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The transverse stability propertie's of an intense ion beam in a quadrupole magnetic field are investigated within
the framework of the Vlasov-Maxwell equations, including the important influence of beam rotation and transverse
beam temperature on stability behavior. It is shown that the strongest instability occurs for zero rotational frequency
(Wb = 0). The system can, however, be easily stabilized by slightly detuning the rotational frequency from Wb =
o.

EQUILIBRIUM

Equilibrium and stability properties are calcu­
lated for the specific choice of equilibrium dis­
tribution function

x 8(Pz - "!bm f3b c),

where H = (m 2c4 + C 2p2)1/2 + e<po(r) is the total
energy , Po = rpo is the canonical angular mo­
mentum, Pz = pz - ("!bmI2f3bc)wf2r2 + (el

is the relativistic mass factor, and e and mare
the ion charge and rest mass, respectively. More­
over, it is also assumed that vi,,!b ~ 1, where v
= N b e21mc2 is Budker's parameter, N b =

21TiRedr r nbO(r) is the number of ions per unit

axial length, and c is the speed of light in vacuo.
Cylindrical polar coordinates (r,8,Z) are used,
with the z-axis (the beam propagation direction)
directed along the axis of symmetry; r is the radial
distance from the z-axis, and 8 is the polar angle
in a plane perpendicular to the z-axis. The equi­
librium and stability analysis presented here par­
allels the general formalism developed in sub­
stantially more detail for intense relativistic
electron beams in Ref. 8.

(1)

fbO(H,Po,Pz )

=~ 8(H - wbPfJ - .ymc2
)

2'Tr"!bm

High-energy, low-current, heavy-ion beams have
been considered as the source of ignition energy
for inertially confined fusion reactions. 1 In this
regard, it appears that heavy-ion beams with suit­
able energies and densities can be used as viable
drivers. One of the major limitations on beam
transport, hovvever, may be due to the transverse
instability2,3 that originates from beam self-field
effects.4 In this context, it is important to ex­
amine the transverse instability for an ion beam
in a quadrupole magnetic field. Several theoret­
ical and experimental studies of this instability
are being carried out. 5

-
8 In this paper, we inves­

tigate the important influence of beam rotational
motion and transvers.e beam temperature on sta­
bility behavior, making use of the linearized Vla­
sov-Maxwell equations for a nonneutral ion­
beam system. 4 It is found that the value of beam
rotational frequency Wb plays a decisive role in
determining ion-beam stability behavior in a
quadrupole magnetic field, and that the strongest
instability occurs for zero rotational frequency
(Wb = 0). The system can be easily stabilized,
however, by a slight detuning of the rotational
frequency from Wb = O.

In order to simplify the analysis, we consider
ion motion in the average external magnetic field3

produced by periodic quadrupole magnets. In
this regard, the focusing associated with the ap­
plied quadrupole field can be determined from
the axial component of the effective vector po·
tential Azext(r) = - ("!bmI2ef3b)wf2r2, where the
oscillation frequency Wf is related to the quad­
rupole field gradient, "!b = 1/(1 - f3b2)1/2 = const.
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(
1 a a /2)-- r- - - tfJ(r)
r ar ar r2

2 2 " . 2+ 2m Wpb(W - IWb)U(Rb - r)(dI/dp1- )p-L 2 = po2 •

In Eq. (5), the orbit integral j is defined by9

tions characterized by I wRb 1
2 ~ ([2 + l)c 2

• In
this limit, together with V/'Yb ~ 1, the axial com­
ponent of the perturbed current density }z(r) is
related to the perturbed charge density p(r) by
the approximate relation8 }z(r) = ~bcp(r). More­
over, the linearized Maxwell equations for the
perturbed fields can be combined to give the ap­
proximate eigenvalue equations

(3)

(4)

(
1 a a [2) 4n "-- r- - - tfJ(r) = - _ p(r),
r ar ar r2 'Yb2

{

A v' x B(X')} a 0
x E(x') + c · ap; fb ,

where 1m W > 0, T = t' - t, Sfb(X,P,t) = } b(X,P)
exp( - iwt), and the particle trajectories4

