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The program Cyclops, like the Equilibrium Orbit Code before it, calculates with optimum efficiency all the
important properties of the closed orbits and of the linear radial and vertical oscillations about these orbits.
Such orbits include both normal equilibrium orbits and those displaced by field perturbations, as well as
unstable fixed-point orbits associated with certain nonlinear resonances. Given the median-plane magnetic
field in polar coordinates, the program uses direct numerical integration of the canonical equations of
motion (together with special iteration and extrapolation procedures for obtaining the correct initial
conditions) to calculate these orbit properties as a function of the ion energy over the range available in the
given field. At each energy, the output provides values of the focusing frequencies, eigenellipse parameters,
and form factors for the linear oscillations, as well as data on the frequency error and phase slip. A reasonably
detailed discussion is presented of the theoretical basis for these calculations, along with some applicatons of
the results to the design and analysis of sector-focused cyclotrons.

1. INTRODUCTION

Ever since its early development at Oak Ridge,l the Equilibrium Orbit Code has been
one of the most-useful computer programs available to those engaged in the design and
analysis of sector-focused cyclotrons. Given the median-plane field B(r, 8) in polar
coordinates, this program computes at each energy all the important properties of the
equilibrium orbit (EO) and of the linear radial and vertical oscillations about this orbit.
These include, of course, the orbit period "[ and the focusing frequencies Vr and Vz .

The EO Code is based on direct numerical integration of the canonical equations of
motion, and the key element of this program is the efficient iteration scheme by which it
determines the EO coordinates rand Pr as a function of 8. Such a scheme is practically
essential, since for sector-focused cyclotrons with isochronous fields, the shape of the
EO generally changes with energy and the q/m of the ion, as well as the magnet
excitation.

As was discovered somewhat later, the EO Code can also be used to calculate any
other closed orbit in the median plane of the given field. 2 Such orbits include, for

t Work supported by the National Science Foundation under Grant No. Phy 78-22696.
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example, the unstable fixed-point orbits associated with Vr = N /3 or N /4 nonlinear
resonance. In such cases, the program produces data showing the variation of the
stability limits with energy, and thereby assists in the construction of radial phase­
space diagrams. Recent examples of these applications are shown in Figs. 1 and 2.

Moreover, when imperfections are added to the median-plane field, the same
iteration scheme enables the program to locate the displaced EO's or other fixed-point
orbits. At the same time, the program provides values of Vr and Vz for the displaced
orbits, and this information helps in evaluating possible resonance effects produced by
the given field imperfections. See, for example, Fig. 2.

One should, of course, keep in mind that the results of analytical treatments of most
(but not all) of these phenomena have long been available through the work of Smith
and Garren, 3 Parzen,4 and especially Hagedoorn and Verster. 5 These analytical results
are most useful in revealing how various orbit properties depend on specific parameters
of the magnetic field. However, when highly accurate results are required on a routine
basis, then the EO Code becomes practically indispensible.

The first Fortran version of this program was completed in 1964 and named
Cyclops, short for Cyclotron Closed Orbit Program.6 Not long thereafter, a modified
version was developed by loho 7 in connection with the design of the large SIN
Cyclotron. Later, the original Cyclops program was transferred to Vancouver, where it
was adapted by Mackenzie, Kost, and coworkers for design work on the large
TRIUMF cyclotron. 8 In particular, this group developed an extended version of
Cyclops in order to generate the data required for a transfer-matrix program
("COMA") which very efficiently calculates large groups of accelerated orbits as­
suming linear, but non-adiabatic conditions.9 More recently, the TRIUMF group
has employed Cyclops in their design work on high-energy cyclotrons for possible use
as "kaon factories." 10

The main reason for writing this report now is that we are planning a new version of
the Cyclops program that will incorporate all the improvements suggested by twenty
years of experience here and elsewhere. Our aim, therefore, is to present a reasonably
complete discussion of the theoretical basis for this program in order to make its
construction and operation sufficiently clear to those who might be interested in using
or writing such a program. Moreover, much of the material presented here is not
generally available elsewhere.

The Cyclops program differs from the original EO Code mainly in the amount of
information it provides on the linear oscillations. That is, the EO Code gives only the
values of Vr and vz ' while Cyclops provides, in addition, such quantities as rt(8) and ~(8),

the well-known parameters characterizing the periodic transfer matrix. 11 As in
synchrotron applications, these parameters can be used to find the eigenellipse
properties as well as the width functions and form factors for the radial and vertical
oscillations.

However, the definition and interpretation of (1(8) and ~(8) are somewhat different
from those usually found in synchrotron work. This difference results mainly from
our formulation of the equations of motion, and because of this difference, we present
here a somewhat more detailed discussion of the theory than would otherwise be
necessary.

