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ABSTRACT

Additional sources of CP violation in theM SSM m ay a ect B -m eson m ixings and decays,

even In scenarios w ith m inim al avour violation (M FV ). W e form ulate them axim ally CP -
viclating and m inim ally avourviolating M CPM FV ) variant of the M SSM , which has

19 param eters, Including 6 phases that violate CP.W e then develop a m anifestly avour-
covariant e ective Lagrangian form alian for calculating H iggsm ediated FCNC observables

In theM SSM at argetan ,and analyzew ithin theM CPM FV fram ework FCNC and other
processes involving B m esons. W e include a new class ofdom inant subleading contributions
due to non-decoupling e ects of the third-generation quarks. W e present illustrative num er-
icalresults that include e ectsof the CP-odd M CPM FV param eters on H iggs and gparticle

m asses, the By and By m ass di erences, and on the decays B¢ ! * , By ! and
b! s .Weus these results to derive illustrative constraints on the M CPM FV param e-
tersinposed by DO,CDF ,BELLE and BABAR m easurem ents ofB m esons, dam onstrating

how a potentially observable contribution to the CP asymmetry iIn theb ! s decay may
arise in theM SSM with M CPM FV .
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1 Introduction

M odels incorporating supersymm etry (SUSY ), such as theM inin al Supersym m etric Stan—
dard M odel (M SSM ), contain m any possible sources of avour and CP violation. In partic—
ular, the soft SU SY Joreaking sector In general introduces m any new sources of avour and
CP violation,giving rise to e ects thatm ay exceaed the experin ental Iim its by several orders
of m agnitude. The unitarity of the Cabibbo{K ocbayashi{M askawa (CKM ) quark m ixing
m atrix suppresses avour-changing-neutral currents (FCNC ) and CP violation som ew hat,
thanks to the G lashow {liopoulos{M ajani (G IM ) m echanisn [1], to the extent that the
soft SU SY breaking scalar m asses are universal. O ne possible solution to the avour and
CP problam s is to ensure that the soft SUSY breaking sector is fully protected by the
G IM mechanisn . This can be achieved w ithin the socalled fram ework of m inin al avour
violation (M FV ), where all avour and CP e ects are m ediated by the superpotential in—
teractions corresponding to the ordinary Yukawa couplings of the H iggs bosons to quarks
and leptons. In this fram ework, FCNC and CP-violating obsarvables depend only on the
farm ion m asses and their m ixings, and hence the CKM m ixing matrix V' [2]. Tn such a
scenario, allFCNC and CP violation observables would vanish in the M SSM ifV were
equalto the unitmatrix 1.

A mininal realization of M FV 1n the M SSM is obtained by assum ing that all soft
SU SY -breaking bilinear m asses for the scalar particles, such as squarks, sleptons and H iggs
bosons, are equal to a comm on valie m ¢ at the gauge coupling uni cation point M ¢y-,
where M syr m ight be the threshold for som e underlying grand uni ed theory (GUT)
based,eg.,on SU (5) or SO (10). Likew ise, the soft m asses of the farm ionic SUSY partners
of the gauge elds, the gauginos, m ight also be equal to a common valuem 1, at M gy
and, In the sam e spirit, all soft trilinear Yukawa couplings of the H iggs bosons to squarks
and sleptons could be real and equal to a universal param eter A tin es the corresponding
H iggs-ferm on-antiferm ion couplings. T he H iggs superm ultiplet m ixing param eter and
the corresponding soft SU SY breaking term B introduce two additionalm ass scales In the
theory. However, m Inin ization conditions on the H iggs potential can be usad to elim inate
these two last m ass scales in favour of the elecroweak scale M ; and tan V=Vy,Where
v, g are the vacuum expectation values (VEV s) of the two H iggsdoubletsH , 4 in theM SSM .

It iswell known that a m inin al expansion of the above M FV fram ework is to allow
the soft SU SY Jreaking m ass param etersm -, and A to be com plex w ith CP-odd phases,
thereby introducing two additional sources of CP viclation in the theory. In this case,
all FCNC obsarvables, whether CP-conserving or not, still degpend on the CKM m ixing
matrix V in such a way that they vanish ifV is assum ed to be diagonal, ie., equal to



the unit m atrix. However, the two new phases introduce the possibility of CP violation
In avour-conserving processes even if V. is real, and in general CP violation in FCNC

processesm ay di er from CKM predictions.

