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A bstract

W e propose a com plete, new form alisn to com pute unam biguously B-m odel open
and closed am plitudes In local Calabi{Yau geom etries, including the m irrors of toric
m anifolds. The form alisn is based on the recursive solution of m atrix m odels recently
proposed by Eynard and O rantin. T he resulting am plitudes are non-perturbative in both
the closad and the open m oduli. T he form alisn can then be usad to study stringy phase
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m oduli gpace. W e develop the form alisn in general and provide an extensive num ber
of checks, including a test at the orbifold point of A, brations, where the am plitudes
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to predict the disk am plitude for the orbifold C3=75.
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A U seful conventions

1 Introduction

1.1 M otivation

Topological string theory isan im portant subsector of string theory w ith various physical
and m athem atical applications, which has been extensively investigated since it was
rst formulated. This has led to m any di erent ways of com puting topological string



am plitudes, based very often on string dualities. T opological strings com e In two types,
the A -m odel and the B-m odel, which are related by m irror symm etry. The A -m odel
provides a physical form ulation of G rom ov{W itten theory, while the B-m odel is deeply
related to the theory of deform ation of com plex structures. Both m odels have an open
sector w hose boundary conditions are set by topological D boranes.

Them ain advantage of the B-m odel is that its results are exact in the com plex m oduli
(ie. they include all ° corrections), which m akes it possible to study various aspects
of stringy geom etry not easily accessble in the A -m odel. O ne can in particular obtain
results for the am plitudes far from the large radius lim it, around non-geom etric phases
such as orbifold or conifold points.

Sphere and disk am plitudes are given by holom ophic integrals in the B-m odel geom —
etry. In particular, sphere am plitudes are determ ined by period integrals over cycles;
thosewere rst calculated for the quintic Calabi{Yau threefold in [17]. For non-com pact
CalabiY au threefolds, the m irror geom etry basically reduces to a R iem ann surface, and
the disk am plitudes are given by chain integrals directly related to the AbelJacobim ap
d,15]. Note that disk am plitudes ending on the real quintic inside the quintic threefold
have also been calculated [44l], using a generalization of the A belJacobim ap 27].

In contrast, B-m odel am plitudes A}(lg) at genus g and w ith h holes, on worldsheets
with < 1,have an anom alous, non-holom orphic dependence on the com plex m oduli
which is captured by the holom orphic anom aly equations. These were rst form ulated
In the closed sector in [12], and have been recently extended to the open sector in
various circum stances 24,145,/14]. T he holom orphic anom aly equations can be solved
to determ ine the am plitudes, up to an a priori unknown holom orphic section over the
m oduli space | the so called holom orphic am biguity | which puts severe restrictions
on thelr e ectiveness. M odular invardiance of the am plitudes com pletely govems the
non-holom orphic term s In the am plitudes [49,132,111,133,124]] and reduces the problem of

xing the holom orphic am biguity to a nite set of data for a given g and h. R ecently,
boundary conditions have been found in the closed sector [32] (the so<called conifold
gap condition and regularity at orbifold point) which fully x these data in m any local
geom etrdes (like the Selberg{W itten geom etry or localP?) [32,/28]. In the com pact case
they allow to calculate closed string am plitudes to high, but nite genus (for exam ple,
g= 51 for the quintic) [33].

For open string am plitudes the situation is worse: appropriate boundary conditions
are not known, and the constraints com ing from m odularity are m uch weaker. Tn fact,



it is not known how to supplem ent the holom orphic anom aly equations w ith su cient
conditions in order to x the open string am plitudes

In view of this, it is very im portant to have an approach to the B-m odel that goes
beyond the fram ework of the holom orphic anom aly equations. In the local case (toric
or not), such an approach was proposed in [2], which interpreted the string eld theory
of the B-m odel (the K odaira{Spencer theory) in tem s of a chiral boson living on a
\quantum " R iem ann surface. However, the com putational fram ework of [2] is only
e ective in very sin ple geom etries, and in practice it is not easy to apply it even to
backgrounds like Jocal P?.

In [40] it was argued that all closed and open topological string am plitudes on local
geom etrdes (ncluding the m irrors of toric backgrounds) could be com puted by adapting
the recursive m ethod of Eynard and O rantin [23]to the Calabi{Yau case. T hism ethod
was obtained origihally as a solution to the loop ejuations of m atrix m odels, giving
an explicit form for its open and closed am plitudes in tem s of residue calculus on the
soectral curve of the m atrix m odel. The recursion solution obtained in this way can
then be de ned fom ally or any algebraic curve em bedded in C 2. In [40] it was argued
that thism ore general construction attached to an arbitrary R iem ann surface com putes
the am plitudes of the chiral boson theory describbed in 2], and in particular that the
form aliam of 23] should give the solution to the B-m odel form irrors of toric geom etrdes,
providing in thisway an e ective com putationalapproach to theK odaira{Spencer theory
In the Jocal case. Vardous nontrivial exam ples were tested in [40] successfully. H ow ever,
m any In portant aspects of the B-m odel, ke the phase structure of D oranes, as well
as the fram ing phenom enon discovered In [5], were not incorporated in the form alian of
401.

1.2 Summ ary of the results

In this paper we buid on [40] and develop a com plete theory of the B-m odel for local
Calabi¥Y au geom etries in the presence of toric D branes. O ur form alisn is based on a
m odi cation of [23] appropriate for the toric case, and it leads to a fram ework where
one can com pute recursively and univoquely all the open and closed B-m odel am plitudes
In closed form , non-perturbatively in the com plex m oduli, albeit perturbatively in the
string coupling constant. In particular, our form alisn incorporates in a naturalway the
m ore subtle aspects of D -branes (like fram Ing) which were not available in [40].

1T his applies also to the case n which it has been argued that there is no open string m oduli [44]1.



M oreover, the proposed form alisn isvald at any point in them oduli space. B asically,
once one know s the disk and the annulus am plitudes at a given point, one can generate
recursively all the other open and closed am plitudes unam biguously. T hus this form alian
goes beyond know n approaches in open topological string theory, such as the topological
vertex, as it allow s to study closaed and open am plitudes not only In the large radius
phase but also in non-geom etric phases such as conifolds and orbifolds phases.

1.3 Outline

In section 2 we review relevant features of m irror sym m etry as well as open and closed
topological string theory. W eputa specialem phasis on phase transitions in the open/closed
m oduli spaces, and on the detemm ination of the corresponding open and closed m irror
m aps. Section 3 is the core of the paper, where we propose our form alism . W e also
explain how it can be used to com pute am plitudes explicitly at various points in the
m oduli space. In sections 4 and 5 we get our hands dirty and do various checks of our
form aliam , for Jocal geom etries. In section 6 we study open and closed am plitudes in
a non-geom etric phase corresponding to the blow -down of localP! P!. W e check our
results against expectation values of the fram ed unknot in C hem-Sin ons theory on lens
spaces. W e also propose a prediction for the disk am plitude of C *°=Z 5, which corresponds
to the orbifod phase in them oduli space of ocalP?. Finally, we sum m arize and propose
various avenues of research In section 7.
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2 Toric CalabiY au threefolds w ith branes

In this section we Introduce basic concepts of m irror sym m etry and topological string
theory for non-com pact toric CalabiYau threefolds w ith Harvey-d.aw son type special
Lagrangians. In particular, we discuss the target space geom etry of the A —and the B—
m odel as well as theirm oduli spaces. W e also exam ine period integrals on the B-m odel
side, which give the atcoordinatesaswell as the closed genus zero and disk am plitudes.

2.1 M irror symm etry and topological strings on toric C alabi-
Y au threefolds

21.1 A -modelgeom etry

W e consider the A -m odel topological string on a (non-com pact) toric CalabiY au three—
3, which can be descrlbbed as a sym plectic quotient M = C*¥3=G, where G =
U (1)¢ [20]. A tematively,M m ay be viewed physically as the vacuum el con guration

(2;2) supersymm etric  -m odel, transform ing as X; ! e XiyQ; 22, = 1;::55k
under the gauge group U (1)* [48]. W ithout superpotential, M is detem ined by the
D ‘term constraints

X+ 3

D = Qij&ijz=r; = 1;:::5k (2.1)

=1
m odulo the action of G = U (1)*. Ther aretheKahlerparametersandr 2 R, de nes
a region in the K ahler cone. For this to be true Q ; have to full Il additional constraints
and forM to be anooth, eld con gurations for which the din ensionality of the gauge
orbits drop have to be excluded.

The CalhbiYau condition ¢ (TX )= 0 holds if and only if the chiralU (1) anom aly
is cancelled, that is 48]

Q; =0; = 1;:::;k: 22)
=1
Note from (2.]) that negative Q ; Jead to non-com pact directions in M , so that all toric
Calabi¥Y au m anifolds are necessarily non-com pact.

View the C’s with coordhates X = ¥ jexp(i ) as S*— brations over R, . Then
M can be naturally viewed as a T >~ bration over a non-com pact convex and linearly



bounded subspace B in R* speci ed by (2.11), where the T is param eterized by the three
directions in the -gpace. The condition .2) allow s an even sim pler picture, capturing
thegeom etry of M asaR., T2 bration overR ®. In this picture, the toric threefold M
is constructed by gluing together C ° patches. In each patch,w ith coordinates (z; ;z,;25),
we can de ne, Instead ofr | = 7.7 | which would lead to the above picture | the
three follow Ing ham iltonians

r = wf i r=$%f =i R = In(212,23) : (23)

T he r; param eterize the baseR*® and generate ows . xx = fr;x¢g, ,whose orbitsde ne
the ber. It is easy to see that r ;r generate S'’s and rz , which is only wellde ned
due to (2.2), generatesR, .

The toricgraph  describes the degeneration locusofthe S! bers. mB, X ;j 0,
therefore B is bounded by ¥ ;j= 0. The Jatter equations de ne twoplanes in R ® whose
nom al vectors obey

X—*-k
Q nm;= 0: (24)

=1

C learly, the S* param eterized by ; vanishes at X ;j= 0;and over the line segm ents
L= £X:J= 09\ £X 5J= Og; (2.5)

two S'’s shrink to zero. IfL;; is a closed line segment in @B the open S' bundle over
itmake ita P! 2 M , whik ifLi; is halfopen In @B it represents a non-com pact Iine
bundle direction C .

So far we have de ned the planes X ;j= 0 only up to parallel translation. Their
relative lJocation is detem ined by the K ahler param eters, sin ply by the condition that
the length of the closed Iine segm ents L5 is the area of the corresponding P!. Condition
(22) and the T? bration described cbove m akes it possble to profct allL i into R?
w ithout Josing inform ation albout the geom etry of M . This is how one constructs the
two-din ensional toric graph y associated toM .



2.1.2 B-modelm irror geom etry

The m iror geom etry W to the above non-com pact toric CalabiYau threefold M was
constructed by 31], extending [34,11].

Letw®;w 2 C. W e further de ne hom ogeneous coordinates x; =:e' 2 C ,i=

X3 Xi,i= 1;:::5k+ 3, 2 C .Themimorgeometry W is then given by

X+3
wrw = Xy ; (26)
=1

sub Ect to the exponentiated D -term s contraints, which becom e

i 3
X;'=e" =qg; = 1;:::;k (2.7)

N ote that these relations are com patible with the -scaling because of the CalabiYau
condition. Theparameterst = r + 1 are the com plexi cations of the K ahler param —
etersr ,using the -anglesof theU (1)* group.

A fter taking the -scaling and (2.7) Into account the right-hand side of the de ning
equation (2.8) can be param eterized by two variables x = exp(u);y = exp(v) 2 C . In
these coordinates the m irror geom etry W becom es

w'w = H (x;y;t); (2.8)

which isa conic bundle over C C ,where the conic ber degenerates to two lines over
the (fam ily of) Riem ann surfaces :fH (x;y;t )= 0g C C E T he holom orphic

volum e form on W is given by
dwdxdy

W XY

(2.9)

A s an algebraic curve embedded in C C ,theRiem ann surface has punctures,
hence is non-com pact. T he fact that it isembedded in C C rather than C? like the
usual specialization of a com pact R iem ann surface em bedded in pro fFctive space to an
a ne coordinate patch will be crucial for us. N ote that the R iem ann surface ism ost

°N ote that rbrevity in the llow ng wew illalvays tak about theR iam ann surface ;itw illalvays
be understood that is In fact a fam ily of R iem ann surfaces param eterized by the K ahler param eters
t .



easily visualized by fattening the toric diagram v associated to the m irror m anifold
M ;thegenusg of corresponds to the number ofclosed meshesin  ,and the num ber
of punctures n isgiven by the num ber of sem in nite linesin . It is standard to call
the R iam ann surface enbedded In C C them irror curve.

It is In portant to note that the reparam eterization group G of the m irror curve

o1
1 0 '
which isthegroup of 2 2 Integerm atricesw ith determ inant 1. T his is the group that
preserves the sym plectic form

G = SL(2;2) (2.10)

dx d
S (211)
X y
on C C .Theaction ofG isgiven by
a c.d a b
x;y) T (x*y7ixY); _ 4 26 : (2.12)

2.1.3 Open string m irror sym m etry

In this work we are interested in closed and open topological string am plitudes, hence
wem ust consider branes, which are described in the A -m odelby special Lagrangian sub—
m anifolds. T he Lagrangian subm anifolds that we w ill be interested in were constructed
by [6], as a generalization of H arvey-Law son special Lagrangians 30] i C 3.

Consider a toric CalabiYau threefold M constructed as a sym plectic quotient as
above, and denote by
1%
b= d¥X«F~d« (2.13)
2 k=1
the canonical sym plectic form . T he idea is to detemm ine a non-com pact subspace L. M
of three real dim ensions by specifying a linear subspace V. In the base
X+ 3
qinijZ:c; = 1;::5r (214)
=1
and restricting the | so that ! 3 = 0. One shows that L. becom es special Lagrangian
with regpect to = dz; * dz; * dzz In each patch ifand only if

X+3
g = 0; = 1;:::;1r: (2.15)



The relevant case forusisr= 2,ie.V = R, and L isan S' S'dbundl over it. Tn
a given patch, the restriction ! § = 0 m eans that
X3
i(zi)= O0mod : (2.16)
=1
For one value of the -sum the Lagrangian is generically not an ooth at the origin of
E+3. It can be m adepsgl ooth by \doubling," which is done by allow ing for instance
L1 i) = 0and L, i(z) = 30]. IfV passes through the locus in the base
where one S! shrinks to zero, L splits into L. , each of which have topology C  S?,
where C isa bration of the vanishing St overR, . L, (orL ) isthe relevant Soecial
Lagrangian. To m ake the notation sin pler we denote L, by L henceforth. It has
b (L) = 1 and its com plex open m odulis is given by the size of the S! and the W ilson
line of the U (1) gauge eld around it. P ictordally, it can be described as \ending on a
kg of the toric diagram  ofM " since the half open line 1de ning L must end on a
IneLiy n y . We refer the reader to the gures in sections 4 and 5 for exam ples of
toric diagram s w ith branes.

Under m irror sym m etry, the brane L introduced above m aps to a one com plex di-
m ensional holom orphic subm anifold of W , given by

H (x;y)=0=w : (2.17)

T hat is, it is param eterized by w* , and itsm oduli space corresponds to them irror curve
C C W' = 0 corregponds to the equivalent brane L ).

214 Topological open string am plitudes

Let usnow spend a few words on topological open string theory to clarify the ob fcts
that we w ill consider in this paper.

In the A -m odel, topological open string am plitudes can be de ned by counting (in
an appropriate way) the number of holom orphic m aps from a Riemann surface gj
of genus g with h hols, to the Calbi{Yau target, satisfying the condition that the
boundariesm ap to the brane L . A ssum Ing for sim plicity thatl (L ) = 1, the topological
class of these m aps is Jabeled by genus g, the bulk class 2 H, (X ;L) and the winding

numbersw;,i= 1; ;h, specifying how m any tin es the i-th boundary w raps around
the onecycle n L. W e can thus form the generating functionals
X
Fomw (Q)= Ngw; € 3 (2.18)
2H,(X 1)

10



where N, , are open Gromov{W itten nvariants counting the maps in the topologi-
calclass Bbeled by g, w = (Wq; nawand . It is also convenient to group to-
gether the di erent boundary sectorswith xed g;h Into a single generating functional
A}(lg) (z1; 4w pde ned as

A2 (z; n )z Fgmw (Q)zy" ohz (2.19)

Wi2 7

Here, the variables z; are not only form al variables. From the point of view of the
underlying physical theory, they are open string param eters which param eterize the
m oduli space of the brane.

In the B-m odel, as discussed earlier the m oduli space of the brane is given by the
m frror curve  itself. T he open string param eter z hence corresponds to a variable on
the m irror curve  (take for exam ple the variable x). That is, xing what we m ean
by open string param eter corresponds to xing a param eterization of the em bedding of
theRiam ann surface in C C ;in otherwords, it corresponds to xing a pro fction

map ! C (the profction onto the x-axis In our case). D i erent param eterizations
will lead to di erent am plitudes. O nce the open string param eter x is xed, the disk
am plitude is sim ply given by 7
) dx
A= bgy—; (2.20)

aswill be explained in m ore details in the follow Ing sections.