We should note, in particular, that because we use canonical variables, the resultant
width functions automatically contain the adiabatic damping. That is, our ~ varies as
R/p, and this form seems much more appropriate for isochronous cyclotrons where R
and p increase rapidly with energy, but the ratio Rip does not.
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FIGURE 1 Variation of radial stability limits with energy resulting from the Vr = 3/3 nonlinear
resonance in the NSCL K500 superconducting cyclotron. The magnetic field used for these calculations (and
those depicted in the remaining figures) was specifically tailored for C4 + ions with a final energy of
30 MeV/A. At each energy, the (x, Px) values for the three unstable fixed-point orbits are plotted here and
then joined by straight lines to form the "stability triangle." These triangles are shown from 4 MeV/A out to
26 MeV/ A in steps of 2 MeV/ A, and as can be seen, the stable area expands out to about 18 MeV/A and then
shrinks. These triangles actually start at 0.8 MeV/A and terminate at 28.8 MeV/A, where Vr crosses Vr = 1,
as shown in Fig. 4. Note that the points are plotted here not at the same evalue, but rather along the spiral
curve e = 30° - (4.4 deg/in.)r, which corresponds to the linear spiral of the magnet sectors, and because of
this plotting convention, the otherwise rapid rotation of the triangles with increasing radius is nearly
eliminated here. We use inch units for Px as well as x (as discussed near the end of Section 2) and in these units,
accelerated orbits representing an actual beam usually have (x, Px) points lying within a circle of radius 0.1 in.
centered on the origin (EO). Note also that (x, pJ specifies the deviation of (r, Pr) from the corresponding EO
value at the same energy.
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FIGURE 2 Two radial phase-space diagrams characterizing the behavior of a variety of stable and
unstable orbits, all at 28 MeV/ A. Each orbit is represented by a sequence of (x, Px) points (shown as crosses)
which are plotted once per turn along the same spiral curve used for Fig. 1. The data for the upper diagram
were obtained with the perfect N = 3 field, for which Vr = 1.0214 and Vz = 0.4457 at this energy. The lower
diagram was derived from the actual field and shows the changes produced by the presence of small N' = 1
and 2 components. In this case, Vr = 1.0211 and Vz = 0.4462 for the displaced EO. The three unstable fixed
points are shown as solid circles and all have complex V z as well as complex Vr values. For example, the fixed
point closest to the EO in the lower diagram has Vr = 1.0 + i(0.0367) and Vz = 0.5 + i(0.0330). These values
indicate the quantitative effects of both the Vr = 3/3 and Vr = 2vz nonlinear resonances which are evidently
nearby.
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The input parameters for Cyclops are generally the same as those for the isochronous­
field program described in a previous paper. 12 In addition to the mass m and charge q
of the ion, we now require a map of the median-plane field B(r, e) on a polar mesh
having constant values of 8r and 8e, the radial and angular spacings. If the field has N
sectors and no imperfections, then the map need only cover one sector, L\e = 21t/N,
and the spacing 8e (which also defines the smallest integration step) must be an integral
submultiple of this angle, i.e., 8e = 21t/nN. On the other hand, if the field contains
imperfections, then a complete map with L\e = 21t is usually required. Given the field
map, the program then uses interpolation formulas to obtain the necessary values of B
and its derivatives, aB/ar and aB/ae at any given point.

The frequency Vo = vrf/h is also part of the input, where Vrf is the nominal rf
frequency and h its harmonic number. Using ffio = 21tvo, we define an associated
length unit a and field unit b as

b = mmo/q. (1)

However, use of the constants a and b is not at all mandatory.
Although the units chosen for length (inch or cm), energy (MeV), and magnetic field

(kG) are quite obvious, the choice of momentum unit is not. This decision is required
because all our programs use the momenta Pr and pz as variables rather than the
quantities Pr/P and pz/p commonly used for synchrotrons. Using Pr and pz has the
advantage of making the consequences of Liouville's theorem and adiabatic invariance
immediately apparent.

To be more specific, we assume that

momentum unit = me/a', (2)

where a' is some given constant independent of the energy. Thus, P = y(v/e)a' in this
unit, or,

[
E ( E )J1/2

P = a' me 2 2 + me 2 '
(3)

where y = 1 + E/mc 2
, and E is the kinetic energy of the ion. For example, if a' = 103

(a choice preferred by Joho 7), then Pr and pz as well as P are effectively in nlillirad. If in
addition, the length unit is mm, then the phase-space area (e.g., Jdpz dz) corresponds
directly to the so-called normalized emittance, i.e., y(v/ e) x (ordinary emittance).

In all the orbit programs currently in use at this laboratory, we take a' = a so that all
momenta have length units. Since v = Rmo for an isochronous field, then P = yR in
our units, which is often convenient. For example, in the nonrelativistic domain where
Vr ~ Y ~ 1, then pvr / R ~ 1 in our units, so that any orbit executing linear radial
oscillations about the EO will be characterized by a nearly circular phase-space figure
when values of Px are plotted vs. x for this orbit. (See Figs. 1 and 2.) Moreover, the
vector (x, Px) in these units indicates directly both the magnitude and direction of the
orbit-center displacement from the machine center. However, these advantages
become less apparent for cyclotrons which are more relativistic.
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For each energy E, the program must first search for and locate the closed orbit by
finding a solution of the equations of motion for which rand Pr satisfy the periodicity
condition

r(8 80 ) = r(8), (4)

The closed orbit most frequently sought is the normal EO in a field having N sectors
and no imperfections, and in this case, So = 21t1N i.e., one sector. In those cir­
cumstances when the field being investigated has imperfections, or when some other
closed orbit is being sought, then 80 will be some multiple of 21t1N. For example, when
Vr ~ N 13 and the orbit being sought is an unstable fixed-point orbit associated with the
N 13 resonance, then 80 = 3(21t1N).

The values of rand Pr and generated by integrating the canonical equations of
motion in the given median plane field B(r, 8), namely,

where

dr rpr

d8 Po

: = Po = q'rB(r, 9),

(5a)

(5b)

(5c)

with Pgiven in Eq. (3), and where q' = qa'lmc, with a' defined in Eq. (2). In our special
units, a' = a, and q' = lib, with a and b defined in Eq. (1).

