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A number of high-current accelerator designs utilize strong focusing in the form of helical quadrupole
and axial guide fields. We obtain a linear dispersion relation for a cold electron beam propagating in a
perfectly conducting cylindrical waveguide subject to helical quadrupole and longitudinal magnetic fields,
electromagnetic waveguide modes and image fields. The electromagnetic waveguide modes are expressed
in terms of right-hand and left-hand circularly polarized waves. We find that the electron beam centroid,
depending on the system parameters, can be i) orbit-unstable independent of the waveguide modes, ii)
three-wave unstable, or iii) fully stable. Analytic expressions for the various stability conditions are obtained
in the limit of zero beam current, where the right-hand and left-hand circularly polarized waves decouple.
Algebraic expressions for the growth rate in each of the three-wave unstable regimes are presented. The
full dispersion relation is solved numerically with results that are in good agreement with both the stability
conditions and the growth rate expressions.

1. INTRODUCTION

A number of recent high-current accelerator configurations utilize strong focusing
fields. These fields, consisting of a stellarator field (or helical quadrupole field) and
an axial guide field, increase considerably the energy mismatch tolerance of the device
and provide confining forces against the beam space charge forces. 1

,2 The use of
strong focusing fields has a potential difficulty in that they can lead to various types
of beam instabilities, particularly the three-wave instability in which the externally
imposed helical quadrupole field interacts with the transverse motion of the beam
centroid to excite a transverse-electric (TE) waveguide mode. 3 We note that other
instabilities can arise in such systems. It has been suggested, for example, that the
helical quadrupole field may act like a wiggler field as in the free-electron laser.4

,5

Two devices that utilize such strong focusing fields are the modified betatron
accelerator (MBA)6 and the spiral line induction accelerator (SLIA).7-9 The recent
addition of strong focusing to the MBA at the Naval Research Laboratory has
allowed that accelerator to successfully accelerate a 0.9-1 kA beam to 15-16 MeV
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for ~ 38,000 turns in a vacuum chamber with resistive walls. 1
0 Interestingly enough,

the three-wave instability appears to be absent in the MBA as a result of a low
growth rate and the low Qof the MBA vacuum chamber. The SLIA, to be constructed
by Pulse Sciences, Inc., will utilize the strong focusing for transport along the curved
sections of the beam line between the accelerating cavities.

In the present paper we will focus our attention on the three-wave instability for
which an approximate stability condition has recently been found. 11 Here we wish
to obtain detailed analytical conditions for the various stability regimes and thus
specify parameter ranges for which stable transport of an electron beam is feasible.

The dynamics of the electromagnetic waveguide modes and the beam modes
associated with a relativistic electron beam propagating under the influence of
external strong focusing fields will be analyzed. We will proceed by specifying the
electromagnetic waveguide modes in terms of right-hand (RHCP) and left-hand
(LHCP) circularly polarized waves. This formulation is intuitively motivated by the
mathematical form of the helical quadrupole field. It is justified by the fact that the
instability does not require that the RHCP and LHCP modes be simultaneously
excited. In the simpler case when only the RHCP or the LHCP mode is excited, we
obtain growth rates in agreement with case of coupled RHCP and LHCP modes to
within a few percent in all but the most extreme (high-current) cases.

The dispersion relation for such a system is generated in Section II below. In
Section III, we show that this dispersion relation, in the limit of zero beam current,
gives analytical conditions for the various stability regimes. We find a) two physically
distinct three-wave unstable regimes, b) two three-wave stable regimes and c) a regime
in which the particle orbits themselves are unstable, irrespective of the electromagne­
tic waves. The orbit unstable regime is a recovery of an earlier result. 1

,2 In addition,
we obtain algebraic expressions for the growth rates in each of the three-wave
unstable regimes. This is done with a simplified dispersion relation in which the
RHCP and LHCP waves are decoupled and is valid in the low current regime. These
are found to be in general agreement with the approximate expressions given in Ref.
12. Numerical solutions of the dispersion relation are presented in Section IV. The
analytic expressions of the growth rates and stability boundaries are in good
agreement with the numerical results of the dispersion relation.

2. MODEL

In our model the external fields consist of a periodic helical quadrupole field and
a longitudinal magnetic field (see Figure 1). The electron beam radius is assumed to
be small compared to the waveguide radius. In the equilibrium position, the beam
is centered along the axis of a circular waveguide and the beam electrons are assumed
to be monoenergetic with zero transverse velocity. Perturbing electromagnetic
waveguide fields cause the beam centroid to develop a transverse velocity and become
displaced off the z-axis. This displacement of the beam centroid amounts to a
transverse macroscopic current which, under certain conditions, further excites the
electromagnetic field. The displacement of the beam centroid also induces image
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FIGURE 1 The geometry showing the conducting cylindrical drift tube, the helical quadrupole field
and the axial guide field.

electric and magnetic fields on the wall of the waveguide. The beam centroid motion,
in our model, is governed by the following fields: i) helical quadrupole field, ii)
longitudinal magnetic field, iii) electromagnetic fields, and iv) induced image fields.

