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SUMMARY.

The statistical variation of energy loss of particles
traversing focussing-foils in a Berkeley type accelerator
leads to phase debunching. A treatment of the effect is
developed which is based on an analysis by Landau of
straggling in single foils. The method is valid for
small bunches. Calculations are done for a 47-470 MeV.
machine with operating wavelength 1.5 metres, energy
gradient 2.3 MeV. per metre, and synchronous phase 20°.
With 8 x 107" inch berylliun foils the final bunch width
is quite tolerabl., being of the order of a few degrees.
The foils may be somewhat thicker without affecting the
overall bunch width, but it varies inversely with the
square root of the wavelength.
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INTRODUCTION

A previous report(l) has considered the radial spreading of the
proton accelerator beam by scattering in focussing foils. We are
here concemed with the effect on the axial motion of the particles
of the energy loss in traversing foils. If a particle lost nearly
the same amount of energy in successive foils it would simply tend
to lag behind the original synchronous phase. However, there is a
considerable statistical variation in the energy loss and this
initiates phase cscillations. In the cases of interest these have
amplitudes large compared with the average phase lag; the latter
merely shifts the centre of the bunch a distance small compared with
its width.

MEAN LOSS OF ENERGY.

The mean loss of energy of protons in beryllium has been tabulated
conveniently by siti(®),  Below we pive the loss at various energies
in 8 x 10" * inch foils, and the corresponding loss per metre if they
were used in the Berkeley type acceleratc (1) with operating wavelength
1.5 metres.

fnergy Less in Lless in
}E-M MeV. per foil MeV. per metre
1 314 5.4
5 .11 .71
50 . 018 .03
500 . 0035 . 0031

The figures in' the third column are to be compared with the
2.8 MeV/metre accelerating rate in the existing machine. It is plain’
that at 50 MeV. and above the loss is upimportant; even if it were
ignored in the design it wuld cause a phase lag of only 2.5° from a
phase stable angle of 20° at 50 MeV.; decreasing to about .2 degrees
at 500 MeV. At 5 MeV., on the other hand, the lcss is a substantial
fraction of the available acceleration and the machine would have to
be designed accordingly. However, at such low energies the coulomb
scattering becomes excessive for foils much. thicker than 8 x 10 °
inch, if this thickness could be used the energy loss would be small
above 5 MeV.

STPAGGLING IN A SINGLE FOIL.:

The work of Landau,( 3) on straggling in single foils will now be
described briefly. We are not very interested in applying this to
the individual foils of the accelerator, but it will be seen later
how we can use Landau's results in discussing the phase distribution
of particles emerging from the machine as a whole.
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A proton traversing a foil loses energy in collision with electrons.
The individual collisions cause energy losses which range from the
minimum excitation potential of the atom to the energy which a proton
can deliver to an electron in a head-on" collision. If the foil is
sufficiently thick for even large losses to occur many times then the
distribution of total—loss about the mean becomes the normal gaussian.
For thinner foils the smaller los: :s may still occur often enough to
set up a roughly gaussian distribucion, b.  hen a particle does hz pen
to suffer a heavier collision the latter may cor -ibute the major art
of its total energy—loss. The probability distribution for tcotai loss
is then roughly gaussian for small v-lues, but the prubability <f a
larger loss is nearly equal to the probability of a single correspondingly
heavy collisicn, This situation has be.n investigated analytically by
Landau. His work rests on the formula

W(e) ge = & de/e?

. —2
g onoc® Mnzve? B

for the average number of collisions in which energy between € and
e + d& is lost.

moc® = electron rest energy

Vo = ez/moc2 = 2.8 x 10 Cem.

e = electron charge

B = ratio of particle velceity to velocity of light
z = atomic number of material

n = number of atoms per sq. cm. of feil.

The formula is valid when € is large compared with €0, the mean
binding energy of the electrons, and small compared with €p, the
maximum energy loss possible.  If the total energy loss is denoted by
aé, and its most probable value by ®o&, Landau finds that when
€0 << & << g the probaebility distribution for @ - @ depends cnly
on the region of W(€) where the formula is true and that it is given
by the universal curve in fig. 1.

The curve must be in error for @ — & < — &, where it would give
a small probability for energy losses which are in fact negative.
However, if & >> €0 the curve is anyway very near the axis in this

region,

It must again be in error for € ~ €, where the formula for W(€)
is modified.  According to Rossi and Greisen(4)



We) = 0 € > €

Since total energy losses of order €, are due mainly to single
heavy collisions the probability distribution for @ should stop near
en/é and for relativistic particles will fall below the Landau, curve

at this point is approached.

In Landau's work collisions with different electrons are treated
as independent. For very swift particles this is not in fact correct.:
and it is found that the degree of condensation of the material affects
the process of energy loss. However, according to Rossi and Greisen
this effect is upimportant as long as the kinetic energy is not large
compared with the rest energy; therefore it need not be considered
at the energies in' the proposed accelerator.

FINAL PHASE DISTRIBUTION IN ACCELERATOR.