Here we go one step further, and ask the follow ing question. W hat is the m axim al
num ber of additional CP-=violating param eters and extra avour-singlet m ass scales that
could be present in the M SSM , for which the above notion of M FV ram ains still vald,
ie., allFCNC e ects vanish in the lm it of a diagonalV ? W e call this scenario the m ax—
Imally CPwviolating M SSM with m ininal avour violation, or in short, the M SSM w ith
M CPMFV.Aswe will see .n Section [4, there are a total of 19 param eters In the M SSM
with M CPM FV , ncluding 6 CP-violating phases and 13 realm ass param eters. T he pur-
poses of this paper are to form ulate theM SSM with M CPM FV , calculate them ost relevant
B -m eson observables, and explore the experim ental constraints on the M CPM FV theoret—
ical param eters, exploiting a m anifestly avourcovariant e ective Lagrangian form alism
for calculating H iggsm ediated FCNC observables at large tan  that we develop here.

At large values of tan , eg. tan ~ 40, one-loop threshold e ects on H iggsdoson
Interactions to down-type quarks get enhanced [3{5], and so play an in portant role in
FCNC processes, such as the K °K ° m ass di erence, B ;B and B4-B4 m ixings, and the
decaysB ! Xs ,B ! KI1l , Bgy ! * 6{15], and B ! [16,17]. W e present
In this paper a m anifestly avour-covariant e ective Lagrangian form alisn for calculating
FCNC processs that follow s the lines of the e ective Lagrangian approach given in [12].
Tn addition, we Include here the dom inant subleading contributions to the one-loop H iggs-
mediated FCNC interactions due to non-decoupling large Y ukawa-coupling e ects of the
third-generation quarks. Based on this In proved form aliam , we com pute FCNC observ—
ables In constrained versions of the M SSM , where M FV has been in posed on the soft
SU SY breaking m ass param eters as a boundary condition at the scale M gyt . W e present
num erical results for B -m eson obsarvables in one exam ple of the M CPM FV fram ework,
from which ilustrative constraints on the basic theoretical param eters are derived, after
ncorporating the recent experin ental results from DO and CDF [18].

T he paper is organized as follow s: In Section [J, after brie y review ing the M FV fram e~
work,wederive them axim alnum ber of avour-singletm ass param eters that can be present
In theM SSM with MCPM FV attheGUT scale. A 1l relevant one-loop RG E s are given in
Appendix[A]. In Section[3, we present an e ective Lagrangian form alisn forH iggsm ediated
FCNC interactions that respects avour covariance. W e also discuss the dom inant sublead—
Ing e ectsat hrge tan ,due to the large Y ukawa couplings of the third generation. U seful
relations which result from W ard dentities (W Is) that nvolve the Z and W -boson inter—
actions to quarks are derived in A ppendix [Bl. Section [4 sum m arizes all relevant analytic



results pertinent to FCNC B - eson observables. In Section [ we exhibit num erical esti-
m ates and predictions for various FCN C processes, including the B ;B  and B 4B 4 m ixings,

and thedecaysBsy ! © ,B ! X5 ,and B ! . W e also fustrate the com bined
constraints on the theoretical param eters im posed by data from DO, CDF, BELLE and

BABAR in one sampl M CPM FV model. W e sum m arize our conclisions in Section [d.

2 MaxmalCP and M Inim al F lavour V iolation

Tn this section we derive them axim alnum ber of C P «iolating and real avour-singletm ass
param eters that can be present in the CP=riolatingM SSM and satisfy the property ofM FV
as described n the Introduction.

T he superpotential de ning the avour structure of theM SSM m ay be w ritten as
Wyssw = Ph, &P, + P hp,® + BP°h bR + 2,0, ; (2.1)

where PP, 4 are the two H iggs chiral super elds, and &, B, ®° , ®° and B° are the kft-
and right-handed super elds related to up- and dow n-type quarks and charged leptons.
TheYukawa couplingsh, 4. are 3 3 com plex m atrices describing the charged-lepton and
quark m asses and their m ixings. T he superpotential (2.1]) contains one m ass param eter,
the param eter that m ixes the H iggs superm ultiplets, which has to be of the electrow eak
order for a natural realization of the H iggsm echanian .