The complete integration interval for these differential equations (and all the others
given below) is ~8 = 80 , and assuming the integration starts at some given angle Si' the
range of 8 values is

(6)

where Sf = 8i + 80 is the final angle. Our problem therefore reduces to finding the pair
of initial values (r i , PrJ at 8 = 8i which lead to the same final values when the
integration is completed, i.e., which satisfy

(7)

in accordance with Eq. (4) above. These all-important initial values can be efficiently
determined by a straightforward iteration process which is an extension of the familiar
Newton method.

We first introduce the differential equations for the linear radial oscillations since the
solution of these equations plays an important role in the iteration process as well as
the final determination of the basic focusing properties. Since Eqs. (5) apply quite
generally to any (non-accelerated) orbit in the median plane, they can be used to obtain
the linear oscillation equations simply by allowing

r ~ r + x, (8)
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and then expanding the equations to first order in x and Px' When this is done, we find

dx Pr rp 2

d8 = - x + -3 Px'
Po Po

dpx Pr ,[ OB]de = - Po Px - q B + ra;: x,

(9a)

(9b)

where rand Pr have the same values at each 8 as those used on the right side of Eqs. (5)
during the integration.

In order to generate the basic transfer matrix, we need two independent solutions of
these equations, and these are denoted as (Xl' PX1) and (X2' PX2). For initial conditions, it
proves most convenient to choose

x l (8J = 1,

x2(8J = 0,
(10)

and in this case, the transfer matrix from 8i to a given 8 is defined by

(11)

so that X(8 i , 8J = I, the unit matrix. Hence, the general solution of (9) can be written in
matrix form as

(x) = X(8, 8J (X).'
Px 0 Px I

(12)

Note that the Wronskian relation (or Liouville's theorem) leads to the value for the
determinant

(13)

its initial value. Also note that because of the choice (10), the elements of X auto­
matically have the correct units.

Each cycle of the iteration process starts with a trial value for the pair (r i , PrJ. These
initial conditions, along with those in Eq. (10), are then used to carry out the integration
of the six differential equations noted above, namely, Eqs. (5) for rand P" the
coordinates of the trial orbit, and two sets of Eqs. (9) for the elements of the matrix
X(8, 8i ) of Eq. (11), which is associated with this trial orbit. All six differential equa­
tions are integrated simultaneously, since this proves most efficient for standard inte­
gration routines.

When the integrations are completed at 8 = 8f , the errors in the trial values of
(r i, Pri) are calculated from

(14)

where 8f = 8i + 80 . If these errors are not both zero, as required by the periodicity
condition, we proceed to calculate improved trial values. To do so, we assume the true
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closed orbit differs from the trial orbit only in first order, and using Eq. (12), we can
therefore write

( rc) = (r) (8 8.) ( 8ri )
Pre 6 Pr 6 + X , , l)Pr; ,

(15a)

so that rc(8J = ri + 8ri, and Prc(8J = Pri + 8Pri· Thus, (rc , Pre) and (r, Pr) are,
respectively, the coordinates of the closed orbit and the trial orbit (already computed),
and 8ri and 8Pri are the corrections being sought.

Applying this equation at 8 = 8i and 8 = 8f , and taking the difference, we then
obtain

which then yields the corrections

8r. = (X22 - 1)£1- X12 £2

l XII + X 22 - 2 '

8 - (XII - 1)£2 - X 21 £1

Pri - X + X - 2 '
11 22

where here ~k = Xjk(8j , 8J. Thus we see that the change

(15b)

(16a)

(16b)

Pri ~ Pri + 8Pri' (17)

will provide improved values for the initial conditions, and these values are then used to
repeat the entire process in the next cycle.

Before proceeding, however, we first calculate the amplitude of the error defined by

(18)

where the factor aja'y2 has been inserted to make the two terms commensurate. This £

is approximately equal to the maximum value of xjR for the oscillation produced by
the error, so that the smallness of £ provides a test of whether the closed orbit has been
located with sufficient accuracy. Hence we test whether

£ < £0 (19)

where £0 is a pre-assigned error limit discussed later. If £ fails the test, the program
proceeds to the next cycle of the iteration process.

This process converges quite rapidly once a threshold value of £ has been reached.
That is, the corrections in Eq. (16) are exact to first order, so that if £ is small, the error in
the improved value will be of order £2. Thus, the sequence of errors on successive
iterations will be of order £, £2, £4, £8, etc.



CYCLOTRON ORBIT COMPUTATION

4. STARTING VALUES

47

The total number of iterations and, hence, the time required for the process to converge
depends entirely on the quality of the starting values for ri and Pri. When the
calculations concern the EO itself, and when no other data are available for guidance,
we generally use the approximate values

ri = (v/c)a, Pri = 0, (20)

which correspond to a nearly isochronous field with COo = c/a. Alternatively, r i could
be obtained by solving the equation P = q'riBo(rJ, where Bo(r) is the average field.
Either choice will usually work, and will actually work very well when the EO is nearly
circular, i.e., when the flutter is small or N is large.