If a particle travelling along the accelerator with the synchronous
phase and velocity loses some energy in a collision it will tesubsequently
oscillate in phase. Small oscillations may be superposed, so that at
the end of the machine the phase of a particle is the sum of the
contributions from the phase oscillations set up by all the individual
collisions. There will also be other contributions for particles not
injected with: the synchronous phase and velocity; we shall refer
briefly to these later on. It tums out that over a considerable range
the average number of collisions which contribute a final phase deviation
in the region do is inversely proportional to 2. Apart from the
substitution of phase deviation for energy loss there is only this
difference from the situation analysed by Landau — that while € was
essentially positive both negative and positive @'s occur. Thus one
obtains two Landau, curves representing respectively the probability
distributions for the sum of all positive deviations and for the sum of
all negative deviations, and a convolution of the two gives the probab—
ility distribution for the resultent final phase.

The fact that all phase oscillations start by lagging behind the
synehronous phase (corresponding to energy loss) leads to a certain
asymmetry in' the final distribution. The centre of the bunch tends to
lag behind the synchronous phase by an amount corresponding to the mean
energy loss. In the cases of interest, as we have already seen, this
is not a large effect, and in obtaining the curve of fig. 2 it has been
neglected. Fig. 2 is in fact obtained by a (rough) convolution of a
pair of mirror-image Landau, curves; it represents the probability
distribution for ®/o, where ¢ here plays a role analogous to that of
& for single foils.
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Fig. 2 overestimates the probability of large total deviations.
As with the Landau curve the error is mainly in overestimating the
probability of single collisions with large energy loss.  Although
considerable computation would be involved in exactly prescribing
the falling off at all angles, it is not difficult to give an angle
¢, by which it is nearly complete — that is to say beyond which there
are almost no deviations. It it a condition of validity of the approach
used that @, -should be large coupared . a.

RESULTS.

We shall quote here the results of the caleculations, leaving the
mathematical development to an Appendix.

With 8 x 107" inch beryllium foils on the 47-470 MeV accelerator
described at the -¢inning of the report, < 1is found to be .16 degrees.
Referring to fig. 2 it is seen that the distribution has 2 width at
half-height of about * 30, or roughly plus or minus half z degree. In
this case fig. 2 overestimates the probability of deviaticns greater than
about a degree, and the correct distributicn will nout extend at all much
beyond + @ ™~ * 5°. 0 is proportional tc foil thickness, but o, is
independent cof this, so the foils may be rather thicker than 3 x 10—4
inch without increasing the cverall width of the distribution as distinct

" from its width at hal§~height. Both o and @, increase with decreasing
wavelength, © as A~ £ and Py as %—'ﬁ; the former increases more
than the latter because it invclves the increased number of foils per
unit length as well as the decreased effectiveness of the phase bunching
forces.

Calculations were dome also for a 4.7—47 MeV machine otherwise
similar to that just discussed. With 3 x 10" inch foils it is found
that both the overall bunch width and the width at half-height are
comparable with those obtained for the thicker foils on the higher energy
accelerator,

PHASE OSCILLATIONS.

As in the investigation of scattering(l) the presence of large
phase oscillations has not been allowed for. Strictly speaking the
theory is sufficient only if the particles are fairly well bunched on
entering the foil focussed section.  The phase oscillations set up
by straggling are simply linearly superposed on any other small
oscillations present.

CONCLUSION.

We have found for the cases considercd that with smzll phase
oscillations the fcil thickness is limited by scattering rather than
by mean energy loss or straggling.
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APPENDIX

PHASE OSCILLATIONS

The axial electric field in a particular section of accelerator
may be analysed into components varying sinusocidally in space. The
most important of these for the motion of the proton is the one whose
phase velocity is nearly equal to the particle velocity. It is not
correct(5) to‘neglect the others entirely, but their effect is small and
will not be discussed here. The equation of motion is then

d
cﬁ(p) = ek cos (o + Q)

where p 1is the relativistic momentum,: 9o the synchronous phase,:and
9o + @ the actual phase of the particle considereds. If pe 1is the
synchronous momen tum

d .
a—,;(p —po) = ek {cos (95 + ®) — cOS Po}

For small ¢ the right hand side can be written

2 mA
- a— tan 9o (2 — 2o)

A
vhere A = eE cos 9o and z — 2o = S— ® is the distance of the particle
T
from the synchronoug particle. The difference of momenta is approximately.

dp

Z (5= %) = M (% - 3)
dz’ L

with. M;, being the longitudinal mass o'g the synchronous particle, equal
to the rest mass Mo divided by (1-B?) 72, Ve then have

d . . . 2rh
& {ML (z — Zo)} = - ‘a‘ tan Qo (2 — Za)
Writing u, = 2 — 20, = grh tan @o
B\
d du,
ai ML a{ = (0] u‘

which has the adiabatiec solution

o gy
u ~ (o M) s Y+ /[ (— dt
L in ML)

where Y 1is arbitrary. With

2

9 = é-?\ u, eand ¥ = 5(1—62)—1/“’ we have



Q ~ x‘3/4 sin [ Y + [ ( LY dt

QOLLISIONS.