To fully understand open topological strings we need to include the notion of fram ing
of the branes. T he possibility of fram ing was rst discovered in the context of A -m odel
open string am plitudes in [5]. It is an integer choice £ 2 Z associated to a brane, which
has to bem ade in order to de ne the open am plitudes.

Fram ing has various interpretations. In the A -m odel, it corresponds to an integral
choice of the circle action with respect to which the localization calculation is per—
form ed [35]. Tt can also be understood from the point of view of large N duality. A key
dea in the large N approach is to relate open (and closad) string am plitudes to knot
or link invariants in the Chem-Sin ons theory on a special Lagrangian cycle. A s iswell
know n the calculation of the C hem-Sin ons correlation filnctions requires a choice of the
norm al bundle of each knot. The fram ing freedom lies in a tw ist of this bundle, again
speci ed by an Integer £ 2 7.

W e also want to understand fram ing from the B-m odel point of view . Recall that
them oduli space of the brane isgiven by them irror curve . A sexplained above, xing
the location on the brane on the A -m odel corresoonds to  xing a param eterization of

11



. Tt tums out that there is a onefparam eter subgroup of the reparam eterization group
G of which Jleaves the location of the brane nvariant; these transform ations, w hich
depend on an integer £ 2 7, correspond precisely to the B-m odel description of fram ing
9]. M ore precisely, these transform ations, which we will call fram ing transform ations,
are given by

x;y)7 (xy';y); £272: (221)

Asa result, xing the location and the fram ing of the brane on the A -m odel side corre-
soonds to  xing the param eterization of the m irror curve on the B-m odel side.

2.2 M odulispaces, periods and at coordinates

In this section we discuss the global picture of the open/closed m oduli space of the A —
and the B-m odel. W e introduce the periods, which give us the open and closed at
coordinates, as well as the disk am plitude and the closed genus zero am plitude.

221 M oving in the m oduli space

M irror symm etry denti es the stringy K ahler m oduli space of M w ith the com plex
structure m oduli space of W ,which are the A —and B -m odel closed string m oduli spaces.
R ecall that generically, the stringy K ahler m oduli space of M contains various phases
corresponding to topologically distinct m anifolds. Hence m oving in the A -m odel closed
string m oduli space in plies various topologically-changing phase transitions corresoond-—
Ing to ops and blowups of the target space. In fact, since we are Interested in open
topological strings, we want to consider the open/closed string m oduli space, which also
includes the m oduli space associated to the brane.

T he B-m odel provides a natural setting for studying transitions in the open/closed
string m oduli space. U sually in m irror sym m etry, we dentify the A —and B-m odelm od-
uli spaces locally by providing a m irrorm ap, for exam ple near lJarge radius and for outer
branes. However, in the follow ing we w ill propose a B-m odel form alisn to com pute
open/closed am plitudes which can be applied anywhere In the open/closed string m od—
uli space. Hence, to unleash the analytic power of this new B-m odel description one
w ishes to extend the denti cation between the m oduli space to cover all regions of the
open/closad string m oduli space.

In the B-m odelone sin ply wants to cover a suitable com pati cation ofthe open/closed
string m oduli space w ith patches in which we can de ne convergent expansions of the
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topological string am plitudes in local at coordinates. T he lJatter are given by a choice of
A periods integrals, w hile the dualB periods can be thought of as conjugated m om enta.
The closed string at coordinates are given by integrals over closed cycles, while the
open string at coordinates are integrals over chains.

Let us st discuss the closed string at coordinates. If the genus of the B-m odel
m irror curve is greater than one, one has non-trivial m onodrom y of the closed string
periods. By the theory of solution to di erential equations w ith regular singular loci
(nom al crossing divisors), which applies in particular to periods integrals, the closad
string m oduli space can be covered by hyper<cylinders around the divisors w ith m on—
odromy. T he Jocal holom orphic expansion of the am plitudes has to be invariant under
the localm onodrom y around the corresponding divisor. In particular, this requires dif-
ferent choices of at coordinates, or A periods, In di erent regions in m oduli space.
These di erent choices of periods are related by sym plectic Sp(2g;C ) transform ations,
ie. by changes of polarization. Invariance of the physical topological string am plitudes
under the fi1lllm onodrom y group requires a non-holom orphic extension of the am plitudes
and forces the closed string param eters to appear in term s of m odular form s.

In contrast there is no m onodrom y action on the open string at coordinates. Asa
consequence, the am plitudes are in general rational fiinctions of the open string param e-
ters, and no non-holom orphic extension is needed to m ake the resultsm odular. T hat is,
there is no holom orphic anom aly equation involving the com plex conjugate of an open
string m odulus. T he situation for the open string m oduli is hence sim ilar to the closad
string m oduli for genus 0 m irror curves (for exam ple the m irror of the resolved conifold
M =0( 1) O( 1)! P!),where there is no non-rivial m onodromy. In such cases
the holom orphic anom aly equations for the closed string m oduli can be trivialized and
the am plitudes are rational functions of the m oduli.

Letusnow discuss them ain features of the phase ttansjtjong betw een patches in the
open/closed string m oduli space in order of their com plexity. In the easiest case ad pcent
patches are related by transitionsm erely in the open stringm oduligpace. In the A -m odel
these are referred to as open string phase transitions and correspond to m oving the base
of the special lagrangian subm anifold over a vertex in the toric diagram , for exam ple
from an outer to an inner brane, see below . In the B-m odel they corresoond sin ply to

3Note that the temm \phase transitions" is inspired from the classical A -m odel. In the B-m odel,
the correlation functions are sm oothly di erentiable except at com plex dim ension one loci, so there are
strictly speaking no phase boundaries.
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reparam eterizations of the m irror curve by an element in G . M ore precisely, this
type of phase transition is descrilbed by the reparam eterization

X | =
X

x;y) 7 (222)
ofthem irrorcurve | wewillexplain this in the next section. Since the am plitudes are
rational fiilnctions in the open string m oduli, there is no non-trivalanalytic continutation
required and the am plitudes can be readily transform ed.

T he next type of transitions consists in closed string transitions between di erent
large radius regions. In the A -m odel on non-com pact toric CalbiY au threefolds those
areallrelated to opsofP! (in our exam ples they occcur only in the H irzebruch surface
F,). In these cases, the new at closed string coordinates are given linearly in term s of
the old ones and in particular the sym plectic transform ation in Sp(2g;Z ) is trivial, in
the sense that it does not exchange the A —and B -periods. T he closed string param eters
can be xed in each large radius patch by the m ethods of [5], which are reviewed in
the next section. T he rather m id changes in the am plitudes can be described by wall
crossing form ulas.

T he m ore dem anding transitions are the ones between patches which require a non-
trival Sp(2g;C ) transform ation of the periods. The typical exam ple is the expansion
near a conifod point. Here a B—cycle | in the choice of periods at large radius |
becom es sm alland w ill serve asa at coordinate near the conifold point, while a cycle
corresponding to a  at coordinate at In nity aquires a logarithm ic term and w ill serve
asdualm om enta. In the A -m odel picture we enter a non-geom etric phase, In which the

Cexpansion ofthe -m odelbreaksdown. In the B-m odelwe are faced w ith the problam
of analytic continuation and change of polarization when we transform the am plitudes,
which Involve m odular transform ations.

A nother interesting patch is the one of an orbifold divisor, ie. one with a nite
m onodrom y around it. T his is likew ise a region w here the originalgeom etric description
breaks down due to a vanishing volum e. However here we have a singular geom etric
description by a geom etric orbifold. For exam ple, or the O ( 3) | P? geom etry, in the
lin it w here the P? shrinks to zero size we get sin ply the C °=Z 5 orbifold . Enum erative A —
m odel techniques (orbifold G rom ov-W itten invariants) have been developed to calculate
closed string invariants on orbifolds, and in these phases we can still com pare the closed
B-m odel results w ith G rom ov-W itten calculations on the A -m odel side. T he behavior
of the closad string am plitudes under this type of transition has been studied in [1/]. Tn
this paper, we w ill start investigating open am plitudes on orbifolds, which do not have,
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as faraswe know , a G rom ovW itten interpretation. In particular, we w ill calculate the
disk am plitude for C3=Z5 in section [€.4.

Let usnow describe in m ore detail the rst type of phase transitions, involving only
open string m oduli.

2.2.2 O0Open string phase structure

Here we Introduce classical open string coordinates and discuss the phases of the open
string m oduli, which arise when we \m ove" the Lagrangian subm anifold over a vertex
in the toric diagram .

F irst, note that the open string variables generically get corrected by closed string
instanton e ects, when the latter are present and have nite volum e; we w i1l study this
in the next section. H ow ever, the open string phase structure can already be understood
directly in the lJarge volum e lin it w here the instanton corrections are suppressed. Hence,
wew illnotbother fornow w ith the instanton corrections; our analysis carries over readily
to the Instanton corrected variables.

R ecall from section[2.1.]] that closed line segm ents in the toricdiagram correspond
to com pact curves, while halfopen lines correspond to non-com pact curves. Now , as
explained In section [2.1.3, the half open Ine 1 de ning the Lagrangian subm anifold
L must end on a Ilne Lj; In y . Phase transitions in the open string m oduli space
then occur between Lagrangian subm anifolds ending on halfopen lines and Lagrangian
subm anifolds ending on closad line segm ents. O ne refers to the form er as outer branes
and to the latter as inner branes.

Only maps which are equivariant w ith respect to the torus action contribute to the
open string am plitudes. T hism eans that disks m ust end on a vertex at one end of the
Ine L5 Intersecting 1. Let this vertex be the Iocuswhere X ;j= X yj= XJj= 0. Branes
ending on the three lines L5, Ly and Ly m eeting up at this vertex correspond to three
di erent phases I, IT and III in the open string m oduli space. T he geom etry of the
open string phase structure is shown in  gure[.

In phase Iwe can describe 1by the equations
®3F K =0;
K KiF =c; r>a>0; (223)
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Figure 1: O pen string phase structure.

where r is the K ahler param eter of the P' related to L and
Z

C = H; (224)

Sl
wheredH = ! param eterizes the size of the disk D , hence the radius of the S' = @D .

Recall that on the B-m odel side, the choice of location (or phase) of the brane
corresponds to a choice of param eterization of them irrorcurve de nedby H (x;y)= 0.
G enerically, we can nd the good param eterization of the curve as follows. W e rst use
the fact from m irror symm etry (see section [2.1.2) that by de nition,

*ij=exp  XiT ; (2.25)

to rew rite the equations (2.23) xing the location of the brane in temm softheC -variables
X;. W e then use the C wescaling to x one of them to 1, and we choose y to be the
C —vardable which goes to 1 on the brane, and x to be the variable param eterizing the
Jocation of the brane on the edge (ie kj= €*). X becom es the open string param eter
introduced earlier. Note that there is an am biguity in this choice of param eterization;
since y = 1 on the brane, we can reparam eterize the variable x 7 xy' for any integer
f 2 Z without changing the discussion above. But since we change the m eaning of the
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open string param eter x , we in fact change the physical setup and the open am plitudes.
T hisam biguity precisely corresponds to the fram ing of the brane, and the transform ation
x T xy' is the fram ing transform ation introduced in (2.21)).

For exam ple, in phase I, the good choice of param eterization corresponds to rst
scaling x; = 1,and then dentifying y = x5 = X5=X; and X = Xy = Xyx=X;. Indeed, the
rst equation in (2.23) says thaty = 1 on the brane, while the second equation denti es
Z
X=exp c+1i A ; (226)
Sl

where we com plexi ed the disk size ¢, by the W ilson line. x hence agrees in the large
K ahler param eter lin it w ith the open string param eter, which appears in the superpo-
tential. Tn fact, the superpotential | ordisk am plitude | is given by the A belJacobi
maponH (x;y)= 0,asa curve enbedded in C C ,with respect to the restriction of

the holom orphic volum e form  to the m irror curve:
(©) : dx

A]_ (x)= ]Ogy

X

— (2.27)
X

ie. x@A " = gy (x),with y(x) a suitable branch of the solution of H (x;y)= 0. This
gives the form ula or the disk am plitudes presented earlier in (Z.20). N ote that we could
also param etrize 1 in this phase by

J?jfg ig ;2;; r>c > 0; (2.28)
which Jeads to param eters x°= xy ! and y°= y *.
In phase IT the brane 1 can be descibed by the equation
];ij? ?ﬁ - 21_:; > 0: (229)
W e x the param eterization of the m iror curve by xx = 1,9 = x5 = x5=x¢ and

R = X; = X=X, 0 that the open string param eter is & and the superpotential is (Z.27)
w ith hatted variables. The relation to the previous param eters n phase Tis® = x !
and ¥ = yx !;this is the origh of the phase transfom ation proposed in (2.22). Agai,
we can also param etrize iby

(2.30)

j’<k]2 j’<j]2 = 0;
¥iF Ki5F =i @>0;
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and get 9= xy ' and R°= y *.

Sin ilarly, in phase IIT we can param eterize T in two di erent ways, and ntroduce
variablesy = x ' and x = x 'y,ory’= x and x°= y. In this phase, r is the K ahler
param eter of the P! related to Ly . Note however that di erent L., can describe Pl’s
In the sam e K ahler class. Standard toric techniques allow to read the equivalences from
the charge vectors Q

2.3 The open and closed m irror m aps

W ediscussed in the previous section the phase structure of the open/clossd m oduli gpace.
Here we discuss in detail how to nd the at coordinates (or open and closed m irror
m aps) in various phases in the m oduli space. A s an exam ple we consider O ( 3) | P?,
which is the sim plest non-com pact toric C alabiY au w ith non—trivialm onodrom y on the
closed string m oduli.

2.3.1 Closed at coordinates

The closed string m irror map is given by nding at coordinates T , = 1;:::5k
on the com plex structure m oduli space, which are m apped to the com plexi ed K ahler
param eters. The at coordinates are generically de ned by

p— X .
T = X0 (2.31)
where the X  are the A periods 7
X = (232)

of the holom orphic volum e form ,and (A ;B ) is a sym plectic basis of threecycles.
Special geom etry guarantees the existence of a holom orphic function F (X ) of degree 2
| the socalled prepotential | such that the B periods are

@F

= ] (2.33)

Fixing the at coordinates involves a choice ofbasis (A ;B ); it iswellknown that
the choice of A periods (and the B-periods, ie a polarization) is unigquely xed at the
point(s) of m axim al unjpotent monodromy q = 0, which are m irror dual to the large
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radius points in the stringy K ahler m oduli space. This xes the closed m irror m ap at
these large radius points.

To be m ore precise, in the param erization of the complex moduliq = e © deter
m Ined by theM oricone | spanned by the charge vectorsQ | these periods are singled
out by their leading behaviour:

x°=1+0(@); X (@= gl )+ O (@: (2.34)

In the non-com pact cases there is a further sin pli cation. First, X ° = 1, and
Z
1
T =X = — : (2.35)
2 1,
T he period Fy is absent and the dual periods are given by
Z
@F 1
= — = — ; (2.36)
@T 215
where (A ;B ) isnow a canonical basis of one<cycles on the m irror curve ,and is

the m erom orphic one form
dx
= JOCJY; (237)

on ,which is the local lim it of

In the A -m odel picture, the at coordinate T is the m ass associated with a D 2
brane wrapping the curve C 2 H, M ;Z). At a lJarge radius point, it is given by the
com plexi ed volum e 7

t = '+ 1B : (2.38)

However, it iswell known that it receives closed string worldsheet instanton corrections
if the size of C  is of the order of the string scale; the corrected volum e

T =t +0( "); (239)

isthe at coordihate, which reduces in the localcase to (2.39).
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232 Open atcoordinates

The open string m odulus isgiven by x = €', which is a variable on the m irror curve
de ned by the equation H (x;y)= 0. In this section we w ill som etin es use the variables
u and v Instead of the C —-variable x and y, which are de ned by the exponentiation
x = &',y= €. Hopefiillly no confusion should occur.

Tt was argued In [5] that iIn the A -m odel, the open string m odulus u m easures the
tension

W =W xxsz= 1) W (x3=1) (2.40)

ofa dom ain-wallm ade from a D 4-brane w rapping the disk of classical size u and extend-

Ing at a point on the x3-axis, say x3 = 0, over the subspace M ,; of the fourdin ensional

M inkow ski space M 3, . In the large radius 1m it, this can be dentdi ed on the B -m odel

side w ith the Integral 7 7
1 1 dx
— vu)du= — y(x)—; (241)
2 1 21 b4
where |, isanota closed cyclkebut rathera chain overwhich v jum psby 2 i. In analogy
w ith (2.39), one expects that 7
1
U= — (2.42)
2 1

is the exact form ula for the at open string param eter U , which includes all instanton
corrections.