In an unconstrained version of the M SSM , there is a Jarge num ber of di erent m ass
param eters present In the soft SU SY -breaking Lagrangian
1 o
Log = 5 M,BE + M, %'+ My6°¢ + hx: + @yﬁﬁlé@ + BYf fﬁ + @yﬁfj@

+ M IE - BM B+ MS HH, + M7 HJHg+ B HyHgq + hx:
+ BYa,BH, + F'aH & + BYa H E + hc: (2.2)

Here M ,,5 are the soft SUSY -breaking m asses associated with the U (1)y , SU (2), and
SU (3). gauginos, respectively. In addition, M Ifuﬁ and B are the soft m asses related to
the H iggs doublets H 5 and their bilinear m ixing. ana]y,kﬁl é L1ppg arethe3 3 soft
m ass-squared m atrices of squarks and sleptons, and a, g are the coresponding 3 3 soft
Yukawa m assm atricesl]. H ence, in addition to the temm , the unconstrained CP <violating

M SSM contains 109 realm ass param eters.

A ftematively, the soft Yukawa mass m atrices ay, may be de ned by the relation: (auue)ij =
(umie)is A uage)ij, where the param eters (A | 4, )i5 are generically of order M sygy In gravity-m ediated
SUSY breaking m odels. In our paper, both de nitions for the soft SU SY -breaking Yukawa couplings w ill

be used, w here convenient.



O ne frequently considers the constrained M SSM  (CM SSM ), which hasa com m on gaug—
nomassm -, ,a comm on soft SUSY breaking scalarm assm o and a comm on soft trilinear
Yukawa coupling A for all squarks and sleptons at the GUT scale. T he num ber of inde—
pendent m ass scales is greatly reduced since, even allow Ing form axin alCP violation, the
free param eters are justmq,-,, ,my,A and B ,where allbutm , are com plex variables.
Thephassarg may be ram oved by m eans ofa globalPeccei{Q uinn (PQ ) sym m etry under
which H , and H 4 have the sam e charges. Im posing the two CP-even tadpole conditions on
the H iggspotential,onemay replace = j jandRe (B )by theZ bbosonm assM ; and the
ratio tan = y,=vy of the VEV s of the H ggsdoublets H ,, 5, In the phase convention w here
Vy g are realand positive. Linked to this, there is one extra CP-odd tadpole condition w hich
can be used to elim lnate In (B ) In favour of m aintaining the sam e phase convention for
the VEV s, order by order in perturbation theory [19]. T hus, a convenient set of inputm ass
param eters of the constrained CP—=riolating M SSM  is

tan Mm¢); Mmoo, Mgur); MmoM™Mgur); AMgur) ;s (2.3)

w here the relative sign of can alwaysbe absorbed into the phase de nition of the com plex
param etersm -, and A . Thus, in addition to tan , this CP-=iolating CM SSM has just 5
realm ass param eters, two m ore than in itsC P -<conserving counterfpart, nam ely the C P-odd
param eters: ITn m 1—, and Tm A .

How can the generalnotion of M F'V can be extended to this constrained CP —=riolating
M SSM ? Tn such a constrained m odel, the physical FCNC observables ram ain independent
of details of the Yukawa texture chosen at the GUT scale. They depend only on the CKM
m xing m atrix V , the ferm ion masses, tan  and the 5 real m ass param eters m entioned
above. If the CKM matrix V were equal to the unit matrix 1, the FCNC obsarvables
would vanish,but avour-conserving,CP—=riolating e ectswould still be present, associated
with ITn m 1_, and Im A . M oreover, these param eters also contribute to CP«violatihg FCNC
observables in the presence of non-trivial CKM m ixing. M ost noticeably, ITn m 1, and Tm A
cannot generically m in ic the e ects of the usualCKM phase

W e now consider how the above notion of M FV can be further extended w ithin the
m ore general CPviolating M SSM . To address this question, we rst notice that under the
unitary avour rotations of the quark and lepton super elds,

@O= UQ@; RO = ULLD; B = UU@C; BT = UD]?C; Be = UE@C;
(24)
the com plete M SSM Lagrangian of the theory rem ains invariant provided the m odel pa-
ram eters are rede ned as ollow s:

hug ! UfphuaUg he !' ULlh.Uyg;
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2 | Yy 2 .
ﬁQ;L,U;D;E : UQL;U;D;EﬁQ;L,U;D;EUQMU:D:E'
y . y .
SHESE Uyp aunUog s a. ! UgaUy: (2.5)
The ramaining mass scales, , M 1.3, le 3 and B , do not transform under the uni-

tary avour rotations (2.4). In fact, it is apparent that the one-loop RG E s presented in
Appendix ] are invariant under the rede nitions in (2.3), provided the unitary avour
matricesU g 1 5 p g are taken to be ndependent of the RG scale. The e ective Lagrangian
form alism we describe in Section [3 respects m anifestly the property of avour covariance
under the unitary transform ations (2.4).

