.4 the results of calculations of separate diagrams
are aotained. In Conclusion the consequences of the result ob=-
tained in pure gravity are conn‘iﬂaﬂ'nd the question of appli-
cability of the approach suggested to other theories, and, in
particular,to supergravity is discussed. Appendix A presents
the Slavnov-Taylor identity in the background formalism. In
"Appendix B a variation of counterterms in pure gravity in a

2+ £ -dimensional space is calculated.

§ 2. The divergences-free gauges.

In this section we present the results of calculation of
the one-loop counterterms and obtain the gauges where the di-
vergenc-es are absent also off masas shell., The generating funce
tional of the Green functions in the background method in gra-
vity is equal to [2'6] (in the expression presented below the
tree approximation is abment);

SU(s) = expld WG] @
:fdxluv J‘i’f‘cfl; PQXPEZIS( G) 'S(S )'S:’W(S)Xry fj‘-’;ﬂwCMC,*wm@,G) Y’y]}

where 3’”:8}” +hl““’ is an external gravitationsl fielsa,
x vis a quantum field and ’

Sig= Qix'ﬁ}' R(9) | ‘ (2.2)
st (g)zS’”(g,;):?i%: R O
Cl‘": "I’E(Dv{a):zry + F‘Dﬁbﬁ "_Xm‘)

(2.4)
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To¥'=F(3 %+ s DN, i, B0y

(2.5)
= +
Grv g,wv ZerY (2.6)
l}ov are ghost particles, the arrow above the derivatives

means that they aot on all the funoctions to the right of them,
In order to obtain S-matrix elemeunte with the aid of

(2.1) bne should take the extsrual field Juy satisfying

the olassical equations of motion,

‘ It is easily seen [2"6] that SZ(Q) is invariant under

gaugs transformations of the external field )

L I G ™ (94D, )+, Dul9) B° (2.7)

where ¥ [X)  are infinitely small ooc-ordinate-dependent para-

metera of transfarmation, A sinplo oaloulation of the diver(onoy

index shows that all the diagrams of one+loop approximation di-

verge as A (where /\ is & cut-off), so that the counter~

terms must contain sero, second and fourth power of the momsntiuam,

We are inierested in divergences ocontaining an external field

only, Since they must be invariant under gauge transformations

(2.7) they osn be represented in the foru

28, =g (c+dR+a(R2+2Rp)+ 4R}, ) c20)

whers C diverge as A", d ~ Quadraticslly, Q aend £ -
logarithmically,. We . shall use dimensional regularigation, A%
auoh a regularization C=d =0 o Therefore the divergen-
ces have the following structure
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-€\! gfﬂ(ﬁ +] Rr\er ) gRF‘VRW] (2.9)

T u-—ﬂ-)
The calculation dsmcribed in the next two Seotions gives the

f«:ullowing valaes for the coeffieien’ca a end 6’ :
A L

a =

a= zmg&(ifg»V "ﬂ o\{gq 4_+F’)“ " 24 4«15)5 g (2.10)
fweg’» GJ i?a(np)‘f %(M)’ 5(+f’)2 2(4+§=l "is

f“ By 3~~ (2.11)
£s 12 (4 h))z U )

The condition of the absence of divergenc.eg gives two equs-

tions for O and l;?f :

a=0, b=0 (2.12)

These equations have 6 solutions (the first four solutions

were found numerically):

By (4,63 ;ﬁx Q%8
Nq- __4_-_,.« £
@ 1,05, o(,_"' 5911

= i :-é.: 3%/ (2.13)
{;556 00}7 0(5-)9 3 i‘\%L o

The first two solutions are exsotly real (bave no imaginary
part), The next four solutions correspond te complex values
of the gauge parameters, The use of complex gauge parameters
is possible, in principle , since on one hand even at real

values of .gauge parameters an effective motion (st ths expo-

nent in expression (2.1)) is not Hermitian, and on the other



hand physioal quantities do not depend on the value of gauge
parameters., The use of complex gauge parameters could lead to
diffioculties if particle masses depended on gauge parameters
(as is the case with s spontaneous breaking of gauge symmetry),
But this is not so in the considered case, and the use of
complex values of the parameters O and F entails no diffi-
culties, An exigent reader may restrict himself tc the first
two real solutions,