N ote that the above indeed depends on a choice of param eterization of the curve,
which de nes the location/phase and fram ing of the brane. In principle, the chain
and the Integral (2.47) can be obtained for branes in any phases. H owever, In practice,
it tums out to be easier to start with outer branes, and use the open m oduli phase
transitions explained in the previous section, which relate the coordinates in vardious
phases, to extract the at open string param eters in other phases. Finally, note also
that it is straightforward to show that both (2.39) and (2.42) receive only closed string
workdsheet Instanton corrections.

T he open string disk am plitude Aio) can also be written as a chain integral. It is
given by the A belJacobim ap

(0)

Al (gix)= ; (2.43)

u

where , isnow thechain , = [u ;ul. Note that the disk am plitude has an integrality
structure which may be exhibited by passing to the instanton-corrected coordinates
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X =¢&,0 =e®.Then, it can be written in term s of the open BPS numbersNrf% 2 7

as follow s: X
A0 )= N9 1L ™) : (2.44)
n2Nm 27

2.3.3 PicardFfuchs equations

On theR iem ann surface it is possible to perform the period integrals (2.33), (2.42) and
(2.43) directly. However, in practice it is sin pler to derive P icard-Fuchs equations for
general period integrals, construct a basis of solutions and nd linear com binations of
the solutions which reproduce the leading behaviour of the period integrals.

W hen M is a toric threefold, the PicardFuchs operators annihilating the closed
periods T (2.33) can be de ned in tem s of the charge vectorsde ningM  (see [2.1]), as

Y Y

i

Q,>0 0,>0

(G

i

(2.45)

T he com plex structure variables at the points of m axim ally unipotentm onodromy g =
e ' are related to the x; by v

g =( 1Pf  x (2.46)
N ote that there are in generalm ore x* then g and C -scaling symm etries are used to
reduce to the q variables.

Solutions to (2.49) are easily constructed using Frobenius m ethod. D e ning

X 1

;)= ¢ 1)2og ) ; 247
wolg; ) - YToime )+1](( ) °q ) ( )

then .
X%=wo(@0); T = @ Woldi )i (2.48)

are solutions. H igher derivatives
@ @

X Casim) = T ;o )Jo 2 .49
@ n g —Woldi_)J-o (2.49)

also obey the recursion in posed by (2.49), ie. they full 11 (2.49) up to nitely many
term s. However, only nitely many linear combinations of the X 4% & are actual
solutions of the P icardFuchs system .
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Once the solutions T to (2.49) are given, the period integrals (2.42) de ning the at
open string param eters can be sin ply expressed in tem s of them :

Xk
U=u+ r,(t T ): (2.50)

Herer, 2 Q, and most of them are zero. Note that only the combinations (t T )
occur, which in plies that the open string variables are Invariant under the closed string
B - eld shift.

N ote that one can write down an extended P icard-Fuchs system , such that not only
the closed periods but also the open periods (2.47) and (2.43) are annihilated by the
di erential operators [37,123]. The r;, are then related to entrdes In the charge vectors
Q,; in (2J). These relations are m anifest in the extended P icard-Fudhs system and give
an easy way to determ ine the r, .

Finally, in the follow ing we w ill always use the follow Ing notation. W e always denote
the at, Instanton corrected coordinates by uppercase letters, such asT ,U and V ,w ith
their exponentiated counterparts Q = e ', X = & and Y = €. The classical (or
uncorrected ) variables w ill always be denoted by lowercase lettes t, u and v, aswell as
g=e fH,x=¢&andy= €.

234 Open phase transitions

In the exam ple above we have found the open m irror m ap in a particular param eteri-
zation corresponding to outer branes w ith zero fram ing. W e could have done the sam e
for branes In other phases, but in practice it is easier to sin ply follow the m irrorm ap
through the reparam eterizations between di erent phases in order to obtain the m irror
in other phases or fram ing.

Herewe sin ply w rite dow n an explicit exam ple of such calculation. Let us start w ith

a m irror curve H (x%;y;q) in the param eterization corresponding to outer branes w ith

zero fram Ing. Follow ng (2.50), we can w rite the open string m irror m ap, In tem s of
exponentiated coordinates, as

X ==xe ", (2.51)

w here

u = r,(t T ) (2.52)
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Suppose that y¥ isnot corrected, that isY = ¥,or in thenotation above , = 0. Consider
now the fram ing transform ation

=;7) T (x;y)= (x¢";¥): (2.53)

In this case, both the open and closed m irror m aps are left unchanged by the fram ing
reparam eterization.

Let us now consider a reparam eterization corresponding to a phase transition to an
Inner brane phase:

1y
) T (®iy) = —i= (2.54)
X R
In this case the open m irror m aps becom es:
1 ¥
X =—e%i=xne Y; Y =-evi=we ": (2.55)
x x

The fact that v also gets renom alized in this phase In plies that, under a fram ing
reparam eterization

(Geeiys) T (xojys) = (e ivi); (2.56)
the open at coordinates acquire a non-trivial fram ing dependence:

f
= my e 't = xe T (2.57)

X
Y = wye Vi=vye '

2.3.5 Sm all radius regions

The m ore interesting case of phase transitions in the m oduli space between patches
which require a non—rivial sym plectic transform ation of the closed periods can be dealt
w ith as follow s.

O n the B-m odel side, these transitions sim ply corrrespond to m oving in the com plex
structure m oduli space beyond the radius of convergence of the large radius expansion,
orm ore generally from one region of convergence Into another. The at open and closed
coordinates in all regions are Jinear com binations of the closed periods (2.39) and chain
integrals (2.42), (2.43). T he right linear com binations that yield the atopen and closed
coordinates in this new region can be found using the follow ing requirem ents:

they should be sm all enough to be sensible expansion param eters around the sin-—
gularity;
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the am plitudes should be m onodrom y invariant when expanded in tem s of the
at coordinates;

the linear com binations giving the at closed coordinates should not involre the
chain integrals.

In sin ple cases this xes the at coordinates com pletely, up to scaling. This was
the case, or nstance, for the at closed coordinates of the C °=7 5 orbibld expansion of
O ( 3)! P?,which was considered in [11.

A technical di culty is that one has to nd local expansions of the closed periods
and chain integrals at various points in the m oduli space. For the closad periods this
can be done by solving the P icardFuchs system at the new points to obtain a basis of
solutions everyw here. For the open periods, one uses the follow ing observations.

F irst, notice that (2.50) is a chain Integral, while the T are periods. Hence there is
a linear com bination
Xk
Ug = u+ r.t ; (2.58)
=1
which can be written as an elem entary function of the global variables (x;9 ). Likew ise
the analytic continuation of Aio) (gq;x) is trivial since it is an elem entary function in
term s of the global variables. Hence, together w ith the closad string periods, ug (g;x)
and A io) (gq;x) form a basis for the at coordinates everyw here in the m oduli space.

236 TheO( 3)! P? geom etry

Asan exam ple, ket us now discuss the open and closed m frrorm aps orthe O ( 3) ! P2
geom etry. LocalP? isde ned by the charge

Q= ( 3;1;1;1): (2.59)

W e start with the closed perdods at Jarge radius. P lugging this charge into (2.43) and
changing variables to g=  #23% ,we get the P icardFuchs di erential equation
1

D=1[7{+3q@:+ 2)3 ¢+ 1] ; (2.60)

where = q@% = @;. This equation should annihilate the closed periods.
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[ X1>=0
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O(—3) — P2 S {§F 4§+ 52 + ¢3% = 0}
Figure 2: Toric base of O ( 3) ! P? w ith an outer brane and the m rror curve w ith the

open cycle de ning the m irrorm ap.

Clearly X °= 1 and 7
T = x®= =t  ); (2.61)
A
w ith .
X (1 3n)!
@) = =9 (2.62)
n (!
n=1
are solutions. It is easy to check that
1 1 1
Fr=—-xX ™4 274 = (2.63)
6 6 12

R
isa third solution, which corresponds to the ntegralFr = ,  over the Bcycle. Note

that the particular com bination of the PicardFuchs solutions giving the B period is
detem ined by classical topological data of the A -m odel geom etry. T he expression for
the at closed param eter (2,61]) can be inverted to

g=0 + 60%+ 90°+ 560"% 3000°+ 39420°+ ; (2.64)

withg=e *andQ = e T.
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W e now consider an outer brane in this geom etry. A pplying (2.8) and the discussion
in section we see that the param eterization of the m frror curve H (%;y;q) relevant
for the outer brane w ith zero fram ing is

H (x;y;9) = Y2+ ¥+ yr+ qx3 = 0: (2.65)

T he derivative of the superpotential is then given by x@,.A iO) = log(y),w ih

1+ x 1P > 3
> 5 1+ x) ar’: (2.66)

Y:

The special Lagrangian L in the A -m odel becom es a point on the R iem ann surface;
the exact dom ain-wall tension is then given by the period integral over the cycle (2.42)
depicted in gure[d. The integralwas perform ed in [H]and yields

U=uv —; (2.67)

or
1
X = xe 3 *9D; (2.68)

which de nes the open at coordinate at large radius. There is no m iror m ap for vy,
that is, Y = v.

Consider now the fram ing transform ation,
(;9) T (x5y) = (=y" ;y): (2.69)
Follow ing this transform ations, we get that the open m irrorm ap for fram ed outer branes
is still given by:
1
X = xe 5 *9; Y = vy; (2.70)

and its Inversion reads

x=X 1 20+ 50% 320° 2860"'+ : (2.71)

W e now move to Inner branes. The phase transition from outer branes to nner
branes consists in the transform ation

x;9) T (Rijva) = ; (2.72)

%=
%I

which gives the curve
H (25y:iQ) = Pom+ yaxl + yaxa + QG (2.73)

26



param eterizing an inner brane w ith zero fram ing. Follow ing the transform ation (2.72),
we get that the inner brane m irror m ap reads

X = xie% £, Y = yie% c@, (2.74)
In tem s of the fram ed variables (x;;vi), the m irror m ap becom es

1 1
X = Xieg(l‘*'f) t(q),. Y = yer t(q),. (2.75)

which can be Inverted to

B , _, 230+ 25f 3f*+2£°)0Q°
;=X 1+2@@+£f£)Q + 1+ £+ 2£f° Q°+ 3 +

(2.76)

3 A new B-m odel form alism

In this section we would lke to propose a com plete m ethod for solwing the open and
closed B-m odel topological string on a C alabiY au threefold W which is them irror of a
toric CalabiYau threefold M . The m ethod builds on and extends the proposal in 40],
and it lies entirely in the B-m odel. Tt provides in this way a m irror form alisn to the
A -m odel topological vertex for toric CalabiY au threefolds [3].

However, our form alian di ers from the topological vertex in one crucial aspect.
T he topological vertex is non-perturbative in gs, the string coupling constant, but it
is a perturbative expansion In Q = e = around the large radius point Q = 0 of the
m oduli space. In the com putation of open am plitudes, the vertex is also perturbative
in the open m oduli z; appearing for exam ple n (2.19), and it provides an expansion
around z; = 0. A smentioned earlier, the B-m odel is perfectly suited for studying the
am plitudes at various points in the open/closed m oduli space. In fact, our form align
provides a recursive m ethod for generating all open and closed am plitudes at any given
point n them odulispace. Basically, once one know s the disk and the annulus am plitude
at this point, one can generate all the other open and closed am plitudes unam biguously.
In particular, not only can we solve topological string theory at large radius points
corresponding to am ooth threefolds, but also at other points in the m oduli space such
as orbifold and conifold points. This is in contrast to the topological vertex, which is
de ned only for am ooth toric C alabi¥Y au threefolds.

O urm ethod is recursive in the genus and in the num ber of holes of the am plitudes,
which is rem iniscent of the holom orphic anom aly equations of [12]. However, a crucial
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point is that in contrast w ith the holom orphic anom aly equations, our equations are fully
detem ined, that is, they donot su er from the holom orphic am biguities appearing genus
by genus when one tries to solve the holom orphic anom aly equations. O ur equations
are also entirely di erent In nature from the holom orphic anom aly equations, although
it was shown in [24] that the form er In ply the latter. M ore precisely, the resulting
am plitudes adm it a non-holom orphic extension xed by m odular Invariance (as in [1/])
which satis es the holom orphic anom aly equations of [12] In the local case.

Them ain ingredient that we willm ake use of is the fact that when W ism irror to
a toric Calabi¥Yau threefold, m ost of its geom etry is captured by a R iam ann surface,
which is the m irror curve 1in the notation of the previous section. W e w ill construct
recursively an In nite set of m erom orphic di erentials and invariants living on the m ir-
ror curve, and show that the m erom orphic di erentials correspond to open topological
string am plitudes, while the invariants give closed topological string am plitudes. T he
initial conditions of the recursion are xed by sin ple geom etric ob Ects associated to the
R iem ann surface, which encode the inform ation of the disk and the annulus am plitudes.

Our method is In fact a generalization of the form alian proposed by Eynard and
O rantin [23]for solving m atrix m odels. G iven a m atrix m odel, one can extract its spec—
tralcurve, which isan a ne curve .n C 2. Eynard and O ranti used the loop equations
of the m atrix m odel to construct recursively an In nite set of m erom orphic di erentials
and invariants on the spectral curve, which give, respectively, the correlation functions
and free energies of the m atrix m odel. H ow ever, the insight of Eynard and O rantin was
that one can construct these ob fcts on any a ne curve, w hether it is the spectral curve
of am atrix m odel or not. T he obvious question is then: what do these ob Fcts com pute
In general?

Asa rstguess, one could try to apply directly Eynard and O rantin to the m irror
curve and see what the ob fcts correspond to in topological string theory. However,
this would not be correct, since the m rror curve is enbedded in C C rather than
C?; this is a crucial di erence which must be taken into account. But after suitably
m odifying the form alism such that it applies to curves in C C , it tumsout that the
ob fcts constructed recursively corresoond precisely to the open and closed am plitudes
of topological string theory. A s argued in [40]and aswem entioned in the introduction,
this is because the form alisn of 23] gives the am plitudes of the chiral boson theory
on a \quantum " R iem ann surface constructed in 2], which should describe as well the
B-m odel on m irrors of toric geom etries (once the form aliam is suitably m odi ed).

So let us rst start by brie vy review ing the form alisn of Eynard and O rantin.
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3.1 The form alism of Eynard and O rantin for m atrix m odels

Take an a ne plane curve
C :fE(x;y)= 0g C?; (3.1)

where E (x;y) Is a polynom ial in (x;y). Eynard and O rantin construct recursively an
in nite set of invariants Fy of C, g 2 2", which they call genus g free eneries, by
analogy w ith m atrix m odels. The form alisn nvolves taking residues of m erom orphic

3.1.1 Ingredients
T he recursion process starts w ith the follow ing ingredients:

the ram i cation pointsq 2 C oftheprofctionmap C ! C onto the x-axis, ie.,
the points g; 2 C such thatg—s(qi) = 0. Note that near a ram i cation point q;
there are two points g;g 2 C w ith the sam e progction x(q) = x(q);

the m erom orphic di erential
(P) = y(p)dx(p) (32)
on C ,which descends from the sym plectic form dx ~ dy on C?;

the Bergm ann kemel B (p;qg) on C , which is the unigue m erom orphic di erential
w ith a double pole at p = g with no residue and no other pole, and nom alized
such that I

B (p;q)= 0; (3.3)

Az
where (A ;B ') isa canonicalbasis of cycles forC H T he Bergm ann kemel is related
to the prim e form E (p;q) by

B (p;iq) = @,&E (p;q): (34)
W e will also nead the closely related one-form

which isde ned locally near a ram i cation point ;.

N ote that the de nition of the B ergm ann kemel involves a choice of canonicalbasis of cycles; hence
the Bergm ann kemel is not invariant underm odular transform ations | wew illcom e back to that later.
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For exam ple, if C has genus 0, its Bergm ann kemel is given, In local coordinate w,
by
B (p;a) = i (Pl () 3¢ (36)
w () wi@))
Note that the Bergm ann kemel is de ned directly on the R iam ann surface, and does
not depend on a choice of embedding in C?, ie. on the choice of param eterization of
the curve. In contrast, by de nition the ram i cation points g; and the di erential (p)

depend on a choice of param eterization of the curve.

G wven these ingredients, we can split the recursion process Into two steps. First, we
need to generate them erom orphic di erentials W k(g)( ;1100 ), and then the invariants
Fy.

3.1.2 R ecursion

Letwh(g)( ;iiiipn),9;h2 2% ,h 1,bean In nite ssquence of m erom orphic di eren—
tihlson C.We rst x

(0)

W e =0; W ()= B @Eim); (3.7)

and then generate the ram aining di erentials recursively by taking residues at the ram —
1 cation points as ollow s:

X dE 4 (p)
(@) a\P @ 1)
W . 1P iipn) = Res———— W .., @aipisiiim)
h+1 bt 7Pn —q (C_[) (C_[) h+ 2 gq:9; ’ Bn
XX @ D o) oo
=0J H
Herewedenoted H = 1; ;h, and given any subset J = £1 5971 H wede ned
ey = foy; i,¢R This recursion relation can be represented graphically as in Fi.[3.