2.1 Wave equation

Before developing the orbit equations for the beam centroid, we first derive the wave
equation for the electromagnetic fields. The electromagnetic fields are represented by
a vector potential given by,

(1)

where A+ and A_ are complex amplitudes associated with the right-hand (RH) and
left-hand (LH) circularly polarized waves in a cylindrical waveguide. In Eq. (1), w is
the radian frequency and c.c. denotes the complex conjugate.

The wave equation for A is given by

(Vi +~ - ~~)A = - 4n J, (2)az2 c2 at2 c

where vi is the transverse Laplacian, and J is the macroscopic transverse current
associated with the beam centroid. Substituting (1) into (2) and operating on the
result with (w/2n) J~1t/ro dt exp(iwt), in order to select the correct frequency dependence,
yields

4n 121t/ro dt .
L(A+ + A_) = - - __ e1rotJ,

c 0 2n/w
(3)
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(4)

where L = vi + 02/0Z2 + W
2

/C
2. To obtain the RH and LH polarized components

of the current, we equate the e+ and e_ components of both sides of (3), and find
the following wave equation,

4n f21t/W dt .
L(A+ + A_)' (2e+) = - - -- (Jcx + iJCy)elWr,

c 0 2n/w

where e± = (ex ± iey)/2 and ex and ey denote unit vectors in the x and y directions.
The current density associated with the beam centroid motion is

foo (OXc(Zo, t) A OYc(Zo' t) A )

J(x, y, z, t) = -lelAb dzo ex + ey (5)
- 00 ot ot

x c5(x - xc(zo' t))c5(y - Yc(zo' t))c5(z - zc(zo' t)),

where Ab = nbnrt is the number of electrons per unit length, nb is the beam density,
rb is the beam radius, Xc and Yc denote the transverse coordinates of the beam centroid,
Zc denotes the axial position of a cross sectional slice of the beam and Zo is the initial
position of the slice: zc(zo' t = 0) = Zoe In the small-signal or linear regime Xc and Yc
are proportional to the electromagnetic fields and (5) can be written as

where v = (lel/moc2)I~Po ~ Ib[kA]/17Po is Budker's parameter, I b is the beam current
and Po = vo/c. Upon carrying out the time integration in (7) we obtain,

4n . f21tVO/W dz 0 .
L(A+ + A_)' (2e =t) = - vc5(x)c5(y)el(w/vo )Z __0_ - (xc + iyc)e-lWZo/Vo, (8)

c 0 2nvo/w OZ

where xc(zo' z) = xc(zo' t = (z - zo)/vo) and Yc(zo' z) = Yc(zo' t = (z - zo)/vo). Since
our model is spatially periodic with period w/2n, the limits on the Zo integral have been
changed to 0 to 2n/w.

2.2 Beam centroid orbit

The configuration of the helical quadrupole and the axial magnetic fields are shown
in Figure 1. The total external magnetic field, Bext , consists of the helical quadrupole
field and the uniform longitudinal field and is given by Bext = (Bqx , Bqy , Bzo) where

Bqx = - Bqkq(xsin kqz - y cos kqz),

Bqy = Bqkq(x cos kqz + y sin kqz), (9a-c)
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(12)

In Eqs. (9a-c), Bois the axial magnetic field, Bq is the magnetic field of the
quadrupole, kq = 2n/Aq is taken to be positive and Aq is the period of the quadrupole
field. The representation for the quadrupole field in Eqs. (9a,b) is valid near the z

. . (2 2)1/2 1 /2aXIS, l.e., x + Y ~ A q n.
In addition to the electromagnetic fields given by Eq. (1) and external fields given

by Eq. (9), we have induced fields due to the displaced beam. These fields are produced
by the image charges and currents on the waveguide wall when the beam is displaced
off the z axis. The model assumes that the characteristic length of the axial variation
in the beam displacement is much longer than the waveguide radius. For a circular,
perfectly conducting waveguide the induced electric and magnetic fields near the z
axis are

m c2
V

Eind = - 2 _0- 2 (xcex + Ycey), (lOa)
lei rg

m c2
V

Bind = 2 _0- 2 Po(Ycex - xCey), (lOb)
lei rg

where rg is the waveguide radius and we have additionally assumed that
(x; + y;)1/2 ~ rg. The motion of the beam's centroid under the influence of the
fields in Eqs. (1), (9) and (10) is in the linear approximation governed by

d2xc dyc . 2 2 lei (0 0)
--2 + Q o - - vokqQq{xc cos kqz + Yc sIn kqz) - Voks Xc = -- - + Vo- Ax,
dt dt yomoc ot OZ

(1Ia)

d2
yc dxc . 2 2 lei (0 0)

_.-2 - no - + Vokqnq(yc cos kqz - Xc sIn kqz) - Voks Yc = -- - + Vo- Ay,
dt dt yomoc ot OZ

(lIb)
where no = lelBo/yomoc is the relativistic cyclotron frequency associated with
the axial field, nq = IeIBq/yomoc is the relativistic cyclotron frequency associated
with the helical quadrupole field, Yo = (1- P1J)-1/2 is the relativistic mass factor,
ks = (2v/[p;y;r;J)1/2, Z = Zo + vot, and Ax, Ay are the X and Y components of the
vector potential given in Eq. (1). For the purpose here, we will approximate the exact
expressions of (1) by the fields on axis,

J:l A ( - 0 - 0 ) - ik±ZA2 ±X- ,y- ,Z -a±e e±,
moc

where k± are the axial wave numbers.
The orbit equations for the beam's centroid can be written in a more convenient

form. Setting ~ = Xc + iyc' Eqs. (1Ia,b) become

(
0

2
0 )- - iK - - k2 ~ - K k eikqz~* = FOZ2 0 OZ s S q q S

where K o = no/vo' Kq = nq/vo, and

F = _pi [_ i(k";- - w/vo)a";- e -i(k~ -ro/volze-irozo/vo + i(k_ - w/vo)a_ei(k- -ro/volzeirozo/Vo].

