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Over the past several years the language of Lie algebras has proved very useful in designing and
operating linear and circular colliders. We describe how this language has been used in the design
and operation of the Stanford Linear Collider (SLC) final focus system, the Final Focus Test
Beam (FFTB), and the SLAC PEP-II electron-positron collider. We also discuss applications of
Lie algebras to proton collider design.
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1 INTRODUCTION

The Lie algebra language for charged particle optics was introduced and
developed by A. Dragt1 and his collaborators and students.2 They emphasized
that maps, described by exponential Lie operators, provide a powerful way
to describe accelerator lattices and lattice elements. These maps have the
advantage that they are automatically symplectic and have the appropriate
number ofindependent parameters which invariably correspond to significant
physical quantities. Maps completely replace trajectories. There are maps
for basic elements, maps for subtleties such as edges and fringes, maps
which represent element displacements and rotations, maps for entrance beam
errors, and maps for beam-line modules as well as complete beam lines. In
addition to describing these methods, these workers have fully implemented
their ideas in a series of computer codes.3 For example, the code DESPOT

*Work supported by Department of Energy contract DE-AC03-76SF00515.
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developed by E. Forest is being used at SLAC for the design of the PEP-II
B-factory lattices.

In applying these methods to accelerator design and operation we have
developed a generator-based map composition method utilizing similarity
transformations and the Campbell-Baker-Hausdorff (CBH) theorem. This
generator-based composition method is a combination of coordinate trans­
formations and standard perturbation theory. It provides insight into the map
composition process and can be implemented by symbolic manipulator codes.
Analytic formulae may be obtained which describe coefficients of beam-line
generator monomials as functions of lattice parameters.

Recently the generator-based map composition method has been enhanced
so that it is now a valid alternative to truncated power-series concatenation
methods, even for large complex lattices.4 This method provides a signif­
icant advantage in computational speed, facilitating the addition of lattice
parameters as map variables.

This paper contains two major sections: (1) the role and meaning ofterms in
a beam-line generator, including estimation of the size of terms in generators,
and (2) applications to linear and circular collider design and operation.

An introduction to Lie algebra notation including a description of the basic
electro-magnetic Hamiltonian and its typical simplifications, a description of
element maps, and a summary of generator-based map composition methods
can be found in SLAC-PUB-6713.5 The reader can consult Ref. 4 for more
details on map composition. Reference 6 contains an earlier exposition of
some of these map composition methods.

2 THE INTERPRETATION OF BEAM-LINE GENERATORS

2.1 The Interpretation of Monomials

Monomials in beam-line generators may be specified by the order of the
transverse coordinates and by the order of o. We first look at the monomials
which don't contain o. The linear monomials, x and y cause a step change
in Px and py respectively, and could represent a steering corrector kick. The
linear monomials Px and py cause a step change in x and y. Since a kick
at one beam-line location causes a change in position at another, these four
monomials are referred to as steering terms. The terms Px and Py can be
used to perform coordinate system translations at the entrance and exit of
displaced magnets. The terms x and y can also represent a coordinate system
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rotation (see Ref. 5). For any linear monomials, mj, [mi, mj] is a constant,
from which it follows thatexp[: mi :] exp[: mj :] = exp[: mi +mj :]. Hence
steering terms can be combined into one generator or separated, as desired.

Th d · ·1 2 22 2 de ten qua ratlc monOlllia s, x ,xpx, Px' Y ,YPy, Py' xy, XPy, PxY an
Px Py all cause linear coordinate changes. The map produced by any linear
combination of these generators can be represented by a matrix (though it
does not follow in general that any matrix can be represented by a single
generator).? The last four terms which involve a variable from each plane,
are coupling terms, since if applied to a horizontal coordinate they produce a
term linear in a vertical variable, and vice versa. If a general transfer matrix
has coupling terms that are small (coordinate planes are not exchanged) then
it can be factored into a normal and purely skew matrix, the latter having
multiples of the identity in the diagonal 2 x 2 blocks. It can then be shown
that the skew matrix corresponds uniquely to a generator that is a linear
combination of the four skew monomials.

Monomials that are of order three in the transverse variables represent
sextupole like terms, since the generator for a sextupole contains x 3 and xy2.