It is apparent from (2.3) that them axin al set of avour-singlet m ass scales includes:

; G 2 _ f2

2
M1;2;3; MH QLUDE QLUDE 13; Au;d;e = Au;d;el3; (26)

ud

where them assparam eters and B can be elin lnated by virtue ofa globalPQ symm etry
and by the CP-even and CP-odd m inin ization conditions on the H iggs potential. The
scenario (2.4) has a total of 19 m ass param eters that respect the generalM FV property, 6
ofwhich areCP-odd,namely In M 15,5 and In A g

W e term this scenario the maximally CP-viokhting and m inim ally avour-viokting
M CPMFV) variant of the M SSM , or in short, the M SSM with M CPMFV .

It isworth noting that, in addition to the avoursinglet m ass scales m entioned above,
therem ay exist avournon-singketm ass scales in theM SSM .Forexam ple, one could In pose
an unconventional boundary condition on the left-handed squark m ass m atrix i é , such
that

2My) = 8215+ el (hlhy) + e2{lh,) + el hlhy) Mlh,) + i (27)

whereM x could beM 5yt or som e other scale. Evidently, there are In principle a consider—
able num ber of extra m ass param eterse 2 that coud also be present n # 2 (M « ), beyond
the avoursingletm ass scale M 5 . In fact, these additional avour non-singletm ass param —
etersre? can be asmany as 9 (including ¥ 2 ), as determ ined by the din ensionality of the
3 3 hemn itian m atrix@ 5 (M x ). The generalized boundary condition (2.7) on 1 SMy)
is in agreaem ent w ith the notion of M FV for solving the avour problem by suppressing
the G M -breaking e ects, provided the hierarchy e 2 M 2 isassumed. In particular, if
these avournon-singlet m ass param eters re 2 are induced by RG running, they m ay be
generically much smaller than M 2. In this case, the re? will not all be independent of
each other, eg., in ourM CPM FV scenario, the RG -induced avournon-singlet scales reﬁ
woul be functionals of the 19 avour-singlet m ass param eters stated in (2.4). In general,
a non-singlet m ass param eter could either be introduced by hand or induced by RG run-

ning of a theory beyond the M SSM with m ore avour-singlet m ass scales [20]. H owever,



since introducing re? M 2 by hand has no strong theoretical m otivation, we focus our
attention here on the avour-singletM SSM fram ework embodied by theM CPM FV .

Before calculating FCNC obsarvables in theM SSM with M CPM FV ,we rstdevelop in
the next section an e ective Lagrangian approach to the com putation of H iggsm ediated
e ects, which play an in portant role in our analysis.

3 E ective Lagrangian Form alism

Here we present a m anifestly avour-covariant e ective Lagrangian form align . This for-
m alisn enables one to show the avourdbasis independence of FCNC obsarvables In general
soft SU SY “breaking scenarios of the M SSM . It w ill also be used in Section [4 to calculate
FCNC processes in theM SSM with M CPM FV .

To m ake contact between our notation and that used elsswhere in the literature [21],
we rede ne the Higgs doublets H ,4 as H >, and Hg4 i, ;,where ;53 are the
usualPaulim atrices. W e start our discussion by considering the e ective Lagrangian that
describes the tan -enhanced supersym m etric contributions to the down-type quark self-
energies as shown in Fig.[l. The e ective Lagrangian can be written in gauge-sym m etric

and avour-covariant form as follow s:

I8 015 2]=dg ha 7+ hgla; 2] 0Qf% + hoy (3.1)

ij
w here the superscript 0’ indicates weak {elgenstate elds. In (3.), the rst term denotes
the treedevel contribution and h 4 isa 3 3 matrix which is a Colam an{W enberg{
type [22] e ective functional of the background H iggs doublets ;,. W e note that the
one-loop e ective functional h 4[ 1; ,]has the sam e gauge and avour transform ation
properties ashy 1. Itsanalytic and avour-covariant form m ay be calculated via

d"k 2g2Cy M 1
(hay = o p, ks (32)
2 ri k2 M3 ok, B2 o5y
1 1
+ Py - Py (ha)y ————— (s e
&ls McP, MIPx 4.4, k21, M2 g5y
1 1 =5
‘P - Py (haly ————— 29
&Bly McP, MIPx g5 k21, ®2 gy
X 1 1 g
+ PL v P, (hg)n ———— = ;
- &lg McP, MEPr g K21, W2 ggr 2

wheren =4 2 istheusualnum ber of analytically {continued din ensions in din ensional

regularization (DR ),1y standsfortheN N -dinensionalunitmatrix,B x) = % L +) 5]
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Figure 1: Gauge- and avour-invariant one-loop selfenergy graphs for down-type quarks
in the singleH iggs insertion approxim ation, with H > and H 4 i 4.

