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W ecom putethetim eevolution ofelliptic
ow in non-centralrelativisticheavy-ion collisions,using

a (2+ 1)-dim ensionalcode with longitudinalboost-invariance to sim ulate viscous
uid dynam icsin

the causalIsrael-Stewart form ulation. W e show thateven \m inim al" shearviscosity �=s = ~=(4�)

leadsto a large reduction ofelliptic 
ow com pared to ideal
uid dynam ics,raising questionsabout

the interpretation ofrecentexperim entaldata from the Relativistic Heavy Ion Collider.

PACS num bers:25.75.-q,25.75.Ld,47.75.+ f,12.38.M h

The successofthe hydrodynam ic m odelin describing

the bulk ofhadron production in Au+ Au collisions at

the Relativistic Heavy Ion Collider (RHIC) [1]has led

to a paradigm atic shift in our view ofthe quark-gluon

plasm a (Q G P):Instead ofbehaving like a gasofweakly

interacting quarks and gluons [2], as naively expected

on the basis ofasym ptotic freedom in Q CD,its collec-

tive properties rather re
 ect those ofa \perfect liquid"

with (alm ost)vanishing viscosity.However,dueto quan-

tum m echanicaluncertainty no 
 uid can have exactly

zero viscosity [3],and recent work [4]on strongly cou-

pled gauge � eld theories, based on techniques exploit-

ing the AdS/CFT correspondence,suggestsan absolute

lower lim it for the ratio ofshear viscosity � to entropy

density s:�=s � ~=4�. Thisraisesthe interesting ques-

tion how close to thislim itthe actualvalue ofthe shear

viscosity ofthe Q G P created atRHIC is.

Answering thisquestion requireshydrodynam ic sim u-

lations for relativistic viscous 
 uids in which the ratio

�=sentersasa param eter.To study theanisotropic(\el-

liptic")collective
 ow in non-centralheavy-ion collisions,

from which lim its on �=s can be extracted [5],requires

a code that evolves the hydrodynam ic � elds at least in

thetwo dim ensionstransverseto theheavy-ion beam .In

thisLetterwepresentour� rstresultsfrom such sim ula-

tions[6];a longerpaperwith a discussion ofalltechnical

detailsofourapproach isin preparation [7].

Relativistic hydrodynam icsofviscous
 uidsistechni-

cally dem anding. The straightforward relativistic gen-

eralization ofthenon-relativisticNavier-Stokesequation

yields unstable equations that can lead to acausalsig-

nalpropagation.A causally consistenttheoreticalfram e-

work wasdeveloped 30 yearsago by Israeland Stewart

[8]. It involves the sim ultaneous solution of hydrody-

nam icequationsforageneralized energy-m om entum ten-

sorcontainingviscouspressurecontributions,���(x),to-

getherwith kineticevolution equations,characterized by

a (short)m icroscopic collision tim e scale ��,forthe dy-

nam icalapproach of��� towardsitsNavier-Stokeslim it.

Com pared to ideal
 uid dynam ics,this leads e� ectively

tom orethan adoublingofthenum berofcoupled partial

di� erentialequationsto be solved [9].

The last couple of years have seen extensive activ-

ity in im plem enting the Israel-Stewart equations (and

slightvariationsthereof)[8,9,10,11,12]num erically,for

system swith boost-invariantlongitudinalexpansion and

transverseexpansion in zero [10,12],one[11,13,14,15]

and two dim ensions[16,17](see also Ref.[18]fora nu-

m ericalstudy ofthe relativistic Navier-Stokes equation

in 2+ 1 dim ensions). It is probably fair to say that the

processofveri� cation and validation ofthese num erical

codes is stillongoing: W hile di� erent initialconditions

and evolution param etersused by thedi� erentgroupsof

authors render a direct com parison oftheir results dif-

� cult,itseem sunlikely thataccounting forthese di� er-

ences willbring the variouspublished num ericalresults

in linewith each other.