Thus, in the background method in pure gravity (2.1) in
the gauge desoribed by the gauge function (2.4) and by the
values of the parameters (2.13) one-loop divergences are ab-

gent even off shell,

$ 3. General equations for §f2

Here we obtain an expression for derivative of the diver-
gences over the gauge parameters, The precedure used here can
be applied to arbitrary gauge theories,

.As hag been mentioned in Sec.? it turned out to be easier
not to oaloulate direotly the diagram divergences but *o cal-
oulate the derivatives of these diagrams with reapect to gauge
? ametera. This is connected with the faot that under varia-
1%8: gt :g: §:§§;a:f:gigﬁztfg§a?5? oontaines a gauge func-
tion C,n . T™le Green functions containing Cf“ are conneoted
by.tho Slavnov~Taylor identity with the Green funotions of
ghost particles whose oaloulation is muoh esSier, The equation
for the variation of X with a change of gauge ocnditions was
obtained in Ref, [5] and bas the form (in application %o

gravity)
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T/ R Nz
BRI CAY AN E L)

ol xje fvgg ‘}\U,‘“‘“"' l"i[(f 'u fgu KM dC ‘j)} (3,1)

It’
'l«g i

The Wwackete in (2. “'} imply functional averaging with

rd
{
) g Zf o o |
the weight exp ( 5 eff), where De-ﬁ is the expression
in the exponent of eq. (2.1); and summetion (integration)

over the repesiing indices ¢ cocrdinates) is meant, The D-func-
tien in {3.1} ie cownected wiih the Green functicn of ghost

pertioles by the relation

4Py (3;) 1< 1) y RRTE) (3.2)

and is equal to L 7;5:{' H
- &8 ¥ ¥ (312')

Bquation (3.1) was obtained in Ref, [5] by mesns of a ohange
of variables r2] in the functional integral

. (i L 0 2 wGA
%, 000,60 (G D, (G Gy D), iy D™ Gl

and the oarresponding change in Y , ;x; . Appendix A oontains
the derivation of relatioa (3.7) based on the use of the Slay~
nov-Taylor identities. The analysis of eq. (3.1).shows that
in the one-loop approximation on dimensional grounds and from
t-neral covariance the contribution into the diverging part
has the form

<345x,~~v\)d; L (‘*akrv ta, Sf“' F\> (3.8)

rLl
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Now we shall take into account that the action S(Q} is gauge-
invariant (i,e, the covariant derivative of S:‘/wis zero) and ‘
that we calculate in the onse-loop approximation, This means

that in the function \DAS one can take (), ~ g/‘”"' The
expression (3,1) for the variation 8/9_ is x’ww simplified

$9=-i 5"l D" 3735")3)«35:2»*‘” )34 (3.5)

The arrow above the derivative in (3.5) implies that it acts
A€

on the fungyion :D . The variation of the parameter 35 cor-

responde to the following variation of the gauge function

§Cs=- 583 0(9"" 2,) o (3.6)

We obtain

39_ ‘LS’r@#)DA (3:9%1) 909 )((iayx 3%t (9‘&;36*5@923.7)

The variation of the parameter & oorresponds to the varia-

$ion SJCx N
o
5’C5=‘2-°TCG I

Id this case in expression (3.5) one ocan use the ‘Slavnov-Tay-
lor identity onoe again, Finally we ocme to the following
oqnations. ‘

n S,r (g X S;ry(&‘ D (3)%%‘3)3 (3’9, 75) (3.9
g ‘4(4) -
xﬁ")gss,(\g)((ﬁyx (ﬂ)+'\ " y))i (X)+b,‘3€ e )>

4, Sar'(g x)[(S‘ 8"+$ 5 )b D (57%7 v‘é)w_)gge(‘s)m (Mt
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45 ) X
r3, 4. D G ge8)+ ) (3,33%4) %)3;,48’%(2 Gpa® 4+
+ Bdffwrx;)l)d{“(gvg;x,g»]

To perform the one-loop caloulations it ia sufficlent to know,
the graviton Green function < ?K,“ E.6) that appears
in eqs. (3.7) (3.9) in the tree approximation.