01'0
(13)
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It is convenient at this point to introduce a transformation from the quantity ,

to ~

Substituting Eq. (14) into Eq. (13) transforms the beam's centroid equation into

[
8
2

8 2JA 2A
-2 - iK 1 - + K 2 ,- K 3 ,* = G,
8z 8z

where

(14)

(15)

(16a)

K 1 = K o - kq, K~ = (Ko - kq/2)kq/2 - k;, K~ = Kqkq and G = F exp( -ikqz/2).

Equation (15) can be written in the form

[
84 2 2 8

2
4 4 JA

8z4 + (2K 2 + K 1) 8z2 + (K 2 - K 3) ,= H,

where

[
8

4

8
2 JH = 4 + iK 1 -2 + K~ G + K~G*

8z 8z

= e-ikQZ/{::2 + i(K l - kq) :z + ((K 1 - k/2)k/2 + K~)JF + K~F*eikQZ/2.

(16b)

Substituting Eq. (13) into Eq. (16b) yields

- _pi [(K _ _ kq/2)D_a_eiK-z - (K+ + k/2)K~a+eiK+z]eiWZolvo, (17)
oYo

where K± = k± - w/vo ± kq/2 and D± = Kl +K 1K± - K~. The particular solu­
tion to Eq. (16a) is

~ = (cxtate- iKtz + p!a!e-iK!-z)e-irozo/vo + (cx_a_eiK _z + p+a+eiK+z)eirozo/vo, (18a)

where
i

cx± = --p D±(k± -w/vo)/R±,
o Yo

P± = -K~cx±/D±,

R± = K~ - (2K~ + Ki)Kl + Ki - Kj

= (K~ - (di + d~))(K~ - (di - d~)),

di = K~ + Ki/2,

d~ = ((K~ + Ki/2)2 - (Ki - Kj))1/2.

(18b-f)
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For given values of w, k+ and k_ (to be determined by solving the dispersion
relation) the electron beam centroid motion is given by Eqs. (14) and (18). The wave
number of the beam centroid oscillation is w/vo •

Substituting Eq. (18) together with Eq. (14) into Eq. (8), the right-hand side of the
wave equation becomes

4n f21t/W dt . m c2
.

- -;; 0 2n/w (Jex + iJey)e,rot = 4nivpo~ J(x)J(y)e,roz1vo

x [(K ± +kq/2)lI.±a±ei(K±+kq/2)z (19)

+ (K+ +kq/2){3+a+ei(K++kq/2)Z].

2.3 Dispersion relation

To obtain the dispersion relation the coupled differential equation must be solved,
subject to the boundary conditions on the waveguide. To this end, we assume that
the electron beam propagates within a perfectly conducting cylindrical waveguide of
radius rg • In general, the complex amplitude for the right- and left-hand circularly
polarized TE waves are written as,

n,m

x exp[i(k±nmz ± (n - 1)0 - wt)], (20)

where Jn is the nth order Bessel function, b±nm are complex constants,llnm are real
constants determined by the boundary conditions and n = 1, 2, 3, ... and m =
1, 2, 3, ... are waveguide mode indices.

The boundary condition is such that the tangential component of the electric field
vanishes on the waveguide surface, r = rg • At r = rg we have E· eo = 0, where E
is the total electric field and eo = - i exp( - iO)e + + i exp( - iO)e _ is the unit vector in
the azimuthal direction. Applying the boundary condition at r = r g , we find the
condition J~(llnmrg) = 0, so that Ilnmrg equals the mth positive zero of J~.

Since A is driven by an effective transverse line current, we expect 7Elm modes
will be excited. Substituting the 7E1m mode representation into the left-hand side of
Eq. (4), we obtain two sets of coupled equations.

+ ~ eik+llI1z(w2 _ k?:- - ,,2 )J (II r)e+ i20b_
~ 2 + 1m rIm 2 r1m + 1m
m C

4n leI f21t/W dt. I= ----2 --elwt(Jx+iJy).
c moc 0 2n/w r=O

(21)
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Operating on Eq. (21) by both f6 1t de foo Jo(J-llm r)r dr and f6 1t d8e+ i28 fer J 2(J11m r)r dr
and solving for b± 1m' we find that

(
w2 ) 2 1 lei f21t fry f21t/w dt- - k2 - 11

2 b eik
±lm

Z = - ---- de rdr -- eiwt
2 ± 1m rIm ± 1m I 2 2 /c C 1m moc 0 0 0 1C W

X [Jo(J-llmr)(Jx + iJy)lr=o + J2(J-llmr)(Jx ± iJy)lr=oe+ i28], (22)

where 11m = fo" [J6(J-llm r) + J~(J-llmr)Jr dr = (J-lim r; - 1)J-ll'; Ji(J-llm rg).
The dispersion relation greatly simplifies when only one waveguide mode, say the