W e here present results obtained with an indepen-

dently developed (2+ 1)-dim ensionalcausalviscous hy-

drodynam ic code,VISH2+ 1 [6,19],which hasbeen ex-

tensivelytested (fordetailssee[7]):(i)in thelim itofvan-

ishingviscosity,itaccurately reproducesresultsobtained

with the(2+ 1)-d ideal
 uid codeAZHYDRO [20];(ii)for

hom ogeneousdensity distributions(i.e.in theabsenceof

density gradients)and vanishing relaxation tim eitaccu-

rately reproducestheknown analyticsolution oftherel-

ativistic Navier-Stokesequation forboost-invariantlon-

gitudinalexpansion [3];(iii)forvery shortkinetic relax-

ationtim esourIsrael-Stewartcodeaccuratelyreproduces

results from a (2+ 1)-d relativistic Navier-Stokes code,

underrestrictiveconditionswherethelatterproducesnu-

m ericallystablesolutions;and (iv)forsim pleanalytically

param etrized anisotropic velocity pro� lesthe num erical

code correctly com putes the velocity shear tensor that

drivesthe viscoushydrodynam ice� ects.

VISH2+ 1 solves the equations for local energy-

m om entum conservation,dm T
m n = 0,with

T
m n = eu

m
u
n
� p� m n + �

m n
;� m n = g

m n
�u

m
u
n
; (1)

togetherwith kineticequationsfortheviscousshearpres-

sure�m n [21],

D �
m n =

1

��
(2��m n

� �
m n)� (um �nk+ un�m k)D uk: (2)
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Here D = um dm is the tim e derivative in the localco-

m oving fram e and �m n = r hm uni= 1

2
(r m un+r num )�

1

3
� m ndku

k (with r m = � m ldl) is the sym m etric

and traceless velocity shear tensor. W e use a

� xed Eulerian space-tim e grid in curvilinear coordi-

nates xm = (�;x;y;�), with longitudinal proper tim e

� =
p
t2� z2 and space-tim e rapidity � = 1

2
ln t+ z

t�z
,where

z is the beam direction and (x;y) are the two trans-

verse directions. dm indicates the covariant deriva-

tive in direction xm in this coordinate system . As in

Refs.[14,15,16,17,18]we neglect bulk viscosity and

heatconduction aspresum ably subdom inante� ectsin a

Q G P with approxim ately vanishing netbaryon density.

W e im plem ent longitudinal boost-invariance via the

ansatz um = (u�;ux;uy;u�)= 
? (1;vx;vy;0),with 
? =

(1�v2x� v
2
y)

�1=2 ,using �-independent initialconditions.

Theequationstobesolved are3hydrodynam icequations

forT � �,T � x and T � y,togetherwith 4 kinetic equations

for���,�� �,�� x and �� y [7,22]. To check the num er-

icswe also evolved additional,redundantcom ponentsof

�m n and con� rm ed that the identities um �
m n = 0= �mm

arepreserved overtim e.

Due to the lim ited size ofthe transverse(x;y)grid in

ourcurrentcode,weherepresentresultsonly forCu+ Cu

collisions;sim ulations ofthe larger Au+ Au system will

soon be forthcom ing. W e use standard G lauber m odel

initialconditions[1],assum ing wounded-nucleon scaling

ofthe initialtransverse energy density e(x;y;�0;b)[23],

with a W oods-Saxon radiusR C u = 4:2fm ,surfacethick-

ness� = 0:596fm ,and equilibrium density�0 = 0:17fm �3 .

W e scale this pro� le to a peak initial energy density

in central (b= 0) collisions of e0 = 30G eV/fm 3. This

is higher than expected for Cu+ Cu collisions at RHIC

but ensuresthat the system spends enough tim e in the

Q G P phase to explore the e� ects ofshear viscosity on

the evolution ofanisotropic
 ow in thisphase.W e start

the hydrodynam ic evolution at �0 = 0:6fm /c with van-

ishing transverse
 ow,both fortheviscousevolution and

ideal
 uid dynam icalcom parison runs. For the equa-

tion ofstate (EoS) we use a slight variation ofEO S Q

from Ref.[23](which im plem ents a phase transition at

Tc= 164M eV between a free quark-gluon gas above Tc
and a chem ically equilibrated hadron resonance gasbe-

low Tc) where the sharp corners at either end of the

M axwellcontruction at Tc are rounded o� for num eri-

calstability [24]. Neither the initialconditions nor the

EoS havebeen � ne-tuned fora realisticcom parison with

experim entaldata; we here em phasize the com parison

between ideal
 uid and viscoushydrodynam icevolution,

in order to identify qualitative di� erences between the

two and to quantitatively understand theirorigin.

The viscoushydrodynam ic equationscontain two pa-

ram eters,theshearviscosity � and thekineticrelaxation

tim e ��. Allsim ulations presented here are done with

\m inim al" viscosity [4]�=s = 1=4�,while �� is varied

between 1

2
(default)and 1

4
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FIG .1:(Coloronline)Tim e evolution ofthe centralentropy

density (a) and average radial 
ow velocity (b) in central

Cu+ Cu collisions (see textfor details). Here and later stars

indicate the tim e when allm atterisfrozen out.

estim ate�B oltz� =
6�

4p
= 6

T

�

s
[8,25].

