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During the past 21 years, several different computer programs have been developed at this laboratory for
calculating isochronous fields and hence the operational values of trim coil currents. All of these programs
utilized a particular set of analytical formulas for obtaining good starting values in the isochronous field
calculation. This report first presents these formulas, together with a discussion of their application, and then
provides (in an appendix) the detailed analysis from which these formulas were derived.

PREFACE

In the process of designing sector-focused cyclotrons, one generally begins with simple
analytical formulas to calculate basic orbit properties, such as the "smooth­
approximation" formula for Vz • When much greater accuracy is required as, for
example, in confirming or refining a tentative magnet design, one then uses an
equilibrium orbit code based on direct orbit integrations to satisfy this requirement.

Perhaps the only place where very accurate analytical formulas prove extremely
useful is in the calculation of the "isochronous field" or the set of trim-coil currents
which must produce it. This calculation usually proceeds through an iteration scheme
to the final result, and the analytical formulas provide the necessary starting values.
Experience has shown that without accurate formulas and the good starting values
they provide, the convergence of the iteration process can become tediously slow.

The earliest of the widely known accurate formulas are those due to Smith and
Garren, l and these formulas were incorporated by Garren2 into his program for
calculating trim-coil currents. Formulas of comparable (if not higher) accuracy were
obtained at about the same time by Hagedoorn and Verster3 and by Parzen.4

During the past 21 years, several different programs have been developed and used at
this laboratory to calculate trim-coil currents, and among these, the program "Fielder"
is perhaps the best documented. 5 All these programs have utilized our own particular
formulas for the isochronous-field calculation and the purpose of this report is (at long
last) to present these formulas and the analysis upon which they are based. The
formulas are discussed in the next section and the analysis then follows as an appendix.

Although this material was developed in 1961, it was not published at that time for
reasons which can now only be guessed at. Perhaps we could not spare the time and
effort required to make a fair comparison with the other formulas in order to establish

t This material is based upon work supported by the National Science Foundation under Grant No. Phy
80-17605.
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which of them were superior. Perhaps we also recognized that our analysis, although
rigorous, was rather unorthodox and therefore somewhat difficult to justify.

More recently, in the process of designing superconducting cyclotrons here and in
Milan, Bellomo and Resmini6 chose to incorporate our formulas for the isochronous
field into their program for calculating operational values of the trim-coil and main­
magnet currents. This choice was based on a preliminary study which indicated that
these formulas were significantly more accurate than those of Hagedoorn and Verster,
in particular. We should note, however, that superconducting cyclotrons are character...
ized by relatively low flutter and high spiral, and these characteristics may tend to favor
our formulas.

Another, and perhaps the main, reason for publishing this material now is simply
that in the process of moving offices, we discovered hidden in the bottom of a desk
drawer a set of old multilith stencils on which had been typed the first part of a report
presenting in detail the mathematical analysis leading to our formulas. It is precisely
this old unfinished report (with some necessary editing) which is printed here as an
appendix.

It will be clear from reading this appendix that it contains only the first part of the
analysis, namely, the part dealing with the equilibrium-orbit calculation. However, it is
just this part which is required for the isochronous-field formulas. The remainder of the
analysis dealt with the linear oscillations and nonlinear resonances, and it seems that
these parts never reached final form.

It is somewhat surprising that during the past 20 years no one else has carried on or
improved the various analyses noted above so as to produce even more accurate
analytical formulas. The need for such formulas still exists and present-day computers
can obviously handle calculations of far greater complexity than was possible 20 years
ago.

ISOCHRONOUS FIELD CALCULATION

The formulas given in this section will be complete in themselves and references to
material in the appendix will be made here only as a guide to those seeking background
material. These references will be placed in brackets to distinguish them from the
(parenthesized) references within this section itself.

1. INPUT DATA

We first define various input parameters which char.acterize the particular ion under
consideration. To represent the charge q and mass mo, we introduce Q and A'
defined by

Q = qle, A' = molml , (1)

where e is the charge on the proton and ml is a mass unit. In our old programs we took
ml to be the proton mass, but more recently we have taken ml to be the standard atomic
mass unit ml c2 = 931.50 MeV. Note that A' differs slightly from A, the usual mass
number, and this difference can often be quite significant.