TEll' takes part in the interaction, i.e., n = 1, m = 1, a± = b±11' k± = k±ll.
Substituting Eq. (19) into the right-hand-side of Eq. (22), we obtain

[(
w
2 2 2) 2( W)2 ] ik Z2- k ±lm-/11m R± -kb k± -;;: D± b±lle ±

= - k2K 2(k - ~)(k - - ~ -+ k )b- ei(k=t= :+ kq}z (22)b 3 ± + q +11 ,
Vo Vo

where kt = 2vjYol ll = 2vJ-li Ij(Yo(J-li lr~ - 1)Ji(J-lllrg)). The RH and LH circularly
polarized waves are simultaneously excited only when k+ = k_ - kq. Eliminating
b± 11' the dispersion relation coupling the RH and LH circularly polarized waves
becomes

[
R - k~(k - w/vo + kq)2D- J[R- k~(k - W/vo)2D+ ]

w2jc2 - (k + kq)2 - J-lil W
2

/C
2 - k2 - J-lil

k4 4( (k - W/Vo)2 )( (k - w/vo + kq)2 )= b K 3 (24)
w2jc2 - k2 - J-lil w2jc2 - (k + kq)2 - J-lil '

wherek=k+,k_ =k+kq,K=K± =k-wjvo+kq/2,D± =K2+KIK-K~and

R = R± = D+D_ - Kj = K 4
- (2K~ + Ki)K2 + Ki - Kj. Equation (24) can be

put into the form

[
D+ - k~(k - w/vo + ki J[D _ k~(k - W/vo)2 ] _ Kj = 0 (25a)

W2/C 2 - (k + kq)2 - J-lil - W2/C2 - k2 - J-lil '

and/or

R =0. (25b)

Equation (25a) agrees with the dispersion relation in Ref. [3] with the vertical
field set to zero.· Equation (25b) is the dispersion relation of the hybrid cyclotron and
quadrupole modes with image fields in a waveguide in the absence of electromagnetic
fields.

The dispersion relation possesses the following symmetry:

(k, kq, Bo)<=> (k - kq, - kq, - Bo).

Utilizing this symmetry condition, the discussions in Section 3 can also be applied
to helical quadrupoles of the opposite helicity. In this paper, the value for kq is
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always assumed to be positive. The polarization of the waveguide mode associated
with the three-wave unstable wave number k is determined by the polarization of
the waveguide mode that intersects the unstable beam modes.

The modes taking part in the interaction can be conveniently classified by setting
the beam current equal to zero. The dispersion relation, for zero beam current, reduces
to

[k2 - W
2

/C
2 + Jli l][(k + kq)2 - W

2
/C

2 + Jli 1]

x [(k - w/vo + kq/2)2 - (di + d~)][(k - w/vo + kq/2)2 - (di - d~)] ~ 0, (26)

where
di ~ -!(Ko(Ko - kq) + k~/2),

d~ ~ -!(K;(Ko - kq)2 + 4K~k~)1/2.

The first and second bracketed terms on the left-hand side of Eq. (26) represent
the LH and RH circularly polarized transverse electric waveguide modes, while the
third and fourth terms, R, are hybrid cyclotron and quadrupole modes.

The three-wave instabilities are associated with the intersection of the beam lines

(k - w/vo + kq/2)2 - (di - d~) = 0,

with the waveguide modes. Let us define

U ± == (~- k) - (~q ± Jdi - d~) = 0

to be the beam lines that can lead to instabilities, where di - d~ > 0; and

S± == (~ - k) - (~q ± Jdi + d~) = 0

(27)

(28)

(29)

U_ ~ X,

to be the beam lines that do not lead to instabilities. Note that for K o < kq/2
only U + is unstable for w > 0, where as for K o > kq/2 the unstable mode is U_.

The approximate factorization of the beam lines, in the limit of I b = °and K q -+ 0,
provides simplified understanding of the nature of the three-wave instability in
different operating regimes:

a) llor K o < 0,

U + ~ X- kq ,

U_ ~ x,

s_~x; (30c)

s_ ~ X; (30b)

b) for °< K o < kq/2,

U + ~ X+ K o - kq , U - ~ X- K o '

c) for kq/2 < K o < kq ,

U + ~ X- K o ' U - ~ X+ K o - kq ,

d) for kq < K o '

U + ~ X - kq ,

where X = w/vo - k.
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FIGURE 2 The dispersion diagram in the limit of zero beam current for a) K o < 0, b) °< Ko < kq/2,
c) kq/2 < K o < kq and d) kq < K o • The beam lines that can lead to instabilities are labeled by U + and U _.
The intersections where the instabilities occur are circled.
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In this notation, the simplified dispersion relation, with zero beam current, reduces to

[k2
- W

2
/C

2 + JlI1][(k + kq)2 - W
2

/C
2 + JlI 1] u+U _8 +8 _ ~ 0, (31)

where in all cases,

(32)

To illustrate the simplified dispersion diagram, Figures 2a-d show plots of the
waveguide modes and the stable and unstable beam lines for cases a-d outlined
above. The three-wave instability can occur for situations illustrated by Figures 2a-c,
and the intersections where instability occurs are circled. In Figure 2d, the beam
line U _ does not intersect the RHCP waveguide mode. Thus, Figure 2d represents
three-wave stable operation.