In Figure 1 we show the evolution ofthe centralen-

tropy density s(r= 0) and the average radial
 ow hvri

(with the Lorentz contracted energy density 
? e as

weightfunction)forcentral(b=0)Cu+ Cu collisions.The

curves labeled \(0+ 1)-d" correspond to 1-dim ensional

boost-invariant longitudinal expansion without trans-

verse
 ow (i.e.to transversally hom ogeneousinitialcon-

ditions). O ne seesthatin thiscase (which,fora sim ple

EoS and in the Navier-Stokeslim it,can be solved ana-

lytically [3])shearviscosity reducesthecooling rate,due

to a well-known reduction ofthe work done by longitudi-

nalpressure[3]{ additionalentropy isproduced,and the

entropy density decreasesm ore slowly than the 1=�-law

forideal
 uids. For transversally inhom ogeneousinitial

conditions(\(1+ 1)-d hydro"),thedeveloping radial
 ow

increasesthe cooling rate com pared to the case without

transverseexpansion,forboth idealand viscous
 uid dy-

nam ics. However,in this case the shear viscous e� ects

increase thetransversepressurerelativeto theideal
 uid

case,leading to a fasterbuild-up ofradial
 ow (bottom
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panelin Fig.1),which in turn acceleratesthe cooling of

the� reballcenterin such a way thatby thetim etheex-

pansion becom ese� ectively three-dim ensional(indicated

by the��3 linein Fig.1(a))theviscous
 uid coolsm ore

rapidly than the idealone [11]. (Thiswasalso seen (al-

though not em phasized) in Refs.[11,14,15,16].) The

largerradial
 ow ofthe viscous
 uid (Fig1(b))leadsto


 atter� naltransversem om entum spectra[14,15,16,27],

but(aspointed outin [15,27])thise� ectcan be largely

com pensated by starting the viscoushydrodynam icevo-

lution laterand with lowerinitialenergy density.

0 2 4 6 8
τ−τ0 (fm/c)

-0.15

-0.1

-0.05

0

0.05

0.1

〈π
m

n /(
e+

p)
〉

τ2〈πηη〉

〈πyy〉
〈πxx〉

πmn
(τ0) = 0

πmn
(τ0) = 2ησmn

Cu+Cu, b=7 fm

FIG .2:(Coloronline)Tim e evolution ofthe dom inantcom -

ponents ofthe shear viscous pressure tensor,norm alized by

e+ p and averaged overthetransverse plane,fortwo di�erent

initialconditions(red and green,respectively).Notethatthe

norm alization factore+ p� T
4
decreasesrapidly with tim e.

Thedottedand dash-dottedlinesin Fig.1(b)show that

(at least for the short relaxation tim e �� =
1

2
�B oltz� =

0:24
�
200M eV

T

�

fm /c considered here) the initial condi-

tionsforthe shearviscouspressure tensordon’tm atter

m uch:whether�m n isinitially taken to vanish orto as-

sum e its Navier-Stokes lim it 2��m n, it quickly relaxes

to the sam e function at tim es �� �0 >
� 4�� � 1fm /c.

Thisisseen m ore explicitly in Fig 2 where we show,for

non-centralCu+ Cu collisions at b= 7fm and the sam e

two sets ofinitialconditions for the viscousshearpres-

sure tensor,the tim e evolution ofthe dom inantcom po-

nents of �m n, norm alized to the equilibrium enthalpy

e+p (which setsthescalefortheenergy-m om entum ten-

sorin the ideal
 uid lim it)and averaged overthe trans-

verse plane. O ther com ponents of h�m ni are at least

an order of m agnitude sm aller than the ones shown.

The signs of h���i < 0 and h�xxi;h�yyi > 0 re
 ect

the reduced longitudinaland increased transverse pres-

sure caused by shear viscosity. The negative di� erence

h(�xx� �yy)=(e+p)i< 0seen in Fig.2causesasigni� cant

viscous reduction ofthe totalm om entum anisotropy �p

which wediscussnext.

The anisotropic 
 ow is driven by the spatialsource
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FIG .3: (Color online) Tim e evolution ofthe spatialeccen-

tricity �x (a)and m om entum anisotropy �p (b)fornon-central

Cu+ Cu collisionsatb= 7fm .See textfordetails.

eccentricity �x =
hy

2
�x

2
i

hy2+ x2i
(where h:::i denotes the en-

ergy density weighted average overthe transverse plane

[1]) and the anisotropic pressure gradients it generates.