A linear transformation ofthese monomials can produce terms like x 2Px , xP;,

p~ fromx 3, andxypy, xp;, px;, PxYPy, PxP; fromxy2. The skew sextupole
has y3 and yx 2 and linear transformations produce a similar set ofmonomials
with x and y interchanged. In general the skew multipole monomials have
the powers of the vertical coordinates adding to an odd number while for the
normal multipoles this sum is even.

Monomials that are of order four in the transverse variables represent
octupole and skew octupole like terms, monomials that are of order five in
the transverse variables represent decapole and skew decapole like terms,
and so on. Fifth-order terms play an important role in final focus systems.

We also arrange monomials with nonzero 8 according to the power of the
transverse variable. Generator monomials that are linear in the transverse
variable and have a single power of 8 are called linear dispersion terms
since they produce a steering in the transverse coordinates that is linear in
8. Generator monomials that are linear in the transverse variable and have
a power of 8 greater than one are called higher order dispersion terms.
Monomials that are quadratic in the transverse variable and have a single
power of 8 are called linear chromaticity terms since they produce a change
that is linear in the transverse coordinates and linear in 8. Monomials that
are quadratic in the transverse variable and have a power of 8 greater than
one are called nonlinear chromaticity terms. Monomials that "are cubic in
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the transverse variable and have a nonzero power of 8 are called chromatic
sextupole terms, and so on. The resonance terms in the one-tum generator
which are derived from a chromatic sextupole monomial will drive sidebands
to sextupole resonances.

2.2 Normalized Variables

The design of a beam-line module usually involves assumptions about the
beam distribution through the module. These assumptions are contained
in the specification of the f3 functions. Using the f3 functions (or beam
distribution) one can describe a symplectic map of this distribution to a
circular distribution. There is some arbitrariness because a rotation of the
final circular distribution leaves it unchanged. Courant and Snyder defined a
convention by taking the choice:

R-l/2( A A)Px = Px Px - axx (1)

where x and fix are referred to as normalized variables. Forest8 has introduced
the concept of a normalized beam line (which he calls the Floquet line) which
runs parallel to the real beam-line so that these transformation can be viewed
as transformations from the normalized beam line to the real line. In the
normalized beam line the beam distribution remains circular and merely
rotates as it proceeds along the line according to the phase advance. The map
from the normalized line to the real line can be viewed as taking place in two
steps. The first step is a phase space tilt defined by x' = x and p~ = fix -axx,
which is given by the generator G = 1/2ax x 2 . The second step is a scaling
x = f3;/2x' and Px = fr; 1/2p~, which has a generator G = -1/2 In f3x xPx.

If there is coupling in the main beam line, the transformation to the
normalized line can be made in three steps. The first step is a pure skew
transformation with generator G = a x y + b xPy + c Px Y + d Px Py. This
generator can be determined uniquely from the linear matrix along the
beamline by factoring it into a normal times a pure skew matrix. This
corresponds to the usual convention for rings based on the one-tum matrix.
For a functioning beamline one could also find these parameters by measuring
the co-variance matrix, sometimes called the ~ matrix.9

These transformations from the normalized beam line can be used to
represent general mismatching into a beamline, for example, to answer
questions concerning the ability of a beam line to match and compensate
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a variety of incoming beam conditions without giving rise to unacceptable
nonlinear aberrations.

An important advantage of normalized variables is that xand fix have the
same dimension. Furthermore, once normalized variables are introduced, it
is possible to introduce action-angle variables by x = (2Jx ) 1/2 cos ex and
fix = - (2Jx ) 1/2 sin ex. The transform to action-angle variables in a generator
can be accomplished with a linear transformationlO

A (ht + h-;) A (ht - h-;) (2)x = and p - ----
2' x - 2i

After these transformations, a polynomial G(x, Px, y, py) becomes a poly­
nomial of the form

G- (h+ h- h+ h-) - " h+P h-q h+r h-s
x' x' y' y - ~ a pqrs x x y y (3)

Since G must be real, we must have a pqrs = a;psr' The significance of
terms in this generator will be discussed below in the section on circular ring
generators.

2.3 Linac Beam-line Generators

By collapsing the beam-line product using truncated power-series concatena­
tions and subsequently carrying out a Dragt-Finn11 factorization procedure,
or alternatively by employing generator-based composition methods, it is
possible to obtain a beam-line map in the form

M = TA exp(: G :), (4)

where T is a steering map, A is the linear map through the beam line, and
exp(: G :) is a general nonlinear map. Following the rule of"first-things-first"
exp(: G :) must be understood to act on the linear coordinates at the end of
the beamline, and hence exp(: G :) may be interpreted as an adjustment at the
end of the beamline which incorporates all the non-linearities of the design
line.