Now , from these correlation functions we can generate the nvardiants Fy. Let (p)

be an arbitrary antiderivative of (p)= y(p)dx(p);thatis,d (p)= (p). W e generate
an in nite ssquence ofnumbersF,,g2 Z2* ,g 1lby
1 X @, .
Fg= Res (qW " (q): (3.9)
2 29 o TE

W e refer the reader to [23] for the form ula for the Invariant ¥y, which w ill not be needed
In this paper.
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Figure 3: A graphic representation of the recursion relation (3.8).

3.1.3 Sym plectic transform ations
Asan a necurve in C 2, the reparam eterization group G ofC is given by

0 1
Gec = SL(2;C) 10 ; (3.10)
that is the group of com plex 2 2 m atrices w ith determ inant 1, acting on the coordi-
nates (x;y) by
a b

2 Ge: 311
c d c ( )

x;y) 7T (ax+ by;ex + dy);

T his is the group that preserves the sym plectic orm §x ~ dyjon C?2.

It was shown in [23] that the free energies Fy constructed as above are invariants of
the curve C , In the sense that they are invariant under the action of G . However, the
correlation fiinctions W k(g) (15 :::5pc ) are not Invariant under reparam eterizations, since
they are di erentials.

3.1.4 Interpretation

T he de nition of these ob fcts was inspired by m atrix m odels. W hen C is the spectral
ants Fy are respectively the correlation functions and free energies of the m atrix m odel.

To be precise, this is true for all free energies with g 1, and all correlation functions
with (g;k) 6 (0;1);(0;2). W e refer the reader to 23] for the de nition of the genus 0
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free energy Fy. In the case of m atrix m odels, the one-hole, genus 0 correlation fiinction
0)

W', (p) is also known as the resolvent and depends on both the potential of the m odel
and the spectral curve,
1
w7 )= SV P) v ) (p) (312)

w hile the two-hole, genus 0 correlation function V\TZ(O) (o1 ;p2) is given by subtracting the
double pole from the Bergm ann kemel:

dpdp, dpdp,
— =B mim) —s:

0) 0)
W, (i) =W, (pip2) :
2 Lk 2 e o ) o )

(3.13)

3.2 Our form alism

A s noted earlier, when W ism irrvor to a toric CalabiYau threefold, there is a natural
R iem ann surface that pops out of the B-m odel geom etry, which is the m irvor curve. It
isalways given by an algebraic curve in C C . Our strategy, extending the proposal
in [40], w illbe to apply a recursive process analog to the above to generate free energies
and correlation functions living on them irror curve. W e w ill then check extensively that
these ob fcts correspond precisely to the open and closed topological string am plitudes.

W e start w ith an algebraic curve
:fH (x;y)= 0g2 C Cc ; (3.14)

where H (x;y) is a polynom ial in (x;y), which are now C —variables. One can think
of them as exponentiated variables (x;y) = (€7;€"), and this is how they appeared for
exam ple In the derivation of m irror symm etry in [31/]. The only di erence w ith Eynard-
O rantin’s geom etric setup is that ourR iem ann surfaces are em bedded in C C rather
than C?. As such, their reparam eterization group is the G of (2.17) (the group of
integral 2 2 matrices with determ inant 1), which acts multiplicatively on the C -
coordinates of , rather than the G - of (3.11]). Consequently, we want to m odify the
recursive formulae such that the free energies Fy constructed from our curve are
invarfant under the action of G given by (2.12). A s such, they w ill be invariants of the
Riem ann surface enbedded In C C
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3.2.1 Ingredients

T he recursion process now startsw ith the follow ing ingredients:

the ram 1 cation pointsq 2 oftheprofctionmap ! C onto the x-axis, ie.,
the pointsqg; 2  such that %—Hy(q-l)= 0. Near a ram i cation point, there is again
wo pointsg;g 2 with the sam e profction x(q) = x(q);

the m erom orphic di erential

dx (p)
(p)= logy(p) (3.15)
x(p)
on ,which descends from the sym plectic form
d d
S 4 (3.16)
X Y

on C C .Note that the oneorm (p) controls com plex structure deform ations
for the B-m odel.

the Bergm ann kemel B (p;q) on , and the oneform dE(p) de ned earlier.

Themain di erence is in the m erom orphic di erential (p), which di ers from the
previous di erential (p) because of the sym plectic form on C C . Again, both the
ram i1 cation points g; and the di erential (p) depend on a choice of param eterization
for the curve , while the Bergm ann kemel is de ned directly on the R iem ann surface.

3.2.2 R ecursion

A s before, the recursion process is given in two steps by (3.8) and (3.9); however, we
replace thedi erential (p) by thenew di erential (p), tom ake the form alian suitable
for algebraic curves in C C . Accordingly, In (39) (p) is replaced by an arbitrary
antiderivative (p) of (p) asde ned in (3.19); thatis,d ()= (p).
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3.2.3 Sym plectic transform ations

Asacurve in C C , the reparam eterization group of isgiven by thegroup G of
Integral?2 2 m atrices w ith determm inant 1, acting on the coordinates (x;y) by

<;v) T (xy°;xyh);

a 26 : (317)
C

o o

W e clain that the Fy's constructed above are nvariant under the action of this group,
hence are nvariants of the m irror curve . Com putationally speaking, a direct conse-
quence of this statem ent is that we can use the G reparam eterizations above to w rite
down the \sin plest" em bedding of the R iem ann surface in C C ,and use this em bed-
ding to calculate the free energies. W e w illuse this fact extensively in our com putations.
N ote how ever again that the correlation functions are not invariant underG ,which will
tum out to be crucial.

3.2.4 Interpretation

Suppose now that is the m irror curve of a toric CalbiYau threefold M . Our st
clain is:

1. The free energles F; constructed above are equal to the A -m odel closed topological
string am plitudes on the m irror threefold M , after plugging in the closed m irror
map.

Our second claim is a little bit subtler. Recall that xing the location and fram Ing
of a brane in the A -m odel corresponds to xing the G param eterization of the m irror
curve . Hence, the open am plitudes should depend on the param eterization of . W e
claim :

R
2. The integrated correlation functions A% = W 9 (py;:::p.) are equal to the A -
m odel fram ed open topological string am plitudes on the m irror threefold M , after
plugging in the closed and open m irror m aps.
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This statem ent m eans that given a param eterization of , one can com pute the
correlation functions, integrate them , plug in them irrorm aps, and one obtains precissly
the A -m odel open am plitudes for a brane in the location and fram ing corresponding to
this particular param eterization.

Note that as for m atrix m odels, these clain s are true for closed am plitudes w ith
g 1, and open am plitudes with (g;k) 6 (0;1);(0;2). The disk am plitude, that is
(gik)= (0;1),isgiven by [5,6]

(0) dx
A= = ]ogy;; (3.18)

while the annulus am plitude, (g;k) = (0;2), is given by ram oving the double pole from
the Bergm ann kemel:
dpdpe
AP = Boup) — (319)
P P2)

T he one-hole am plitude (3.18) can be interpreted as the onepoint function of a chiral
boson living on  [2], and the Bergm ann kemel (3.19) it jast its two-point finction [38],
as expected from the identi cation of the recursive procedure w ith the theory of the
\quantum " chiral boson on the m irror curve. W e w ill not be concemed w ith the genus
0, closed am plitude in this paper.

Asa result, we get a com plete set of equations, directly in the B-m odel, that gen-
erate unam biguously all genus (fram ed) open/closed topological string am plitudes for
toric CalabiYau threefolds. These equations can be understood as som e sort of glu—
ing procedure in the B-m odel, w ith the building blocks corresponding basically to the
disk and the annulus am plitudes. In other words, one only needs to know the disk and
the annulus am plitudes, and every other am plitude can be com puted exactly using the
recursion solution.

Let us nally point out that the approach of [40] is a particular case of our m ore
general form alism in the case that the curve can be written as

yx)= ———; (x)= (x x5 (3.20)

=1

T he choice of x, x is as usual a choice of sign In the syuare root, hence the di erential
(319) is given by

(%) (x) = Etanh 1 &)

dx: (3.21)
x a(x)
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T herefore, in this particular param eterization, our form alisn could be regarded as den-
tical to the form aliam of 23], albeit for a nonpolnom ial curve given by

1 1 (x)
Veo (X)= —tanh = ——— : (322)
X a(x)

Thiswas the point of view advocated in [38] (see for exam ple equation (2.17) of that pa—
per, w here the extra factor of 2 com es from the contribution ofx). T herefore, the results
of [38] for outer branes w ith trivial fram Ing are also a consequence of our form aliam . A s
it w illbecom e clear In the follow Ing, curves of the form  (3.20) describe only a very an all
class of D branes, and the right point of view to work in general is precisely the onewe
are developing here. H ow ever, and aswe w illelaborate later on, the curve (3.20) is stilla
useful starting point to com pute closed string am plitudes due to sym plectic invariance.

3.3 Com putations

Let us now spend som e tin e describing how we w ill carry out calculations to provide
various checks ofourclain s. W e also present am ore algorithm ic version of this form alian
that could be applied to com pute higher genus/num ber of holes am plitudes. Tt could in
principle be n plam ented in a com puter code, which we hope to do In the near future.

M ost of our calculations w i1l focus on open am plitudes; m ore precisely, on genus 0,
one-hole (disk), two-hole (annulus) and threehole am plitudes, and genus 1, onehole
am plitudes. Let us explain the general idea behind our com putations.

From m irror symm etry, we are given an algebraiccurve :fH (x;y)= 0ginC c ,
with a G group of reparam eterizations acting as in (2.17). T hese reparam eterizations
correpond physically to changing the location and fram ing of the brane.

3.3.1 D isk am plitude

To com pute the disk am p]ji:ude,whichzjs gjyerzl by
©0) dx

A= = by (323)
allwe nead to do is to write down y as a function of x; that is, we need to solve
H (x;y) = 0 fory. This can be done, as a power series in x, In any param eterization
of ,and after plugging in the m irror m ap for the open string param eter x in a given
param eterization we obtain the fram ed disk am plitudes for branes ending on any leg of
the toric diagram of them irror m anifold. This case was studied in detailin [d,I5].
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3.3.2 Annulus am plitude

To com pute the annulus am plitude, we need to com pute the Bergm ann kemelof . This
is trickier. O ur strategy, which extends the analysis perform ed in [40], goes as follow s.

We rstusetheG reparam eterizations to w rite down the curve 1n a sim ple form ,
such ashyperelliptic. T hiswas the case considered in [40]. G enerally, thisw ill correspond
physically to a brane ending on an outer leg of the toric diagram , w ith zero fram ing (but
it does not have to be s0). In such a param eterization, there exists explicit form ulae to
w rite down the Bergm ann kemel of the curve, at least for curves of genus 0 and 1.

Fora curve ofgenus 0, the Bergm ann kemel is sin ply given by

dy:dy.
B (x17%;) = ———; (324)
(i ¥2)
where the y; are de ned in plicitly in term s of the x; by vi = v (x;), with the function
y(x) determm ined by solving the curve H (x;y)= 0.

W hen hasgenus 1, there is a formula, due to Akem ann [7], which expresses the
Bergm ann kemel of an hyperelliptic curve of genus 1 in temm s of the branch points of
theprofctionmap ! C ontothex-axis.Let ;2 C ,i= 1;:::;4 bethe fourbranch
points of the profction map. That is, ifq; 2 ,i= 1;:::;4 are the ram i cation points,
then ; = x(g;). Then the Bergm ann kemel is given by

E (k
B (x, 5%, ) = k) o (1 3)( 4 2)
k), Ya
4 lzl(Xl i 1)(X2 i 1)

s
N 1 x: 1 D 2 13 Dx 2 1)
4(x;  x,)? x: 3 D 2 11 Dx 2 1)

S

N 21 DX 2 )X 3 1)1 4 1)+ 2 . (325)

(%2 3 Dx2 2 1)1 D 2 1)

K2 — : (3.26)

N ote that this expression involres an ordering of the branch points, which corresponds
to choosing a canonical basis of cycles for the R iem ann surface.
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U sing these explicit form ulae, we can integrate the two-point correlation function
to get the bare genus 0, two-hole am plitudes Aéo) (x1;%2) In term s of the open string
param eters x; and X, . W e then plug in the open m irrorm ap for that particular param —
eterization to obtain the open am plitude.

However, this was done In a particular param eterization, or em bedding, which ex-
hibited in a simple form , such as hyperelliptic. To obtain the full fram ed annulus
am plitude for branes in other locations, we need to be able to calculate the Bergm ann
kemel for other param eterizations. But we have seen that the Bergm ann kemel is in
fact de ned directly on the R iem ann surface, and does not depend on the particular
em bedding of the R iem ann surface. H ence we can use our result above and sim ply repa—
ram eterize it to obtain the Bergm ann kemel of the curve in another param eterization.

For instance, suppose w e aregiven the Bergm ann kemelB (% ;%,) fora curve H (x;y) =
0, and that we reparam eterize the curve with the fram ing transfom ations (x;y) =
(xyf ;v), £ 2 Z Introduced earlier. W e obtain a new embedding H (x;y) = 0 of the
Riem ann surface. To obtain its Bergm ann kemel, we rst compute x = x(x) as a
power series In x, and then reparam eterize the Bergm ann kemel to get B (x1;X,) =
B (% (X1);%2(X2)).

In thisway, we are able to com pute the bare genus 0, two-hole am plitude for any
fram ing and brane. To obtain the full result we m ust then plug in the open m irrorm ap
for the open string param eters, in the particular param eterization we are looking at.

3.3.3 G enus 0, three-hole am plitude

To com pute the genus 0, three-hole am plitude, we use the recursion ormul (3.8). W e
can also use the sin pler form ula for the threepoint correlation function proved by Ey-—
nard and O rantin In [23], which reads, for curves embedded In C C

(0) X Xy (x)
W3 (X1 7%25%3) = ResB (xjx1)B (x;x2)B (X;x3)——— (327)
Cx= dxdy (x)
U sing our result for the Bergm ann kemel in any param eterization, we can com pute
the threepoint correlation function also in any param eterization. Note however that
the branch points ; 2 C depend on the particular param eterization; hence, when we
change param eterization, not only the Bergm ann kemel gets reparam eterized, but the

branch points at which we take residues also change.
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Letusnow spend a few lineson how to nd the ram i cation pointsg; 2 and the
two points g and g satisfying x(g) = x(q) In the neighborhood of a ram i cation point.
F irst, standard geom etry says that the ram i cation pointsg; are de ned to be the points
satisfying

@H

Qy
T he x-pro fction of the ram i cation pointsg; de nes the branch points ; = x(g;) 2 C
T he Jatter can also be found directly as solutions of dx = 0.

(@)= 0: (3.28)

W e will also be interested In determ Ining the branch points of the \fram ed" curve
H (x;y)where (x;v)= (xy ;y);that is, the branch points of the profction on the x-axis
of the fram ed curve. T hese are determ ined by:

dx = d(xy" (%)= v '(x)(Exy’(x)+ y(x))d=z= 0: (329)

To nd allthe branch points ;, one has to solve (3.29) for all the di erent branches of
v (x).

W e can am ploy the above equation also to analyze the theory near the branch points:
given a ram i cation pointg;,and the associated branch point ; = x(q;), ofthe pro Fction
on the x-axis, we can detem ine the two points q;q 2  with the sam e x-pro fction
x(q)= x(gq) nearg;. De ne

x(@= i+ x(@= 1+ S(); (3.30)

where X
S( )= + G (3.31)

By de nition, we have that
x@= 1+ Jy(i+ F=(s+SCNgi+ S = x@); (3.32)
which can be used to determ Ine S (). At the st orders, we get

2 ( 1+ £9)¢( )+ £2 2 3v9% )+ £ 1D ()

S = >
3t s (1 )yl o)+ £2 7y%( )

333
2( 1+ £)y( )+ £2 2 3¥° D+ £ 59 ( 1) ’ ( !