Fig.3a showsthatitdecreasesasa function oftim e,and

doesso m ore rapidly initially,butm ore slowly laterfor

the viscous
 uid than in idealhydrodynam ics. The ini-

tialdrop rate for�x dependson the initialvalue forthe

viscouspressure tensor,butafterabout1fm /c di� erent

initializations for �m n lead to parallelevolution histo-

riesfor�x.Thelargestinitialdecreasefor�x isobserved

forthelargestinitialviscouspressuretensor;initialfree-

stream ing ofthem atterwould correspond to an extrem e

caseofviscous
 uid dynam ics,leading to even largerini-

tial�m n and even faster initialdecrease ofthe spatial

eccentricity than shown in Fig.3a [28].

In Fig. 3b we plot, for ideal and viscous hydrody-

nam ic evolution, the total m om entum anisotropy av-

eraged over the transverse plane, �p =
hT

x x
�T

yy
i

hT x x + T yy i
=

hT
x x
0

+ �
x x
�T

yy

0
��

yy
i

hT x x
0

+ �x x + T
yy

0
+ �yy i

,as a function oftim e. The closely

spaced green and red lines distinguish di� erent initial-

izations for �m n,as speci� ed in Fig.3a,showing weak

sensitivity to theseinitialvalues.M oreinteresting isthe

separationofthecontributionsto�p arisingfrom theideal


 uid partTm n
0 (which only tracksthe di� erencesin the

evolution of
 ow velocity and therm alpressure between
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idealand viscoushydrodynam ics)and from the viscous

pressure com ponents �m n (dashed and dotted lines in

Fig.3b). Initially, the viscous 
 ow and therm alpres-

sure evolution is not very di� erent from the ideal
 uid

case,and ittakesawhileuntiltheviscouspressuree� ects

m anifestthem selvesin a signi� cantreduction ofthe
 ow

anisotropy,thereby m odifyingtheideal
 uid partTm n
0 of

theenergym om entum tensor.However,theviscouspres-

sure com ponents�m n contribute them selvesa negative,

initially largeparttothetotalm om entum anisotropy,re-

sulting (for
�

s
= 1

4�
)in an overallreduction ofthe latter

by alm ost 50% relative to the ideal
 uid case over the

entire tim e history. At late tim es,the viscous pressure

com ponentsbecom esm all,butby then theirnegativeef-

fect on the buildup ofelliptic 
 ow has fully m anifested

itselfin the collective 
 ow pro� le and isthuscarried by

theideal
 uid partTm n
0 oftheenergy m om entum tensor.
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K p
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FIG .4: (Color online) (a) The elliptic 
ow v2(pT ) for pi-

ons,kaonsand protonsfrom ideal
uid dynam ics(solid lines)

and viscous hydrodynam ics(dotted and dashed lines). D ot-

ted lines accountonly forviscous e�ectson the 
ow pattern

thatentersthe equilibrium partofthe distribution function;

dashed lines additionally include viscous (non-equilibrium )

corrections to the latter. (b) E�ects ofdi�erent choices for

thekineticrelaxation tim e�� and fortheinitialviscouspres-

sure �
m n

on pion elliptic 
ow (with the sam e separation of

equilibrium and non-equilibrium contributionsasin part(a)).

The elliptic 
 ow v
(i)

2 = hcos(2�p)ii, calculated as the

cos(2�p)-m om ent of the observed hadron m om entum

distribution dN i

dy pT dpT d�p
, depends on particle species i

and m easures the distribution ofthe totalm om entum

anisotropy �p over the various hadron species and over

transversem om entum pT .Thisdistribution dependson

thechem icalcom position ofthe� reballatkineticfreeze-

out, here assum ed (unrealistically) to be a chem ically

equilibrated hadron resonancegas.The hadron m om en-

tum distributions are calculated as a Cooper-Frye inte-

gral[1]overa decoupling surface � ofconstanttem per-

atureTdec= 130M eV:

dN i

dypT dpT d�p
=

Z

�

p� d3�(x)

(2�)3

h

f
(i)
eq (x;p)+ �f

(i)(x;p)

i

=

Z

�

p� d3�(x)

(2�)3
f
(i)
eq (x;p) (3)

�

�

1+
�

1�f(i)eq (x;p)
�1

2

pm pn

T 2(x)