To function properly, whether considering a final focus system whose
purpose is to achieve a small spot size, or a ring, whose purpose is to achieve
a large dynamic aperture and a favorable environment for beam-beam tail
dynamics, accelerators must be almost linear. Thus even though there may
be occasional large departures from linearity, the final beam-line map will be
close to linear, leading to the expectation that G is not a large generator.
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To define the strength of a generator monomial, it is best to begin by
transforming to the normalized beamline. We will call the transformed
monomial aj. The strength of aj can be based on its first Poisson brackets:

~ij = [aj, x], ~Pxj = [aj, Px] ~Yj = [a, Yj], ~Pyj = [aj, Py].
(5)

For a linear collider, since only the spot size is of significance, it is appropriate
to use a measure

A "'2
2 L.1X

mGx =-;;'
2 ~y2

mGy =
By

(6)

Usually one uses the average ofm~ over a Gaussian beam distribution. Given
this definition, an aberration of dimensionless strength mG will cause an
increase of the spot size given by

(7)

Each monomial can be interpreted as an independent aberration, and indeed
the low-order monomials produce "orthogonal" effects, where orthogonal
means that, when computing the rms using a Gaussian distribution, each
term gives contributions which add in quadrature. This has the pleasant
consequence that the square of the beam size will vary as a parabola as
each aberration strength is changed, and thus elements that contribute to one
and only one aberration can be incorporated in the beam line for the purpose
of tuning to the minimum spot size. Higher order terms are not necessarily
orthogonal, but orthogonal combinations can be constructed. For example
x 3 is not orthogonal to x, but x 3 - 3xa} is orthogonal to x, which can be
verified by showing (x 3(x 3 - 3xa})) = 0 when the average is taken over
a Gaussian distribution. Thus, steering should be introduced when tuning a
sextupole aberration.

Monomials in athat have a magnitude mG = 0.2 will cause a 2% increase
in the spot size. By looking at the composition of G using the generator-based
process outlined in Ref. 5, the source of terms in G can be identified. For
example, P~ will signify a displaced waist, and will come from a mis-powered
quad or an offset beam at a sextupole. A term 8p~ will signify residual
chromaticity, and could come from mis-powered sextupoles. A term 8py
will signify residual dispersion, which will come from an offset beam in the
final doublet or in a sextupole, and so on.
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2.4 Circular Ring Generators

The significance of terms in the circular ring generator differ from those
of the linac in that the beam passes millions of times through the same
beamline. Small terms in the generator, if "resonant", can be very important.
In action-angle variables the action, also known as the Courant-Snyder
invariant, remains almost constant from tum-to-tum, while the angle changes
by a discrete almost constant amount. A resonant condition occurs when
a term in the generator remains unchanged under this repeated lock-step
change of angle. To extract this information it is required to transform to an
action-angle resonance basis as indicated above in the section on normalized
variables. The terms in this sum with p = q and r = s have no () dependence.
For these terms:

and ~(}x = [Gp=q,r=s, (}x] = f(Jx , Jy )

(8)

Hence, to first order, these terms incrementally change () independent of
initial (). Since, in effect, they change the one-tum tune-shifts as a function
of amplitude, these terms are called "tune-shift-with-amplitude" terms.

The remaining terms, called "resonance" terms, have oscillating () depen­
dence, and their importance depends upon whether a resonant conditions is
satisfied. Adding together terms with their complex conjugate yields terms
of the form

( p+q) (r+s)
(2Jx ) 2"" (2Jy) "2 {Re (apqrs ) cos[(p - q)(}x + (r - s)(}y]

- 1m (apqrs ) sin[(p - q)(}x + (r - s)()y]}

A term is resonant when for some integer n it is valid that

(9)

(p - q)~(}x + (r - s)~(}y = 2nn (10)