&= 5 5 2
9f2 & @A+ )yl s) £2 7y 4)
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334 Genusl,onehole am plitude

To com pute the genus 1, onehole am plitude, we also use the recursion formula (3.9),
w ith the ram i cation points and the Bergm ann kemel corresponding to the chosen pa-—

ram eterization. T he general form ula for W 1(1) () is

@ X dE 4 (p)

W, (p)= Real:quB @;q): (3.34)

3.3.5 H igher am plitudes

Com putations at higher g;h can be readily m ade in this form alian , although they are
m ore com plicated. W hen the algebraic curve is of genus zero, the com putations are
straightforw ard, but they becom e m ore iInvolved as soon as the curve has higher genus.
Som e sin pli cations arise however when the curve is of the form (3.20) and the di eren-
tial (x) isofthe form ([3.21]), since in this case one can adapt the detailed results of [22]
to our context (see also [13] for exam ples of detailed com putations). W e w ill refer to this
case as the hyperelliptic case, since the underlying geom etry is that of a hyperelliptic
curve. Let usbrie y review this form alism , follow ing [22] closely, in order to sketch how
to com pute system atically higher am plitudes. W e 1st w rite

(x) x)=2M (x) (x)dx; (3.35)

where (x)isde ned n (3.20)andM (x) iscalled them om ent function. In the form align
of 23] applied to conventionalm atrix m odels, M (x) is a polynom ial. In our fom alisn
form irrors of toric geom etries, in the param etrization of the curve given in (3.20),M (x)
is given by

1
M (x)= p—— tanh ! ; (3.36)
X (x) a(x)
which is them om ent function considered in [40] (again, up to a factor of 2 which com es
from (3.39) and in [40] is reabsorbed in the de nition of M (x)). W hen (x) is of the
form (3.30) we are e ectively working on the hyperelliptic curve ofgenus s 1

vx)=  (x); (3.37)
with ram i cation pointsatx = x;,i= 1; 72s. W e de ne the Aycle of this curve
as the cycle around the cut
(X235 17%25); j=1; is o 1: (3.38)
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There exists a unique sest of s 1 polynom ials ofdegree s 2, denoted by L4 (x), such
that the di erentials

IR
by= P=—=dx (3.39)
21 (x)
satlsfy I
i= 55 i;j=1; ;s 1 (3.40)

A5
The !;sare called nom alized holom orphic di erentials. The oneform (3.3) can then be
w ritten as [22]

b 1
17 x) 1 X .
dE (X)) = —p—— 5 CixIL;j(x) dx (341)
2 (x) X X .
j=1
where I
0 1 dx 1
21, x)x x°

Tn this orm ula, it is assum ed that x° lies outside the contours A 5. O ne has to be careful
when x” approaches som e branch point x5. W hen x° lies inside the contour A ;, then one

has: ) I 4 )
x%) 21 4, (x)x  x’

which is analytic n x° when x° approaches X4 1 Or X25. The Bergm ann kemel is then

given by:
B ooxd) = a2 — 9 L GE a) (3.44)
; = %0 ; g
! dx® 2(x x9 !

and it can be equivalently written as
B (p;q) 1 (p)

= + P—
2]:“ &

dpdg 2 9 2@ q)

(345)

D
B
+
D

I

I~ 4
dp a) E @ 4 (©E @

where A (p;q) isa polynom ial. Tn the elliptic case s = 2, there is one single integralC (p)
to com pute, and one can nd very explicit expressions in tem s of elliptic integrals:

2
Ci(p)= P X2 x3) Mgy;kK)+ (P x)K k) ;
P x)pP X)) X X3)X2 Xa)
reg 2
Ci 7 (p)= P X3 x2) ny;k)+ (p x3)K (k)
P x)pP X)) X1 X3)X2 Xa)
(346)
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(X1 X)(X3 X4) n - (X2 %) X3) no— (x4 x3)(p X2)
(%1 x3)(%2  x4) : xs x)p %) ' (x4 %) x3)
(347)

(n;k) is the elliptic integral of the third kind,

7
L dt

(n;k)= P
o (1 n®) (1 ©)1 ko)

(348)

and K (k) is the standard elliptic Integral of the second kind.

W ith these ingredients one can com pute the residues as required in (3.8). It is easy
to see that dE4(p)=y(q), as a function of g, has a pole at g = p but no pol at the
branchpoints. It is then easy to see that all residues appearing in (3.8) will be linear
com binations of the follow ing kemel di erentials

dE4 () 1

(n)
i ( ): Re = X{ (3.49)
F N v @ =x)»°
which are explicitly given by
" . #
) ()= 1 1 at 1 1 X o) @) _ 5.50)
L o 1) E)dg” M (@) p g i e q:X_'

N otice that in order to com pute the kemel di erentials, the only nontrivial ob Fcts to
com pute are d*C j=qu . For a curve ofgenus one, they can be evaluated from the explicit
expressions In (3.4d). In order to com pute the residues involved in (3.8), one has to take
into account that the residues around branchpoints in term s of a local coordinate as
in (3.8) are twice the residues around x = X; In the x plane 22]. One then nds, for
exam ple,

les
Wolerip2ips) = o M (ki) k) Ve e Hes);
=1
(3.51)
W) 1% ) ) 1% A (xi;x%5) X 1 @ )
= — ) + — - - - - ) .
T 8 O(x;) L X Xy PR
i=1 =1 61
where A (p;q) is the polynom ialin (3.49).
T herefore, in the hyperelliptic case, when  (x) (x) can be written as in ( [3.39),

the com putation of the am plitudes can be done by residue calculus and the only part
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of the calculation which is not straighforward is the evaluation of the integrals (3.42),
(343). In the elliptic case, they reduce to elliptic functions, aswe saw in (3.44d). In the
general case one can evaluate the integrals in term s of suitable generalizations of elliptic
functions.

34 M oving in the m oduli space

In section we discussed in som e detail phase transitions in the open/closed string
m oduli space. W e explained why the B-m odel was perfectly suited for studying such
transitions. W enow have a form aliam , entirely in the B -m odel, that generates unam bigu-
ously allopen/closed am plitudes for toric C alabiY au threefolds. A n obvious application
is then to use this form alisn to study both open and closed phase transitions, which
cannot be studied with A -m odel form alism s such as the topological vertex.

R ecall that the iIngredients in our form alisn consists in a choice of profgction ! C
(or equivalently a choice of param eterization of ),a di erential (p) corresponding to
the disk am plitude, and the Bergm ann kemel B (p;q) of the curve | which yields the
annulus am plitude. Note that once the param eterization is chosen, the one-form  (p)
is canonically de ned to be
dx (p)
x(p)

Hence (p) really only depends on the choice of param eterization.

(P)= logy(p) (3.52)

W e have seen that changing the param eterization of the curve  corresponds to
changing the location and fram ing of the branes, that is, m oving in the open m oduli
space. T his is the m idest type of transition that was considered in section [2.2.]]. Since
the Bergm ann kemel is really de ne on the R iem ann surface, it can simply be repa-
ram eterized, and open phase transitions are rather easy to dealwith. A s explained in
section [22.]], this is because the am plitudes are sim ply rational functions of the open
string m oduli, which we see explicitly in our form aligm .

T he m ore interesting types of transitions are thus the transitions between di erent
patches which require non—rivial Sp(2g;C ) transform ation of the periods. The only
ingredient that ism odi ed by these transitions in the closed string m oduli space is the
Bergm ann kemel, since itsde nition involres a choice of canonicalbasis of cycles, which
corresponds to a choice of perdods.

43



M odular properties of the Bergm ann kemel have been studied in detail n [23,[24].
Underm odular transform ations, the Bergm ann kemel transform sw ith a shift as follow s:

B@a)7? B;a) 2 il @)C +D)'C!@); (3.53)
w ith
A 2 Sp(29;2); (3.54)
C D pl£gis )y

and is the period m atrix. Here, ! (p) is the holom orphic di erentials put in vector
form . Th a sense, the Bergm ann kemel is an open analog | since it is a di erential in
the open string m oduli | of the second E isenstein series E,( ), which also transfom s
with a shift under SL (2;72 ) transfom ations and generates the ring of quasim odular
form s.

The key point here is that we know how the Bergm ann kemel transform s under
phase transitions in the closed string m oduli space. Hence not only can we use our
form alism to generate the am plitudes anyw here In the open m oduli space, but also in
the full open/closed m oduli gpace. T hism eans that in principle, we can generate open
and closed am plitudes for target spaces such as conifolds or orbifolds. W e w ill explore
this avenue further in section [4.

To end this section, ket usbe a little m ore precise. In thispaperwe w illonly consider
S duality transform ations for curves of genus 1, w hich exchange the A —and the B—<ycles.
M ore precisely, the S duality transform ation acts on the basis of periods by

0 1

10 2 SL(2;2): (3.55)

W hen the curve has genus 1, we can use Akem ann’s expression (3.29) to com pute the

choice of canonical basis (or periods) is encoded in the choice of ordering of the branch
points. In tem s of the elliptic m odulus k?, the S -duality transfom ation is given by

k27 1 kZ%: (3.56)

U sing the explicit expression for the m odulus In tem s of the branch points (3.26), we
see that the S +ransform ation is given by exchanging the two branch points , and 4.
In other words, an S duality transform ation corresponds to the two cutsm eeting at one
point and then splitting again. T herefore, to determ ine the shifted Bergm ann kemel
after an S-duality transform ation, we only neaed to use Akan ann’s expression (3.29)
again,butwith , and 4 exchanged. U sing this new Bergm ann kemelwe can generate
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allopen and closed am plitudes after the phase transition corresponding to the S -duality
transform ation.

W e will exem plify this procedure in section [d, where we use an S-duality phase
transition to com pute open and closed am plitudes at the point in the m oduli space of
localP! P! where the two P'’s shrink to zero size. Using large N duality, we can
com pare the resulting am plitudes w ith the expectation values of the fram ed unknot in
Chem-Sim ons theory on lens spaces, and we nd perfect agreem ent.

4 G enus 0 exam ples

In this section we study two toric CalabiYau threefolds, C* and the resolved conifold,
for which the m irror curve has genus 0.

41 The vertex

Our rst exam ple is the sin plest toric C alabiYau threefold,M = C°. Them irror curve
is P! with three holes, and can be w ritten algebraically as

H (;9)= %+ v+ 1= 0; (4.1)
with x;¥ 2 C E

T his param eterization corresponds to a brane ending on one of the three outer legs of
the toric diagram , w ith zero fram ing (in standard conventions). T he open m irror m ap,
In this param eterization, isgiven smply by X ;Y )= ( %; ¥).

411 Fram ing

T he fram Ing transfom ation is given by

=;7) T (x;v)= (=¥ ;¥); 42)

SIn the Hlow ing, tide variables w ill alw ays denote a curve in zero fram ing, w hik plai variablesw ill
denote a fram ed curve.
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Framed vertex Y:{z+y T +yf =0}

Figure 4: The fram ed vertex and itsm irror curve.

where x is the fram ed bare open string param eter. From the transform ation above, the
open m irrorm ap isnow given by (X ;Y )= (( 1) !x; y).Under this reparam eteriza—
tion the m irror curve becom es

Hx;y)=x+ v 1+ y-=0; (4.3)
which is a branched cover of C . The fram ed vertex and its m irror curve are shown in
gure(4.

4.1.2 Disk am plitude

T he bare fram ed disk am plitude is given by

Z
(0) dx
(%)= Jogy(x);: (4.4)

Thus,weneed to nd y= y(x). W ecan solve (43) fory as a pow er series of x, by using
for exam ple Lagrange nversion, and we get

y(x) = 1+Xl ( ppev@ftn 207
(nf 1)! n!
n=1 (45)
£
-1 (xe e S e e
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Plugging in themap x= ( 1)!X ,we thusget

1 2 1 2 3
X )= X + -1+ 2E)X“+ — 2+ 9f + 9£°)X
4 18
1 2 3 4
+£(3+ 22f + 48f°+ 32£°)X “+ i1 ; (40)

up to an irrelevant constant of integration. T his is precisely the result that is obtained
on the A -m odel using the topological vertex.

41.3 Annulusam plitude

To com pute the annulus am plitude we m ust com pute the B ergm ann kemel of the curve
(43) in the bare open string param eters x; and x,.

Letus wmstwork In the zero fram ing param eterization. Since has genus 0, at zero
fram ing the Bergm ann kemel is sin ply given by

dyidy,

; 4.7)
¥ )

B (% j%) =
where the y; are de ned in plicitly In term s of the %; by v = y(x;), with y(x) obtained
by solving H ()¢;y) = 0,that isy(x)= 1 x.

But the fram ing transfom ation sets y1 = v, V2 = ¥, hence we can reparam eterize
the Bergm ann kemel and obtain Inm ediately that

dy:,dy
B (x1j%;) = ——2; (4.8)

1 v2)°

wherenow they; arede ned in plicitly in term softhex; by vi = v (x;),w ith the function
v (%) given by (4.9).

T he bare two-hole am plitude is given by rem oving the double pol and integrating:

Z
dx,d
Ay (%7%) = B (x17%2) x17xz2
(X1 x2)
=log( y1(x1)+ y2(x2)) log( x;+ X3): (49)
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U sing the expansion (43) and theopen mimrormap X1 = ( 1)Vx,X, = ( 1)x,,
we obtain

©0) 1 1 2\ 2 2

AZ (XI;XZ)ZEf(f-" 1)X1X2+ gf(l‘l‘ 3f + 2f )(X1X2+ XIXZ)

1 2 2 2 1 2 3 3 3
+ Zf(l+ £)1+ 2£)X X5+ §f(2+ 11£ + 187+ £7)(X X+ XX 5)+ it (4.10)

up to irrelevant constants of integration ; thism atches again the topological vertex result.

414 Threehole am plitude

To com pute A;O) , the additional Ingredients needed are the ram i cation points of the

profctionmap ! C onto the x-axis for the fram ed curve (43). Solving

@H
—=0; (411)
Qy

we nd only one ram i cation point g; at y(x) = ffl . Denote by ; the associated

branchpoint, which is given by the x-projction of ¢, that is ; = x().

T he am plitude thus becom es

Z
0) Xy (x)
A3 (X15%27%3)=  ResB (xjx1)B (X;x2)B (X;%3)———
x= 1 dxdxd—i
Z
x(y )ydydy; (x1 )dyz (%2 )dys (x3) dx '
= Res > . - — (412)
v= w2 (v i)y 2 (x2))f(y ys(x3))® dy
Sinhcex = vy (y+ 1),we com pute easily that
dx 1
ox _ ; (413)
dy yt e+ y(E+ 1)
which hasa sin ple pole aty = ffl . Taking the residue and integrating, we get
Z 3
Y dy; (X;
A0k xp5x5) = E(E+ 1) vies)
L (E (E+ Dyi(xo))
£2 Y 1
(4.14)

TEA L f (E+ Dy

i=
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P lugging in the expansion (4.5) and the open m irrorm ap, we nally obtain
AV XX 5) = 2L+ £)X X X5+ £2(1+ £)2(1+ 2£)(X 2X ,X 5 + pem s)
} 2 2 2 3 2 2\2 2~ 2 cee e
+2f (I+ £)° 2+ 9f+ 9£7) (X X X 3+ pem s)+ £7(1+ 3£+ 2£7)" (X X X s+ perm s)+ 111 5

which isagain in agreem ent w ith vertex com putations.

4.1.5 The genus one, one hole am plitude

In the com putation of A il) (X ) we need som e extra ingredients, besides the ones thatwe
have already considered. For a curve of genus zero,

1 1

1
dE4 (p) = ~dy(p) i (4.15)
TP Ve v@  ve) y@

where y is a Jocal coordinate. To com pute (334) in this exam ple, we need g near the

ram 1 cation pointo; located aty(ch ) = % . Follow ing the generaldiscussion in section

B3, wewrite
f f
y(@)= " f+ ; y@)= n f+ S(): (4.16)
By de nition,
x(@)= yv@ @+ 1= y@ @+ 1)=x@Q); (4.17)

which we can use to solve for S ( ), which has the structure presented in [B.31). Its
pow er series expansion can be easily determ ined, and the rst few tem s are

S0 - L2 1+ £2) 2 4 1+ £2) 3+0(4)- 18)
a 3f 9f2 : ]

W enow com pute (334) by using asa local coordinate near the branchpoint. W e nesd,

d 7y

B(qq)= ——5% ); 419
(@iq) ( S( ) () ( )
aswellas
@ (@= £, b E sy FEy . (4 20)
4 v= b9 1+ f 9 Tif d )
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The residue In (3.34) is easily evaluated, and we only need the expansion of S ( ) up to
third order. One nds,

4.2 2 4
(1)(y)= 1+ £)yv*+ 2f(1+ £)@2+ f4+f )y+fdy; (@21
24(f (1+ p)+ p)

A fter Integration and expanding in X , we obtain

X .\ (1+ 2f)(f°+ £ 1)xX?

24 12

. (1+ 3f)2+ 3F)( 1+ 2f+ 2f2)x 3
16

A (y)=

(422)
+0X*%h;

which is in perfect agreem ent with the g = 1 piece of the exact formula in g (but
perturbative In X ) cbtained from the topological vertex,

mf+m 1]
mm J'mf]

Ai(yig)= ATy = ppfxm+l, (423)

g=0
where [n]denotes the gnum ber w ith param eter g= €%.

To end this section, we m ention that the fram ed vertex results can be w ritten down
In a nice way In temm s of Hodge integrals, using the M arinoVafa formula [41]. The
recursion relations proposed in this paper induce new recursion relations for the H odge
integrals. In tum, using the well known relation between the fram ed vertex geom etry
and Hurw itz num bers, one can obtain a full recursion solution for Hurw itz num bers.
T his is a nice m athem atical consequence of the form alisn proposad In this paper, which
is studied in [16].