If v is the ion's velocity, then as usual ~ = vic and we also have

(2a)
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(2b)

where p is the relativistic momentum in moc units.
For input and output to this program (and all orbit programs), we use lengths in

inches, fields in kilogauss, and energies in MeV. As a result, the only physical constants
required internally are: m1c2 = 931.50 MeV, the speed of light c, and the conversion
factor 2.54 em/inch. In particular, we have

931.50 x 10 .
2.997925 x 2.54 kG x In. (3)

for the lumped constant which appears in many equations. Note that it is very
important to use exactly the same constants in all orbit programs and related computer
routines in order to avoid generating small (and often troublesome) phase-slip errors.

Another parameter required for the input is the ideal orbital frequency Vo = vrf/h,
where v

rf
is the assumed rffrequency and h is its harmonic number. We use the angular

frequency COo = 2nvo, and define the associated length unit a and field unit b by

a = c/coo,

b = A' (coo) m1c,
Q c e

(4a)

(4b)

so that a, b, and COo are all determined if anyone of them is given.
If Tis the ion rotation period in an equilibrium orbit, then we take co = 21t/T, and

define the isochronous field to be such that co = COo independent of the ion energy over
some suitable range of values. Our problem therefore reduces to calculating the
average field Bo{r), defined below, which produces this condition over a specified range
of values of the radius r.

2. MAGNETIC-FIELD PARAMETERS

The median-plane magnetic field Bz = - B{r, 0) is characterized by its Fourier series in
the form

B{r, 0) = Bo{r) + L [Gn{r) sin (nO) + Hn{r) cos (nO)],
n>O

(5)

where the sum extends over n = N, 2N, 3N, ... , with N being the number of sectors.
The term Bo{r) is called the average field and the remaining terms constitute what is
known as the "flutter field".

During the design process and before all the magnet parameters are fixed, only
tentative or partial values of the Fourier coefficients may be known, and a proper job
for the isochronous-field routine is to help in the design of a set of trim coils. When the
magnet is finally constructed and the field measurements completed, the data can then
be reduced, when necessary, to sets of Bo, Gn , and Hn values as functions of r and the
current settings. The job of the isochronous-field routine here is to aid in establishing
operational values of the trim-coil currents corresponding to acceleration of various
ions to the desired final energies.
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Our formulas involve certain dimensionless flutter field parameters defined by

(6a)

(6b)

We also need certain average-field parameters given by

M' = I + k,

with k and k' defined by

M" = 3 + 7k + 2k', (7)

k = _r_dBo
Bo(r) dr '

and, (8)

These equations for M' and M" differ slightly from those given in [2D.3], but the
difference is not significant for our purposes here.

Before proceeding, we first consider the "zero-flutter" isochronous field for which
Gn = Hn = O. In this case, the equilibrium orbit is a circle of radius r and the equations
of motion yield

~ = ria,

Bo(r) = b[l - (rla)2] -1/2,

(9a)

(9b)

with a and b defined in Eq. (4) above.
If this field is now used to calculate k and k' ofEq. (8) and hence M' and M" in Eq. (7),

we then find

(10)

where, for future purposes, the result has been expressed in terms of p by the use of
Eq (2).

Our problem now reduces to finding formulas corresponding to those in Eq. (9)
when the flutter field differs from zero.

3. ANALYTICAL FORMULAS

We present first the formula relating ~ = vic, the angular frequency 00 = 21tIT, and the
field parameters evaluated at a specified radius r. This formula is derived in Sec. II.A of
the appendix, but here we replace the reference radius ro by r, and use the fixed
frequency 000 = 21tvo as a standard. We then obtain

(lla)
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(lIb)

with Kn from (6) and M' from Eq. (7).
The second formula relates p, Bo' and the other field parameters at a given r value.

This formula is derived in Sec. II.B of the appendix, and can be conveniently written in
the dimensionless form

(12a)

where

(12b)

with the parameters Kn , Kn', M', and M" given in Eqs. (6) and (7). Here, as in Eq. (lIb)
above, the sum extends over n = N, 2N, etc.

The bracketed quantities in the formulas above are the correction factors resulting
from the flutter field. These factors are obtained through a perturbation calcultion and
it is important to recognize that the first-order contribution of the flutter field vanishes
identically. That is, the values of '6 1/p2 and '62/p2 are correct to second-order and both
are directly proportional to 1/p2 as well as (Q/A')2, simply because there are no first­
order contributions. Of course, this would no longer be true if still higher order
corrections were included.