We note in passing that the recurrent cycle of linear map followed by a
nonlinear generator map, is similar to the beam-beam problem which consists
of a linear map followed by the beam-beam kick. The beam-beam kick,
derived from a potential, is here replaced by a generator "potential" which is
a function of both position and momentum variables. Many of the analytical
tools developed for beam-beam studies do go through for weak generators,
especially the description of resonance behavior.
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For a ring the definition for the strength of a generator must be based on
all four of its first Poisson brackets. One useful measure is the maximum or
rms value of

(11)

over some region of phase space. For purposes of estimating resonant
strengths for PEP-II we have made tables 13 of the maximum of mG for each
resonance on an ellipse in amplitude space defined by

2Jx 2Jy 2
-+-=N.
ex £y

(12)

Since we are interested in the behavior of the dynamic aperture in the region
near 120' we take N = 12. Because of damping, if a particle is going to get
lost it will get lost in about one-fifth of a damping time, hence the dynamic
aperture for PEP-II is determined in about 1000 turns. Resonant terms with
coefficients that have maximum mG less than 10-3 can be of no importance.
We have found that resonances with maximum mG = .02 can have important
effects. Inspection of such resonance strengths for all resonance terms in the
beam-line generator can give a global picture of the behavior of a lattice (see
Ref. 12, these proceedings, for further details).

3 APPLICATIONS TO LINEAR COLLIDERS

3.1 Sextupole Alignment in Final Focus Systems

There are many aberrations to tune in order to achieve the minimum spot size
in a linear collider. Because ofbeam-line errors, the knobs to tune aberrations
may not be orthogonal. For example, if the beam centroid is off-axis in the
chromatic correction sextupoles, then when the strength of a sextupole pair
is changed to adjust the chromaticity compensation (8p~ or 8p~), feeddown
aberrations such as the waist (p~ or p;), skew quad (PxPy), and dispersion
(8px or 8py) can change.14 Attempts to tune these effects can lead in a circle.
Since the coupling control and waist knobs for the SLC final focus system
were fairly good at changing one aberration only, and steering through the
final triplet was able to produce a dispersion knob, it was possible to untangle
the sextupole chromaticity knob by changing the sextupole pair knob a rather
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large amount and measuring the change in each of the other aberrations. Data
analysis could determine the change ofbeam orbit through the sextupoles that
would orthogonalize the sextupole chromaticity knob. The process could be
iterated to achieve reliable orthogonalization, and smaller spot sizes were
indeed achieved. 15

Interestingly, when the FFTB was commissioned, it was noted by
observations based on an independent wire alignment system, that the
sextupole mover motion was very reliable and repeatable. Instead of
eliminating the closed orbit through the sextupoles, sextupole motion was
used to generate orthogonal tuning knobs for the waist, dispersion, and skew
quad aberrations. 16 This was possible in this case because the energy spread
of the beam was so small that the chromaticity knob was rather insensitive
and did not need to be finely adjusted.

The tolerance on the stability of the orbit position at the sextupoles is
severe in the FFTB (~1 JLm) and very severe in the next linear collider
(NLC) (~0.2 JLm). What must actually remain stable is the sum of the beam
positions in the two sextupoles of each sextupole pair. A local feedback
system can be installed to maintain this alignment if BPMs, that are stable
for many minutes, can be constructed to measure orbit changes with the
requisite resolution. 17

3.2 SLC Final Focus System Upgrade

Based on Lie algebra generator-based beam-line composition methods, an
analytic formula was derived for the beam-line generator18 which could
predict the spot size as a function of the incoming ,B-match. The result
was confirmed by measurements. The residual aberration dominating the
vertical spot size was identified to be 82p~. The coefficient of this term is
very sensitive to the phase advance between the sextupole pair and the final
triplet. If the first order chromaticity cancellation is not perfectly "in phase",
a 82P~ term is generated. Thus an upgrade was conceived that would insert
another quad in the final telescope to change this phase and eliminate this
aberration. The upgrade was performed, and the vertical spot size has been
reduced, as predicted, from slightly more than 1 JLm to less than 0.5 JLm. 19

The next aberrations which limit spot size are octupole-like terms which
arise as a result of the interleaved sextupoles. A set of three octupoles was
designed which on paper would yield even smaller spot sizes. However there
is another limit, based on the energy change of particles passing through the
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final telescope when they emit synchrotron radiation, that is about 0.4 Mm so
not much more can be gained.