Normally, the program is run at a long sequence of energy values and, in this case, a
considerable saving of time can be achieved by using an extrapolation method for
obtaining succeeding starting values. If ri(E) and Pri(E) are the final "exact" values
found for these quantities, then the extrapolation is based on the scaled variables

~ _ ri(E)
1 - (av/c)'

~ _ Pri(E)"'2 - ,
P

(21)

since these quantities vary more slowly with E, especially near r = o. Thus, when no
other data are given, the program uses Eq. (20) for the first E value, then a one-point
extrapolation formula with the variables ~1 and ~2 for the second E value, and then a
two-point formula with these variables for the third E value. From then on, it uses a
three-point formula with data from the three previous E values.

This extrapolation routine works very well once it reaches the three-point stage.
With this in mind, the program should be designed with a "fast mode" option wherein,
after the first three energy values are completed, it then skips the test Eq. (19) and
proceeds instead to the final integration described in the next section. This fast mode is
most useful when a large number of runs are required, as in the calculation of
isochronous fields and trim coil currents. 12 In such cases, it is often worth trading some
accuracy for increased speed. Moreover, the accuracy can always be monitored since
the program prints out the value of log E using the very last value of E.

Although the foregoing procedure is designed primarily for normal EO calculations,
it will also work quite well when calculating the properties of displaced EO's resulting
from field imperfections. A slight modification is required, however, when investigat­
ing other closed orbits such as, e.g., the unstable fixed-point orbits associated with
nonlinear resonances.

This modification simply involves replacing Eq. (20) by specific starting values for ri
and Pri at the first energy. These values can be obtained, e.g., by constructing (with the
aid of a straightforward orbit-computation program) phase-space plots of Pr vs r at the
given E, and then examining these plots visually to determine an approximate value for
the pair ri and Pri. If Cyclops uses these input data successfully to locate the desired
fixed-point orbit at the first E value, then, by using the extrapolation technique
described above, it will generally have no difficulty in finding these orbits at the
succeeding E values.

As often happens, there may be more than one closed orbit with the given periodicity
80 , and in such cases, the program will usually select the one with (r i , PrJ closest to the
given (or computed) starting values. Thus, when tracking a particular fixed-point orbit
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at a sequence of energies, one sometimes finds on reaching a certain E value, that the
program locates the EO instead. This occurrence usually indicates that the fixed-point
orbit and the EO have merged, or are about to merge. Such is the case, for example,
when Vr passes through N/3.

5. FINAL INTEGRATION

The iteration process described above for determining (r i , PrJ has a well-defined
convergence rate, and as a result, the test (19) on £ can be established so that the
"correct" values of ri and Pri can be inferred quite well without requiring an additional
iteration cycle for confirmation. For example, if it is desired that the closed orbit be
determined with an accuracy such that the test (19) is satisfied for £0 == 10- 8

, say, then
this test should actually be made with £0 == 10- 4 since, as we have seen, the improved
(r i , PrJ derived from Eq. (16) will then be in error by only the square of this quantity.
The program will still make another integration of the differential equations so that the
final value of £ can be checked, but before this integration is performed, certain changes
need to be made.

On the final integration, the program calculates all the data required to determine
completely the properties of the closed orbit and of the linear radial and vertical
oscillations. The two differential Eqs. (5) are integrated with the now "correct" (r i , PrJ
so that the resulting r(8) and Pr(8) give the coordinates of the actual closed orbit. Two
sets of the differential Eqs. (9) are also integrated as before with initial conditions (10) so
as to generate the transfer matrix X in Eq. (11). But since the rand Pr are now the correct
closed-orbit coordinates, the resultant X will accurately characterize the linear radial
oscillations about this orbit. To these six differential equations, which are the same as
those used in the iteration process, we now add at least six more, all of which are
integrated simultaneously to optimize efficiency.

When expressed in canonical form, the equations for the linear vertical oscillations
become

dz r
d8 == - Pz'

Po

dpz _ ,[ aB Pr aBJ
de - q r a;: - Po a8 z,

(22a)

(22b)

where r, Pn and Po have the same values as those used in Eqs. (5) and (9). Here again, two
solutions of these equations are required in order to generate the basic transfer matrix,
and by analogy to Eq. (10), these are denoted as (Z1' Pz1) and (Z2' Pz2), and have the
initial conditions

zl(8J == 1,

z2(8 i ) == 0,
(23)

so that the transfer matrix Z(8, 8J for the vertical oscillations is given by

(24)
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(25)

by analogy to Eq. (11). This Z(8, 8J provides complete information about the linear
vertical oscillations, just as X (8, 8;) does for the radial oscillations.

In addition to the ten listed above, we need two or more differential equations to
provide necessary information about the time coordinate and the geometry of the
closed orbit. The differential equation for the time t (which is also canonical) is written
as

d () ,r
d8 root = my Po'

wherey = 1 + Ejmc 2
, as usual, and m' = a'jain the units of Eq. (2). This equation is

integrated with the initial condition t = 0 at 8 = 8i , and we therefore have at
8f = 8i + 80'

(26)

where ro = 21t/,t, and 1 is the orbit period (for the EO, at least). This result provides the
frequency error Q defined by

roo
Q(E) = - - 1,

(0
(27)

and" this function plays an important role in the phase-energy relation discussed in
Section 10 below.

Another differential equation is usually included in order to determine the average
radius Ro defined by

Ro = :0 fr(e) de, (28)

where the integration extends from 8i to 8i + 80 • Although this Ro is part of our
standard output, others prefer instead the average radius based on the arc length

R
V1 (00 V

= - = --a
21t ro c '

which can be obtained directly from Eq. (26). Note that R ~ Ro.