We should also note that by writing the correction factors in the forms given above,
we have explicitly separated the dependence on p from that on r. That is, for a given ion
and median-plane field, the quantities '6 1 and 82 depend exclusively on r, at least to this
(second) order of approximation.

Since the perturbation calculation has been carried out only to second order, the
validity of the above formulas requires that

(13)

and the smaller these quantities are, the more accurate will be the results.
For a given median-plane field, Eq. (12) constitutes an explicit formula giving p as a

function of r. This simple quadratic equation can be solved directly to yield

(14)

where P = Po is the obvious solution of Eq. (12) when 82 = O. Substitution of this p
value into Eqs. (2) and (11) then yields (roo/ro), and hence the phase slip as a function of r
(or the energy).

However, we should prefer instead to consider Eqs. (11) and (12) as providing two
relations between the three quantities p, Bo,and (roo/ro) at each value of r. To do this, we
must first consider the flutter field and hence Kn and Kn', as both given and fixed.

Second, we must remove the implicit dependence of 81 and 82 on Bo by replacing
M' and M" in Eqs. (lIb) and (12b) by explicit functions of rand p. This can be
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accomplished simply by setting M' and Mil to their zero-flutter values, such as those
given in Eq. (10) above, a procedure which is justified inasmuch as our formulas will
still be correct to second order.

We should note that the terms in the series expressions above for 01 and 02 fall off at
least as fast as I/n2 as n increases. Clearly, these series converge much more rapidly than
the Fourier series (5) for the flutter field itself, and as a result, the sums in Eqs. (lIb) and
(12b) can be terminated at a much lower value of n. A maximum n value nmax = ION
should suffice in all cases, and we often find that nmax = 5N to be quite adequate.

As a final note, we should also point out that the formulas (11) and (12) are
completely independent of the spiral. That is, they involve the flutter field only through
the parameters Kn and Kn' and, as can be seen from Eq (6), these quantities depend on
the amplitudes but not the phases of the Fourier coefficients Gn and Hn characterizing
the flutter field. However, experience shows that this conclusion, though a good
approximation, is not exactly true. Indeed, one finds that the third-order corrections to
the above formulas do depend on the spiral.

4. PROCEDURE

Suppose now that we wish to calculate Bo(r) over a specified range r1 ~ r ~ r2 so that
the angular frequency ro = roo for the ion orbits within this range. We assume, at least
to begin with, that the flutter parameters Kn and Kn' in Eqs. (11) and (12) are known
functions of r and; moreover, do not depend on Bo.

Within 01 and 02 given above, we first replace M' and Mil by their values for zero
flutter given in Eq. (10), namely,

(15)

with p from (2). Actually, this M' should be more accurate than the approximation
suggests since for an isochronous field, it is well known that v,2 ~ 1 + p2, and we
would expect that M' ~ Vr

2 here on general grounds.
For each r value, we now set ro = roo in Eq. (1Ia) and solve this equation for ~ by

using the following scheme. We first calculate~o = ria, and then set

(16)

(17)

and hence complete the calculation of 01 in Eq. (lIb). This 01 is then fixed during the
remainder of the ~ calculation.

To improve the ~ value, we use the iteration formula obtained from Newton's
method

A _ ~0(1 - 81 + 381/~j2)

Pj+ 1 - 1 + 2~0 81/~j3 '

with j = 0,1,2, etc. These iterations are continued untill~j+ 1 - ~jl < 10- 6
, say, and

then we finally set ~j+ 1 = ~.

Although we have never considered it to be necessary, some improvement could
presumably be obtained by recalculating 81 for each value of ~j within the above loop.
One should first check whether the resultant gain in accuracy is enough to warrant the
extra computer time.



ISOCHRONOUS FIELD CALCULATION 73

Having obtained ~ for the given value of r, we next calculate p from Eq. (2), and hence
M' and M" given in Eq. (15) above. We then evaluate 82 in Eq. (12b) and finally obtain
Bo(r) from Eq. (12a). The entire calculation is then repeated for each r value within the
specified range, r1 ~ r ~ r2 , and the resultant function Bo(r) thereby yields an
approximation to the required isochronous field.

Note that if the range of r values includes r = 0, then the above procedure should be
skipped, and the value Bo(O) = b should be adopted directly, where b is the field unit in
Eq. (4b). In addition to giving the correct value, this step will avoid a possible 0/0
division hang-up.

