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W e com pute the tin e evolution ofelliptic ow in non-centralrelativistic heavy-ion collisions, using
a (2+ 1)dim ensional code w ith longitudinal boost=nvariance to sin ulate viscous uid dynam ics in
the causal Israel-Stewart form ulation. W e show that even \m inim al" shear viscosity =s= ~=(4 )
leads to a large reduction of elliptic ow com pared to deal uid dynam ics, raising questions about
the interpretation of recent experin entaldata from the R elativistic H eavy Ion Collider.

PACS numbers: 25.75.q, 25.75.Ld, 47.75+ £,1238M h

T he success of the hydrodynam ic m odel in describing
the bulk of hadron production In Au+ Au collisions at
the Relativistic Heavy Ion Collder (RHIC) @] has ed
to a paradigm atic shift In our view of the quark-gluon
plasmna (QGP): Instead of behaving lke a gas of weakly
interacting quarks and glions E}, as naively expected
on the basis of asym ptotic freedom in QCD , its collec—
tive properties rather re ect those of a \perfect liquid"
w ith (aln ost) vanishing viscosity. H ow ever, due to quan—
tum m echanical uncertainty no uid can have exactly
zero viscosity B], and recent work B] on strongly cou-
pled gauge eld theories, based on technigues exploit—
ing the AdS/CFT correspondence, suggests an absolute
Iower 1im it for the ratio of shear viscosity  to entropy
density s: =s ~=4 . This raises the Interesting ques—
tion how close to this 1im it the actual value of the shear
viscosity of the QG P created at RH IC is.

A nswering this question requires hydrodynam ic sin u-—
lations for relativistic viscous uids in which the ratio

=s enters as a param eter. To study the anisotropic (\el-
liptic") collective ow In non-centralheavy-ion collisions,
from which lmm its on =s can be extracted }, requires
a code that evolves the hydrodynam ic  elds at least in
the two din ensions transverse to the heavy—-ion beam . In
this Letter we present our rst results from such sinula—
tions [d]; a Jonger paper w ith a discussion ofall technical
details of our approach is in preparation ﬂ 1.

R elativistic hydrodynam ics of viscous uids is techni-
cally dem anding. The straightforward relativistic gen-
eralization of the non-relativistic N avier-Stokes equation
yields unstable equations that can lead to acausal sig-
nalpropagation. A causally consistent theoretical fram e-
work was developed 30 years ago by Israel and Stewart
E}. Tt involves the sim ultaneous solution of hydrody-
nam ic equations fora generalized energy-m om entum ten-—
sor containing viscous pressure contributions, (x), to—
gether w ith kinetic evolution equations, characterized by
a (short) m icroscopic collision tin e scale , for the dy-
nam icalapproach of tow ards its N avier-Stokes Iim it.
Com pared to deal uid dynam ics, this leads e ectively
to m ore than a doubling of the num ber of coupled partial
di erentialequations to be solved @ 1.

The last couple of years have seen extensive activ-
ity In Im plem enting the IsraelStewart equations (and
slight variations thereof) E ,@ , , , Inum erically, for
system s w ith boost=nvariant longitudinal expansion and
transverse expansion in zero @,lﬁ], one E‘,E,lﬂ,lﬁ]
and two din ensions ﬂ,lﬂ} (see also Ref. ] for a nu—
m erical study of the relativistic N avier-Stokes equation
in 2+ 1 dim ensions). It is probably fair to say that the
process of veri cation and validation of these num erical
codes is still ongoing: W hile di erent nitial conditions
and evolution param eters used by thedi erent groups of
authors render a direct com parison of their results dif-

cult, it seem s unlkely that accounting for these di er-
ences w ill bring the various published num erical results
in line w ith each other.