are the standard chirality {projction operators, and Cr = 4=3 is the quadratic Casin ir
hvariant of Q CD in the fundam ental representation. The 8 8-and 12  12-din ensional
matrices M - and i ? descrbe the squark and chargiho-neutralino m ass spectrum in the
background of nonvanishing H ggs doublets ;.

It proves convenient to express the 8  8-dim ensional chargino-neutralino m ass m atrix
M ¢ In the Weylbasis (B8; W '##; ,; B,), where I, 4 are SU (2), doublets: £, =
(B ;H2)" and By = (B3;H,)". In this weak basis, the Higgs- ed-dependent chargino-

neutralinomassmatrix M « [ 1; »]reads:

0 1
. M, 0 pl—igoﬁ Pljgo%(iz) -
E 0 M, 1; 59 51 ssg ] (1)
Mcl 17 21= B T T _ i (33)
« =9 2 a5 2 02 12) A
191—E(iz)g 1 Pl—zgf(iz) 1 (i2) 0,

where g and g° are the SU (2);, and U (1)y gauge couplings, respectively. C orrespondingly,
In the presence of non-vanishing H ggsdoublets ;,,the12 12-din ensional syuark m ass
matrix ¥ ?[ ;; ,]isgiven by

0 1
(ﬁ 2)Q~y5 (ﬁ 2)Q~y5 (ﬁ 2)§y5 c
8200 20= @ (25 @25; @75y & ; (34)
(i 2)]5YQ~ i V5o (i Vg ;
w ith
i 2)5§Q~j = (P@S)j_j 1, + (ihg)y 1 7 + (lhy)y 3 21 2 3



% 595 17 2 5+ i 71192 %29(2 HEEY > 2 1o
B 5, = @75 = @l 2iz v (s Tia;
i 2)5in~], = (@ 2)Z~§D~i = (aa)y 3 (hy )s5 .
@ *)5v5, = @)y + Muhiy § oo+ % 595 11 %2
(% Z)Siygj = @7y + hahl)y T é 59% 11 2 i
B s, = @7 = Muhdy Tie o (35)

where ;5 is the usualK ronecker sym bol.
The form of the derived e ective Lagrangian depends, to som e extent, on the choice of

renom alization schem e. A susual, onem ay adopt the M S or DR schem es of renom aliza—
tion. In general, the di erent scham es a ect the holom orphic part of the Lagrangian at
the one-loop level. T hanks to the non—enom alization theorem s of SU SY , the Yukawa cou-
plingsh, 4 arenot renom alized, and thewave functionsof 15,0 i, ,ur anddyr ram ove the
ultraviolet (UV ) divergences of the one-loop corrections to the Yukawa couplingsdi  1Q 4L

and ugr 2Q 4, . The left-over UV — nite term s are not tan -enhanced and can be absorbed
into the de nition ofh, 4, up to higher-order schem edependent corrections. A Ithough the
latter could be consistently included in our gauge-symm etric and avour-covariant form al-
ian , we ignore these an all UV — nite holom orphic term s as they are higherorder e ects
beyond the one-loop approxim ation of our Interest.

By analogy, the gauge-and avour-covariant e ective Lagrangian for the up-type quark

selfenergies m ay be w ritten down as follow s:
L2 [ 17 21= ug hy 5 ( i)+ hyli1; 2] Qf + hxy (3.6)
ij

where h ,[ 1; »]may be calulated from Feynm an diagram s analogous to Fig.[l. A s op—
posad to the dow n—ype quark selfenergy case, these radiative corrections are not enhanced
for Jarge values of tan  and =0 are ignored In our num erical analysis in Section[d.