Finally, we should emphasize that although our formulas are relatively good, they
are nonetheless only approximately correct. One generally finds that the average field
Bo(r) generated by the above procedure does not satisfy the isochronism requirement
within the accuracy desired in all cases.

To check the results and, at the same time, to provide a basis for improvements, one
needs an equilibrium-orbit code. 7 In addition to V r and vz ' this code provides precise
values of the fractional deviation of the orbital frequency (roo/ro) - 1 as a function of
the ion's energy E.
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APPENDIX

1. EQUATION OF MOTION

Consider the motion of a particle of fixed momentum p and charge e in the median­
plane magnetic field B(r, 8), where rand 8 are the usual polar coordinates. The
differential equation for the trajectory r = r (8) of this particle is

S(r,8) = (e/p)rB(r, 8), (1.1)

where dots are used to denote derivatives with respect to 8. This equation is equivalent
to the familiar equation for the radius of curvature of the trajectory, p = eBp, when pis
expressed in polar coordinates.

The above differential equation can be derived from a Lagrangian L = L(r, r, 8)
given by

(1.2)
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According to Hamilton's Principle SLd 8 is stationary; this integral contains two terms,
the first being the arc length of the trajectory, and the second being (e/p) times the flux
swept out by the particle's radius vector. The canonical momentum Pr for this case is
given by

(1.3)

so that this Pr is then the actual radial momentum divided by p. The Hamiltonian H for
this system can be derived from the equation

H = H(r, Pr' 8) = fPr - L,

and the result is

H = -r(1 - p/)1/2 + f S dr. (1.4)

The differential equation for the trajectory (1.1) can then be written in canonical form.
The foregoing equations give the various traditional formulations of the problem in
polar coordinates. The difficulties involved in developing solutions of these equations
are in large measure connected with the complicated non-linear involvement of the
derivatives.

In most applications of practical importance, the quantity (f/r)2 is small, that is to
say, the orbits are not badly non-circular, and also fairly well centered. With this
essential assumption, the Lagrangian (1.2) is expanded as

and regrouped into two parts, L = Lo + ilL, where

1'2 fLo = - ~ - (S - 1) dr,
2 r

1 f4 1 f6
AL= ---+---'"

8 r3 16 r5
(1.5)

Thus, L o must be the dominant part of L, and AL can be considered as a perturbation.
With this in mind, a new variable q is introduced by

(1.6)

which simplifies the form of Lo. Making this substitution and dividing L by 4 (which
does not, of course, alter the equations of motion; actually, L given above differs from
the "physical" Lagrangian by a factor p), the new Lagrangian becomes:

L o = ~ 42
- fV dq,

1
V(q,8) = 2q(S - 1),
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1 44 46

~L = --- + - - ....
2 q2 q4
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(1.7)

Using only the main term Lo in the Lagrangian, the differential equation for q = q(O)
becomes simply

q = - V(q, 0). (1.8)

It is this equation which will form the basis of the discussion in this report; when
necessary, additional correction terms to this equation will be obtained from ~L of
Eq. (1.7). Eq. (1.8) gives good results for equilibrium orbits and requires only minor
correction for linear-oscillation theory, but needs more extensive correction for the
nonlinear theory. Since the terms in ~L are of fourth and higher order in the
derivatives, the corrections to Eq. (1.8) are of third and higher order. If Eq. (1.8) is
rewritten in terms of r(O), the result is

r 1 (;)2; = 2; + 1 - (e/p)rB(r, 0), (1.9)

which differs from the equation used by G. Parzen (Ref. 4) in the inclusion of the
second-order term t(;/r)2 here.

The transformation to the variable q can be made canonical in form by introducing
the corresponding momentum Pq defined as

(1.10)

Substituting the new variables into H of (1.4) and dividing by 4 (Jacobian), we find the
new Hamiltonian H(q, Pq , 0)

As in the case of the Lagrangian, H can be separated into two parts Ho + ~H given by

(1.11)

The differential Eq. (1.8) for q(O) follows directly from Ho. The discussion in this report
does not make use of the canonical formalism; however, all the results obtained can be
derived within such a framework (see Ref. 3).

lA. Definition of Field Quantities

The median-plane magnetic field is split into two parts

B(r, 0) = Bo(r) + Bj(r, 0), (lA.1)
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where Bo(r) is the average field and Bf is the flutter field; that is,