(29)

Since it requires very little extra effort, the program should be equipped to generate
the data needed to calculate the changes in t resulting from a linear displacement (x, Px)
from the closed orbit, particularly the EO. The necessary differential equation can be
obtained simply by expanding Eq. (25).

First we define a time-displacement variable Xsuch that if

then

r ~ r + x, and (30a)

root ~ (Oot + x. (30b)
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Next we expand Eq. (25) to first order and thereby obtain

dX '[x rpr J
d8 = m y Po + Po 3 Px , (31)

which is the differential equation being sought.
Here again two solutions are required in general, and we denote them as Xj with

j = 1or 2, corresponding to the two basic solutions (Xj' Pxj) in Eq. (10) which are being
generated simultaneously during the final integration. For initial conditions, we take
Xj = 0 at 8 = 8i •

An important application of the functions Xj(8) is in the construction of a transfer­
matrix program that includes acceleration effects through the use of delta-function
gaps. That is, given x, Px' and Xat 8 i for some displaced orbit, then the value of Xat any
other 8 is

(32)

while the value of x and px at 8 are still given by Eq. (12) in terms of the matrix X(8, 8i).

The TRIUMF program "COMA" mentioned before uses such a formalism. 9

It should be noted here that since we are considering only linear motion, the
dependence of ton z and pz can be neglected. It should also be noted that an alternative
method is available for treating the dependence of t on x and px without the use of Xj.13

6. CALCULATION OF vr AND Vz

The program can provide either a short (standard) output or a long output, which differ
mainly in the amount of information given on the linear oscillations. In the short
output, only the values of Vr and Vz are printed out.

Since there is a complete analogy between the equations for the radial oscillations
and those for the vertical oscillations, we simplify the discussion by letting y stand for
either x or z. Thus, e.g., the matrix V stands for X or Z, while vy stands for either V r or Vz .

At the end of the fina) integration, the elements of Y(8f , HJ are all known, and since
8f = 8 i + 80 , we recognize that V (8f' 8J is the transfer matrix for one complete period
starting at 8i • Hence, in accordance with Floquet's theorem, the eigenvalues of this
matrix are

where

and

A = exp( ± icr), (33a)

(33b)

(33c)

Thus, if Icos crl ~ 1, then cr is real and the motion is stable, but if Icos crl > 1, then cr is
complex and the motion is generally unstable.



CYCLOTRON ORBIT COMPUTATION 51

In keeping with general practice, we write the matrix Y(8f , 8i ) in the standard form

Y(8f ,8J = I cos cr + J(8Jsin cr,

where I is again the unit matrix, and

(34a)

~i )
-r:li '

(34b)

which defines the parameters r:lb ~i' and Yi. These quantities are then related to the
known matrix elements by

(35a)

(35b)

(35c)

and since, moreover, "Y II = 1 from Eq. (13), we also have

(35d)

which serves to determine Yi from r:l i and ~i. Thus, the elements of Y(8f' 8J are reduced
to the three independent parameters r:l i , ~i' and cr.

When cr is real, we again follow convention by assuming ~i > 0, and we therefore
find from Eq. (35b) that the sign of sin cr matches that of Y12(8f ,8J. As a result,
Eqs. (33) and (35) determine sin cr as well as cos a, and the value of a = vy 80 can
therefore be calculated modulo 2n:.

Assuming 0 ~ vy 80 < 2n:, the EO Code uses this procedure to calculate the values of
Vr and Vz when these quantities are real. On the other hand, when Icos 0'1 > 1, so that
the motion is unstable, the program uses Icos 0'1 to find the imaginary part of Vr or vz '

which is then printed out with a special indicator.
For the normal EO, the values of Vr and Vz always lie below the N /2 stop-band, so

that as long as 80 = 2n:/N, only a values below n: will occur. Moreover, complex values
are encountered only when Vz

2 drops below zero, as sometimes occurs when the
relativistic defocusing predominates over the sector focusing. In these cases, the
foregoing procedure yields the correct values of Vr and Vzo

However, this is generally not true when the closed orbit is a displaced EO or an
unstable fixed point. Consider, e.g., the data shown in Fig. 2 which results from an
N = 3 magnet geometry with small N' = 1 and 2 imperfections. Because of these
perturbations, the calculations must be carried out with 80 = 2n: rather than 2n:/3, and
in this case, the program prints out vr' = 0.0211 instead of the correct value
Vr = 1.0211 which can be inferred from the value (vr = 1.0214) obtained when the
imperfections are absent.

Clearly, additional information is needed in such cases to remove the uncertainty. To
obtain this information, we assume that in general

cr = nn: + a', (36)
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where n is an integer, and where 0 ~ (J' ~ n if (J is real, while (J' is pure imaginary
when (J is complex. To determine n, we first recognize that from Eqs. (10) and (23),
Y2 = 0 at e = ei' while from Eq. (35b), Y2 = ~i sin (J at e = ef with ~i > O. Hence a
count is taken of the number of times Y2 (e) changes sign within the range of
integration, ei ~ e ~ ef' but excluding the starting point.

If the result of this count is n', then we set n = n' provided (J is real. In this case,
since

cos (J = (-I)n cos (J', (36a)

from Eq. (36), and since 0 ~ (J' ~ n, the value of (J' and hence (J is uniquely
determined. Cyclops uses this method (instead of the one described above) to find Vr or
vz , and the resultant values should be correct in all cases (including the one cited above)
provided only that the values are real.