The weak quark chiralstates, u) , and d; ; ,are related to their respective m ass eigen-—
states, ur g and dp, gz , through the unitary transform ations:

W o= U%u; & =U0lva; ul = Ulu; & = Uldk; (3.7)

whereUf,Ug’d are 3 3 unitary matrices and V is the CKM m xing m atrix. A 1l these

unitary m atrices are determ ined by the sim ple m ass renom alization conditions:
D E D E
LS [ 1 2] = dwM4d + hey LY[1; 2] = wMy,u + hcy (38)



where h:: i denotes the value when the H iggs doublts ;, acquire their VEV s, and M 4
are the physical diagonalm ass m atrices for the up—and dow n-type quarks. Im posing the
conditions (3.8) yields [12]

P- P-

2 2
Us'haU? = —R® VYR '; Uh,U? = —Z@ R '; (3.9)
\%! V2
w here
pz D E
_ 4.0y 1 . Q .
Rg = 1+ . U;" hy” hal 17 21 U
1
pz D E
. 4.0y 1 . Q .
R, = 1+ —U; h,'! hyl 1 21 UY: (3.10)
2

In (3.10) and in the follow ing, the symbol 1 without a subscript w ill always denote the
3 3 unitmatrix. W e cbsarve that the unitary m atrices Uf , U E’d can allbe set to 1
by virtue of the avour transfom ations given in (24). The Yukawa couplings h, 4 are
determm Ined by the physical m ass conditions (3.9). It is In portant to rem ark here [12]
that these conditions form a coupled systan of non-linear equations w ith respect to hy, 4,
since the Yukawa couplings also enter the right sides of (3.9) through the expressionsR 4
in (3.I0). In addition, one should notice that the physical CKM m ixing m atrix V. rem ains
unitary throughout our e ective Lagrangian approach. A s we will see below and m ore
explicitly in A ppendix [Bl, the unitarity of V. throughout the renom alization process is a
crucial property for m aintaining the gauge sym m etries through the W ard dentities (W Is)

in our e ective Lagrangian form alian .
W enow consider the e ective FCNC Lagrangian related to H iggs interactions to dow n—
type quarks. From (3.1),we nd that
s Ny . . .

Le=olR19—E 11+ g a 1+ o+ 2 g B & Vd
h i

+dghg 4, 1+ 4+ 5, 4 u, + hry (3.11)

w here the individual com ponents of the H iggs doublets ;,, are given by

12 = 1 : (3.12)

M oreover, the 3 3 m atxices
p_D E p_D E D E

Q.
~
Q
flrg
S}
I
'_l
N
Q.
~
-
S}
I
Q.
~

12 A2 12
(3.13)
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where we have ussed the short-hand notation, 4 khl h 4l 1; 21, and suppressed the
vanishing iso-doublet com ponents on the LHS’s of (3.13). In the CP-viclating M SSM ,
the weak-state Higgs elds 13, a1, and |, are relted to the neutral CP-m ixed m ass
elgenstatesH 1,5 [21,23], the charged H ggsboson H  and the would-be G oldstone bosons
G%and G ,associated with theZ and W  bosons, through:

1= OpHyj 2 = OgiHyj

a, = cG° sOsH;; a, = s G%+ c 03H;

, = ¢ G sH ; , = sG +cH ; (3.14)
where s sin ,c cos and O isan orthogonal3 3 H iggsdboson-m ixing m atrix.

One may now exploit the properties of gauge- and avour-covariance of the e ec—
tive functional 4[ 1; »]to obtain useful relations in the largetan 1 it. Speci cally,
al 15 2]should have the fom :

al 17 21= 18+ I1&; (3.15)

where i, { 1; % 25 7 2; 5 1 are calukble 3  3-dinensional functionals which
transform as hlhg or hYh, under the avour rotations (Z4). G ven the form (3I3). it
is then not di cult to show that in the in nitetan limit (v, ! 0),
P P
. p- D E > . . D E > .
Iimi 2 — 4 = —h 41i; Iim — 4 = —h 41i: (3.16)
vi! 0 82 V2 vi! 0 2 V2
Very sin ilar relations m ay be derived for the up-type quark sector, but in the lm it of
vanishing tan .Aswe show in Appendix[Bl, W ard ddentities W Is) involing the W  and
Z Joson couplings to quarks give rise to the follow ing exact relations:

R S .0 E P30
¥ i 2 F a = Th al; a T a = Th ql; (317)
p . . . .
where v= v+ v? is the VEV of the H iggs boson in the SM . R elations very analogous
topthose stated in (317) hod true for the up-type sector as well, ie. ¢’ = &' =