3. Sl'ABILITY REGIMES AND ANALYTICAL EXPRESSIONS
FOR GROWTH RATES

The dispersion relation, Eq. (25a), contains i) a region of orbital instability (in the
absence of the electromagnetic waves), ii) regions of three-wave instability, and iii)
regions of stability. In this section, we will obtain the conditions delineating the
various regimes and find analytical expressions for the maximum growth rate in each
of the three-wave unstable regions. The various stability regimes can be delineated
as functions of kqand K ofor given values of Yo, rgand Bqkq. The boundaries separating
the different regimes are obtained in the limit of zero beam current. Figure 3 is a
stability diagram for Yo = 5, rg = 3 cm and quadrupole gradient Bqkq = 200 G/cm.
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FIGURE 3 Plot of (kq , K o) parameter space showing the various operating regimes. Stability boundaries
are calculated for parameters of Table I.
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3.1 Orbit-unstable regime

The expression R = 0 (Eq. 25b) is the dispersion relation for the particle dynamics
in the presence of stellarator windings with an axial magnetic field. This expression
is in agreement with Eq. (10) of Ref. 2 in the limit of perfectly conducting walls. The
electron beam in this configuration can be unstable when (di - d~) ~ O. The unstable
values of K o are

(33)

where K q = nq/vo' nq = leIBq/yomoc, K o= no/va and no = leIBo/yomoc. The curves in
(kq , K p ) parameter space given by K o = K crit ,2 and K o = K crit ,3 are the left and right
boundaries of the orbit-unstable region shown in Figure 3.

Equation (33) is in agreement with the stability condition of Ref. [IJ in the limit
of straight cylindrical geometry and zero beam current. It is interesting to note that
this condition is also in agreement with the condition for beam envelope stability in
the limit of zero space charge. 13

3.2 Three-wave unstable regimes

The three-wave instability will occur when, for example, the RHCP waveguide mode
intersects, in the (w, k) plane, the appropriate beam mode given by Eq. (28). For
kq > 0, the instability for the RHCP waveguide mode occurs with w > O. Identical
three-wave instability growth rates occur for the LHCP waveguide mode with w < O.

For K o < K crit,2, the three-wave instability occurs (Region I) when the RHCP
waveguide mode intersects the beam line U + given in Eq. (28). This corresponds to
the situation in Figures 2a and 2b. For K crit ,3 < K o < kq , the three-wave instability
occurs (Region II) when the RHCP waveguide mode intersects the beam line U_
given in Eq. (28). This corresponds to the situation in Figure 2c.

3.3 Three-wave stable regime for K o < K crit ,2

Stability is achieved when the waveguide cutoff frequency 1111c is sufficiently large
so that intersection with either of the beam lines, defined by Eq. (28), cannot be
achieved. This is stable regime I in Figure 3. The condition in terms of the waveguide
mode cutoff is

(34)

where

=(_4)1/2
q 2 •

Yo - 2

Based on Eq. (34), the region of

(35)
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is always three-wave unstable. If the inequality in (34) can be satisfied, we can
solve for the explicit values of K o for the three-wave stable regime.

For kq < q/111 and K o < K crit ,2' condition for stability in terms of the variable K o is

2fKo(Ko - kq) + f2 - 4Kq kq < 0, (36)

where
f = q/111(kq - q/111/2). (37)

Defining

2( 8K~)( = kq 1 + f - 2j, (38)

we solve for K o with kq <Q/111' and find four situations:

i) for f > 0 and , > 0, the stable range of K o is given by

k ,1/2
K crit ,1 == 2

q
- 2 < K o < K crit,2,

ii) for f < 0 and' > 0, the stable values of K o are

(
k ,1/2 )

K o < K crit,1 == smaller of 2
q

- 2' K cril ,2 ,

iii) for f > 0 and , < 0, all values of

are unstable,
iv) for f < 0 and' < 0, all values of

(39a)

(39b)

(39c)

(39d)

are stable. The curve K o = K crit ,1 denotes the upper boundary of stable region I
in Figure 3.

3.4 Three-wave stable regime for K o > K crit ,3

The three-wave interaction is also stable when the RHCP waveguide mode does not
intersect the beam mode U _ associated with Eq. (28) and K o > K crit ,3' This is stable
region II. This occurs when

Q/111 ~ kq - 2(di - d~)1/2. (40)

The three-wave interaction is stable for

kq < q/111 and K o > K crit ,3' (41)

For kq > q/111 and K o > K crit ,3, the values of K o that are three-wave stable are

k ,1/2
K o > K cril,4 == 2

q +2' (42)

The curve K o = K crit ,4 denotes the upper boundary of stable region II in Figure 3.
In this regime, one can show thatf> 0 and' > O. For K o > K crit ,3 in the limit
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(43)

Y ~ 1 the stability condition is approximately

k 1[( 2/1)2 4yk
2
K

2
J1

/
2K

o
> -!i + - kq__1_1 + qq.