However, if (J and hence vy are complex, we can have n == n' or n' + 1, and to
remove this ambiguity, we use the fact that ( -1)n must match the sign of cos (J in this
case. That is, since (J == nn + iI(J'I here, then

cos (J == (-I)n coshl(J'I. (36b)

When combined with the value found for n', this cos (J value determines both n and I(J'I,
and hence the real and imaginary parts of vy = (J/eo. The program prints out the
imaginary part in the column reserved for Vr or vz ' along with a special indicator as
noted above. Directly after this number, it then prints (for brevity) the value of n, but
this is sufficient to determine Re(vy ) == nn/eo, which must, of course, be a half integer.
For simplicity, the integer n is always printed out following the value of Vr or vz ' which is
somewhat redundant when the frequency is real.

Finally, we note that when (J is real, the values of (1h ~i' and Yi can be calculated from
Eq. (35), and these quantities are needed later.

7. CALCULATION OF (1(8) AND ~(8)

As noted before, the program can be used to obtain much more detailed information
about the linear oscillations than is contained in the values of Vr and Vz • That is, when (J
is real and the motion is stable, and only in this case, the program will also provide
values of (1(e) and ~(8) as part of the long output.

If the phase-space vector (y, py ) is represented by the column matrix Q, then by
extension of Eq. (12), we have

(37)

lNhere V (8, 8J is the transfer matrix from 8i to 8. Because of the periodicity of the
magnet geometry, there is no physical distinction between the angles labeled 8 and
e + 80 , That is, for given y and Py, the Hamiltonian is periodic in 8 with period
1\e= 80 ,

As a consequence of this periodicity, we have the relation

(38a)
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(38b)

where here again 8f = 8i + 80 . This simply proves that a knowledge of V (8, 8J for one
period, 8i ~ 8 ~ 8f , is sufficient to provide complete information about the general
solution for all 8 values.

The periodic transfer matrix M(8) can be defined as the operator that shifts Q(8) by
one period, that is,

Q(8 + 80 ) = M(8)Q(8),

and hence, from the previous equations, we have

It therefore follows that

and

M(8 + 80 ) = M(8),

(39)

(40)

(41a)

(41b)

so that M (8) is periodic.
Equations (40) and (41) also show that M (8) is derived from M (8J by a similarity

transformation, and it therefore follows that the determinant, the trace, and the
eigenvalues of M(8) are all independent of 8. From the corresponding properties of
Y(8f , 8J given in Eq. (33), we have

II M(8) II = 1,

MIl (8) + M 22 (8) = 2 cos a,

and in addition, the eigenvalues of M(8) are

A = exp( ± ia ).

(42a)

(42b)

(42c)

These properties allow us to represent M(8) in the standard form, as in Eq. (34), that
is,

where

M(8) = I cos a + J(8) sin a,

J (8) = (CX(8) ~(8))
- y(8) - cx(8)

(43a)

(43b)
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B(8)y(8) - Ct 2 (8) = 1, (43c)

so that y(8) can be determined from Ct(8) and B(8). Since M(8) is periodic, so also are
these functions. Moreover, for 8 = ei' we have

(44)

where Cti, Bi' and Yi are the same as those in Eq. (35).
In addition, Eqs. (40) and (43) lead to

J(e) = Y(8, 8JJ(8Jy-l(8, 8J,

and after performing the multiplications, we finally obtain

(45)

where here, l]k = l]k(8, ei )· These equations, together with the values of l]k{e, 8J
obtained during the final integration, are the ones used by Cyclops to evaluate Ct(8) and
B(e). ,Actually, instead of B(e), the program prints out the so-called width function,
w(e) = [B(e)]1/2, which is clarified in Section 9 below.

8. EIGENVECTORS

To understand the significance of Ct(8) and B(8), we consider next the eigenvectors Q +

and Q _ of the operator M(e) corresponding to the eigenvalues A = exp{ ± ia),
respectively. The matrix equation for Q + is therefore

(47)

and since we are concerned only with real a values, then Q _ = Q + *, the complex
conjugate.

Repeated operation on the above equation with M(8) leads to the result

where n is an arbitrary integer; as a result, Q + must have the Floquet form

Q+(8) = U(8)exp{ivy 8),

with

where u(8) and v(8) are complex periodic functions having period eo.

(48)

(49a)

(49b)
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Inserting this result together with M(8) from (43) into Eq. (47), and assuming
sin cr =1= 0, we finally obtain

(50)

which determines v(8) from u(8) when Cl(8) and B(8) are given. This result, together with
the Wronskian condition on Q + and Q _ then yields

u*(9)v(9) - u(9)v*(9) = 2i lu~~r = 2iCo, (51)

where the normalization constant Co is positive and real.
For simplicity, Co should be chosen independent of the energy, and it proves most

convenient to take Co = 1. For this choice, we then find

and

lu(8)1 2 = B(8), Iv(8)1 2 = y(8), (52a)

u*(8)v(8) = i - Cl(8). (52b)

Thus, u(8) and v(8) are completely determined except for a phase factor and to define
this factor, we set

so that

u(8) = [B(8)]1/2 exp(i8(8)),

v(8) = [i - Cl(8)] [~(8)] - (1/2) exp(i8(8)),

(53a)

(53b)

where 8(8) is as yet undetermined. Therefore, a complete description of the linear
oscillations requires three real periodic functions, Cl(8), ~(8), and 8(8), together with the
constant vy •

We should also note that the eigenvectors can be written in terms of the basic transfer
matrix V (8, 8J as