As part of the upgrade the upper transformer was also redesigned to permit
more flexible and reliable control of the fJ match and coupling removal.20

There are eight parameters to completely control a fJ match, four coupling
knobs plus vertical and hor!zontal ex and fJ. Only two of the coupling knobs
impact the spot size so there are six parameters to control. Multiknobs
(which will depend on existing beam-line element strengths) that change
one parameter without changing the others can be determined by a Lie
generator-based analysis. Multiknobs based on these formulae have been
successfully installed and operated.

There is an opportunity to explore the aberrations of a final focus system by
inducing steering at the entrance to the system. By comparing measurements
with prediction based on analytic formulae for the spot size as a function
of steering, the presence of aberrations other than design aberrations can be
detected. Such a scheme was proposed and carried out on the SLC upgrade.21

3.3 NLC Final Focus System Design

There are many aberrations that arise in final focus systems, each ofwhich can
limit performance. It is very helpful to find analytic formulae for the strength
of these aberrations and optimize the system design accordingly. Some final
focus system designs for the NLC are longer than a kilometer, and it is
essential to understand what is controlling the length. First attempts to find
formulae for optimizing length were helpful but not predictive because they
did not include tolerance considerations. Recent attempts, with tolerances
included, are providing reliable guidelines for choice of system optical
functions and module lengths.22

4 APPLICATION TO CIRCULAR ELECTRON-POSITRON
COLLIDERS

4.1 Monitoring the Design Process

Lattice ring design processes often consist of choosing a lattice configuration
and tracking it at several working points to determine the dynamic aperture.
Based on these observations, plus perhaps a Fourier analysis of particle
trajectories, the lattice is revised and retested. More often, tracking is so
computer intensive that only one working tune is investigated, and particle
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trajectory analysis is performed only occasionally. This process converges
very slowly, because:

1. There are many lattice parameters to vary and specify - not only the basic
lattice parameters, but also the tolerances for a variety of errors, such as
powering, alignment, and multipole strengths.

2. The sensitivity of what is observed is a very coarse indicator.
3. The results are often uncertain. These uncertainties include questions

such as

• Are the simulation code algorithms adequate, and have they been
properly implemented?

• Have the error introduction and correction been carried out as sup­
posed?

• Do the input files correctly describe the lattice, its errors, and the
correction procedures as supposed?

Preparing one-tum map generators to accompany each lattice tracking run
can significantly help with items (2) and (3). Visually scanning resonance
strengths and comparing them with previous runs can monitor input files
and provide more detailed information about lattice performance. Indeed the
resonance coefficients give the same kind of information as Fourier analysis
of particle tracking, but with much more accuracy and detai1. 13

It is now standard practice in the PEP-II design process to produce a one­
tum map generator corresponding to every element-by-element tracking run.
Very puzzling results which arose during the design of solenoid compensation
schemes resulted in the observation that the 82Ix and 82I y coefficients
were not near zero as had been supposed. This led to the discovery that
the second-order chromatic behavior was being calculated differently in
MAD8.1, where the lattice was designed, than in DESPOT, where the lattice
was tracked and map coefficients calculated.

4.2 Map-Aided Lattice Design

For application of Lie algebra maps to circular electron-positron colliders,
see Y. Yan,12 these proceedings.

4.3 Control of Beam-line Generator Parameters

Although we attempt to design lattices in a modular way so that leading
aberrations are compensated, at least semi-locally, we have uncovered two
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cases where changes in straight sections between arcs produced a marked
improvement in lattice performance. In the PEP-II low-energy ring (LER),
the first tune-plane scans showed significant dips in aperture at tunes
corresponding to octupole resonances, especially 4vx and 2vx + 2vy. At
this time the lattices of the six arcs had a phase advance of 90° per cell
and contained interleaved sextupoles, producing obvious octupole terms. By
pairing up four of the six arcs and controlling the phase advances between
them, the strength of the octupole resonance was substantially decreased.

In the PEP-II high-energy ring (HER), to our surprise, a reconfiguration of
straights to incorporate octupole tune-shift-with-amplitude modules changed
the lattice behavior. By looking at resonant generator coefficients, we were
able to determine that when the phase of the straight section between arcs was
changed the sign of a large chromatic resonance terms (8 Jx cos 28x ) changed.
This conclusion was confirmed by taking the map for the lattice with poorer
performance, changing the sign of this term, and doing nPB tracking using
the modified generator. We call maps with switched parameters "SWIMS."
SWIMS provide a very powerful tool for investigating the impact of each
generator coefficient.