2h , i=v,where the extra m nus sign com es from the opposite isogpin of the up-type
quarks w ith respect to the dow n-type quarks.
For our phenom enologicalanalysis in Section[4, wem ay conveniently express the general
avour-changing (F'C ) e ective Lagrangian for the interactions of the neutral and charged
Higgs elds to the up—and down-type quarks u; d in the follow ing fom :

g

W

Lyc = Hid ®49; 4P + 93 @ aPr d+ G°dM 4isd
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+Hiju M. WP+ 95 wMuPr U G'uM ,isu

9
= H d Mdgﬁ duPL + gg duM uPR u
W

+ G d M4vip, V'8 ,Pr u + Hzx: ; (3.18)

w here the H iggs couplings in the avourbasstf =U2=0U0¢ =1 aregiven by

O i O i

Ih o = Cl VYR, 1+ OV o+ C2 VYR P PV
: % 1 ai 1 az

+ 103tV Rd 1+ d ; a Vv ; (3.19)
haa = @i (320)

01 0
géiuu = Sl Rul u1 + SZ Rul 1+ u2

+ 105t 'R, 1 SRS (321)
Ihiw = @) i (322)
I g = tVYR, Y 1+ o+ VYR,Y (323)
R _ l1y7y LY 1y y BN 1y .
9o au = vy 1 (2 Ry VI AV R (3.24)

and t tan . W e note that the H iggsdboson vertex-correction m atrices for the up-type

1;2 ai;2

quarks, +7°, o7 and  7”,arede ned asin (3.13).

T he above general form of the e ective Lagrangian L rc extends the one derived in [12]
In several aspects. First, it consistently includes all higherorder temm s of the form
(tmp M 2,4 )" 1, which can becom e in portant in scenarios w ith large bottom —squark
m ixing [5]. Secondly, itdoesnot su erfrom the Iim itation that the soft SU SY Jbreaking scale
should be much higher than the electtoweak scale M ; . Speci cally, SM electroweak cor-
rectionsm ay be included in the Colan an{W einberg-type e ective functionals g4,[ 1; 2],
provided the theory is quantized In non-linear gauges [24] that preserve the H iggsboson
Jow -energy theorem (HLET ) [25]. Finally, the e ective Lagrangian L ¢ In plam ents prop—
erly all the gauge symm etries through the W Is as discussed in A ppendix [Bl.

The general FC e ective Lagrangian (3.18) takes on the form presented in [12] in the
single-H iggs-insertion approxin ation. In thiscase, thetan -enhanced threshold corrections

12



Uyr Qr

Figure 2: Two-H iggsdoubletm cdel (2HDM ) contribution to the one—loop self-energy graphs
for down—ype quarks in the singlkeH iggs—insertion approxim ation.

2, 4 4 andh 4iare nterrelted as ollows:
p_
2 1 az 2 2 ;y
—h gi= = = g = PR (325)
V2

whereh 4iisgiven in theM SSM with M CPM FV by

P-p g

2T ds hh,

2, 2 .=
v, 3— 16 2 AuIDﬁQ /bﬁu /jj2

+ i1 (3.26)

My I NS0 ;4.7 +

and I (x;y;z) is the one-loop function:

T(xiyiz) = xy n(x=y) + yz n(y=z) + xz In(z=x) ) (327)
o x Y 2 2 '

T he ellipses in (3.2d) denote the an all contributions com ing from the Feynm an diagram in
Fi.[d(c), which has the sam e avour structure as the gluino-m ediated graph i Fig.[D(@a),
ie., this contribution is avoursinglet in the singleH iggs—insertion approxin ation. W e
ram ark, nally, that in writing down (3.2d) we have not considered the RG -unning e ects
on the squark m assm atrices between M gyt and M gygy - These e ects are iIn portant, and

are taken into account in our num erical analysis in Section [H.

In addition to graphs involving SU SY particles, the two-H iggsdoublet m odel (2ZHDM )
sector of the M SSM m ay also contribute signi cantly to the one-doop selfenergy graphs
of the down quarks. This contribution is shown in Fi.[d and is form ally enhanced at
large tan , since it is proportional to hy. In the singleH iggs-nsertion approxin ation, the
2HDM contribution is given by

P-p E 2 :
_27 awow o _ Bl £ n e ? : (328)
v . 16 2Mg Mg M2 +3F
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T his contribution tums out to be subleading w ith respect to the Feynm an diagram [Q(b) and
exhibits a very sin ilar avour structure. Beyond the single-H iggs—nsertion approxin ation,
the e ective functional h 2P [ |; ,liscaloulated as