W e here present results obtained with an indepen—
dently developed (2+ 1)-dim ensional causal viscous hy-
drodynam ic code, V ISH 2+ 1 E,lﬁ], w hich has been ex-—
tensively tested (fordetails see [11): (1) in the lin it of van—
ishing viscosity, it accurately reproduces results obtained
with the (2+ 1)-d deal uid codeAZHYDRO [p07; (i) for
hom ogeneous density distributions (ie. in the absence of
density gradients) and vanishing relaxation tim e it accu-
rately reproduces the known analytic solution of the rel-
ativistic N avier-Stokes equation for boost-nvariant lon-
gitudinal expansion E]; (iii) for very short kinetic relax-—
ation tim es our Israel-Stew art code accurately reproduces
results from a (2+ 1)d relativistic N avier-Stokes code,
under restrictive cond itions w here the latter produces nu-—
m erically stable solutions;and (iv) for sin ple analytically
param etrized anisotropic velocity pro les the num erical
code correctly com putes the velocity shear tensor that
drives the viscous hydrodynam ic e ects.

VISH2+ 1 solves the eguations for local energy-—
m om entum conservation,d, T™ " = 0, w ith

Tmn:eumun pmn+ mn; mn:gmn umun;(l)
togetherw ith kinetic equations for the viscous shear pres-
sure ™" [21],

m n i<2 mn mn) m nk
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Here D = u" d, is the tin e derivative In the local co-
moving frameand ™" =r ™ y"i= %(rm u+rtu")
% "hideuf (with r™ = ™ld;) is the symmetric
and traceless velocity shear tensor. We use a
xed Eulerian spacetine grid In curvilinear coordi-
na X" = ( ;x;y; ), with longitudinal proper time
=" t 22 and spacetin e rapidity = % In 2, where
z is the beam direction and (x;y) are the two trans-
verse directions. d, indicates the covariant deriva-—
tive In direction x™ in this coordinate system . As In
Refs. [14,115,116,117,118] we neglect bulk viscosity and
heat conduction as presum ably subdom inante ectsin a
QOGP with approxin ately vanishing net baryon density.

W e In plam ent Iongitudinal boost-nvariance via the
ansatz u™ = (u ;u*;u¥;u )= -, (L iv;0),with -, =
(1 v>2< vf,) =2 ushg -independent initial conditions.
T he equations to be solved are 3 hydrodynam ic equations
forT ,T *and T Y, together with 4 kinetic equations
for , , “and Y [1,122]. To check the num er—
ics we also evolved additional, redundant com ponents of

™" and con med that the dentitiesy, ™" = 0= [
are preserved over tim e.

D ue to the lin ited size of the transverse (x;y) grid in
our current code, w e here present resultsonly forCu+ Cu
collisions; sin ulations of the larger Au+ Au system will
soon be forthcom ing. W e use standard G lJauber m odel
initial conditions [1], assum ing wounded—nucleon scaling
of the initial transverse energy density e(x;y; o;b) 23],
with a W oods-Saxon radiusRcy = 42 , surface thick-
ness = 0596 ,and equilbrium density o= 0:17fm 3 .
W e scale this pro le to a peak Initial energy density
in central (b= 0) collisions of ey = 30G eV /3. This
is higher than expected for Cu+ Cu collisions at RH IC
but ensures that the system spends enough tin e in the
QGP phase to explore the e ects of shear viscosity on
the evolution of anisotropic ow in this phase. W e start
the hydrodynam ic evolution at o= 061 /c with van-—
ishing transverse ow ,both for the viscous evolution and
deal uid dynam ical com parison runs. For the equa-
tion of state (EoS) we use a slight variation of EO S Q
from Ref. 23] (which In plem ents a phase transition at
T.= 164M €V between a free quark-gluon gas above T
and a chem ically equilibrated hadron resonance gas be-
Iow T.) where the sharp comers at either end of the
M axwell contruction at T, are rounded o for num eri-
cal stability [24]. Neither the initial conditions nor the
EoS havebeen ne-tuned for a realistic com parison w ith
experin ental data; we here em phasize the com parison
between deal uid and viscous hydrodynam ic evolution,
In order to dentify qualitative di erences between the
two and to quantitatively understand their origin.