2 2 Y /111 (kq - /111/Y)

Equation (43) gives a lower limit on K o for given values of y, kq , K q and rg such
that as the beam energy increases, greater values of Bo > 0 are required for stability.
Note that for small quadrupole gradient, K q~ (kq/111/4y)1/2, Eq. (43) reduces to
K o > kq - /111/YO .11

The stability diagram, Figure 3, assumes that the quadrupole gradient is a
constant, and (kq , K o) are allowed to vary. The horizontal separation of the bound­
aries for the orbital unstable region is 4Kq. Since the stability boundaries are obtained
in the limit of zero beam current, the area of the actual stable regions will shrink
slightly as the value of the current is increased.

3.5 Analytical expressions for the growth rates

In the three-wave unstable regimes, we can obtain analytical expressions for the peak
growth rates. The dispersion relation (25a) for the coupled RHCP and LHCP wave
can be rewritten as

where

a- = k~V;C2[(W - vok)2(W2 - w~)D+ + (w - vo(k + kq))2(W2 - WI)D_J,

Wi = Jk2 + /1I 1C, w2 = vo(k + kq/2), w3 = J(k + kq)2 + /1I 1c, ~WI = v;(dI + d~),
and L\w~ = v6(di - d~). Based on the numerical results of the full dispersion relation
in Eq. (25a), instability occurs at the intersection of the RHCP waveguide mode and
one of the two modes of Eq. (28) for kq > 0 and W > O. Defining W = Wi + bw and
(J = a-IW=WI' the dispersion relation reduces to

(45)

where (J = k~V;C2(Wl - vok)2D+ IW=W2±L\W2' D+ IW=W2±L\w 2 = (~W2/C)2 ± Ki(~W2/C) ­
K~ and the top and bottom signs in D + refer to the three-wave unstable regions I
and II respectively. Equation (45) is the dispersion relation when the RHCP
and the LHCP waveguide modes are not simultaneously excited.

The instability region I in Figure 3 is the result of the waveguide mode intersecting
the upper mode (the beam line with larger w for the same k) given in Eq. (28). The
condition for this interaction is Wi = W2 + ~W2' The unstable wavenumber k
satisfies (1 - P;)k2 + hk + fe = 0, where h = - Po(Pokq+ 2~W2/C), and fe = /1I i ­
(Pokq/2 + L\w2/c)2. In the limit of (1 - f36) ~ f~/(4fe), the unstable wavenumber is
approximately k ~ - fe/fb' We will assume ~Wl - ~W2 ~ bw. The dispersion relation
is given approximately by

(
bW ~W2)(bW)2-+2- -
c C c

(J/C
3 1

--- 2 2'
2w1(~Wi - ~W2)

(46)
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For simplicity, we will assume the temporal growth rate is much smaller than the
separation of the beam modes, i.e~, bW ~ 2L\w2 • With this assumption, we obtain a
simple expression for the dispersion relation,

(47)

For values of K o in the unstable region I, i.e., K o < K crit ,2, the values of a are
positive, and Eq. (47) gives the temporal growth rate.

When the RHCP waveguide mode intersects both modes given by Eq. (28) with
kq > 0, W > a and K o > K crit,3' the instability occurs only at the intersection of the
RHCP wave mode and the lower beam mode. The condition for this interaction is
WI = W2 - L\w2 · In the limit of (1 - fJ6) ~ f~/(4fe), the unstable wavenumber is
approximately k ~ -felfd' where

h = - fJo(fJokq - 2L\w2/c) and Ie = IlIl - (fJo kql2 - L\wzlc)z.

This gives the instability regime II in Figure 3. Still assuming L\w 1 - L\wz ~ bW, the
dispersion relation becomes

aIc3 1

2w 1 (L\wI - L\w~)'
(48)

Here again, we assume 2L\wz ~ bw and the dispersion relation reduces to

(
bW)Z alc2 1
- '" (49)
c - 4w I L\w Z (L\wI - L\w~)'

For K crit ,3 < K o < kq , the quantity a is negative, and Eq. (49) gives the temporal
growth rate in region II of Figure 3. The analytical expressions Eqs. (47) and (49)
show that the temporal growth rate r = Im(bw) scales approximately as the square
root of the beam current, i.e., ric oc It/ z .

4. NUMERICAL RESULTS

The full dispersion relation, Eq. (25a), is solved numerically to: i) obtain the growth
rates and group velocities, ii) verify the various operating regimes and the analytical
expressions for the temporal growth rates, and iii) show the scaling of the growth
rate with respect to the various parameters. The numerical studies center around the
parameters shown in Table 1. With the quadrupole wave number kq chosen to be
0.5 cm - I (Aq = 12.57 cm), we may demonstrate each of the different operating regimes
by varying the axial magnetic field, Bo ' except in one of the stable regimes, where
we take kq = 0.1 cm - I.