It is easily seen that the divergences in expressions
(3.7) and (3.9) are direotly connected with the divergences
of the initial expression (2,1). Indeed, let us represent the
result of the oaloulation of Sl in the one-loop approximmtion
in the form

Q =e W, =e £ We LAS Gy (3.10)
) :

where WR is a finite function and all the divergences are

included into AS,QV « Then in the one-loop approximation
§9,=08W, =i[§¥Wp +5(a84,)] (3.11)

Expression (3.11) shows that the one-locp divergences in (3.7)

and (3.9) coingide with the derivatives with reapsot to P

and A of one-loop divergences of the funotional .9_ .

Further simplifioation of eqs. (3.7) and (3.9) iz made
with the help of the following considerations, Since an exact
structure of the divergences is known (sea (2.9)), it is suffi-
clent to caloulate (3.7) and (3.9) only.to the acouracy of the
second-order terms in h v and the fourth-order terms in de~
rivatives., Then the structure of eq. (2.9) is re-established
by these terms unambiguously ,Since S;N is already of the
first order of magnitude in 3bh s 1t ia only the term of
the form @dh  that is to be caloulated in the factor befors
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G sne 21zt term in (3.9) contatns S two
times, Therefors, in the remaining quantities in this term
one can put gf'w: /Lw « Purther on, to re-establish
both structures in (3.4) it is sufficient tc oconsider the
transverse extermal field ( ar k v= 0 ) alone, and one oan
use the conditton Jp gir'='p which is valid in the
given approximation with reppect to k,’,,. The exact expres~
sion for divergences is re-estabiisghed with the help of the
following corrsspondence rules:

v/as;‘v&{*g ‘)S ns_ (QR 1_@ )

(3.12)
Y . C \ - z
G ukrya-ﬁéisnkmi)»ﬁ(—(me)(i+2&RPVR'N)

§ 4. The caloulations.

How we are in s position to present some details of thc
salonlations ef bgl’/écﬂ \ (3.7) and ;.’I% (3.9) 1in the
lowest order approximstion with rupcot to the sxterfdl field,
¥e use here only lower indices, ropntod ones implying Lo-
rents summation (81 f““ —e= ‘)) « In this spproxime-~
ticn we baves

bf% Saf‘ (3 X)Sﬂ" (3’ ‘)D 61,‘-5)])“‘ -g)x
) o (ko)
(x-x%') ~

X "'2)15).6 +b S'yg)( Za Ibt\"l Jg E;J‘,‘) Hr‘ r ¥
, 4 I TR
- 5'323"‘(g,x)[ﬂ‘(ﬁ-i)l)“(x-z)ixb,krvtx) B, ey s
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2h ,)V{B)))r\av Dxes(x 8- D6 Z)),,‘}V:D (x—Z)]

) x)iﬂ,& ? Fu-zw 2 [(Sh @B k“cz) z)]

_fé‘ X~ ;)‘ i(’k(zﬁ\g n ))Hr'(;(gli’ 2)1) “)E)JFHM»("Z)‘

_‘]3 52,y H JBrdd, ) e 'BH mz)bV
A , (4.2)
t D (X Z}J H X,E}b 5 D ?hl Z)) \\.. (E)Hr“ (;;Z)“

(o
_4 fDdF(X'-Z)b?kx (znde’“x z)}

In egs. (4,71) snd (k.z)qtho following notations are slso used.

mean two first terms of the ex-

and “?

qu .
pension of the funotion P in the degrees
of l‘\.

D (39% 73) a )T 1) %“l ) - (Ae3)
N ‘Pf* a4y Rl 2ped
‘(ex"j) (27 )‘f&‘ 3‘? PZ i(i+?)) (8.4)

%’ (i.j):~3) » rzi)Q“(zL)zz) (z;’;;) i a8y
Nupf2nta)= (3 g8+ Sl b )+

(r%)‘w&"p”pkrd bﬁkr” ),‘\xd?)w

PP +(§+g.)a?k“aq+ ehbﬁk,,,]z‘r(z,-zz)

(4.6)
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{0}
@ Dd'p “) coinoides with the free ghost propagator,
[ and H,«v A6 are two firet terms of the expansion
of the graviton Green function |i . (XY= (’X,M(l) X< (3)>
caloulated in the tree approximtioxx. In this approximstion

the funotion H Wy AS is equal to:

5 9/ \ 4,7
Hr“s’“ [M T ba q )Lr& )
We have [¢1]
Hf"v xs( \3)"" H VAG( 3, Hr\v,as(x’g)
N oA g

ol G
B et ok -
2 MZQ( 1+ ,9_ 3 uzgs) PPPE]
(1+p) -2/ pH (4.9)
(In (2.9)0R is tha space~-time dunonaion).
{4)
{x- zi)Q,( “.(Z,,Zz)H (2~ d
H’Av mﬁ\ H y ,{? ? X?XS (410

Quuncl 202 :[- (8’ vullmﬁr&pkr,*ff{,‘vb})& Lu+é‘mar D hg)
qs‘r,gsuh“ 25080y~ Bon Thy =B ddechy ¢
((d?"‘)g ﬁVF vzr“'yrx%;‘m*“ e vu&gé"@. 25 s ap*
« 7§ Dbyt (LIRS R s
« 40 ,,?; ”SNHP?,F Dt D5 * B ar Syl
+ yagaliele)- (g g g 20 F S e 29
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+(a\5—-)3'“'g g +o(f: H)gt'g g P d?@ §(z,-2)

Further transformations in expresaion (4.11) were oar-
ried out with the help of a computer. Besides, the tcru. is
QI’V")‘G which differ in the order of the. indioces r
and Y (aud also A and § ) are considered as being
equal sinée the vertex 0!"3“{ is multiplied on his right
and left by the propagator h(wh:boh is symmetric under the
trangpogition of these indices, '

As 1t follows from eq's (4.1), (4.4), (4.9) the depen-
dence of W, on @ 15 simple and ocan be determined without
any calculations: ’

%\gé-z ot"s + 30(2 .
Now we shall represent all the terms in the form of the Feyuman
diagrams, Por bW l)d ae have:

4SS e )qfx-a)l). ~wézb,élx* e PR

) x(-20 'u'* ‘ 'K’)H)\!S g
Iz géf_ o Y 3,()]) - g)D fx- z)b h,rW(Z) (8.13)

; = —LzS”A(Q,X)D (x- ’-)3 ) D ""Z)l"um RIS
IN - S’P D (x- 3)3 b]) (x-z)}\,"(z) (A.13)

(‘*‘ S’Y‘(g, D (x’Z)b ) ]) (" -2) (16)

JWL/)% look; as followa:
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1570, Ry B

P (ha17)

I‘P Sigad -2l [ 225 *hwz)a 7]

(s.18)
@ il x-2) .
Iy=-2 gt (ﬂa")‘) D(“a("’z)pr,w e (4.19)
(®)__spv Ml o2
I" =~ & (gyXlDdf,(" )2)d, p p S (4.20)
: ) ~ (o) S
=959, 3 o e 7% (420
T gD, - z)LH D (t.22)
(9) A qip -z
4 (8,"’b (x-; )bH B0 by (2) (h3)
( ) ( ) (%)
. 'Sm@, X9, D o Z)H (E phas (.28

The corresponding diagrams are shown _ﬂ.n the figures

1-6 and the results of caloulations are given in the tables

3+111, Por am’h apcording to the table 1 T (;‘) ia
oqual to
E[W R 32»8(:+P)’ ) F3RuR" (154 : 2‘;;‘})]

Pig.1 . Fig.2
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W
Pig.5 rig. 6
(A
Fig.1 corresponds to the expression 1

4 9 Tige2 =~ %o
oy 1f
” y Tig, 3-to&’ 5,‘5)1’15. 8 - to i
1‘;‘, 1‘;),15, r1g,5 - t0 Iy , L7, t1g.6 - to TP

i
T, Purthermore, the following designations are used:

wmy
Fasmoonin | S ? r‘

-~

o o) fu(
-J-“) 1( . )

10)

— ;p » the propagator of the fiotitious particles
@ v tadcd s parss

A H s the graviton propagator
PO the field L’.v s whioch either appears oxpuott],y
in diagrams or is contained in the vertices

st or Qrﬂv,l;’v
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We remind that we are interested only in the divergent
parts of the terms which are proportional to bb‘L and
we used the conditions 3,4 Lrv = )}M ghﬁ"v»; O . The
desigoation ~o> in the eq's (#.12)~(4.24) indicates that
we used the ourraspondance rules (3,12). ,

a) T“” T p) I(p)