•
8

.
9 in the

equilibrium fields satisfy the' 'initial" conditions
X'(T = 0) = x and V'(T = 0) = v. Evaluating p
= eId3p}b, after some straightforward algebra
Eq. (3) reduces to the eigenvalue equation8

where tfJ(r) = (ir/I) [Ee(r) + ~bBr(r)]. Here Ee(r)
is the azimuthal component of the perturbed elec­
tric field, Br(r) is the radial component of the
perturbed magnetic field, and p(r) = efd 3p!b(X,P)
is the perturbed charge density. Neglecting initial
perturbations, the perturbed distribution function
is given by

!&(x,p) = - e J~ood'TeXP(- iw'T)

c)AzS(r) is the axial canonical momentum, fib
= const. is the ion density, Wb == const. is the
beam rotational frequency, p = (PnPe,Pz) is the
mechanical momentum, '9(>'Yb) is a constant,
<po(r) is the equilibrium electrostatic potential,
and AzS(r) is the axial component of vector po­
tential for the equilibrium azimuthal self-mag­
netic field. Making use ofEq. (1) and the fact that
the r - e kinetic energy is small in comparison
with the characteristic directed beam energy
'Ybmc2, we obtain the equilibrium ion density pro­
fileS nbO(r) = f d 3P f b° = fib U(Rb - r), where the
beam radius R b is defined by R b

2 = 2c2('9 - 'Yb)/
'YbOb2, Ob2 and Wb2 are defined by Ob2=Wb2 ­
Wb2 and Wb2 = Wf2 - w~b/2'Yb2, W~b = 4nflbe2/
'Ybm is the ion plasma frequency squared, and
U(x) is the Heaviside step function defined by
U(x > 0) = 1 and U(x < 0) = O. Evidently, ra­
dially confined equilibrium solutions exist 0nly
for rotational frequency Wb satisfying - Wb < Wb
< Wb. After some straightforward algebra, the
transverse temperature profile can be approxi­
mated by T1-°(r) :::; (2'Ybm)-lfd3p fb°[pr2 + (Pe
- 'Ybmwbr)2] = T1-(1 - r2/Rb

2) for 0 < r < R b,
where the maximum temperature T1- (at r = 0)
is defined by T 1- = 'YbmOb2Rb2/2. Combining the
above results, the beam rotational frequency Wb
is determined from

Wb2 = Wf2 - (w~b/2'Yb2) - 2T1-/'YbmRb2, (2)

which is a statement of radial force balance (of
centrifugal, magnetic, electric, and pressure gra­
dient forces) on an ion...beam fluid element. In
order for the equilibrium to exist, the temperature
T1- in Eq. (2) is restricted to the range 0 :5 2T1-/
'YbmRb2 :5 Wf2 - w~b/2'Yb2. Finally, from Eq.
(1), the mean equilibrium azimuthal motion of the
ion beam is rigid rotor with Veo(r) = (fd3PVefb0)/
(fd 3pfb0)= wbr, and the mean axial velocity can
be approximated by VzO(r) = (fd 3pvzf bO)/(fd3p f b0)
= ~bC = const. for V/'Yb ~ 1.

STABILITY 1\ i 27T
d<p fOI(r) = -2 dTitfJ(r')

o 'IT-x

In the present stability analysis, flute perturba­
tions with a/az = 0 are considered. For pertur­
bations with azimuthal harmonic number I, per­
turbed quantities are expressed as S<I>(x,t) = <I>(r)
exp{i(/e - wt)}, where W is the complex eigen­
frequency. In order to make the stability analysis
tractable, we assume low-frequency perturba-

(6)
x exp{i[/(8' - 8) -:;;- WT]} .