Figure 3 is a plot of the various operating regimes in the parameter space of kq as
a function of Ko for Yo = 5, Bqkq = 200 G/cm and r

9
= 3 cm as in Table I.
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TABLE I

Parameters Used in Section 4.
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Quadrupole gradient, Bqkq
Beam energy (Yo)
Beam current, I b

Drift-tube radius, rg

Calculated parameters

TEll cut-off frequency/c, J..l11

qJ..lll
Kqkq
Po = vo/c

200 G/cm
5
1.10 kA
3cm

0.614 cm- 1

0.256 em- 1

0.024 cm- 2

0.9793

For helical quadrupole wavelength, Aq = 12.57 em

Wave number, kq 0.5 em- 1

K 0.048 cm- 1

K:rit 2 (Bo = 1.32 kG) 0.154 em - 1

K crit ' 3 (Bo = 2.95 kG) 0.346 em - 1

Kcrit:4 (Bo = 3.52 kG) 0.413 em- 1

4.1 Numerical results from full dispersion relation

The dispersion diagram with current I b = 1 kA for the five different regimes are
shown in Figure 4:

a) Bo = -1.0 kG (Ko == -0.12 em -1) and kq = 0.5 em -1 in the three-wave un­
stable region I,

b) Bo = 2.15 kG (Ko = 0.26 cm -1) and kq = 0.5 em -1 in the orbit-unstable regime,

c) Bo = 3.5 kG (Ko = 0.42 em - 1) and kq = 0.5 em - 1 in the three-wave unstable
region II,

d) Bo = 5.0 kG (Ko = 0.60 cm -1) and kq = 0.5 em - 1 in the three-wave stable
regime,

e) Bo = -5.0 kG (Ko = -0.60cm- 1
) and kq = 0.1 cm- 1 in the three-wave stable

regime.

The intersections where electromagnetic instability occurs are circled in Figures 4a
and 4c. In Figure 4b, the center beam line is unstable along its entire length.

Plots of the temporal growth rate as a function of wave number k are given in
Figures 5-7 for each of the different regimes with current I b = 1 kA. Figure 5 shows
the temporal growth rates in region I, for Bo = -1.0 kG (Ko = - 0.12 em -1), Bo = 0,
Bo = 1.0 kG (Ko = 0.12 cm- 1

), and Bo = 1.3 kG (Ko = 0.156 em-I). Only the growth
rates associated with Re(w) > 0 are plotted; these are associated with RHCP waves.
The growth rates associated with Re(w) < 0 are identical and the wavenumber
associated with the instability is at - (k + kq). The growth rate and the range of
unstable values of k increase as K o approaches the orbit unstable value of Kcrit ,2 =
0.154 cm- 1

.

Figure 6 shows temporal growth rates in the three-wave unstable region II, for
Bo = 2.95 kG (Ko = 0.35 cm -1), Bo = 3.0 kG (Ko = 0.36 cm - 1), Bo = 3.25 kG
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(Ko = 0.39 cm- 1
) and Eo = 3.5 kG (Ko = 0.41 cm- 1

). For some values of Eo, the
RHCP wave intersects the beam line two times as indicated by temporal growth
rates at two separate regions of wave number k for a given axial magnetic field. The
growth rate and the range of unstable values of k increases as K o approaches K crit,3'

The stability boundaries predict that the three-wave instability is present for K crit ,3 =
0.35 cm -1 < K o < K crit ,4 = 0.41 em -1 (2.95 kG < Eo < 3.5 kG). Numerical results
for I b = 1 kA are in excellent agreement with the theory.

Figure 7 plots the temporal growth rate versus k in the orbit-unstable region for
Eo = 2.15 kG (Ko = 0.26 cm- 1

). The region of instability covers both positive and
negative values of wave number k, even at regions where the beam lines are far from
the waveguide mode. Thus, the unstable growth rate is the result of unstable beam
orbits in the stellarator and guide fields, irrespective of the electromagnetic waves.

As the beam current increases, the numerically determined stability regimes deviate
from the analytic stability boundaries derived with I b = O. Figures 8-10 are plots of
temporal growth rate as a function of wave number k for I b = 10 kA. Figure 8 plots
the temporal growth rates in region I, for Eo = -1.0 kG (Ko = -0.12 cm -1), Eo = 0,
Eo = 1.0 kG (Ko = 0.12 em-i), and Bo = 1.3 kG (Ko = 0.156 em-I).

Figure 9 plots temporal growth rates versus k in the three-wave unstable region
II, for Eo = 3.0 kG (Ko = 0.36 em - 1), Bo = 3.25 kG (Ko = 0.39 cm - I), Bo = 3.5 kG
(Ko = 0.41 cm- 1

) and Bo = 3.85 kG (Ko = 0.45 em-I). The range of Bo for the
three-wave unstable region II at zero beam current is 2.95 kG < Eo < 3.5 kG. For
current of I b = 10 kA, the dispersion relation shows that the three-wave unstable
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regime extends beyond Bo = 3.5 kG to Bo = 3.85 kG, where the analytic (Ib = 0)
expressions predict stability.

Figure 10 plots the temporal growth rate versus k in the orbit-unstable region for
Bo = 2.15 kG (Ko = 0.26 cm -1). Here the region of instability covers essentially all
values of wave number k. Note that the dispersion relation predicts orbit instability,
i.e., finite growth rate at k = 0, for Bo = 2.95-3.25 kG, outside of the unstable values
1.32 kG < Bo < 2.95 kG predicted by the analytic stability conditions.