The ddagramma .1. 4 were calcu-

(%} MP (l £-3]
lated directly. The disgrgmus B I Ié ? were

caloulated with the haxp/ha computar z) in the tranerork of

dimengional regularization with use of eguations:

U_ ¢ }-i”_‘__”___ ) :L - u:F dfﬁ )[7{;0 +§- a){’[ K{u

¢ (?2) [(P dh):}&’ - rm,{} P(F) ﬂ[ﬁ/{_‘_’d 5) (ﬁ)ﬂ“‘b Thy,
5 ) N k/’

A PR iem” }

(e :;35}? ?E@Tﬁ“w/z Fra) idff ) 17"(n+2"°“ ?) (4.26)
XEH‘”?“ (% 2 o) gl *
/s wrp- l_w.“ ( +H-¥ f"{-+1 g)x 3!,\” X

eta. =
Thue we obtaln the following equations for the ome-~iocop di~
vergences;

{427)

%) %ne saleulations were perfoimed ty mesns of some modifiga~

tion of Veltmen's aigetrsic manipulation program Sohocnechip
¢a Dubna oomputer,
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A simple integration of these equations gives:

A SJLV £ FQ[RZ\OLG C1> + Rt‘v Rl‘v(:wfé t L‘)

(5.28)

where C; and C, are the integration constante inde-
pendent on o and s& s O and g are given by the eq's
(2.10)y (2,11)s For the determination of C, and C, we
compare the result obtained above with the expresesion for
A Sdiy obtained by % Hooft and Veltman 2] in the
gauge o(-—1,§>--1/2: - .
L
0S| zel )

d‘.'.i,F:-ilz (h.29)

The oo warison of the eq's (4.29) and (4.28) gives (=G, =0
and we obtain finally the expression (2.9) for the 4 S¢.ye




CONCLUSION

Thuw, our paper presents an efficient way of rewoving
divergences of the type S:’K'Y-K in arbitrary gauge theories.
This method is based on the use of the fact that under a change
of the gauge conditions a variation of the background~functio-
nel W takes the form [5]‘ . S;K<S¢2,2 This wakes it possible
in the cames where a sufficienty large number of gauge parame-
ters do exiet to choome gauges where the abovementioned di-
vergences are sbsent,

The following useful methodical conclusion can be drawn
from thim work. In gauge theorilem it is sometimes neceesary to
calculate in arbitrary gauges. In the background functional
it is more convenient to caloulate the necessary quantities
in the simplest gauge only, (e.g. in the Peynman gauge) instead
of performing caloulations in an arbitrary one. Then one wust
caloulate the diagrams corresponding to the variation X‘W at
the change of the gauge parameters. These variations are easily
integrated ove oA and F' eto., end the calculation of W
in the -ﬂmple-t gauge is used as a boundary cundition. In this
oage (1) the structure of the result is known in advance,
(3.1) ii) the diagrams for variations S'W are much simplex
then the diagrame for W. and, 111) there exists an additional
control ovey the correctnsss of- the caloulations: from dm.nnt
diagraws for D«W/)d M)W/D% one wust obtain equivalent anse

wexs for those teyms in W(“\@ . that depend both
on o, end on ? .
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The main result of the present paper is that in the vne-~
leop approximation in pure quantum gravity such gaugea have
bxes &btained, im whiek tha thesry 4§ finite sven 8if Shall,
Thi- result gives sn additional explanationm of ths known resuit
of ‘t Hooft and Veltman [‘] that the sum of &1l the one-loop
radlative corrections to the S~matrix is finite. The proof at
thiw ststement is based on the fact that Q) and Q
vanish on the classical equations of wotiom., Altikough this proot
is quite correct, it is somewhat unusual, The present paper
shews that the finiteneas of the S-matrix follows from the fact
of the*eximtence of gauges in which counterterms are absent at
all, and both the Green functions and the S-matrix are finite.