416 Framed vertex in two legs

So far we assum ed that all the branes ended on the sam e leg of the toric diagram of C3
(the vertex). However, when there are m ore than one hole, one can consider the case
w here there is one brane in one leg of the vertex and another brane in another leg; this
isshown in gure[d. Let usnow com pute the annulus am plitude for two branes in two
di erent legs. T he strategy goes as usual: we start w ith the Bergm ann kemel for two
branesw ith zero fram ing In the sam e leg, and then reparam eterize the B ergm ann kemel
to obtain two fram ed branes in di erent legs.

To do s0,we need to nd the expansion y; = vy (x1) for a fram ed brane in one kg,
which we found already in (£3),but also y, = y, (%)), where x) now corresponds to the
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f2,
N /

Figure 5: The fram ed vertex in two legs.

open string param eter of a fram ed brane in a di erent leg. That is, we need to be able
to relate the curves in the two di erent legs.

A sexplained in section [2.7, the phase transform ation form oving from one leg of the
toric diagram to another, at zero fram ing, reads:

bz ly): (4.24)

v) T =5y = (=
Now the fram ing transform ation In this new leg reads
=y T &Gy = &N i) (4.25)

where x and v’ now correspond to fram ed param eters in the new leg. Combining these
tw o transform ations we get

(iy) T x5y = (e F Ty ix ty); (4.26)
Inversely, we have that
(xiy)= () ")) T (427)
U nder this reparam eterization the curve becom es
X+ @)+ =0 (4.28)

which is the sam e curve as before! Indeed, for the fram ed vertex, by sym m etvry changing
the leg does not change the am plitudes.
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Sowe know y°(x%) which is (4.3) asbefore. H owever, what we really want in order to
reparam eterize the Bergm ann kemel is y = y(x°). U sing the transform ation above, we
know thaty= y(x% = x° (y°x"))"!.Asapower series, we get

(1)

v= (1= @+ f)+ 1+ £)x%+ ::: (429)

U sing these results, we can reparam eterize the Bergm ann kemel to get the fram ed
annulus am plitude In two di erent legs. For the st open string param eter, we reparam —
eterizeusing v, = y1 = yi1 (X1) given by (4.9), and for the second open string param eterwe
use (Z29) togety, = v, (x3). Them irorm ap forthe rstparameterisX ;= ( 1)%xg,
while for the second param eter from the transform ations above we get the m irror m ap
X,= x5.Reamnoving the doubl pol and integrating as usual, we ge‘f@

(1)
AV X) = ( DFXX, £X1X2 ———(F,(1+ 36))X X}
1 2¢, 2 (1) 2¢ 3
~(+ 266X {X ] S22+ £+ 3REXIX ]+ (430)

which again is In agreem ent w ith the vertex resu]tﬁ

4.2 The resolved conifold

Let usnow tum to the resolved conifold, or localP'. Them frror curve C C has
genus 0, and reads
H (;9;9)= 1+ %+ v+ qey; (4.31)

with %x;¥ 2 C and g= e %, with t the com plexi ed K ahler param eter controlling the
size of the P'. This is shown in gure[d.

T here are two di erences w ith the fram ed vertex. F irst, them irrvor curve above hasa
one-din ensional com plex structure m oduli space, param eterized by g. Hence, we could
consider phase transitions in the closed m oduli space. H owever, as explained in section
[2.21], since the curve has genus 0, the am plitudes are rational functions of the closed
m oduli, that is there is no non—rivialm onodrom y for the periods. Hence, in this case
these transitions are not very interesting.

®N ote that here we have two fram ings f; and f, corresponding to the two di erent branes.
"M ore precisely, to get the topological vertex result we need to rede ne f1 7 f;  1,which is just
a rede nition of what wem ean by zero fram ing.
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P

Resolved conifold Y:{1+Z+ 7§+ qzy =0}

Figure 6: The resolved conifold and itsm irror curve.

Anotherdi erence is that in contrast w ith the fram ed vertex, changing phase in the
open m oduli space, that is, m oving the brane from one leg to another, yields di erent
am plitudes. There are basically two types of am plitudes, corresponding to \outer"
branes (ending on an outer leg of the toric diagram ) and \inner" branes, as explained
in section 22. Since this type of transitions will be studied in detail for the local P?
exam ple, for the sake of brevity we w ill not present here the calculations for the resolved
conifold. Let us sim ply m ention that we checked that both the fram ed outer and fram ed
Innerbrane am plitudes at large radius (in the Iim itg ! 0) reproduce precisely the results
obtained through the topological vertex. T he calculations are available upon request.

5 G enus 1 exam ples

W e now tum to the m ore Interesting cases where the m irror curve has genus 1. W e
will study two exam ples in detail: localP? and localF,,n = 0;1;2, where F,, is the
n'th Hirzebruch surface. Note that F, = P! Pl. For the sake of brevity, we do not
include here all the calculations; but we are happy to provide them w ith m ore detailed
explanations to the interested reader.
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O(-3) — P2 Y gz + G+ 7%+ q22 =0}

Figure 7: An outer brane in localP? and itsm irror.

5.1 LocalP?

T he Jocal P? geom etry is described by the charge vector ( 3;1;1;1). Them imor curve
is an elliptic curve w ith three holes, and can be w ritten algebraically as:

H (%;75750) = Xy + X9+ %V, + Q; (5.1)

with %5;% 2 C and g = e %, with t the com plexi ed K ahler param eter of local P2.
A s for the resolved conifold, there are two distinct phases in the open m oduli space,
corresponding to outer and inner branes. The above param eterization of the curve
corresponds to a brane ending on an inner leg of the toric diagram , w ith zero fram ing
(In standard conventions), hence the i subscript. For an outer brane w ith zero fram ing,
the curve reads (see section [2.3.4)

H (%y;9) = ¥ + v+ yx+ g = O: (52)
T he outer brane geom etry is shown in  gurel[d.

N ote that as for the resolved conifold, there are now m ore than one phases in the
closed m oduli space as well. Since the curve has genus 1, the periods now have non-—
trivialm onodrom y, and undergoing phase transitions in the closed m oduli space becom es
relevant. For instance, the closed m oduli space contains a patch corresponding to the
orbifold C3=Z5, in the lim it where the P? shrinks to zero size. However, in this section
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we will focus on the large radius Im it g ! 0 in order to com pare w ith the topological
vertex results on the A -m odel side.

The m fror m aps for this geom etry at Jarge radius were studied In section [2.3.4, for
both fram ed outer and fram ed inner branes.

5.1.1 Fram ed outer am plitudes

W e start by com puting the am plitudes for fram ed outer branes. To com pute the disk
am plittldeweneed y = y(x). W e get

(f+ 3f% 2z)x> (1+ 4f) (f+ 2f% 3z)x*

=1l+x f£x°+ + oo 53
y 5 3 (53)
By de nition, the bare disk am plitude is given by
Z
(0) dx
A (%)= Jogy(X);; (54)

and after expressing the result in at open and closed coordinates using (2.71) we get
precisely the topological vertex result for the disk am plitude of a fram ed brane in an
outer kg.

W e now tum to the annulus am plitude. T he bare annulus am plitude is given by :
Z

A, (X5%Xp) = B (X1;%X2) Iog( x1+ x3): (5.5)

Hence, we nead the Bergm ann kemel B (x; ;x5 ) of the fram ed outer curve. A s explained
earlier, this is sin ply given by reparam eterizing the Bergm ann kemel of the unfram ed
outer curve (5.2).

It tums out that the unfram ed outer curve (5.4) is hyperelliptic. Consequently, we
can use Akem ann’s expression (3.29) for the Bergm ann kemel in tem s of the branch
points of the xproction | herewe ollow the calculation perform ed in [40]. To obtain
these branch points, we rst solve (5.2) for v as:

=+ 1) P x+ 1) A4gx®
v = 5 : (50)

Tt tums out to be easier to work w ith the inverted variable s = % '. In this variable,
the branch points of the curve are s, = 0 and the roots of the cubic equation

s(s+ 1) 4g= 0: (5.7)
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In term s of

1

pP-P— 3
= 1+ 54g+6 3 g@+ 279 ; (58)
they are given by

! +i ; S4:(7lf; (59)

) 1
52 = 3 ! 3

wlro
+

where | = exp(2i =3). P lugging in these branch points in A kem ann’s orm ula [3.29),we
obtain the Bergm ann kemel for the unfram ed outer curve, and the annulus am plitude
in zero fram ing, as in [401.

W enow want to In plem ent the fram ing reparam eterization. T he reparam eterization

® = %(x) can be com puted usihg that x(x) = xy(x) fwith y(x) given In (83). We

nally obtain, after reparam eterizing the B ergm ann kemel, plugging in them irrorm aps
(2.11l), and integrating, that the fram ed annulus am plitude for outer branes reads:

h

0) 3 £2 2 2 A2
A, (X1;Xy)= +? 1+ 2f+ 2f° O+ 4+ 7f+ 7f° Q
i

35+ 42f + 42f% Q7+ ::: X X,

N | Hh

h

f 2 2f3 2 3 2 3 2
v £° T4 1+4afr6f’+4f’ 0+ 3 15f 27£° 18£° Q%
308 £ , 328£% i ,
+ 24+ + 164 £ +T 0O~ + XX+ XX 5)+ 0 (510)

T his is again precissly the result obtained through the topological vertex.

The genus 0 threehole am plitude for fram ed outer branes can be com puted using
the general form ula (3.27), after reparam eterizing the Bergm ann kemel. However, to
In plam ent this formula we need to nd the branch points of the fram ed curve | note
that these are di erent from the branch points of the unfram ed curve found previously.
A s explained earlier, these branch points are given by the solutions of equation (3.29).
In this case, (3.29) becom es a cubic equation in x, and the three branch points can be
determ ined exactly by C ardano’sm ethod. N ote that it w ill be relevant which branch of
(5.8) the branch points belong to; thus we w illuse the indices  accordingly.

The st orders of the gexpansion of the branch points read@

8N ote that the branch points are not reqular as £ ! 0, but the nal expression of the threehole
am plitude w ill be.
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2+ 6f+ 3f2 1+ 3f+ 2f%2 (2+ 3f) (3+ 18f+ 37£2+ 30£%+ 9f%) g

1T T35+ 2820 (24 3fYq (1+ 3f+ 2£2)

1+ 3f  (1+3f) 2+3f)g (Q+3f) 2+ 3f)( 1+ 2f+ 6£%)
2= 7 " £(l+ 2fF) £3(1+ 2£)

. 1 (2 3f)g ((2+3f) @1+ f 8+ 9f)) L

T 17 f Tfas+ey £330+ £) :

Taking into account the branches, plugging in the m irror m ap and integrating, we

obtain the follow ing result in at coordinates:
h

+ o1

+

(5.11)

AV X X.Xs) = £2(+ £) + 1+ 6f+ 12F%+ 12£°+ 6£% Q (512)

i
314 3F+ 3F2°0Q0%+4 9+ 36F+ T7F%+ 82F°+ 41F% Q3+ X X, X4+

which reproduces again the topological vertex result.

Note that we also com puted the genus 1, onehole am plitude, which also m atches
w ith topological vertex calculations.

5.1.2 Fram ed inner am plitudes

W e can com pute the am plitudes for fram ed inner branes In a way sin ilar to the calcu-
lations above for outer branes. The m ain subtelty occurs in the reparam eterization of
the Bergm ann kemel.

Since we want to use Akem ann’s form ula for the Bergm ann kemel, we start again
with the curve In hyperelliptic form (54), which corresponds to the unfram ed outer
brane. W e then reparam eterize that curve to obtain the B ergm ann kemel corresponding
to the curve associated to fram ed Inner branes.

R ecall that the transform ation which takes the unfram ed outer curve to the unfram ed
inner curve is given by (2.72),

1w
(x;y) = _;Z : (5.13)
X Ry

T he fram Ing transform ation for inner branes is
(=i7ys) = (Kiy; ~iya): (5.14)
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Hence we obtaln the com bined transform ation

Geiy) = (2, tyiax v, (515)

1

which we can use to reparam eterize the Bergm ann kemel. Note that this is sim ilar to
the calculation for the fram ed vertex in two legs. M ore explicitly, we obtain
1 R £, 2f° 5
®(x;)=f+ — —+ — x5+ —+ £+ — x4+ (5.16)
U sing this reparam etrdzation and the m irror map (2.78) for fram ed inner branes we
obtain the fram ed Inner brane annulus am plitude:
hf f2

(X 1;X,)= St 1 2f 2f? 2f£° f£* QO+

35f 81f? 157f% 93f*! 27f° 5f°
+ + + + +
2 4 8 8 8 8
467f£% 15023f°  781f* 47f£° 1429f° 1537f’ 221f°% | *
+ + + + Q4+ 1 X1X
2 90 180 72 18 360 180
3f  f? T

+ 1 =4+ Q%+ 8+ 16f 14f’+6f> £ Q7+ ::: +
2 2 X1X

(0)
)

+ 11+ Q% 131+ 201f+

(517)

T his reproduces the topological vertex result, including both positive and negative w ind—
Ing num bers contrlbutions.

N ote that we also com puted the genus 0, three-hole and the genus 1, one-hole am —
plitudes for fram ed inner am plitudes and obtained perfect m atch again.

W e also com puted the annulus am plitude for one brane in an outer leg and one brane
In an inner lag, paralleling the fram ed vertex in two legs calculation. W e again obtained
perfect agreem ent.

5.2 LocalF,,n= 0;1;2
W e now study the localF,,n = 0;1;2 geom etrdes, where F, is the n'th H irzebruch
surface. Note that F, = Pt P!.

The localF, geom etries are descrlbbed by the two charge vectors:

Q' =( 2;1;1;0;0);
0%=m 2;0; n;1;1): (5.18)
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°

Local Fy Y A{§Z + § + 7% + @327 + ¢.72 = 0}

Figure 8: An outer brane in localF, and itsm irror.

The m irror curves C C have genus 1 and four punctures. In the param a-
terization corresponding to a brane placed in an extemal leg (w ith zero fram ing), they
read:

Hy(5yidiq) = y2+ v+ ¥ + gy + fgx""?; (5.19)

withx;9y2 C ,q=e "and g, = e °,with tand s the com plexi ed K ahler param eters.
The IocalF, geom etry is shown in  gure(d.

T he closed m oduli space is now two-din ensional, being spanned by ¢ and ;. How -
ever, these curves are still hyperelliptic, and we can apply our form alian exactly aswe
did for the ocal P? case. Therefore, we w ill not do the fi1ll calculation here, but only
highlight som e interesting aspects.

T he large radius expansion for localF, = P* P! hasbeen discussed in detailin [40],
w here several open am plitudes (for outer branesw ith canonical fram ing) were com puted.
N eadless to say, we checked that our form alisn can be used to com plete the calculations
by ncliding fram iIng and Inner brane con gurations.

Besides the large radius point, our form alisn allow s to com pute topological strings
am plitudes at other points in the closed m oduli space of localFy, like the conifold point
and the orbifold point. The latter corresponds to the point where the P P! shrinks
to zero size. T his gpecial point w ill be discussed in great detail in the next section.

For localF; and F,, the open and closed m irror m aps together w ith the disk am pli-
tudes for inner and outer branes were studied, for instance, In 37]. Again, we showed
that our form alisn allow s to com pute fram ed inner and outer higher am plitudes in the
large radius Im it, checking our results w ith the topological vertex ones.
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A san exam ple, the outer annulus am plitude at zero fram ing for the localF | geom etry
reads:

h i
AP (XX = Q.0 30%0.+ 40202 50,07+ XX,
h i
0.0: 2020.+ 30202 40,03+ X X2+ XX,
b 2 242 3 . 3 3 (520)
+ QSQt 2QtQS+4QtQS 3Q5Qt+ X1X2+X1X2

h i
7
+ 0 0.0c 20{0.+20{07 3007+ X {X]+

w hile for the localF, geom etry:

h i h i
Ay (XX o) = 20204+ 4020.+ X X, Q2.+ 3000+ XX 2+ X 2X,
h i h i
+ Q0.+ 2070+ XX+ XX, + Q204+ 20,07 + XX 5+

(521)
Both of these coincide indeed w ith the topological vertex results.

T here is also another interesting phase in the local F; moduli space | see for in-
stance [36]. By de nition, F; isa P! bundle over P!, where the P! base is an exceptional
curve. In fact, F; is isom orphic to P? blown up in one point, the base of the bration
corresponding to the blown up exceptional curve. Hence, we can blow down this excep—
tionalP!, and we should recover P?. In other words, if we take the open am plitudes for
local F; and m ove to the phase in the m oduli space where this exceptional P goes to
zero size, we should recover the open am plitudes for JocalP?. G oing to this patch in fact
corresponds to am id transform ation In the closed m odulispace, since it doesnot involve
a rede nition of the periods. T he phase transition can then be directly in plem ented on
the am plitudes as no m odular transform ation is needed.