T he viscous hydrodynam ic equations contain two pa-
ram eters, the shear viscosity and the kinetic relaxation
tine . Al simulations presented here are done with
\m inin al" viscosity 4] =s = 1=4 , whilke is varied
betw een % (default) and % of the classicalB oltzm ann gas
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FIG.1l: (Color online) T In e evolution of the central entropy
density (a) and average radial ow velocity (b) In central
Cu+ Cu collisions (see text for details). H ere and later stars
indicate the tin e when allm atter is frozen out.

estinate PO = L= 2 [d,[29].
In Figure[ll we show the evolution of the central en-
tropy density s(r=0) and the average radial ow hyi
(with the Lorentz contracted energy density - e as
weight function ) for central (b= 0) Cu+ Cu collisions. T he
curves labeled \(0+ 1)-d" correspond to 1-dim ensional
boost-invariant longitudinal expansion w ithout trans-
verse ow (le. to transversally hom ogeneous nitial con—
ditions). O ne sees that in this case (which, for a sin ple
EoS and In the Navier-Stokes lm it, can be solved ana—
Iytically [3]) shear viscosity reduces the cooling rate, due
to a wellknow n reduction of the work done by ongitudi-
nalpressure [3]{ additionalentropy is produced, and the
entropy density decreases m ore slow Iy than the 1= —law
for deal wuids. For transversally inhom ogeneous initial
conditions (\ (1+ 1)-d hydro"), the developing radial ow
increases the cooling rate com pared to the case w ithout
transverse expansion, for both idealand viscous uid dy—
nam ics. However, in this case the shear viscous e ects
increase the transverse pressure relative to the deal uid
case, leading to a faster buid-up of radial ow (bottom



panel in Fig.[l), which in tum accelerates the cooling of
the reballcenter in such a way that by the tin e the ex—
pansion becom ese ectively three-din ensional (indicated
by the ° lne in Fig.[(@)) the viscous uid coolsm ore
rapidly than the deal one E‘}. (Thiswas also seen (al-
though not em phasized) in Refs. E‘,lﬂ,lﬁ,lﬂ}.) The
larger radial ow of the viscous uid (Fifdl(b)) leads to

atter naltransversem om entum spec‘a@ , , ,],
but (as pointed out in ,]) thise ect can be largely
com pensated by starting the viscous hydrodynam ic evo-
ution later and w ith lower initial energy density.
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FIG .2: (Color online) T in e evolution of the dom inant com —
ponents of the shear viscous pressure tensor, nom alized by
e+ p and averaged over the transverse plane, for two di erent
initial conditions (red and green, respectively). N ote that the
nom alization factor e+ p T* decreases rapidly with tin e.

T hedotted and dash-dotted linesin F ig [I(b) show that
(at least for the short relaxation tine = % Boltz —
024 200% fm /c consdered here) the initial condi-
tions for the shear viscous pressure tensor don’t m atter
much: whether ™" is initially taken to vanish or to as-
sum e its Navier-Stokes lm it 2 ™", it quickly relaxes
to the sam e flinction at tin es 0~ 4 1fm /c.
T his is seen m ore explicitly in Fig[d where we show , for
non-central Cu+ Cu collisions at b= 7fm and the sam e
two sets of initial conditions for the viscous shear pres-
sure tensor, the tin e evolution of the dom inant com po—
nents of ™", nom alized to the eguilbrium enthalpy
e+ p (which sets the scale for the energy-m om entum ten—
sor in the deal uid lim it) and averaged over the trans-
verse plane. O ther com ponents of h ™ "1 are at least
an order of m agnitude smaller than the ones shown.
The sgns of h 1 < 0 and h **i;h YY1 > 0 re ect
the reduced longitudinal and increased transverse pres-
sure caused by shear viscosity. The negative di erence
h( **  ¥¥)=(e+ p)i< O seen in Fig.[dcausesa signi cant
viscous reduction of the totalm om entum anisotropy ,
which we discuss next.