Moreover, P02 = 'Yb2m2llb2(Rb2 - r2), and the
polar momentum variables (p 1- ,<f» in the rotating
frame are defined by Px + 'Yb mWbY = P1- cos<f>,
and Py - 'Yb mWbx = P1- sin<f>.
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In the remainder of this paper, the stability
analysis is restricted to azimuthally symmetric
perturbations (I = 0) characterized by the eigen­
function

In(r/R c ) L aj/ln(Rb/Rc ) , R b< r < R c ,

j=O

where R c is the radius of the outer conductor,
and the coefficients aj(w) will be determined self­
consistently. In general, solutions to Eq. (5) exist
for arbitrary radial mode number n. For present
purposes, we consider the n = 3 eigenfunction
in the subsequent analysis. Sl!,bstituting Eq. (7)
into Eq. (6), the orbit integral I can be evaluated
explicitly in terms of the coefficients aj and the
eigenfrequency w. 8 Substituting Eq. (7) into Eq.
(5) we then solve Eq. (5) inside the beam (0 ~

r < R b ). Moreover, the appropriate boundary
condition at r = R b is determined by multiplying
Eq. (5) by r and integrating from Rb (1 - E) to
Rb (1 + E) with E ~ 0+. After some tedious but
straightforward algebraic manipulation, we ob­
tain the matrix relation

where the matrix elements Xu are defined by Xoo
= [In(Rb/R c )] - I, XOI = XOO + 2(~1 - I), X02 =

XOO + 4~1(6~2 + I) - 4, X03 = XOO + 6~I(t20~2~3

+ I2~2 + I) - 6, XII = ~l - I, XI2 = :- 24~1~2,

XI 3 = I080~ 1~2 ~3' X22 = ~ I(18~2 + I) - I, X23
= 9(X22 - x33)/5,and X33 = ~1(1200~2~3 + 48~2

+ 1) - I. Here, ~I = (W~b/~b2)/(W2 - 4Wb2), ~2

= flb
2/(W 2 - 16wh2), and ~3 = flh

2/(W 2 - 36wb2).
Evidently, from Eq. (8), the dispersion relation
can be expressed as XIIX22X33 = 0, where .x:ii(W)
= 0 corresponds to the dispersion relation for
perturbations with radial mode number n = j.

(a) n = 1 Perturbations. In this case, XII (w)
ogives the dispersion relation w2 = 4Wf2 ­

W2b/~b2, which does not exhibit instability (lmw
.;0) for any allowed value of equilibrium beam
temperature t -l or rotational frequency Wb con­
sistent with Eq. (2). For n = 1, the coefficient
al in Eq. (7) is related to ao by al = - ao.

(b) n = 2 Perturbations. The dispersion rela-

XOO XOI X02 X03 ao
0 XII Xl2 Xl3 al = 0, (8)
0 0 X22 X23 a2
0 0 0 X33 a3

(9)

tion X22(W) = 0 can be expressed as

(w2 - 16wb2)(W2 - 4Wb2) = (W~b/~b2)

where flb
2 = Wb2 - Wb2, and the coefficients are

related by al = - 9ao, a2 = 18ao and a3 = ­
IOao. The growth rate Wi = lmw and real oscil­
lation frequency Wr = Rew have been obtained
numerically from Eq. (11) for a broad range of

X (w2 + 2Wb2 - 18wb2) .

Since the rotational frequency Wb is related to t-l

[Eq. (2)], it is evident from Eq. (9) that the beam
temperature plays a significant role in determin­
ing stability behavior. As a particular case, it is
instructive to examine Eq. (9) for the specific
value of t -l corresponding to the maximum al­
lowable beam density, i.e., (Wpb/~b)2 = Wf2 ­
2t-l/~bmRb2. In this case, the beam rotation fre­
quency is given by Wb = 0 [Eq. (2)], and Eq. (9)
reduces to the result obtained by Gluckstern3 for
perturbations about the Kapchinsky-Vladimir-

- SkylO equilibrium distribution function. For Wb
= 0, instability (lmw > 0) readily follows from
Eq. (9).

In general, Eq. (9) is a simple quadratic equa­
tion for w2

, and the necessary and sufficient con­
dition for instability can be expressed as

(~bWb/Wpb)2 < h(wf2~b2/W~b) . (10)

where. hex) is defined by hex) = (x - 0.5)(17 ­
32x)/9. Note that when Eq. (10) is satisfied, the
perturbations are purely growing, i.e., Wr = Rew
= o. The function hex) assumes its maximum
value, hm = 1/1152, at X = 33/64. It is evident
from Eq. (10) that beam rotation (Wb) plays a crit­
ical role in determining stability behavior. More­
over, the n = 2 perturbations can be completely
stabilized by a modest increase in rotational fre­
quency to values satisfying (~bWb/Wpb)2 > hm

= 1/1152. Making use ofEqs. (8) and (9) it follows
that al = -4ao and a2 = 3ao.