M ore speci cally, it can be in plem ented in the JocalF; annulus am plitude (5.20) by
rstde ning Qs = Q0+ and then taking the Imit Q. ! 0.W e get:

h i h i
0
A (X1iXo)= Q.+ 407+ XiXo+ Qs 307+ X X 5+ X (X,
h i h i (5.22)
2 3 3 7 2 25, 2
+ Qs+ 4070 + X1X5+ X{X, + Qs+ EQS+ X X5+

which indeed coincides w ith the localP? annulus am plitude at zero fram ing, see (5.10).
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6 O rbifold points

A swe already am phasized, one of the m ain feature of our B-m odel form alian is that
it can be ussd to study various phases in the open/closed m oduli space, not just Jarge
radius points. In particular, there are two special points w here we can use our fom alisn

to generate open and closed am plitudes; the orbibd point of localP? ,w hich corresponds
to the orbidd C =%, and the point in them odulispace of bcalP! P! wheretheP! P!
shrinks to zero size (which we will call the localP! P! orbifold point, although it is
not really an orbifold).

In the second exam ple, we can use large N dualities to m ake a precise test of our
form aliam , and of its ability to produce results In all of the K ahler m oduli space (and
not only at the lJarge radius lim it). Indeed, it was argued in [4] that topological strings
onA, ; brations over P! are dualto Chem {Sin ons theory on the lens space L (p;1). In
particular, the topological string expansion around the orbifold point of these geom etries
can be com puted by doing perturbation theory in the Chem {Sin ons gauge theory. T his
was checked for closad string am plitudes in 4], forp= 2. W e w ill extend this duality to
the open string sector and m ake a detailed com parison of the am plitudes.

In the st exam ple,we woul obtain open and closed orbifbld am plitudes of C °=Z .
T he closed am plitudes w ere already studied in [1/]; by now som e of the predictions of that
paper for closed orbifold G rom ov-W itten invariants have been proved m athem atically.
For the open am plitudes, to the best of our know ledge open orbifold G rom ov-W itten
invariants have not been de ned m athem atically, hence there is nothing to com pare to.
H ow ever, we proposed in section [2.3.9 a m ethod for determ ining the at coordinates at
all degeneration points in the m oduli space which, as we will see, applies to the local
P! P! orbibd point. Therefre, we will assum e that it should work at the C3=Z;
orbibd point as well, and use it to m ake predictions for the disk am plitude for C3=25.

Let us start by studying the local P! P! orbiold point. W e rst perform the
Chem-Sim ons calculation, then explain the large N duality, and nally present ourdual
B-m odel calculation.
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6.1 Chern{Sin ons theory and knots in lens spaces

In order to extend the duality of 4] to the open sector, we will need som e detailed
com putations in Chem {Sin ons theory. In this subsection we review [38,/4]and extend
than slightly to include W ilson loops.

Lens spaces of the form L (p;1) can be obtained by gluing two solid 2-torialong their
boundardes after perform ing the SL (2;Z ) transform ation,

Up = (6.1)

1 0
p 1
T his surgery description m akes it possible to calculate the partition function of C hem {
Sim ons theory on these spaces, as well as correlation functions of W ilson lines along
trivial knots, in a sinple way. To see this, we rst recall som e elem entary facts about

Chem {Sin ons theory.

An SL(2;7 ) transform ation given by the m atrix

U (Pim) _ bi 5 (6.2)
G Si

lifts to an operator acting on H (T?), the H ibert space obtained by canonical quanti-
zation of Chem{Sin ons theory on the 2-torus. This space is the space of ntegrable
representations ofa W ZW m odel w ith gauge group G at levelk,where G and k are re—
soectively the Chem {SIn ons gauge group and the quantized coupling constant. W e w ill
use the follow ing notations: r denotes the rank of G , and d itsdim ension. y denotes the
dual C oxeter num ber. T he fundam ental weights w ill be denoted by ;, and the sim ple
rootsby ;,with i= 1; ;. The welght and root lattices of G are denoted by and
vy respectively. Finally, we put 1= k + y.

R ecall that a representation given by a highest weight is integrable if the weight
+ isin the fundam entalchamberF ; ( denotesasusualtheW eylvector,given by the
sum of the fiindam entalweights). T he fundam entalcham ber isgiven by =ﬂ, M odded
out by the action of the W eylgroup. For example, n SU (N ) a weightp= _ p: i Is
nF,if
Xr
i< l; and pi> 0;i= 1; Fiay (6.3)
=1
In the ollow Ing, the basis of integrable representations w ill be labeled by the weights in
Fi.
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In the case of sin ply—laced gauge groups, the SL (2;7 ) transfom ation given by U ®A)
has the follow iIng m atrix elem ents in the above basis 43,129]:

h jj(Pr’CI)j i = [ (q):]: jexp ld_ U (PRA) )l vol
(Igxj)” 12 Vol .,
% % ni o (64)
(w)expﬁp2 2 (In+w( N+ sh+w( )

n2 (=q w2W

In this equation, j , jdenotes the num ber of positive roots of G , and the second sum is
over the W eylgroup W ofG . (U ®A)) isthe Radean acher finction:

p r pt s
= 12s(p;q);
g s s(p;qa) (6.5)
where s(p;q) is the D edekind sum
g1 n np
s(p;q) = — ot — oot — ¢ (6.6)
q d

From the above description it follow s that the partition function of the lens space
L (p;1) is given by
ZLp;l)="h 37 i; (6.7)

where U, is the lift of (6.]]) to an operator on H (T?). In order to m ake contact w ith the
open sector, we nead as well the nom alized vacuum expectation value of a W ilson line
along the unknot in L (p;1), in the representation R , which is given by
h ]+ i
Wo - Pl T 1 68)
h .71
where is the highest weight corresponding to R . T he num erator can be written (up
to an overall constant that w ill cancel w ith the denom nhator)
X X n; o
(w)expE 22 n+w( + N+ IMm+w( + ) (6.9)

n2 r=p rW2W

It is a sin ple exercise In G aussian Integration to check that this quantity can be w ritten
as

X X G no o

(ww’) d ;exp 2 n o+ w() %+ )) ;(610)

n2 ;=p ww92W =1
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w here

2 i
Q= — (6.11)
Q Pt
and d = le ;and ; are the D ynkin coordinates of , understood as an elem ent
In , R.Thisintegralcan be further written as
z no oYy 2
d exp 2 2shh—— tgre ; (6.12)
245 2
>0
where we have used W eyl’s form ula for the character,
} w)e "0
ty e = P2 (6.13)
w2W (W )e v
aswellasW eyl’s denom inator form ula. It follow s that
1 . noq oY 2
Wg=———— d exp 2 ‘n 2shh—— tye ; (6.14)
Z (L (pi1)) 2, o 2
where 7
noq , oY 2
Z (L (p;l)) = d ex n 2sinh —— 6.15
L ;1)) P 2. 5 ( )

>0

This provides m atrix integral representations for both the partition function (derived

previously in [38,14]) and the nom alized vacuum expectation value of a W ilson line

around the unknot. Both expressions are com puted in the background of an arbitrary
at connection labelled by the vector n. Notice that, when n = 0, one has that

Wy = @202t BNgq R; (6.16)

where dingR is the U (N ) quantum dimension of R with g = & . W e can therefore
regard (6.14) for arbitrary n as a generalization of quantum din ensions.

A s shown in [38,l4], the partition function above can be w ritten m ore conveniently
In tem s of a m ulti{m atrix m odel for p Hem itian m atrices. In the case of L (2;1) (to
which we w ill restrict ourselves), a generic at connection can be speci ed by a breaking
UN)! UMN;) UWN,), or equivalently by a vector n with N; + 1 entries and N,
1 entries. It is then easy to see [4] that the partition function (6.19) is given by the
Hem itian two-m atrix m odel,
Z

Z (N1;N5;4s) = dM ;dM , exp

1 2 1 2
M TM S+ VM )+ VM) +W M ,,;M ;
2@5 1 2@5 2 ( 1) ( 2) ( 17 2) ’
(6.17)
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w here

1 2k
Ver)=<oo e 1y T 5T % 3;
s
k=1 s=0 (618)
X ® 2k
. — s s 2k s,
W Mqi;My)= b (1) TeM [TM )" °;
k=1 s=0 S
and
B2 b 2 ' (6.19)
ay = ; = : .
ST kek)! k(2k)!
T he vacuum expectation value of the unknot in L (2;1) is sim ilarly given by
1
Wg(Ni;Np;)= ———hy €' i; 620
R( 17 2/@5) Z(Nl,'Nz;@s) R 7 ( )
where, In tem s of the eigenvaliesm ;,m 5 of M 1,M ,, them atrix &' is given by
&' = diag(d'; m%;e; & I}“f’ea): (621)

The vev .n (£.20) is de ned by the weight given by the exponent in (6.17), and it can
be easily com puted In perturbation theory.

In order to com pare the results w ith the string theory results, we w illneed to com pute
(c)

the connected vevs W . in thek = (k;;ks; ) basis, which are de ned by
hX i X 1 (c)
]Og WRTIRV = _IWE R(V ); (6.22)
R % Zﬁ-

where the notationsareas in (&_3). U sing them atrix m odel representation we can easily
com pute, for exam ple,

2
© o o)

Wi, mNi Now DN ONZ)+ S0y No) N7+ ANZ+ 1NN, 1o+
) % 2 2

W o0, :)@s(N1+N2)+—S 3N; + 3N; + 4NN,

3
+ ZS TN + NJ)+ 15(N N, + NN J)

4
+% 15N+ 47NN, + N, $ N,g+ 63N/ NZ+ 3N N, +

gZ

© = Ni+ No+ 26,(NJ+ NJ)+ S0+ Ny) SN2+ 5NZ 2NN+ 1

(0;1,0;
3
+ 1—52 1IN/ + 18NN, + 6N NZ+ 5NZ+ 18NN, + fN1 $ N,g

(6.23)
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In order to com pare w ith topological string am plitudes it is convenient to reorganize the
connected vevs In tem s of the "t H ooft expansion. To do that, we introduce the "t H ooft
variables

S;= &Nji; 1i=1; ip: (6.24)

A diagram m atic argum ent based on fatgraphs says that the connected vevs have the
structure
X . X .
W EuG) = g IR N e gl 2

gkh;— 1 P
ghi ghi

hs hp
g;k;hisl p 3

(625)
T he explanation for this is sin ple: in term s of fatgraphs, the connected vev W E(C) (N ;;9)
isobtained by summ Ing over fatgraphsw ith a xed num ber ofholes ¥ jbut w ith varying

genus g and num ber of \coloured" holesh;. W e can sum over allcoloured holes at xed
genus to obtain the am plitude

W)= F,st s (626)

hj

Finally, in order to m ake contact w ith the open toplogical string am plitudes we notice

that %

1 @) _ @) . .
—w. (Si) (V)=W, ~ (215 n §7 (627)
KikFh

under the dictionary @ 4.

From the above explicit com putations we get the follow ing results:

(0)

_ 1 2 2 1 2 2
Al (p)— r Sq S, + 2(81 SZ)+ Y (Sl Sz)(4sl + 1081824‘ 482)
1 3 3 2 2
+ —24 (S1 S2)(S7+ S;+ 4(S7S,+ S1S5)) +

} 2 2 2 } 2 2
+ 2p S1+ S+ 2(S7+ S5+ 3(Sl+ S2)(5S7  28:S,+ 5S5)

1
+ — 11(S]+ S5)+ 18(S7S,+ S7S1)+ 65757

12

1 4 3 2a2
+ oo (814 S2) 695 + 126575, 65{SJ+ £5, % Sig +

} 3 2 2 2 } 2 2 .
+ 3p Sq S, + 2(81 SZ)+ 4(81 Sz)(30(81 + SZ)+ 398182) ;

(6.28)
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(1) 1 1 1

A = —(,; S —(S? S8?2) —(S; S,) 4(S?+ S?2)+ 1958, +
;. P)=p 24(1 2) 48(1 5) 576(1 2) 4(S] 5) 152
+}p2 }(s +S )+—1 5(S%+ S2)+ 18S;8S b (S1 + S,) 55(SZ+ S2)+ 2308;:S
2 3 1 2 12 1 2 1922 180 1 2 1 2 122
3
P 21
+ + =— — (S S,)+ ;

3 8(1 2)

(6.29)

29 (osg) = 1 a2 2 1 2, 2
, (Pia)=pg S;+ Sy + 2(3S1 + 35, + 45:S;,) + 6(Sl+ S2)(7(S7 + S5)+ 851S3)

1
+ — 15(S%+ S2)+ 47(S7S,+ SS1)+ 635782 +

24
7 1
+ (P'g+ pr) (S1 Su)+ 5(512 SZ)+ = 62(57 S2)+ 51(82s, S.82)
1
* = 115(5]  S;)+ 201(S;S,  S$1S)) + ;
(6.30)
n 17 1 ©
O ey — 2 2 3 3 2 2
A3 (plq/r)_ Bar 3(81 SZ)+ ?(Sl Sz)"" 2(46(81 Sz)"" 45(8182 stl))+
(6.31)

Finally, as explained in [46/]], W ilson loop operators in Chem {Sin ons theory need a
choice of fram Ing In order to be properly de ned. T he calculations above correspond to
the fram .ng com ing naturally from the G aussian ntegral n (6.20), and to change the
fram ing by £ units it is enough to multiply Wz by

expf £4§s r=29; (6.32)

The am plitudes com puted above would change correspondingly. W e would have, for
exam ple,

1

(0) 1 2 2 2
Al (p)= P Sl Sz‘i‘ E(Sl SZ)+ Z(Sl Sz) 4(81 + SZ)+ 108182 +
p2
+ S+ S+ (2 £)(S+ SZ)+ 2£5,S,
1
+ 5(sl+ S,) (5 3f)(ST+ SI)+ 2(3f  1)S:S, + ;

(6.33)
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and

(0)

A, (i) =g (I £)(S1+Sy)+ = (3 4f+ £2)(S7+ S2)+ (4 2f%)S.S, + n

N

(6.34)

6.2 The orbifold point and a large N duality

In 4] it was argued that topological string theory on X, the symmetric A, ; bration
over P!, is dual to Chem{Sin ons theory in the lens space L (p;1). This is a highly
nontrivial exam ple of a gauge theory/string theory duality which can be obtained by a
Z, orbifold of the large N duality of G opakum ar and Vafa [26]]. Equivalently, it can be
understood as a geom etric transition between T (S3=Zp) (which is equivalent to Chem/{
Sin ons theory on L (p;1) [47]) and the X , geom etry.

Checking this duality is com plicated because the perturbative regim e of the gauge
theory, where one can do com putations easily, corresponds to string theory on X , near
thepointt; = 0,where the tj are theK ahler param eters. T hisisa highly stringy phase |
a anallradius region | where the °corrections are very in portant. It is conventional
to refer to this point as an orbifold point (although the periods are still logarithm ic) and
wewilldo so in the ollow ing. T his type of problam in testing the duality is wellknown
in the context of the AdS/CFT correspondence, w here the perturbative regin e of N = 4
Yang{M ills corresponds to a highly curved AdSs S° target. In order to proceed, one
has to either do com putations in the strong "t H ooft coupling regim e of Chem {Sin ons
theory, or to solve topological string theory near the orbifold point. T hanks to m irror
symm etry and the B-m odel, the second option is easier, and this was the strategy usad
In [4] to test the duality in the closad string sector.

How would we extend this story to the open sector? First we recall that, n the
G opakum ar{Vafa duality, a knot K in S° leading to a W ilson loop operator in Chem {
Sim ons gauge theory corresponds to a Lagrangian subm anifold Lk in the resolved coni-
ol [42]. M oreover, the connected vevs (6.27) becom e, under this duality, open string
am plitudes w ith the boundary conditions setby Lk . A fter orbifolding by 7, the natural
statem ent (generalizing the results of O oguriand Vafa in [42]) is thata knot in L (p;1)
corresponds to a Lagrangian subm anifold n X ;. The sin plest test of the O oguri{Vafa
con Ecture is the unknot, which corresponds to a toric D forane in an outer edge of the
resolved conifold (see for exam ple [39] for details). It is then natural to con Ecture that
the unknot in L (p;1) is dual to a toric D Jbrane in an outer edge of X ,, and that the
connected vevs for the corresponding W ilson line correspond to open string am plitudes
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T(SS/Z2) local P! x P!

Figure 9: T he geom etric transition between T (S3=%Z,) w ith a Lagrangian brane associ-
ated to the unknot, and localP! P! with an outer brane.

for this brane. This should follow from the geom etric transition for X , proposed in (4],
and it is sketched in Fig.[d.

Testing this confecture is again di cult for the reasons explained above. In order
to com pare w ith the perturbative string am plitudes that we com puted from the Chem {
Sin onsm atrix m odel, we need a way to com pute open string am plitudes that m akes it
possible to go anyw here in the m oduli space. But this is precisely one of the outcom es
of the B-m odel form alism proposed in this paper! W e w illnow explain how to com pute
open string am plitudes in the p = 2 case, ie. localP! P!, near the orbibld point,
extending in this way the test of the duality perform ed In 4] to the open sector. This
w ill verify not only our extension of the duality for knots in the lens space L (2;1), but
also the power of our B-m odel form alisn .