The anisotropic ow is driven by the spatial source
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FIG . 3: (Colr online) T in e evolution of the spatial eccen—
tricity x (a) and m om entum anisotropy , (b) fornon-central
Cu+ Cu collisions at b= 7fin . See text for details.
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eccentricity = R

ergy density weighted average over the transverse plane

]) and the anisotropic pressure gradients it generates.
F ig.[3a show s that it decreases as a function of tim e, and
does so m ore rapidly initially, but m ore slow Iy later for
the viscous uid than in ddeal hydrodynam ics. T he ini-
tial drop rate for , depends on the initial value for the
viscous pressure tensor, but after about 1 /cdi erent
nitializations for ™" lead to parallel evolution histo—
ries for .. The largest initialdecrease for , is observed
for the largest initial viscous pressure tensor; initial free-
stream ing of the m atter would correspond to an extrem e
case of viscous uid dynam ics, leading to even larger ini-
tial ™" and even faster initial decrease of the spatial
eccentricity than shown in Fig.3a 261

In Fig.[3o we plot, for deal and viscous hydrody-
nam ic evolution, the total m om entum aru'sotrog)yy av—

hT** T YVi

eraged over the transverse plane, = s TYY: =

(where h:::1 denotes the en-

S AL . .
e e T as a function of tine. The closely

gpaced green and red lines distinguish di erent initial-
izations or ™", as speci ed in Fig[3a, show ing weak
sensitivity to these nitial valies. M ore interesting is the
separation ofthe contrdbutionsto  arising from the deal

uld part T'* (which only tracks the di erences in the
evolution of ow velocity and them al pressure betw een




deal and viscous hydrodynam ics) and from the viscous
pressure com ponents ™" (dashed and dotted lines in
Fig.[3@b). Initially, the viscous ow and them al pres—
sure evolution is not very di erent from the deal uid
case,and it takesa while untilthe viscous pressuree ects
m anifest them selves In a signi cant reduction of the ow
anisotropy, thereby m odifying the deal uid partT " of
the energy m om entum tensor. H ow ever, the viscous pres-
sure com ponents ™" contribute them selves a negative,
Initially large part to the totalm om entum anisotropy, re—
sulting (for 5= %) in an overall reduction of the latter
by aln ost 50% relative to the deal uid case over the
entire tim e history. At late tin es, the viscous pressure
com ponents becom e an all, but by then their negative ef-
fect on the buidup of elliptic  ow has fully m anifested
itself In the collective ow pro le and is thus carried by
the deal uid partT'" ofthe energy m om entum tensor.
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FIG. 4: (Color online) (a) The elliptic ow vy (por ) for pi-

ons, kaons and protons from ideal uid dynam ics (solid lines)
and viscous hydrodynam ics (dotted and dashed lines). D ot-
ted lines account only for viscous e ects on the ow pattem
that enters the equilbrium part of the distrbution function;
dashed lines additionally include viscous (non-equilibrium )
corrections to the latter. (b) E ects of di erent choices for
the kinetic relaxation tim e and for the initial viscous pres—
sure ™" on pion ellptic ow (with the sam e separation of
equilibrium and non-equilibrium contributionsas in part (a)).

The elliptic ow \éi) = hcos(2 )ii, calculated as the

cos(2 p)-moment of the observed hadron m om entum
distrdbution dypTdfip‘;dp , depends on particle species i
and m easures the distrbution of the total m om entum

anisotropy p over the various hadron species and over
transverse m om entum pr . T his distrdbution depends on

the chem icalcom position of the reballatkinetic freeze—
out, here assum ed (unrealistically) to be a chem ically

equilbrated hadron resonance gas. T he hadron m om en-—
tum distrbutions are calculated as a C ooperFrye inte—
gral [1]over a decoupling surface  of constant tem per-

ature Tgec= 130M €V :