Consider now a particle which travels initially with the synchronous
phase and veloecity but suddenly loses an energy € with which is
associated a small velocity decrease c83. It is easily seen that

€ = Mchleéﬁ

An oscillation is set up with initial amplitude in terms of u

2y o _E ﬂ)’/z
coF (ML> TR Mt (a

or in tems of @
on ¢ € (M_L)i/z
BA B M c? o

) € on Mec? }/2 _32

T Moc? 1-17\ tan %o

In prcceeding to the end of the accelerator at X,, the amplitude changes

_8y.
by a factor (Xz/X) b and is finally

€ { on Moc? }1/2 X_3/4 X—s/"
Moc?® A tan @ 2

which we will call €f. At the end of the accelerator

ef sin vy

S
"

where

<
I

J (i) g

the limits of integration being the time of occurrence of the collision
and the time of exit from the machine.

LARGEST AND SMALLEST COLLISIONS.

The energy lcss in a single ccllisicn ranges from the maximum

€, = 2mec’ 62/1-52

n

2mec? x*

]



down to energies less than ¢€o — the mean’ binding energy of the atom.

For a 5 MeV. proton — the least energetic we shall consider — g ~ 10* eV.
The greatest binding energies in beryllium are of order 100 eV.; so

€q > €oo If o and Po ~denote the corresponding final amplitudes

of phase oscillation” ¢, >> Qo  Substituting the formula for £, in
that for 9 we get

Mo 2 7™M 302 1A ."'3/4 5/4'
oo mo[Eme
Mo AN tan Qo

It is seen that the largest @ originates at the high energy end of the
machine.  In the 47-470 MeV. machine already described o, varies from
1° to 4.5°% while in the similar 4.7—47 MeV. accelerator o, varies from
.6° to 2.4°

FINAL PHASE DISTRIBUTION.

If &) do denotes the average number of collisions in the accelerator
vhich result in oscillations whose final phase is in the region' d9, then

. . de
®(9)do = W(e) — d
(@)do 2 W(e) o l 0

the 'summation being over all foils.: With.

9 = ef siny

we have

®o) = sl fsinvl™ Welfsinvl™
Now for Ep > € >> €

W(e) = 2moc® mnave® (1 - B* /e) —2];—2

B%

and W) = 0 if €< 0 or € >¢g,.
Thus for @ >> 9o

®(7) = I 2mec? ’”;V‘?’ Lf ,Sin vl { 1- 82 °/¢m}

¢

provided that those foils be omitted from the summation for which ¢ and
sin' ¥ are of opposite sign'or for which |9, sih v| < .  The latter
omission will not be very important provided 9 << @, and we may then
neglect also the tem B2 °/¢m, and thus for ¢ << § << ¢m

Qe



2
.Tnzvo™

BZ

3(9) = 1797 = 2mec? | f sin v|

Considering positive and negative @'s separately we see that the
distribution of 9's is the same as the distribution of €'s assumed
in Landau's work and provided that

., ™zvo’ ,
To << | = Z2moc 3z | f sin v| < @

the separate probability distribution for their sums will be the appro—
priate Landau curves. The probability distribution for the resultant
® will be a convolution of the two. As in the single foil problem
one should calculate separately the position of the centre of the bunch,
for this, as distinct from the distribution within the bunch, depends
on the small losses of energy ¢€o for which the €% and 9°

formulae are not valid. It can easily be seen that

Py = Z6 fsinv
the summation being all foils and & being the mean tctal energy loss
in one. In the cases we shall consider (see section on mean energy loss)

9,y Will be small compared with the bunch width and we shall igncre it.

Now in an accelerator with 2 fair number of phase oscillations sin V¥
will be nearly as often positive as negative and we will not make a great
error in either case if we replace it by an average value ', Then
the distribution of %/0 where

2
Tnzvo

62

o = S 2moc? f

T—%'l—‘

becomes the convolution of two mirror—image Landau curves shown roughly
in fig. 2. Substituting the formula for f and approximating the
summation by an integration over X, remambering(l) that the change of
X Dbetween successive foils is

AN

Mcv(:2

5X =

we have finally

_s 8.
kTR R &

6 = ongve? moc® on Moc? }’7: fxz

AN A
A AN tan 9o X,

where X, and ¥, are the values of this quantity at the ends of the
machine.
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With 8 x 107 inch foils on the 47-470 MeV. machine 0 = .16°.
Referring to fig. 2, it is seen that the width of the distribution at
half height is roughly plus and minus 30 or in the present case t .5°.
It is apparent that £ is not as small compared with the 9y's calculated
in the last section (1° - 4.5°) as would be required for the curve of
fig. 2. to be really valid. It is no doubt a fair approximation to the
actual distribution near the middle, but is increasingly an overestimate
of the actual probability for angles of order a degree and larger, and
the actual bunch will not extend much further than say, 5°

With 8 x 10 ° inch foils on a similar 4.7-47 MeV. machine the
situation is much the same; 0 = .24° and the bunch extends to some

+ a°,

September, 1952.
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