(54)

which leads to expressions for u(8) and v(8) in terms of their values at 8i • These
expressions then yield the same equations for Cl(8) and ~(8) as those in Eqs. (46), but in
addition, we find the equation for evaluating 8(8)

(55)

where 8i = 8(8J is arbitrary. Although Cyclops does not make use of this equation at
present, it could readily be modified to do so if the need to calculate 8(8) should arise.
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Since the eigenvectors Q+ and Q+*are independent, they can also be used as a basis for
representing the general solution; that is, we can write

or, in terms of the components given in Eq. (49),

1
y(8) = "2 Au(8) exp(ivy8) + C.c.,

(56)

(56a)

(56b)

where A is some constant (complex) amplitude, and c.c. = complex conjugate.
Moreover, A can be expressed in terms of the usual angle and action variables, Wo and
J, by setting

A = (2J)1/2 exp(i\fJo),

and if we then use Eqs. (53), we obtain

y(8) = [2J~(8)] 1/2 cos W,

py(8) = - [2J/~(8)]1/2 (sin 'J1 + Cl(8) cos W),

where

(57)

(58a)

(58b)

(58c)

Thus, the general solution can be written explicitly in terms of Cl(8), B(8), vy 8 + 8(8),
and two real constants, Wo and J.

If W is eliminated from the above expressions, we obtain the equation for the
eigenellipse

(59)

with y(8) given by Eq. (43c). Thus, if we plot Px vs x or pz vs z once per sector for the
orbit of any ion executing linear oscillations about the EO, we find that successive
points fall on such an ellipse with an interval ~W = a = vy8o. Evidently, the shape of
the eigenellipse is determined by the periodic functions Cl(8) and ~(8).

The transformation (y, py ) ---+ (Wo, J) has a Jacobian determinant equal to unity, so
that the area element is preserved, i.e., dy dpy = dJ dWo, as befits a canonical
transformation. It follows in particular that the area of the above eigenelipse is 2rtJ, so
that its eccentricity and orientation may change with 8, but not its area (in agreement
with Liouville's theorem).

As shown by Eq. (58a), the maximum value of y(8) is

(60)
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Consider now a beam of ions all at the same energy E, and suppose that their (y, py)
phase-space points at the given 8 completely fill the eigenellipse (59); that is, the jth
particle has e!.i :::; J, so that the emittance of this beam is 2rcJ /p. It then follows that
the radial or vertical width of this beam is given by

~y = 2[2J~(8, E)Jl/2, (61)

and since J is constant, this relation determines the width as a function of 8. As a result,
we call w(8, E) = [~(8, E)J 1/2 the width function, while ~ itself is usually referred to as
the amplitude function. 11 As an example, Fig. 3 shows plots of the radial and vertical
width functions derived from the long output of Cyclops for the same cyclotron
configuration as that used in obtaining Figs. 1 and 2.

N ow it also happens that the action J is an adiabatic invariant, so that if the above
beam is accelerated slowly, the relation (61) will specify the variation of the radial or
vertical beam width as a function of E as well as 8. This important conclusion implies,
for example, that a knowledge of ~(8, E) for the vertical oscillations allows one to
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predict the dependence of the beam height on rand 8, and hence the vertical acceptance
of the cyclotron (but excluding the central region where the electric focusing and
nonadiabatic effects cannot be neglected). This assumes that the size and shape of the
beam emittance from the injector (or ion source plus central region) can be matched to
the acceptance of the cyclotron, but even if this matching is not fully achieved in
practice, the width function will still provide an upper bound for the beam envelope.

We should also note that the values of C'l(8) and ~(8) often prove useful in preparing
certain input/output data for other programs which calculate accelerated orbits. For
example, it is sometimes desirable to start a set of orbits with the same energy E and
with (y, py) points on an eigenellipse of given area. This can be done quite sys­
tematically by calculating y and Py from Eq. (58) above using'" values which are
uniformly spaced. That is, for the jth point, we take

'ilj = 'ilm + j(2n/4n), (62a)

where j = 1, 2, ... , 4n, with n being some integer, and where'" = "'m corresponds to
the major or minor axis of the ellipse. Since the quantity (y2 + Py 2) has its extrema at
these points, we then find

2rl
tan(2Wm) = ~2 2 '+ C'l - 1

(62b)

where 0 ~ 'ilm < n/2, to be specific. The resultant sequence of 4n points will subdivide
each principal quadrant of the ellipse into n equal areas.

As another example, consider the set of accelerated orbits which are computed with
the above initial conditions. If values of C'l(8, E) and ~(8, E) for one 8 value and a broad
range of E values are available, then the values of J and 'iI for each accelerated orbit can
be calculated once per sector as a function of energy using Eqs. (58). The results can
then be examined to see whether, on the average, J = constant and 1\'" = (J, as would
be expected if the motion is linear and adiabatic. On the other hand, if the
computations correspond to the acceleration of this beam through some nonlinear
resonance, for example, then the resultant increase in the J values will indicate the
corresponding growth in the emittance area.

Finally, it should be noted that all the results in this and the preceding two sections
have been derived without actually making use of the specific differential equations for
y and Py. If now the components of Q + (8) given above are substituted into Eqs. (9) for
the x-motion, or Eqs. (22) for the z-motion, one thereby obtains three first-order
differential equations for the functions C'l(8), ~(8), and 8(6). Although we shall omit these
equations here, certain conclusions are worth noting, especially since they differ
somewhat from those customarily found in synchrotron work.!!