Z
AN P 4" (i) () B
= fg ®ip)+ £7(x;p)
dyzprdprd p @y
p 4 ®) _g
= er(é)(x;p) 3)
i 1p"p! mn (X)
1+ 1 £9x;p) = L
= %) 57 ) fer p )
Here £ pTL(lx(};) is the Iocal them al equilibrium dis-

tribution function with tem perature T (x), boosted to
the laboratory fram e by the localhydrodynam ic  ow ve—
Jocity u™ (x) { both taken from the hydrodynam ic out-
put on the freeze-out surface (whose nomm al vector is
& x)). £ describes the deviation from local ther—
m al equilbbriim due to viscous e ects and is given by
the last tetm in the bottom line of Eq. @) [§,14]. It
is proportional to the viscous pressure tensor ™", and
even though (in contrast to early tines) ™" (x) isamall
on the freezeout surface, its e ect on the distribution
function grow squadratically w ith m om entum , leading to
a breakdown of the (viscous) hydrodynam ic calculation
of hadron spectra at su clently large pr (in our case
JN (P)N(P)F> 50% orpr > 256eV/cwhereN  (p)
denotes the pion m om entum spectrum ).

In Fig.[d we compare, for a foaw common hadron
species, the elliptic ow y(or ) from ideal and viscous

uid dynam ics. One sees that even \m Inin al" shear
viscosity 5 = % causes a dram atic suppression of ellip—
tic ow. The e ects seen in Fig[d seem to be even
larger than those reported in [17] { this discrepancy
clearly calls for clari cation|BQ]. Even w ithout account-
ing for the slight deviations £ of the distrbbution fiinc—
tion from its them alequilbbrium form , caused by an all
but non-vanishing shear pressure tensor com ponents on
the freeze-out surface, we see that elliptic  ow is reduced
by aln ost 50% (dotted lines in Fig.[d), due to the al
ready m entioned reduction of azim uthal anisotropies of
the hydrodynam ic ow eld. This e ect was not even
considered by Teaney in [5]when he attem pted to con-
strain the shearviscosity oftheQ G P usingRH IC v, data.
Teaney’sargum ent was entirely based on the viscous cor-
rections £ P'p" ., pé arsig from nonvanishing
viscous pressure on the freeze-out surface (the di erence
betw een the dotted and dashed lines in Fig.[4) which, at



low pr ,isamuch snaller e ect. H is phenom enological
Iim it E Jon the shear viscosity of the reballm atter cre—
ated at RH IC is therefore not restrictive enough: even a
super cialcom parison of the shapes of the y (pr ) curves
in Fig.[d w ith experim entaldata El] suggests that RH IC
data m ay e inconsistent w ith the con ctured ower lim it
5= % for the Q GP shear viscosity.

T his conclusion, even though tentative since it is not
yet based on a quantitative data com parison w ith calcu-
lations that use a m ore realistic EoS and better initial
conditions, appears to be robust since neither a 100%
variation of the nitialvalue for ™" nora 50% reduction
ofthe kinetic relaxation tim e for the viscous pressure ten—
sor (see Fig.[b) are able to signi cantly attenuate the
strong viscous reduction of elliptic ow that we see In
our calculations. W hile it supports the new paradigm
of the \perfect uidity" ofthe QGP created atRHIC,a
possible violation of the conjfctured \m inin um viscosity
bound" @J is a serious m atter that raises the question
w hether other explanations m ight be possible. Among
the possibilities that onem ight contem plate are that the
Initial spatial source eccentricity in RH IC collisions has
been signi cantly underestin ated @] or that a realistic
equation of state is e ectively sti er than the one used
here. T . Cohen and collaborators @] have advanced
counter exam ples of theories that appear to contradict
the existence of a universal \m inin um viscosity bound",
although these exam ples to not include QCD .Our nd-
ings suggest that QCD m ight belong to the list of ex—
ceptions. Lublinsky and Shuryak @] have shown that
higher order corrections to the Israel-Stewart theory of
viscous relativistic hydrodynam ics tend to decrease vis—
cous entropy production, so there m ay be a possibility
that they also reduce viscous e ects on the elliptic  ow
@ ]. If this tums out to be case, our tentative conclision
as form ulated above is prem ature. O bviously all these
issues m ust be carefully investigated before a com plete
understanding of the RH IC data can be achieved.
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