One of the most 1ntoroltiﬁg analogs of this phenomenon
4 known to eximt in the theory of the Yang~Nills fields with
spontaneous symmetry breaking. In the unitary gauge this
theory is formally nonrenormalizable. However, it is well known,
that only renormalizable divergences remain on shell., Besides,
there exist some gauges (renormslizable gauges) in which the
theasy i» remormalismadle off shell too, The present paper sug-
gests something analogous. In pure gravity there exist mome
geauges in which there are no divergences not only on shell
(which is valid for any gauge) but also off shell,

We should emphasize that up to now no theory has been
mown in which ell the counterterus would vanish in some gawge
(even in the one-loop approximation).

Usually in all gauges there remain gauge-invariant physical
charge renorma}izqtionl. The corresponding divergences are not

K
of the type S’ NLK i.,e. they do not vanish on the equations
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of motion and must be rém;wved by standard wethods. And only
in pure gravity in the one-loop approximstion there are no
physical renormslizationas.

It is of interest now to diescuss the conclusions of the
present peper in connection with the arguments of Ref.[a]
concerning positiveness nf the contribution into
X.g( va—- % 5) and @ R?’ from various partice
les including gravitons. It seems to us that it is 8 wmisundere
standing analogous to the one which has existed before the
discovery of the asymptotical freedom in the Ynng-lulls theory.
Before this dimcovery it was believed that spectrality leads
to the zero-charge problem and to the ghost poles in the pro-
pagators.

It turned out, however, that in covariant gaugea in the
Yang-lﬁéllm theory the positiveness is lost due to the presence
of ghost particlea. It was iaportant also to understand that
the renormalization of the veotor field wave function im gauge-
dependent and, therefore, can acquire arbitrary values. SometRing
anslogous has happened in our case in which both ~ counter =
terns ﬁaia been made equal to szero by the choice of the gauge
parameters, though in the FPeynman gauge the dinrsancoi are
indeed positive, ‘

In comnection with the supergravity theories, investigated
intensively at the present tiwe Dvﬂwo should note the followe
ing.

If i% turns out indeéd, as it im expected now, that the

only countexterms which sre present in supergravity are of the
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type S;K¥K ["’ 7], it 18 quite possible that at a special
choice of gauge conditions the theory will be finite. Thus
we shall have a quantum gravitational theory which cannet be
renormalizable because of the dimensional coupling constent but
can be finite. The model of such a theoxry is described hsre
on the example of the one ~loop approximetion in the pure

gravity.
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Appendix A

In this Appendix Ward-Slavnov-Taylor identities are
derived in an arbitrary gauge theory in the background
gauge. We shall use the abatract notatious of De Witt [2'51

Let us consider the generating t\mo?:l.onal

; g - . b
L, )= [y i expli S0 -Sh)- 3, +

~ —p- WY Ny, ] (a.1)
AFPCLC, + T Tl O+ 152 ] |
Here h—,: 1s an external gauge field, X;- a quantum gauge

t101d, ¥ ana ‘y’" aro the ghost fields, GL- =h£* X, 9 S(h)
is an sction invarient under the gauge field transformations

ho=h, + RLr(k)S", Rzrc“) S=0 a.2)

S;Z(k)i~§,%' I (k) ,

(4.3)

where 3" are infinitesimal parameters of gauge transfor-
mations. The operators Rir\“‘)uo 1inear in h . Then, the

gauge "r\inction C_r‘ end the ppputoﬁ T[ay axe equal to
Cr\?— Rir(‘\—)xthx (‘.‘)

o (L\ylk '
Trv(k7c)" Rir‘(k)x v RKV(G) : (4.5)



- 28 -
Metric tensors ?IM and KLK are arbitrary and may be

k -dependent. They have the group transformation law sugges-
ted by the position of its indices. And, finally, UL is an
external source for the quantum field X[ .At Y20 the
functional (A.I) coincides with the background functioneI[2 gl.
After integrating over the ghost fielde we obtain