(c) n = 3 Perturbations. After some straight­
forward algebra, the dispersion relation X33(W)
= 0 can be expressed as

(w2 - 4Wb2)(w2 - 16Wb2)(w2 - 36Wh2)

= (W~b/~b2)[(W2 - 16wb2)(W2 - 36wb2) (II)

+ 48flb2(w2 - 36Wb2) + 1200flb4] •

(7)

n

L aj(r/Rb)2j , 0 < r < R b ,
j=O

n
$(r) =
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beam parameters (Wb/Wf)2 and w~b/2'Yh2W .f2. In
order to illustrate the influence of beam rotation
on stability behavior, the stability boundaries in
the parameter space (Wb2/Wf2, w~b/2'Yb2Wf2) are
shown in Fig. 1. Since the beam temperature t l­

in Eq. (2) is positive, equilibrium solutions are
not allowed in the cross-hatched region in Fig.
1 where Wb

2 > Wf2 - w~b/2'Yb
2. The horizontal

axis in Fig. 1 represent the Kapchinsky-Vladi­
mirsky (K-V) equilibrium distribution (Wb = 0).
The solid curves in Fig. 1 correspond to the sta­
bility boundaries Imw = 0 obtained from Eq.
(11). We note from Fig. 1 that there exist two
unstable regions in the parameter space (Wb2/W .f2,

w~b/2'Yb2Wf2). Perturbations in Region 1 have
Imw > 0 and a non-zero real oscillation frequency
Rew :f= 0 (see Fig. 2). On the other hand, per­
turbations in Region 2 are characterized by Imw
> 0 and Rew = O. For the K-V distribution (Wb

= 0), we note from Fig. 1 that the onset of inst-
ability occurs for beam density satisfying W~h

= 1.7'Yb2w.f2. The instability corresponding to

Region t in Fig. t can, however, be circumvented
by increasing the rotational frequency Wb to val­
ues satisfying Wb2/Wf2 ~ 0.003. Therefore, for Wb

2

~ 0.003 Wf2, a high-density ion beam with W~b

= 1.96'Yb2Wf2 is not subject to this instability.
Finally, for a specified value of rotational fre­
quency Wb, we also note from Eq. (2) that the
transverse beam temperature t l- can be signifi­
cantly reduced by increasing the beam density
to values approaching W~h = 2'Yb2(w.r2

- Wb2),
thereby substantially decreasing the beam emit­
tance for stable propagation.

In conclusion, we summarize the following
main points. First, an intense ion beam in a quad­
rupole magnetic field can be subject to a strong
transverse instability for radial mode numbers n
= 2 and n = 3. Second, the value of beam ro­
tational frequency Wh plays a decisive role in de­
termining ion beam stability behavior. Third,
generally speaking, the strongest instability oc­
curs for the K-V distribution function (Wb = 0).
However, the system can be easily stabilized by

FORBIDDEN ZONE --+----+-~

STABLE REGIONn = 30.006

2 STABLE REGIONwb
--
w 2

f

0.003 K-V DISTRIBUTION
(wb=O)

UNSTABLE
REGION I

0
0.8 0.9 1.0

2 2 2
wpb / 2 Yb wf

FIGURE 1 Stability boundaries lEq. (ll)] in the parameter space (Wh2/w./-, w~h/2'Yh2wf2) for azimuthally symmetric 11 = .~

perturbations.
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0.2 Imw

Rew

1.0

Rew
Wf

0.5

= 0.925

O ----"-- ---.J O
o 0.025 / 0.05 0.075

wb Wf

0.1

Imw
Wf

FIGURE 2 Plot of growth rate Wi = 1m wand real frequency w,. = Re w versus Wh2/W.f2 for w~h/2'Yl)2W.f"!. = 0.925 lEq. (11)).

slightly detuning the rotational frequency from
Wh == o. In this regard, both the beam emittance
and stability properties can be substantially im­
proved.
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