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The effects of the longitudinal wall impedance instability in a heavy ion beam are of great interest for
heavy ion fusion drivers. We are studying this instability using the R-Z thread of the WARP PIC code.!
We describe the code and our model of the impedance due to the accelerating modules of the induction
linac as a resistive wall. We present computer simulations that illustrate this instability.

INTRODUCTION

The longitudinal wall impedance instability occurs when a beam travels down a pipe
with finite impedance. This instability may have a significant effect on accelerated
beams for heavy ion fusion applications since final focusing places requirements on
the beam quality. In order to study this instability, we have written an RZ
particle-in-cell code. This code is part of the WARP family of codes.! It is an
electrostatic, 2!-dimensional PIC code. The simulation is done in a window that
moves with the beam velocity and has periodic boundaries in the axial direction.
Since our beams are not neutral, we add a linear focusing force, which keeps the
beam radially confined and mocks up the A-G focusing used in experiments.

2 LINEAR THEORY

We can calculate a dispersion relation for a beam in a pipe with a resistive wall using
fluid equations for the velocity, U, and the line charge density, A. The dynamics of a

t Work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract W-7405-ENG-48.
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cold beam are described by:
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OA + O(AU) = 0
at az

au au Ze
-+u-=-E.at az M Z

(1)

(2)

We linearize with u = ii in the beam frame, and A = Ao + J:. In the limit that the
wavelength for perturbations is long compared with the pipe radius, the perturbed
electric field is given by

_ aJ:
E = -g - - nbI

Z az " b'
(3)

where 9 = -In(a/b)/2nBo in MKS units, a is the beam radius, b is the wall radius,
and Y/ is the resistance per unit length, The perturbed beam current is given by
bIb = vbJ: + Aoii, where Vb is the beam velocity. If we let J:, ii '" ei(kz - wt),we find the
dispersion relation in the beam frame,

(4)

(5)

where v~ = ZegAo/M. If we assume Vb ~ w/k and y/vb/gk ~ 1 then, the dispersion
relation can be rewritten as

~ = ±Jl - iy/vb/gk ~ (1 - iy/vb/2gk)
kvp

The real part of this equation gives a wave traveling with the phase velocity,
wrea1/k = ±vp ' The forward-traveling wave (wrea1 = + kvp) damps with decay rate
Wi = -l1vbvp/2g, while the backward-traveling wave (wrea1 = - kvp) grows with
growth rate Wi = + y/vbvp/2g. For long-wavelength perturbations, we expect to see
forward traveling waves damp and backward-traveling waves grow independent of
wavelength.

3 MODEL OF THE RESISTIVE WALL

We wish to explore this instability with our PIC code. First, we must develop a
model for the resistive wall in the code. We would like to formulate a scheme that
includes the resistive wall in the calculations without explicitly using the beam
current. We want to avoid estimating the current through z cross sections, that is,
using a highly localized current. Involving the Poisson solution lets us, in effect,
estimate a current as some weighted average over a volume of pipe of length "" beam
radius. We hope that this model will be more-physical and smoother.
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We begin with a continuity equation for the wall surface charge, a, which has units
of charge/area:

(6)

where K z is the surface current. We also have Ohm's law, 2nb11Kz = Ez, where 11 is
the resistance per unit length. Plugging this into the continuity equation yields

(7)

(8)

Integrating this equation over the surface and assuming cylindrical symmetry gives

oIZ

2 1- adz = -- [Ez(Z2) - Ez(Z1)]'ot Zl 2nb11

where we have taken the limits on z to be z1 to Z2. We define the electrostatic
potential, ¢, by

I 0¢1Eiz) == - - .
oz z'

(9)

(10)

Consider the case of Z2 = Z1 + ~z where ~Z is small. Over this range, we can assume
that a doesn't change much, and we can evaluate the integral over a, giving us

o IZ' +dz oa
- adz = ~z-.ot Zt ot

Defining the surface charge, sQ, as sQ = 2nb~za, and using the results of Equations
(9) and (10) in Equation (8), gives

(11)

Since we have assumed that ~z is small, we can expand o¢/oz in a Taylor series.
Taking the first two terms of this expansion and substituting into Equation (11) gives
the result:

oeQ) ~z 02¢

at=~ OZ2· (12)

This equation is then solved simultaneously with Poisson's equation in the code.
The solve is done by Fourier-transforming Equation (12) with respect to z and

then using a finite-difference approximation to the time derivative. Doing this gives

- + 1 - ~t~z 2-sQn = sQn k ¢n + 1,
11

(13)
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where the superscript denotes the time level and the tilde denotes the Fourier
transform. We can write Poisson's equation as

-n+ 1

(V; - k2)¢n+ 1 = _ -p-
Go

(14)

where V; is the radial part of V2
. At the wall, pn+ 1 is composed of the charge density

due to the plasma plus the charge density due to the surface charge, sQn+l. We
substitute for sQn+ 1 in Poisson's equation at the wall from Equation (13) and are left
with an equation for ¢n + 1 in terms of the surface charge at the last time step, sQn,
and the plasma density. The radial part of the Laplacian is differenced to give a
tridiagonal system of equations for each value of k. These systems are solved via
Gaussian elimination using the boundary condition ¢ = 0 for r > rwall to give
¢n+l. We then update the surface charge using Equation (13) to complete the field
solution.