(IA.2)

where angular brackets denote an average over e with r fixed. As a result, the flutter
field can be expressed as a Fourier series in either of the forms

Bf(r, e) = L [Gn(r) sin ne + Hn(r) cos ne]
n>O

= L Bn(r) cos n [e - ~n(r)],
n>O (IA.3)

where Bn is the amplitude of the nth harmonic, and e = Sn(r) is the equation of the
"spiral" line associated with this harmonic; for a field with N sectors, the summation
extends over the values n = N, 2N, 3N, .... For analytical simplicity, the complex
form of the Fourier Series will be used here; that is,

(IA.4)

where Xn will be used throughout as an abbreviation for exp(ine), and now, the
summation extends over n = ±N, ±2N, . .. ; and the value of Qn is given by

Qn = Hn- iGn

= Bn exp( - insn) (IA.5)

in terms of the real field quantities defined above. Since Bf is real, it follows that

(lA.6)

where the bar on a quantity is used to designate complex conjugate. The use of this
complex notation simplifies the analysis and the resultant formulae; in all cases, these
formulae can be reduced to real form by the usual procedures with the above
definitions.

The function V(q, e) of Eqs. (1.7), (1.8) will also be split into two parts

V(q, 8) = M(q) + F(q, 8)

M(q) = ~ CqJ [er:o(r) - 1]

F(q,9) = ~ (qqJ [erRt;r, 9)} (lA.7)

where it is understood that r = q2 here and qo is a "reference" value of q (which will be
explained in the next section), introduced to make these quantities explicitly
dimensionless. The flutter term F(q, 8) is then expressed as a Fourier series:
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F.( ) = ! (!L) [erQn(r)]
n q 2 qo 2p ,

F - n = ~, Fo = 0,
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(lA.8)

with Qn(r) given by (lA.5) above.

2. EQUILIBRIUM ORBITS

The first problem to be dealt with is that of calculating the equilibrium orbits
associated with the given magnetic field; the accuracy of this calculation then
determines the accuracy to which other orbit characteristics can be calculated. The
equilibrium orbit is a simple closed orbit having the same symmetry as the field; that is,
for this orbit r(8) or q(8) is a periodic solution of the equation of motion having the
same N -fold periodicity as the sector structure of the magnetic field. Other closed
orbits can exist, in addition to the equilibrium orbit, but these so-called "fixed-point"
orbits have different periodicity. For example, in an N -sector cyclotron at low energies,
there are 2N such fixed-point orbits which close in one revolution; these are, however,
asymmetric (off-center) orbits.

The equilibrium orbit is specified by a dimensionless variable y(8) defined by

q(8) = qo[l + y(8)], (2.1)

where q(8), and hence y(8), is a periodic function having period 21t/N; and qo is a
constant reference value of q which is related to what will be called here the "reference
radius" ro through the equation ro = qo 2. As will be shown, it is advantageous to define
qo by

(q(8) == qo,

(y(8) = 0, (2.2)

that is, qo is the mean value of q(8) for the equilibrium orbit. Other definitions which
have been used for a "reference radius" ro are: (a) that 21tro is the total arc length of the
equilibrium orbit; (b) that p = eroBo(ro), where Bo(r) is the average magnetic field; or (c)
that ro is the mean radius of the eq~ilibrium orbit. Each of these definitions, including
the one chosen here, Eq. (2.2), has its advantages, and its corresponding disadvantages.
As will be seen in the next section, the resultant values of ro differ from each other only
in second order. There is, however, a greater analytical simplicity resulting from the
definition (2.2) to be used here.

The reference value qo, or the corresponding reference radius ro = q02, increases
uniformly with p and covers the entire range of r values of the given field. It is qo (or ro)
rather than p, which is chosen as the independent variable here in all calculations. The
reason for this choice is just that it is simpler to determine p from a given qo and the
values of the field parameters evaluated at q = qo, than to do the reverse. The basic
input data for calculation are the Fourier components of the field (lA.3) given as a
function of r; at a particular r = r0 = qo 2

, there is an equilibrium orbit whose mean q­
value is this qo, and the corresponding p value is then determined.
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From Eq. (2.2), it follows that y(S) can be expanded into a Fourier series having zero
average value. Thus