6.3 O rbifold Am plitudes

W e now explain how to com pute open string am plitudes at the orbifold point in the
localP! P! geom etry, using the B-m odel orm alisn developed in this paper. W e Hllow
the general discussion in section [3.4. Basically, to com pute the open am plitudes at the
orbifold point, one only needs to nd the disk and the annulus am plitudes at this point,
and then use our B-m odel form align to generate the other am plitudes recursively. W e
also need to x the open and closed m irrorm aps at the orbifold point in order to com pare
w ith the Chem-5im ons results.
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Let us start by introducing the geom etrical data, as in section [5.J. The two charge
vectors for bocalP! P! are:

O = ( 2;1;1;0;0);

0% = ( 2;0;0;1;1): (65

The m frror curve in the param eterization corresponding to an outer brane w ith zero
fram ing is hyperelliptic and reads:

H (%;9;05%) = ¥ + ¥(@x° + 1+ %)+ gx’; (6.36)
withg=e ®*andg = e ®.

T his geom etry was studied at large radius in [40]. Solving for y we get:

5 p
1+ %+ %°q) 1+ %+ ®%°q)  4dgx®
¥ = > (6.37)

from which we can construct the m erom orphic di erential (3.13). T he Bergm ann kemel
can then be com puted in term s of the branch points of the x—pro fction using A kem ann’s
formula (3.29). The branch points are given by:

d 1 19

— 1 p— p— p—
® 5 (1+2 ) 4o = ot e 5 12 G)*  4g: (6.38)

p

N

12 =

The large radius open at coordinate for outer branes is given by the integralU =
,Where the cycle  isanalogous to the one In gure 2. T his is evaluated to

R

7 (6.39)

where T, is the closed at coordinate.

W e now have to In plem ent the phase transition from large radius to the orbifold
point. That is, we need to extract the disk and annulus am plitudes at the orbifold point
from the large radius ones, as explained in section [3.4. The disk transform s trivially,
hence we just need to expand it in the appropriate variables at the orbifold point.
H ow ever, the Bergm ann kemel undergoes a non-trivialm odular transform ation.

T he phase transition from large radius to orbibd in the ocal P! P! geom etry is
given by an S-duality transform ation of the periods, corresponding to an exchange of
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the vanishing cyc]esﬁ This is precisely the case that was studied In section [3.4. This
transform ation can be In plem ented directly into the Bergm ann kemel by pem uting the
branch points

(17 25 37 4)Y (i oai 37 2) (6.40)

in Akem ann’s ormul (323).

A 11 the other orbifold open am plitudes can then be generated by sin ply using the
new Bergm ann kemel (w ith the new ordering of the cuts) in the recursion.

6.3.1 Orbifold at coordinates

W e willnow Introduce the orbifold at coordinates. Let us start w ith the closed ones.
T he appropriate variables to study the orbifold expansion were introduced in [4] and
read:

(e 1
a=1 - @=p=""g: (6.41)
% %1 )

In order to have g and g, both am all at the orbifold point, we have to take the follow ing
double| scaling lim it:

a! a; ‘Tt 1; Tga Hia
s

corresponding to a blow up in the (g ;9 )lane, which was described in detail in [4].

; (6.42)

The at coordinates s; and s,, are solutions of the PicardFuchs equations w ith a
convergent local expansion in the vardiables ¢ and . The principal structure of the
solutions of the orbifold P icard-Fuchs equations is

!o= 1,’
s1= gl )i
X
52 = Cond &7
m n X
F=s50g@)+ dond & (6 .43)
m ;n

°In fact, this is not quite right. G oing from large radius to the orbifold patch not only exchanges the
cycles, but also changes the sym plectic pairing by an overall factor of 2. Hence, the transform ation is
not quite sym plectic; this is analogous to the transform ation from large radius to the orbifold of local
P? considered in [1l]. Aswas explained there, this change in the sym plectic pairing can be taken into
account by renom alizing the string coupling constant. In the present case, we get that gs = 2¢5, w here
ds is the Chem-Sin ons coupling constant. T his is also the origin of the 1=2 factors in (6.44)).
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w here the recursions of the ¢, 5, and d, , ©llow from the P icard-Fuchs operator. Note
that the expansion coe cients ¢ ,;, have the property G n moq 2 = 0.

The closed at coordinates are related to the t H ooft param eters of C hem-Sin ons
theory. T he precise relation was found in 4] to be

1 (51 + s5) 1 (51 s2)
Si=-T{= ——; S, = =Ty = — 0.44
1=5h 2 H 2= ST ( )

A coording to the location of the orbifold divisor at g; ! 1 , described above, o
picks up a phase under the orbifold m onodromy M z, around it. T herefore, by de nition
(£.44) has the ollow ing behavior under orbifold m onodrom y

Mg, :(51752) T (S2751): (6.45)

2

N otice that the closad string orbifold am plitudes, calculated in [4], are indeed Invariant
under the above M ;, m om odrom y, as required for an orbifold expansion (see also [1]).

U sing the explicit form for the periods and the relation w ith the C hem-Sin ons vari-
ableswe nd the inverse m irrorm ap for the closed param eters:

4
G = 2(S1+ S5) 2(S1+ S, + 5(81+ S,)° +

S S 1 523 5,82 s3 g
p= 24 2 (s, 52)+(1 2 Si153) (53 Si), (6.46)
S;+ S, 2 12(S; + S5) 24

W e see from thisexpansion that,asalready m entioned, o, picks up a phase under orbifold
m onodrom y. M ore precisely, we get the behavior:

Mg, t(@ie)? @i @): (6.47)

Let us now consider the open at coordinate. R ecalling section [2.3.3, the open at
coordinate should be a linear com bination of
t
Ug = & P ; (6.48)

the disk am plitude 7

A (x50 5q) = ; (6.49)

u

which according to (2.58) are globally de ned integrals, and the closed string solutions
(6.43). In thiscase,we x the six coe cients in thede nition ofthe open at coordinates
by m atching the disk am plitude at the orbifold w ith the result from Chem-Sin ons theory.
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D e ning as usual exponentiated coordinates X 5 = €® and x = &, we get for the
open atcoordinatep = X oy = €’orP:

P ®

PEXoup=Xp =% = —: (6.50)
AP
Expanding the inverse relation
®= X o (6.51)
we get the open string inverse m irror m ap
1 2
= Xop 2(51 Sz) (S1 S2)(S1+ Sy)+ E(Sl S2)(S1+ S2)° + i (6.52)

Since x is a globally de ned variable on the curve, we see from (6.50) and (6.47) that
under orbifold m onodrom vy,
Mgz, :Xomp7 X oo ° (6.53)

T his m onodrom y behavior of the open at coordinate is crucial to ensure m onodrom y
invariance of the topological sting orbifold am plitudes. T hism echanisn isalready visible
in the rst fw tem s of (6.52); under the orbifod M ,, m onodromy, the m nus sign
com ing from S; $ S, cancels out w ith the m inus sign com ing from the action (6.53) on
X orps eaving the m irror m ap invariant.

Furthermm ore, one can check that adding other periods s;, FSO2 or the disk am plitude
A iO) to the de nition of the open at param eter would sooil this Invariance property, so

thatwe can x the open at param eter X ., uniquely, up to a scale.
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6.3.2 Results

W e have now all the ingredients required to com pute open orbifold am plitudes. Let’s
start w ith the disk am plitude:

s? g4 S2Ss S3s
(0) 2 1 1 12 192 2
A = 28 Sf+ — — 2SS, + + S
1 (p) P 1 1 3 12 2 2 4 2
S, 872 S§+ S18; s
2 3 4 12
582 118% 3s82s
+p° S; 287+ L L+ S,+ S%s, L>2 252+
3 12 (6 541
$2s2 587 38,82 1184
+81822 172 2 S Z 4
2 3 2 12
25 5938% 285 38258 1982s
+p =% 3524583 1 2y 2L 122 4 35?2
3 12 3 2 4
35,52 195,82 5984
122 557 + 122 2
2 12

Com paring (6.54) with the Chem-Sim ons result (6.28), we see that to m atch the two

results we have tomultiply (€54) by  and send S; ! S;,S; !  Ss.

W ith the above identi cations we also checked that the higher am plitudes, such as
the annulus, genus 0, three-hole and genus 1, onehole, reproduce the Chem-Sin ons
results. W e notice that, as required, all the higher am plitudes are invariant under the
M 7, monodrom y.

Fram ing can also be taken into acocount; let us see how it goes for the disk am plitude.
H igher am plitudes can be dealt with in a sin ilar fashion. W e start by com puting the
reparam eterization x = x(x) corresponding to the sym plectic transform ation

(x;7) ! (x;7)= (=7 ;¥); (6.55)

which reads:

f+ 3f?2 2fqg + 2fq)x’
x(x) = x £xi4 qu RN (6.56)

T he bare fram ed disk am plitude is sin ply given by:
Z
() dx
Al (x)= logy(x(x)); : (6.57)
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W e could have com puted v = y(x) by solving the fram ed m irror curve fory, rather than
by reparam eterizing v (x); the reparam eterization (6.56) is how ever required to com pute
the fram ed Bergm ann kemel.

W e then have to expand the bare disk am plitude (6.57) in the orbifold variables
(€.41]), and express the result in  at coordinates using the inverse m iror m aps (6.44)
and (6.52). D oing s0, we obtain a perfect m atching w ith the C hem-Sim ons result (6.33)
once the denti cation

foo = 2f (6.58)

between the Chem-Sin ons integer f.s and the integer £ appearing in the sym plectic
transform ation is taken into account. The m atching holds for higher am plitudes w ith
the above Wenti cation.

6.4 The C3=Z5 orbifold

W e studied in detail the open am plitudes at the localP! P! orbifold point, and checked
our results w ith Chem-Sim ons theory using large N duality. Here we w illm ake a pre-
diction for the disk am plitude at the ocal P? orbifbd point, which corresponds to the
geon etric orbifbd C3=75.

Basically, we use the sam e principles form ulated in section 233 to determ ine the
at param eters at the orbifold point, up to a scale factor. This is su cient to predict
the disk am plitude. To go to higher am plitudes, we would also need to understand the
m odular transform ation of the annulus am plitude. W e are presently working on that

and hope to report on it in the near future.

Recall from section [2.3.4 that the chain integral giving the open at param eter at
large radius of Jocal P? is given by

t T
U=w —3} (659)
3
and the Invariant com bination of integrals is
t
Ug = © 3 : (6.60)

Since this is globally de ned, it provides a basis vector for the at coordinates at the
orbifod point. In temm s of exponentiated coordnatesX g = € ,x= € andg= e %, we
get

1

Xg=xg = ()

[

= . (661)
3 7 ’
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where we Introduced the variable on them oduli space de ned by g= ﬁ,sothat
the orbifod point isatg! 1 ,or ! 0.

To determ ine theopen atcoordinate at the orbifold point, we can form com binations

of the closed periods, the chain integral ug and the disk am plitude A iO) (2;q). Butwe
nd that

®

Xomw=Xp = ()3 (6.62)

is the only com bination which leads to a m onodrom y invariant orbifold disk am plitude.

U sing this open at param eter, we can w rite down explicitly the disk am plitude for
C3=Z5. In [l], the closed at parameter at the orbibld point was determ ined, using
the P icardFuchs equations. W e refer the reader to [1I] for the explicit form of asan
expansion in  around = 0. Using this result and the open at param eter (6.62),we
get the follow Ing disk am plitude, up to a scale of X o2

A(O)= +—4 L7+::: X orb
! 648 3674160 o
? > 197 *®
+ — —— ::: X(frb (663)
2 648 29393280
3 6 9
+ 1+ — + — i X3 oA )
3 648 181440 orb X or)
N otice that under the Z 5 orbifold m onodrom y, given by
7 5 (6.64)
we have that
2 i 2 i
My, :Xoms )T (€ 3 Xomie® ); (6.65)

which leaves the disk am plitude (6.63) invariant, as it should.

7 Conclusion and future directions

T he form alisn proposad in this paper opens the way for various avenues of research . Let
usm ention a few sgpeci ¢ deas.

76



In this paper we proposad a com plete B-m odel form alism to com pute open and
closad topological string am plitudes on local CalabiYau threefolds. An obvious
question is whether we can extend this form alian to com pact C alabiYau three-
folds. At rst sight this seam s lke a di cult task, since we relied heavily on the
appearance of the m irror curve in the B-m odel geom etry to in plem ent the recur-
sive form alisn of Eynard and O rantin. H ow ever, there are various approaches that
one could pursue. O ne could try to generalize the geom etric form alisn to higher—
din ensionalm anifolds so that it applies directly to com pact C alabiY au threefolds.
A nother dea, perhaps m ore prom ising, would be to form ulate the recursion rela-
tions entirely In temm s of physical ob fcts in B-m odel topological string theory;
In such a form alisn it would not m atter w hether the target space is com pact or
non-com pact.

W e checked our form aliam for all kinds of geom etries, and have a rather clear
understanding of the origin of the recursive solution based on the chiral boson

Interpretation of the B-m odel (see 40]). It was also proved in [24]] that once the

Bergm ann kemel is prom oted to a non-holom orphic, m odular ob fct, the am pli-
tudes that we com pute satisfy the usual holom orphic anom aly equations. But we

do not have a proof that our form alisn really is B -m odel topological string theory,
not even a \physics proof'. It woul be very Interesting to produce such a proof,
probably along the lines of 40].

T he recursion relations thatwe used were rst found when the curve is the spectral
curve of a m atrix m odel. In the local geom etries considered in this paper, there
is no known m atrix m odel corresponding to the m irror curves. N evertheless, the
recursion relations com pute the topologicalstring am plitudes. Ttwould be fascinat-
ng to try to nd a m atrix m odel goveming topological string theory on these local
geom etries. This could also provide a new approach towards a non-perturbative
form ulation of topological string theory.

Our formm alisn can be used to study phase transitions in the open/closed m oduli
Spaces, and generate open and closed am plitudes at any point in them oduli space,
Including in non-geom etric phases. W e usad this approach to study S-duality
transform ations and the orbibld point in the local P! P! m oduli space, and
com pared our results with Chem-Sim ons expectation values. W e also proposed
a prediction for the disk am plitude of C3=Z5, which corresponds to the orbifod
point in the JocalP? m odulispace. H owever, while closed orbifold G rom ov-W itten
nhvariants are well understood m athem atically, to our know ledge open orbifold
G rom ovW itten invariants have notlbeen de ned m athem atically. H ence, it would
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be fascinating to extend our analysis firther and obtain a physics prediction for the
higher open invariants of C°=Z5. In order to obtain these results, we would need
to understand the Bergm ann kemel at the orbifold point; this ism ore com plicated
than the P! P! exam ple studied in this paper since the tranform ation from large
radius to the orbifold isnow In SL(2;C) | see [1]. W e are presently working on
that and should report on it in the near future.

Notice that the closed and open string am plitudes on X, provide the ‘t Hooft
resum m ation at strong coupling of the perturbative am plitudes of Chem {Sin ons
gauge theory on L (p;1), which is a nontrivial problem forp > 1. A Iready in the
sim ple case of Chem {Sin ons theory on L (2;1), the resum m ation problem involves
considering a nontrivialm oduli space, nam ely the m oduli space of com plex struc-
tures for the m Iror of X ,, w here the orbifold point corresponds to weak 't Hooft
coupling and the large radius point corresponds to strong ‘"t Hooft coupling. Tt
would be interesting to see if the lessons extracted from this exam ple have conse-
quences for the problem of the t Hooft resumm ation of N = 4 SYM am plitudes,
where a lot of progress has been m ade recently. At the very least, the topological
exam ple we have solved show s that the analytic structure of the "t H ooft m oduli
Space is very com plicated, and that a clever param etrization of this space (by using
an analogue of the m irror m ap) m ight sin plify considerably the structure of the
am plitudes.

A U seful conventions

In this appendix we ram ind som e usefiil conventions necessary in order to com pare the
topological open string am plitudes (2.19) w ith the results of the topological vertex. In
the form alisn of the topological vertex 3], open string am plitudes are encoded In a
generating finctionaldepending on a U (1 ) matrix V

F(V)=1og7Z(V); A d)

w here X
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iswritten as a sum over partitions R . Tt is often convenient to write the free energy
F (V) In tem s of connected am plitudes in the basis Jabeled by vectors w ith nonnegative
entries K = (k1 ;ks; ). In this basis,

S
F (V)= —'Wk V) A 3)
K ZK
where (see for exam ple 39] for details)
N , Y
V)= (T Iy, oz = kg9 @ 4)

j=1 B

T he fiunctional (&_2) is related to the generating fiinctions (2.19) as

% X
F (V)= g Az L)z (A 5)
g=0 h=1
after dentifying
X Y
Trv"! VS m, (z)= z"t (A 6)

()
25, i=1
wherem , (z) is the m onom ial sym m etric polynom ial in the z; and S; is the symm etric
group of h elem ents. Under this dictionary we have that

@) X I
A (zn; n iz —W, V)i (A7)
X %Fn <
w here X
Xi= ky: @A 8)
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