We would like to connect our model with the simpler model used in the linear
analysis in the long-wavelength limit. Rewrite Equation (12) in terms of the electric
field and the surface charge density and then Fourier transform in space and time:

- w2nb(J = - kEz/y/. (15)

In the long-wavelength limit, the line charge density can be written as A~ - 2nb(J,
and in the lab frame w ~ kvb , so that

Ez = -y/VbA,

or, in terms of the beam current, I b = VbA,

Ez = -y/lb ,

(16)

(17)

(18)

which is the contribution to the electric field that we used in the linear analysis in
Equation (3). So, our model does reduce to the simple model used in the linear theory
in the long-wavelength limit.

4 SIMULATIONS

We present two simulations: a traveling wave moving backward and a traveling wave
moving forward. If we Fourier-transform the linearized continuity equation, we see
that

2 kit

Ao w

where 2and it are the perturbed quantities. This tells us that for a forward-traveling
wave, (w == + kvp ), the relationship between the perturbation in velocity and the
perturbation in line charge is

(19)
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TABLE 1

Simulation Parameters

Radius of beam, a = 2.33568 x 10- 02 m
Radius of the wall, b = 5.0 x 10- 02 m
Beam velocity, Vb = 1.0 x 10°7 m/s
Wall resistivity, 11 = 500 !lIm
Line charge density, ). = 1.46 X 10- 05 C/m
Beam current, I = 146.9 Amps
Phase velocity, vp = 1.26 X 10°6 m/s
Thermal velocity, vth,z = 1.65 X 10°4 m/s
Number of gridpoints in r, N r = 64
Number of gridpoints in z, N z := 128
Number of simulations particles = 4.062 x 10°4
Number of real particles, N p = 1.094 x 1014

Mass of particle, M = 12 amu
g = In(bla)/(2nBo) = 1.368 x 1010
11Vblgk = 6.98 x 10- 02 < 1

while for a backward-traveling wave, (w == - kvp ), the relationship is
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(20)

We add a sinusoidal perturbation with wavelength equal to the length of the
window (1.2 meters) to the line charge density and the velocity, using the relationships
in Equations (19) and (20). This perturbation is 5% of the line charge density and
50/0 of the phase velocity, vp • The beam is infinite in length and travels to the right
in the figures. The relevant simulation parameters are summarized in Table 1.

The backward wave simulation is shown in Figures la-If. The perturbation does
not remain sinusoidal; instead, it steepens and becomes more localized. This may
suggest that our initial condition is not a pure traveling wave. After 4 j1S, the
beginnings of a second bump in the line charge are visible (see Figure 1c). As time
progresses, both perturbations grow (Figures 1d-lf). The perturbation travels to the
left (backward with respect to the beam) and is returned via the periodic boundary
conditions on the right side of the simulation region. The general shape of the growing
perturbation is similar to the results of Bisognano et al. 2 in their studies of
longitudinal waves on a beam in I-d.

The forward wave simulation is shown in Figures 2a-2f. Again, the perturbation
does not remain sinusoidal; it, too, steepens and becomes localized. However, if we
compare Figure 2f (forward-traveling) with Figure If (backward-traveling), we do not
see growth in the forward-traveling wave, nor do we see the appearance of the second
bump in the line charge density as we saw in the backward-traveling-wave simulation.
This qualitatively agrees with the results of the linear theory-the forward-moving
wave does not grow, while the backward-moving 'wave does. We do not see the decay
that is expected in the forward wave; we believe that the absence of the 'decay is due
to the presence of some small component of backward-traveling wave in the initial
conditions. We expect to be able to isolate these two cases more purely in the near
future.
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FIGURE 1a-f. Line Charge (C/m) vs axial position at various times for the backward-traveling wave.
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FIGURE 2a-f. Line Charge (elm) vs axial position at various times for the forward-traveling wave.
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5 CONCLUSIONS

We have derived and implemented a method for incorporating a resistive wall in our
PIC code as a model of the impedance due to the accelerating modules of an induction
linac. A simple linear theory predicts a growing wave traveling backward with respect
to the beam velocity and a damped wave traveling forward. Our numerical model
has shown this to be qualitatively true. Further study using this model will include
effects of finite-length beams and a comparison of our model with other models 3

.
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