�m n(x)

(e+p)(x)

�

:

Here f
(i)
eq

�
p�u(x)

T (x)

�

is the localtherm alequilibrium dis-

tribution function with tem perature T(x), boosted to

thelaboratory fram eby thelocalhydrodynam ic
 ow ve-

locity um (x) { both taken from the hydrodynam ic out-

puton the freeze-outsurface � (whose norm alvectoris

d3�(x)). �f(i) describes the deviation from localther-

m alequilibrium due to viscous e� ects and is given by

the last term in the bottom line ofEq.(3) [5,12]. It

is proportionalto the viscouspressure tensor�m n,and

even though (in contrastto early tim es)�m n(x)issm all

on the freeze-out surface,its e� ect on the distribution

function growsquadratically with m om entum ,leadingto

a breakdown ofthe (viscous) hydrodynam ic calculation

of hadron spectra at su� ciently large pT (in our case

j�N �(p)=N �
eq(p)j> 50% forpT > 2:5G eV/c where N �(p)

denotesthe pion m om entum spectrum ).

In Fig. 4 we com pare, for a few com m on hadron

species,the elliptic 
 ow v2(pT ) from idealand viscous


 uid dynam ics. O ne sees that even \m inim al" shear

viscosity
�

s
= 1

4�
causes a dram atic suppression ofellip-

tic 
 ow. The e� ects seen in Fig.4 seem to be even

larger than those reported in [17] { this discrepancy

clearly callsforclari� cation [30].Even withoutaccount-

ing forthe slightdeviations�f ofthe distribution func-

tion from itstherm alequilibrium form ,caused by sm all

butnon-vanishing shearpressure tensorcom ponentson

thefreeze-outsurface,weseethatelliptic
 ow isreduced

by alm ost 50% (dotted lines in Fig.4),due to the al-

ready m entioned reduction ofazim uthalanisotropies of

the hydrodynam ic 
 ow � eld. This e� ect was not even

considered by Teaney in [5]when he attem pted to con-

straintheshearviscosityoftheQ G P usingRHIC v2 data.

Teaney’sargum entwasentirely based on theviscouscor-

rections�f � pm pn�m n � p2T arising from non-vanishing

viscouspressureon thefreeze-outsurface(thedi� erence

between thedotted and dashed linesin Fig.4)which,at
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low pT ,is a m uch sm allere� ect. His phenom enological

lim it[5]on the shearviscosity ofthe � reballm attercre-

ated atRHIC isthereforenotrestrictiveenough:even a

super� cialcom parison oftheshapesofthev2(pT )curves

in Fig.4 with experim entaldata [1]suggeststhatRHIC

data m ay be inconsistentwith the conjectured lowerlim it
�

s
= 1

4�
for the QGP shear viscosity.

This conclusion,even though tentative since it isnot

yetbased on a quantitativedata com parison with calcu-

lations that use a m ore realistic EoS and better initial

conditions,appears to be robust since neither a 100%

variation oftheinitialvaluefor�m n nora50% reduction

ofthekineticrelaxation tim efortheviscouspressureten-

sor (see Fig.4b) are able to signi� cantly attenuate the

strong viscous reduction ofelliptic 
 ow that we see in

our calculations. W hile it supports the new paradigm

ofthe \perfect
 uidity" ofthe Q G P created atRHIC,a

possibleviolation oftheconjectured \m inim um viscosity

bound" [4]is a serious m atter that raises the question

whether other explanations m ight be possible. Am ong

thepossibilitiesthatonem ightcontem platearethatthe

initialspatialsource eccentricity in RHIC collisionshas

been signi� cantly underestim ated [29]orthata realistic

equation ofstate is e� ectively sti� er than the one used

here. T.Cohen and collaborators [31]have advanced

counter exam ples oftheories that appear to contradict

theexistenceofa universal\m inim um viscosity bound",

although these exam plesto notinclude Q CD.O ur� nd-

ings suggest that Q CD m ight belong to the list ofex-

ceptions. Lublinsky and Shuryak [32]have shown that

higher order corrections to the Israel-Stewarttheory of

viscousrelativistic hydrodynam icstend to decrease vis-

cous entropy production,so there m ay be a possibility

thatthey also reduce viscouse� ectson the elliptic 
 ow

[30].Ifthisturnsoutto becase,ourtentativeconclusion

as form ulated above is prem ature. O bviously allthese

issues m ust be carefully investigated before a com plete

understanding oftheRHIC data can be achieved.
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