First of all, we obtain the equation for vy :

1 fD(8)
vy = eo ~(e) de, (63)

where the integration runs from 8i to ei + 80' and where D(8) has one of the values

for the x-motion, (64a)
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D(8) = riPe, for the z-motion. (64b)

The program should also provide for calculating Vr and vz from this formula in order
to confirm the results in those cases where the values look doubtful.

Equation (63) can also be used to define the average value of P(8), thus

- R
P=-,

pVy

(65)

where R is the average radius. The corresponding average width function is then
W == (~)1/2, which is often used for approximate calculations.

As a further conclusion, we find that ex(8) passes through zero at least twice in the
period 80 , and for the z-motion case, P(8) has its maximum and minimum values at
these points. On the other hand, when ex = 0 for the x-motion, the quantity Plr 2

, rather
than Pitself, has an extremum.

10. PHASE-ENERGY RELATION

As noted in Section 5, the program calculates the orbit period t as a function of the
energy E, and hence the frequency error Q(E) defined by

COo
Q(E) == Vot - 1 = - - 1,

co
(66)

where co = 21t/t, COo == 21tvo , and Vo is part of the input. This Q(E), which is part of the
standard output at each E value, provides essential information for determining how
well the given magnetic field conforms to the requirements of the rf system under
consideration.

For cyclotrons, the phase <p of the ion relative to the rf is so defined that the average
energy gain per turn is given by

dE
dn = qV cos <p, (67a)

where V is the peak voltage gain per turn. For simplicity, we assume here that V is
constant, and in this case, the average phase change per turn becomes

d<p
dn = COrft - 21th = 21thQ(E), (67b)

where COrf = hcoo is the rf angular frequency and h its harmonic number.
The first integral of these equations (or the Hamiltonian) then leads to the well

known phase-energy relation

. rh -) . rh 21th fSIn 'P(E = sIn 'Pi + -- Q(E) dE,
qV

(68)
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FIGURE 4 The upper graph shows sin <P vs E obtained for the same cyclotron field as that used for the
other figures. In addition, it is assumed here that the initial phase <Pi = 30°, the harmonic h = 1, and the peak
energy gain per turn qV = 60 keV/ A, which then leads to a total of about 500 turns. The lower two plots
show the corresponding variations of Vr - 1 (left scale) and Vz (right scale) with energy. The fine structure in
these curves is produced by the discreteness of the 13 trim coils used to tailor the average field, and the
correlation between the resultant oscillations in Vr and Vz should be noted. Moreover, these curves clearly
show that from about 28 MeV/ A to the extraction energy (30 MeV/ A), the ions are accelerated out into the
nonisochronous edge region of the field.

where the integral extends from the initial energy Ei where <P = <Pi to the given energy
E. An examination of the resultant <t> vs E quickly shows whether the ion will reach the
desired final energy in the given magnetic field.

Since the integral is the part of this relation that depends exclusively on the field
properties, we separate out this factor by defining a phase-slip function F as

F(E) = 21tfQ(E) dE, (69)

and this quantity is furnished as part of the output along with Q(E). If it is desired
instead to have sin <P printed out, then the rf parameters V, h, and <Pi must be given as
part of the input. Figure 4 shows a plot of sin <P vs E for the same cyclotron situation as
that used for the other figures.
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After the output has been inspected, it may seem desirable to modify the frequency COo

and it should be emphasized that such a change can be made quite easily without
rerunning the program. That is, if a fractional shift €' is made in the frequency, as
defined by

then from the definition (66), the revised frequency error becomes

O'(E) = (1 + €')O(E) + €'.

As a result of Eq. (69), we then find that F(E) ~ F'(E) given by

F'(E) = (1 + €')F(E) + 21t€'(E - EJ.

(70)

(71)

(72)

Thus, since €' is generally very small, this change produces a nearly linear shift of the
sin <p vs E curve.

11. CONCLUDING REMARKS

Cyclotrons with radial sectors, like those at Indiana and GANIL in France, have extra
magnetic symmetry and because of this, the EO's in these machines have Pr = 0 at the
center of each hill and valley. As a result, the calculation of normal EO and focusing
properties requires orbit integration only through half a sector, i.e., from the center of a
valley to the center of a hill (or vice versa). For such cases, we developed a special form
of the EO Code which was then used in the final design of the Indiana cyclotron. 15

It is also worth mentioning that an unusual overwrite has been incorporated into the
TRIUMF version of Cyclops which enables the program to handle situations where
the EO is slightly displaced from the nominal median plane as a result of magnet
imperfections. 16 In addition to the usual map of Bz , this version of Cyclops requires
values of B" B(j, and aBz/az in the place z = O. It then uses modified equations of
motion, which include zero- and first-order terms in z and pz to calculate the displaced
EO and the resultant focusing properties.

Since there exist now many individual EO Codes that have been developed at various
laboratories, it seems highly desirable to have some standard cyclotron magnetic field
established to serve as a test case for purposes of comparison. Such a field was devised
by a group at SIN and this field has the twin virtues of being analytical in form and
quite realistic as well. The relevant report17 contains a listing for the subroutine that
generates the field, together with a sample output.

In conclusion, I would like to express my gratitude to G. Mackenzie and his
coworkers at TRIUMF for many useful discussions, and also to F. Marti and B. Milton
for constructing the figures. Finally, I am most indebted to my wife Bernice, who
continues to provide indispensible assistance as my reader and editor.
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