9‘“\—71) :5‘0'2 (’-xp{l'.[g(a):— S(h,)~ S"K:ygk +

Z (A.6)
+ —4’: K’AVC{ACV + nyK] +SPQ"'—— ’Irv(h‘rc)_5
In (A.6) we wake the substitution of variables
- v, -
2y 7 X *er\(G)D"‘ (h.,C)ﬁ” (A.T)
—~ YA _ A
T["V = gl" ? (A.8)

where :S-V is an infinitesimal function independent of the
rield K . as usual, it is proved that the variation of the
term Spem T is compensated by the tranaformation Jacobian[2
(1t is necessary here that the conditions RV’,. = 'S'”AV =0

be matisfied, whepe 5"” are the struc-
ture constants of the group; in the framework of dimensional
ioguluization it is sufficient to require that Rk/’\
and J)‘_f"” be local functions, i.e. depend on different co-or-
dinates only through the Sl-fnnctions and their derivatives
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of & finite-order). As a result we have
fp L . L [
<[, + (1 SR 0O=0  wm
or taking into account (A.2) '
-v‘w\ K. : "\V Y l‘,K 5 X yk c -_-0
Jiey "R BP0, § KRR @D the=0
where

0, 0 = Ry RURIWNES

(A.11)

:
Differentiating (A.9) with respect to U and setting then

'jk' O we have

"~y
” (f C ‘f, g
N >l’l =0 (A.12)

=Ry DMy 0) } + )R <ae)1)'"(u)ae>
1=0

The identity (A.12) was used in the derivation of (3.5) end
{(3.9). The following substitutions should be made heret
L (rV ) 51
vy
Br —-~ (X‘ 3) (xf ) x(ﬂ)
l 9Cem) 8 r) : - (4.13)

.x K. ‘{3(3}"'\8% gr ”*ZPQW AG) 5’()(““’ X(AQ)
Rt)g i H »bv 3“9 bgrv)g = (3rl:by(2) dnD ((3))
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where C/"‘ and —];W are given by expressions (2.4) and (2.5),
respectively., Let us show e.q. how (3.5) is derived. The va-
riation of (A.6) with respect to the metric (at J=0 )
equals to ‘

| ?S?.éf«dwcrycv)* (ST D)

(A.14)

where v
¢, =4 (T 07+ Ry 912

(A.15)

Since gcy 18 linear in £ one can use identity (A.12).

We have )
vQ =L §(hK ﬁK @)D" (h, ()3, -
(””‘) Tygrr - , (A.16)

- Ry BT Ry i I To D (1))

_ The last two terms in the right-hand side of (A,16) can~-
cel exactly, while the second term in the r.-h, side is not
essential for we, e,g8. in a dimensional regularization it is
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Ag a result we come to

0] =L KR " RGN

=0

Note that (A.17) can be obtained also after a change of variade
les (2.5) in (4.6) (at U=0 120 :
[ A RK'A(G)])PV(#L,C):S'C\'

(a.18)
Appendix B

In this Appendix gauge-dependence of the counterterm \fg—: R
is caloulated in the one~loop approximation in pure gquantum
gravity in the space-time dimension N =2+E  (in this oon-
nection see Ref, [9] Yo

Bquation (3.9) is valid in a space of any dimension. Near
two dimenmidna instead of (3.2) we have

. '<Xa(r">:;v ~a g

_ n-2 (2.1)
i.e.

3‘%:-;_&_2 S;'“grv =‘£,%E R '. (2.2)

To determins the variation of counterterms proportiomal to
$/(n-2) one wust in (B.1) caloulate the terms, containing (YL-ZY.
In this case wewust find, as follows from (B.2), the part of QL,
which is proportional to (h.'a)-i « Prom 0g.(3.9) it follows
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that in 3W/)d there are no such teru and in OW/)‘& such
terms appear due to the pole (h. ?) in the graviton
propagator. Por caloulations we shall use the fact that

94,“: s}nv + }‘/p\v and that by calculating the coefficient
in front of py we shall obtain the whole answer from general
covarisnce. It is sufficient to calculete a simple diagram ,
rig.7. '

(¢) ‘ (o) o
Ime) DWA S”M (89")[-23,])‘8(X-l)bsﬁr n®2)

- "Dﬂ\(x 2)3 a&" Hf\v A\ )]

=

Pig.T.

(B.3)

The result is
Wadiv o, 4 ( L

)? =-L -2 “_'?)3 (4__'_? >\)——R (B.4)

This expression is cilﬂy integrated over , and one can de~
toraine the values of f at which the counterterm 'JR 1s
absent. It is important that the calculations showed a nontri-
vial ? -dependence.
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