CERN Accelerating science

001056096 001__ 1056096
001056096 003__ SzGeCERN
001056096 005__ 20180524202253.0
001056096 0247_ $$2DOI$$a10.1007/s00220-008-0620-4
001056096 0248_ $$aoai:cds.cern.ch:1056096$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
001056096 035__ $$9arXiv$$aoai:arXiv.org:0709.1453$$zoai:arXiv.org:0709.1453
001056096 035__ $$9SPIRES$$a7332173
001056096 035__ $$9Inspire$$a760402
001056096 037__ $$9arXiv$$aarXiv:0709.1453$$chep-th
001056096 037__ $$aBONN-TH-2007-07
001056096 037__ $$aCERN-PH-TH-2007-153
001056096 037__ $$aNEIP-07-03
001056096 041__ $$aeng
001056096 088__ $$aBONN-TH-2007-07
001056096 088__ $$aCERN-PH-TH-2007-153
001056096 088__ $$aNEIP-07-03
001056096 084__ $$2CERN Library$$aTH-2007-153
001056096 100__ $$aBouchard, Vincent$$uHarvard U., Phys. Dept.
001056096 245__ $$aRemodeling the B-model
001056096 260__ $$c2009
001056096 269__ $$c11 Sep 2007
001056096 300__ $$a83 p
001056096 500__ $$9arXiv$$a83 pages, 9 figures
001056096 520__ $$aWe propose a complete, new formalism to compute unambiguously B-model open and closed amplitudes in local Calabi-Yau geometries, including the mirrors of toric manifolds. The formalism is based on the recursive solution of matrix models recently proposed by Eynard and Orantin. The resulting amplitudes are non-perturbative in both the closed and the open moduli. The formalism can then be used to study stringy phase transitions in the open/closed moduli space. At large radius, this formalism may be seen as a mirror formalism to the topological vertex, but it is also valid in other phases in the moduli space. We develop the formalism in general and provide an extensive number of checks, including a test at the orbifold point of A_p fibrations, where the amplitudes compute the 't Hooft expansion of Wilson loops in lens spaces. We also use our formalism to predict the disk amplitude for the orbifold C^3/Z_3.
001056096 520__ $$9arXiv$$aWe propose a complete, new formalism to compute unambiguously B-model open and closed amplitudes in local Calabi-Yau geometries, including the mirrors of toric manifolds. The formalism is based on the recursive solution of matrix models recently proposed by Eynard and Orantin. The resulting amplitudes are non-perturbative in both the closed and the open moduli. The formalism can then be used to study stringy phase transitions in the open/closed moduli space. At large radius, this formalism may be seen as a mirror formalism to the topological vertex, but it is also valid in other phases in the moduli space. We develop the formalism in general and provide an extensive number of checks, including a test at the orbifold point of A_p fibrations, where the amplitudes compute the 't Hooft expansion of Wilson loops in lens spaces. We also use our formalism to predict the disk amplitude for the orbifold C^3/Z_3.
001056096 595__ $$aCERN-TH
001056096 595__ $$aLANL EDS
001056096 595__ $$aOA
001056096 595__ $$aSIS ARXIVPUBL2010
001056096 595__ $$darxiv:0709.1453
001056096 65017 $$2SzGeCERN$$aParticle Physics - Theory
001056096 693__ $$aNot applicable$$eNot applicable
001056096 690C_ $$aARTICLE
001056096 690C_ $$aCERN
001056096 695__ $$9LANL EDS$$ahep-th
001056096 700__ $$aKlemm, Albrecht$$uBonn U.
001056096 700__ $$aMarino, Marcos$$uCERN
001056096 700__ $$aPasquetti, Sara$$uNeuchatel U.
001056096 710__ $$5PH-TH
001056096 773__ $$c117-178$$pCommun. Math. Phys.$$v287$$y2009
001056096 8564_ $$uhttp://weblib.cern.ch/abstract?CERN-PH-TH-2007-153$$wCERN-PH-TH-2007-153$$yPreprint
001056096 8564_ $$81405640$$s16638$$uhttps://cds.cern.ch/record/1056096/files/10.1007_s00220-008-0620-4.pdf
001056096 8564_ $$81405639$$s739436$$uhttps://cds.cern.ch/record/1056096/files/arXiv:0709.1453.pdf$$yPreprint
001056096 916__ $$sn$$w200737$$ya2009
001056096 960__ $$a13
001056096 961__ $$c20100826$$h1706$$lCER01$$x20070912
001056096 963__ $$aPUBLIC
001056096 970__ $$a002713265CER
001056096 980__ $$aARTICLE