The majority of beam-line generator coefficients must be controlled in
the design process by choosing a good bare-lattice design and by specifying
tolerances on lattice errors. We have noted in beam-beam halo simulations23

that halos are a result of resonance streaming and are particularly sensitive
to the coefficients of the tune-shift-with-amplitude terms J;, J;, and Jx Jy •

These terms can arise from long or interleaved sextupoles, from the kinematic
correction term in the Hamiltonian of the large angle IP region, or from
quadrupole fringes. To gain some operational control over these coefficients,
we have installed two nine-octupole modules. Each module has three sets
of three octupoles placed in three cells of a 120° FODO array. Sets of
three octupoles at 120° or 60° insure that all but the 2vx - 2vy resonance
terms are cancelled. The 120° provides larger f3 ratios, hence improves the
orthogonality of the families.24

5 APPLICATION TO CIRCULAR PROTON COLLIDERS

5.1 Statistical Maps

During the Superconducting Super Collider (SSC) design process, a quantity
called smear was used as a basis for evaluating lattices. Forest25 pointed out
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that this could be calculated with Lie algebraic methods. Bengtsson et al. 26

extended the formalism to include lattice alignment errors, and implemented
it using a symbolic manipulator. He performed a detailed analysis ofthe smear
tracking runs to get not only the smear, but also the resonance coefficients.

Even more interesting, it was possible to calculate the rms distribution of
smear that would be observed in an ensemble of lattices given a specification
of the rms of the multipole and alignment errors. In a similar way, generator­
based map composition methods provide an ability to look at the statistical
behavior of maps.27

5.2 Fast Computation and Tracking of Maps

A generator-based method, using a third-order CBH formula, was proposed
and partially implemented by the SSC design group.28,29 The methods
described in Ref. 5 provides a very accurate and fast alternative method
to calculate maps for circular proton colliders. It is interesting to note in this
connection, that Yan,30 using implicit map methods, was able to establish
that only terms through 5th or 6th-order in the one-tum beam-line generator
were necessary to explain the long term dynamic aperture of the SSC.

It has been established that the maps are sufficiently accurate. A method
for rapid symplectic map tracking, now referred to as kick factorization, was
proposed by us,31 implemented by Forest, and tested by Zimmermann et al. 3.2

The results of Zimmermann using a random phase between kicks were not
particularly encouraging, as the speed was only a factor of two better than
power-series tracking, with less accuracy. Recently, the method has been
substantially improved by Abel et al. 33

6 SUMMARY

The role and meaning of monomials in a beam-line generator, their
transformation into a resonance basis and methods for estimating their size
and importance have been described. Several applications of these methods
in the· design and operation of linear and circular colliders were presented.
This language has provided an enhanced understanding of single-particle
dynamics in complex situations, with consequent impact on machine
operation, and has additionally provided important tools for simulating
lattices, monitoring the design process, and providing information on lattice
performance to guide the design process.
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Results of a generator-based map composition show that:

- Most contributions to the generator come from a transparent addition
process (first-order CBH), especially true for weak generators such as
fringe fields and multipole errors

- The contributions ofa generator that are modified by the presence of strong
elements elsewhere in the lattice can be quantitatively determined through
use of similarity transformations

- Accurate calculations can be carried out using one or at most two Poisson
brackets to include the interaction of weak lattice elements

In a generator-based map composition, there n~ed be no interconnection
to the order of transverse variables, as in power-series methods. Map
construction speed using generator-based methods can be accurate and very
fast even for very high-order maps. Because all maps are expressed through
generators, symplecticity is guaranteed at every step. Map construction
processes, such as statistical map constructions, are possible. A generator­
based map composition avoids:

- finding symplectic integrators for all elements,
- using truncated power-series concatenation to combine elements, and
- performing Dragt-Finn factorization to get the beam-line generator.

The beam-line or one-tum map written in the form of a product of a linear
transformation and an exponential map

M == Aexp[: G:]

contains all the information needed to specify the single-particle dynamics
of a lattice, and as such can be considered the "specification" or fingerprint
of a lattice. For circular electron colliders, an nPB tracking algorithm allows
the significance of parameters contained in the high-order generator G to be
probed. For circular proton colliders, a kick factorization algorithm appears
promising.
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