Ao == 0; (2.3)

where An are the unknown Fourier coefficients, Xn == exp (inS) as before, and the
unmarked summation implies n covers all positive and negative values: n = ±N,
±2N, ... . The differential equation for y(S), which follows from Eq. (1.8) and Eq. (2.1),
is then

y = - V(y, 8)

- M(y) - F(y, 8), (2.4)

where it is to be understood that these functions are in their dimensionless forms given
in Eq. (lA.?) and evaluated at q = qo(l + y). Since the equilibrium orbit is periodic,
the right-hand side of this equation must average to zero, that is

(V(y,8) == 0, (2.5)

and it is this equation which is used in the next section to determine p as a function of
qo. The proper differential equation for y is then really

y = - V(y, 8) + (V(y, 8), (2.6)

with the advantage that a solution for y can be obtained in advance of determining p.
Although the above equation is approximate, the same principles apply to the exact
equation; furthermore, for equilibrium-orbit calculations, this equation is quite
adequate.

In all cases of practical interest, the magnitude of y is sufficiently small compared
with unity that V(y, 8) can be expanded in a rapidly converging series in powers of y.
The differential equation for y then becomes

y = - V(e) - yV'(8) - ~ y2V"(8) - ...
2

-M - F(8) - yM' - yF'(8) - ~y2MII - ~y2FII(8) - · ", (2.7)

where it is to be understood that primes on ~ F, M, or the F" of (lA.8) denote
dimensionless derivatives with respect to q as, for example,

V'(q, 8) = qo OOq V(q, 8),

V"(q,8) = qo2 0°;2 V(q, 8), etc; (2.8)

futhermore, whenever the q is not explicitly shown in the functional dependence of all
these quantities, it is to be understood that they are evaluated at q = qo, such being the
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case for all quantities appearing in Eq. (2.7). As noted above, the average value of the
right-hand side of Eq. (2.7) must be subtracted off; thus, for example, the first term
(- M) can be immediately dropped, since it is a constant.

If F(q, 8) were zero, then the equilibrium orbit would be a circle of radius ro = qo2;
then the required solution of the above differential equation would be y = 0, since the
average of y must be zero. This being so, a straightforward procedure for obtaining a
solution of the differential equation is a perturbation technique wherein F, wherever it
occurs, is replaced by AF

.v = -AF(8) - yM' - yAF'(8) - "', (2.9)

where Ais a parameter introduced solely for the convenience of identifying successive
orders in an expansion in the flutter. The value of Acovers the range 0 :::; A :::; 1, and
when the calculation is completed, Ais set equal to unity. The value of y(8) is then
expanded in a power series in A:

(2.10)

where the zero-order term is absent since, as noted above, in the absence of F, y is zero.
Inserting this series into the differential equation above, and equating the coefficients of
a given power of A on each side, the result is

.vI + M'YI = -F(8),

.. M' F'(8) 1 M" 2Y2 + Y2 = - YI - "2 YI' (2.11)

etc. where it is understood again that the average value of the rightside of each equation
is to be subtracted off. The result is a system of consecutive simple differential equations
for Yk(8). In order to obtain the correct third and higher order equations, it would be
necessary to add correction terms from ~L of Eq. (1.7); the first and second order
equations are correct as they stand.

These equations can be further simplified by introducing the Fourier series for F(q, 8)
from Eq. (IA.8) and for y(8) from Eq. (2.3); the coefficients An are likewise expanded in a
power series in A, so that

An = AAn(l) + A2 An(2) + ...
Yk(8) = L An(k)Xn. (2.12)

Inserting these back into Eq. (2.11), and equating coefficients of Xn (harmonic
balancing) in each case, the results are

(n 2 - M')An(l) = F",

(n2 - M')A (2) = ~ [I, ,+ ~ M"A (l)J A(I)
n ~ m 2 m n-m' (2.13)

where the sum over m covers all positive and negative values, with no contribution
coming from m = 0 or m = n. The result is a set of consecutive algebraic equations
which can be solved in sequence to the order of accuracy desired. Note that Fn , Fn ' are
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simple constants, like M, M' and M" [see Eq. (2.8)]. The requirement noted above that
the average of the right side of Eq. (2.11) be subtracted off, is automatically taken care
of here simply by omitting the equations for n = O.