A summary of peak temporal growth rates as a function of normalized guide field
K o for Ib = 10 kA is shown in Figure 11 for Yo = 5, Yo = 7.5 and Yo = 10. The group
of curves on the left belong to unstable region I and the group of curves on the right
belong to unstable region II. The gap separating the two groups of curves corresponds
to the orbit-unstable region. Plots of the group velocity as a function of K o are shown
in Figure 12. Those values plotted are associated with the growth rates of Figure 11.
The group velocity approaches the beam velocity in three-wave unstable region II.

In all calculations, the effect of induced fields due to image charges and image
currents (see Eqs. lOa-b) on the growth rates is small. For current of 1 kA, the
induced fields changed the growth rate by 1-2%. For 10 kA, the induced fields
changed the growth rate by about 50/0.
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We also examine the effect of the waveguide radius rg on the three-wave instability.
As the guide radius is increased, the waveguide cut-off frequency flll c decreases. For
the three-wave unstable region I, the intersection of the waveguide mode and one of
the beam lines in Eq. (28) can occur for negative values of wave number k. When
this occurs, the phase velocity is negative and group velocity is positive but reduced
in value. Figure 13 plots the temporal growth rate and the group velocity as a
function of K o for rg = 5 cm and I b = 10 kA, while keeping all the other parameters
the same as in Table I.

4.2 Comparison of analytic and numerical results

The analytical expressions for the temporal growth rates for the two regions of the
three-wave instability are given in Eqs. (47) and (49). Figure 14 is a comparison of
the maximum temporal growth rate as a function of the normalized guide field K o
for the values obtained from the numerically solved full dispersion relation (solid
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curves) and from the analytical expressions (dashed curves) for current I b = 1 kAt
The agreement between the analytical and numerical results of the temporal growth
rates is good as long as Aw2/c > ric; see Eqs. (44)-(49). On the dispersion diagram,
2Aw2/c is the difference in frequencyIc of the beam lines (28) that could go unstable.
To illustrate the case Aw2/c > ric, we take K o = -0.36 cm- 1 (Bo = -3 kG). The
numerical result of the temporal growth rate is ric = 4.3 x 10- 3 cm- 1, which is
much smaller than AW2/c = 0.25. The analytical result for the temporal growth rate
is also ric = 4.3 x 10- 3 cm- t

. As Aw2/c decreases and ric increases, the analytical
expressions for the growth rate becomes less accurate. At K o = 0.12 cm -1 (Bo = 1
kG), Aw2/c = 8.2 x 10- 2

, which is comparable to ric. The analytical expression for
the growth rate, ric = 2.50 x 10- 2 cm- 1

, is 8% larger than the numerical result of
ric = 2.30 x 10- 2 cm- 1

.

5. CONCLUSIONS

The addition of stellarator windings to an axial guide field was proposed as a method
of transporting a high current beam in a curved geometry with a high tolerance to
energy mismatch. 1 The stability properties of such configurations have been clarified
in the present study, which included the beam centroid motion, the electromagnetic
waveguide modes, expressed in terms ofright-hand circularly polarized (RHCP) and
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left-hand circularly polarized (LHCP) waves, and the induced image forces on the
conducting boundaries, in addition to the external magnetic fields.

We find five operating regimes: i) two physically distinct three-wave unstable
regimes, ii) an orbit-unstable regime, in which the beam centroid is unstable
independent of the electromagnetic waveguide modes and iii) two stable regimes. We
have obtained analytical expressions for the boundaries of the various stability
regimes in parameter space and have presented algebraic expressions for the growth
rates in each of the two three-wave unstable regimes. These analytical results are
valid in the limit of low beam current, when the RHCP and LHCP waves decouple,
and are in good agreement with those obtained via numerical solutions of the full
dispersion relation.

The three-wave interaction can be unstable when the RHCP and LHCP waveguide
modes are not simultaneously excited as given in Eq. (45). The uncoupled dispersion
relation has been shown to produce results that are in close agreement with those
of the full dispersion relation. The simplified dispersion relation is not valid, however,
when the coupling between the RHCP and LHCP waves is strong, as in the orbit
unstable regime. In three-wave unstable region II, the coupling is strong only at high
current. The growth rates in this regime, for example, from the full (coupled)
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dispersion relation are about 20-30% larger than from the uncoupled dispersion
relation for kw = 0.5 cm - 1 and I = 10 kA. In three-wave unstable region I the growth
rate associated with coupled RHCP and LHCP waves is essentially the same as the
growth rate associated with RHCP or LHCP waves. The coupling of the RHCP and
LHCP waves can be detected by the wavenumbers associated with the instability.
The instability occurs at k and - (k + kq) for coupled dispersion relation; while the
instability occurs at k when only the RHCP wave is unstable and at -k when only
the LHCP wave is unstable.

These results suggest that the three-wave instability can be avoided by appropria­
tely choosing the various parameters. Results show that as the beam energy increases,
the stability conditions become more restrictive. In such cases, it may be necessary
to decrease the quadrupole gradient, Bqkq, quadrupole wave number kq and/or
increase the value of the guide field Bo in order to remain in the stable regime.
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