For most purposes, it is sufficient to use only the first-order calculation of An above.
For a cyclotron, where vz is small, F and its derivatives are not very large; each
succeeding order in An involves an additional factor of F" (or its derivatives) and at least
one additional factor of (n2 - M') -1, and so the convergence is rapid. Even more
important is the fact that given An to first order plus the condition Ao == 0, it is then
possible to calculate most of the important machine parameters correct to second
order. In what follows, it will therefore be assumed that

(2.14)

which is the first-order expression for An given by Eq. (2.13), and the superscript will be
dropped. Note that if the main field harmonic n = N predominates over that of
n = 2N, then the second-order value of An for n = 2N can exceed the first-order result.

Another procedure for calculating y(8) is to assume that all nonlinear terms of
Eq. (2.7) can be neglected so that the differential equation for y(8) becomes

y + [M' + F'(8)Jy = -F(8). (2.15)

This is an inhomogeneous equation of the Mathieu-Hill variety which contains the
first-order and most of the second-order results in Eq. (2.11) above. The technique for
solving such an equation will be discussed later (see also Ref. 4). One result is that the
first-order An given in Eq. (2.14) can be improved if M' is replaced by

IF'1 2

M' + 2 L 2 n 4M' ,
n>O n -

(2.16)

provided N 2
- 4M' > 21F~12 sufficiently; that is, provided the free oscillation of

Eq. (2.15) is not too close to the N/2 stop-band, in which case Eq. (2.16) is not accurate.

2A. Mean Radius and Rotation Period

From the definition of the preceding section, the radius re(8) of the equilibrium orbit is
given by

(2A.1)

where ro = qo 2 is the reference radius. Since by definition the average of y(8) is zero, the
mean radius R of the equilibrium orbit is then

(2A.2)

where the Fourier series for y(8) of Eq (2.3) has been inserted. It is clear that a
knowledge of An to first order in the flutter thus gives R correct to second order.
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The rotation period T for a particle in the equilibrium orbit is obtained from the
equation for the arc length as

vT = vim = «(r2 + ,2)1/2>
2n

= ( q2 + 242
- 2 :: + .. -) , (2A.3)

where v is the speed and the square root has been expanded as in section 1 above.
Inserting q = q(y) and keeping only terms to second order in y the result becomes

vT
2n = ro(1 + y2 + 2y2>

= rO[1 + 2 L (1 + 2n2
) IAnI2],

n>O
(2A.4)

where the Fourier series for y(8) of Eq. (2.3) gives the result in terms of An. Here again,
Eq. (2.14) for the first order An value gives this expression correct to second order.

Inserting q = q(y) and keeping only terms to second order in y the result becomes
harmonic acceleration) independent of the energy. In this case, the above equation
imposes a condition between the energy, the reference radius ro, and the field
parameters evaluated at this radius. Alternatively, for a given field, the above equation
supplies one relation needed to calculate the phase slip as a function of energy (the
other relation needed is the momentum equation given below).

2B. Momentum

As noted before, the periodicity of the equilibrium orbit gives rise to the condition (2.5),
namely,

(V(y,8) = 0, (2B.1)

which then provides a relation between the momentum p, the reference radius ro, and
the field parameters evaluated at this radius. The above relation is not exact; however,
an examination of the contribution of L1L, the error in the Lagrangian given by
Eq. (1.7), shows that the error in Eq. (2B.1) is of fourth order in the flutter. An exact re­
lation, which is commonly used, is

p = e (B(r, 8)(r 2 + .,2 )1/2),

with r = re(8), the radius of the equilibrium orbit, being inserted.
The expansion of V(y, 8) to second order is

1
V(y, 8) = M + F(8) + yM' + yF'(8) + "2 y2Mil, (2B.2)
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and since the second and third terms average to zero, Eq. (2B.l) becomes

1
M + <yF') + 2M" <y2) = o. (2B.3)

Inserting the Fourier series representation for y(8) and F'(8), the resulting equation for
M is then

M = - L [(Fn'An + tn'An) + M"IAnI2 ].
n>O

(2B.4)

(2B.5)

For An given by Eq. (2.14) correct to first order, this equation is then correct to second
order in the flutter.

From the definition of M(q) given in Eq. (IA.7), it follows that

_er_o_B_o(_r0_) = 1 + 2M
p

which, in combination with (2B.4), is then the (implicit) equation for p. The explicit
value of p = p(ro) can be obtained through an iteration process. Here, where the
calculation is valid only to second order, it is sufficient to set p = eroBo{r0) in
calculating M in Eq. (2B.4), and then solve Eq. (2B.5) for p using this value of M. The
resultant value of p will be correct to second order.

2C. Isochronism

When the magnetic field is specified, the above procedure will give the relativistic
momentum p at any ro value. From this the corresponding value of v, the velocity can
be calculated and then the rotation period T can be evaluated from Eq. (2A.4). In this
way T and hence the phase-slip can be evaluated as a function of ro and the par­
ticle energy.

The above process can be reversed in such a way as to yield a formula (approximate)
for Bo{r) such that the isochronism condition is satisfied. To do this, Tin Eq. (2A.4) is set
equal to the rf period and the equation is solved for ~ = ~(ro) as

(2C.l)

where ro = 21t1T. Eq. (2B.5) is then solved for Bo{ro) to give

(2C.2)

where b = mole is the isochronous field value for ~ = ro = O. Inserting the value of M
from Eq. (2B.4) and the value of ~ above, the formula for Bo{ro) is completed.

The formula for Bo{ro)is an implicit one since M', M", all of which depend on Bo, are
involved therein. Here again the value of Bo{ro}can be obtained by iteration. The first
approximation is the zero-flutter isochronous field obtained by setting all second-order
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corrections to ~ and Bo equal to zero; the result is

~ = (roro/c),

p/moc = (roro/c) [1 - (roro/c)2J -1/2,

Bo(ro) = b[l - (roro/c)2J -1/2.
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(2C.3)

These formulae are then used, as needed, in the calculation of Min Eq. (2B.4) and of the
second-order correction to ~ in Eq. (2C.1). When these results are then inserted into Eq.
(2C.2), the formula for Bo(r0) will be explicit and correct to second order, which is the
limit of accuracy of these formulae. The resultant values for the isochronous average
field Bo(r) should be adequate for most purposes.

2D. Field Derivatives

The equations in the preceding discussion and those to follow involve the quantities
M(q), F,,(q), and their derivatives, evaluated at q = qo. The question arises of how to
evaluate these quantities starting from a given set of fields, expressed as Fourier
coefficients given as functions of r, such as in Eq. (lA.3). A parameter rl is introduced
which is defined as

(2D.1)

then wherever r occurs, it is replaced by ro(q/qo)2 so that M(q) and F,,(q) can be written as

(2D.2)

where q/qo has been replaced simply by q so that all functions and derivatives are
evaluated at q = 1 now. In this way, the following list of values is obtained:

1
M = 2(rl - 1),

M' = ~(X(2Bo' + 3) - ~,

M" = rl(2Bo" + 7Bo' + 3),

M'" = cx(4Bo'" + 24Bo" + 27Bo' + 3), (2D.3)

where the primes on Bo represent dimensionless derivatives with respect to r, that is,

(2D.4)
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evaluated at r = roo By the same process, the following results are also obtained

Fn" = I(2Qn" + 7Qn' + 3QnO),

Fn'" = I(4Qn'" + 24Qn" + 27Qn' + 3QnO),

where, by analogy to (2D.4),

(2D.5)

Q 0 = Qn.
n Eo'

Q' = ~ dQn.
n Eo dro '

(2D.6)

etc, again evaluated at r = ro. The parameter CL is carried along during the calculation;
it is finally evaluated using Eq. (2B.4). In any second-order expression, it may be
replaced by unity, since it differs from this value only in second order.

As a specific example, consider the zero-flutter isochronous field, the pertinent
equations for which are given in Eq. (2C.3) above. In terms of p, which here is the
momentum in moc units, the equation for M(q) is

so that

M = 0,

M' = 1 + p2,

M" = 3(1 + p2)(1 + 2p2),

M'" = 3(1 + p2)(1 + 16p2 + 24p4),

(2D.7)

(2D.8)

and the expression for p = (p/moc) in terms of ro is given in Eq. (2C.3). For an
isochronous field, these values can be used in evaluating any expression which is
otherwise of second order in the flutter.

There is a certain combination of the quantities in Eq. (2D.8) which plays an impor­
tant role in nonlinear resonance effects. The quantity referred to is given by

J ==! M'" + 6(M')2 _ ~ (M")2
o 26M"

(2D.9)

Using the values given above for the zero-flutter isochronous field, this quantity is
identically zero for all values of p.