2HDM dnk 1
(hj Yij = —— (hg)nPy " Py (hy )k
(2 ri &l MqPL MgPr g,
1
_ ; 329
k214 M2 14 ( )

Y
H 15

whereM 4[ 1; ,]and M 51 [ 1; 2]larethe 6 6—and 4 4-din ensional quark and H iggs-
boson m assm atrices In the background ofnon—zero ;,.The6 6-din ensionalquark m ass
m atrix is given by
M o, (o) 10 i2)
Mgl 1 2] = e - e T (3.30)
(M q )diQ j (hd )lj 1
T he H ggsboson background m ass m atrix M fl [ 1; 2]receives appreciable radiative cor-
rections beyond the tree level [19,21,23,26]. At the tree level, the 4  4-din ensionalm atrix
MZ2[ 1; ,lisgiven in theweak basis ( 1; ») by

™ 2) ™ 2)
MZ2[ ;2= A (331)
i), i)y
w here
2 @ 2 2
g+g g J g
(M§)¥1= M}?d‘l']jz‘* > T+ 2 72 12‘*323271
2 @ 2 2
. g+ g g & g
iy - omie3de 8y Ty Ty
2 2
g g &
Mg),, = (MfI)Y%: B +?§1 12+T1§: (332)

In the oneJoop e ective Lagrangian L ¢ given in (3.18), the couplings of the G oldstone
bosons G and G to quarks retain their treedevel form . T his result is not accidental, but
a consequence of the G oldstone theorem , which applies when the m om enta of the extermal
particles are all set to zero. However, the treedlevel form of the G oldstone couplings gets
m odi ed when m om entum -dependent (derivative) term s are considered. To leading order

In a dertvative expansion, one would have to consider the e ective Lagrangian
h
. (1;3)
L]E = lQL ZQ b + AQlj {(]6 ]) (]6 j)y i

+BU m oLy ® ) 7 Qp + :::; (3.33)
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Figure 3: D om inant gauge-and avour-invariant contribution leading to a m odi cation of
the tree—level G odstone-foson couplings to quarks.

w here the dots denote analogous tem s for the right-handed up—-and dow n-type quarks ug
and dg . The rsttem dependingon Z, isafunctionalof ;. forthe left-handed quarksQy .
Such a tem isnot tan -enhanced and renom alization-schem e dependent. A sm entioned
above, these temm s can be neglected to a good approxin ation. The e ective functionals
A éi"j)[ 1; oJand B éi;j)[ 1; 2]lareUV nite and include large Y ukaw a-coupling e ects due
to hill Tn particular, this is the case for the e ective functionals with i = j= 2. One
typical graph of such a contribution is displayed in Fig.[d. Because of gauge invariance,
analogous contributions w ill be present In the onedoop Z —and W Joson couplings. A1l
these e ects are not enhanced by tan , and can be consistently neglected w ithout spoiling
the gauge sym m etries of the e ective Lagrangian L ¢¢ .

In the next two sections, we present analytic and num erical results related to FCNC
B -m eson observables, using the e ective Lagrangian (3.18) and ncluding the 2HDM con—
trbution (329).

4 FCNC B M eson Observables

In this section, our interest willbe in FCNC B -m eson observables, such as the BJ B3,

massdi erences M 8., rand thedecays By ! * ,Bu ! and B ! X

These e ects have rstbeen Hdenti ed and studied in 271w ithin the Standard M odel

15



41 M g,

O ur discussion and conventions here follow closely [12]. In the approxin ation of equal
B -m eson lifetin es, the SM and SUSY contributionsto M g, may bewritten separately,
as follow s:

M s, = 23BoJH . °72 Boiew + MBJIH P72 Blisysy I (4.1)

where g d;sandHeB:2 isthe e ective B = 2 Ham iltonian. Neglecting the subdom —
nant SM contribution, the SUSY contributions to the B = 2 transition am plitudes are
given by

/\1:2F 2
mY5H B2 Bl - 1711 ps !} _Ba "Pd B
aJHe Balsusy o) 30 1 o e
b i
0:88 C;R (DP) n C;R (2HDM ) 0:52 ClsLL(DP) " ClsRR (DP) ;
/\1:2F 2
B0 272 B3 — 2310ps ! —Bs Bs B
sJHe :BSJ-SUSY P 565 M &V 055
h i
088 C," 74 ¢t 052 cy* T 4 cFROR w2

where DP stands for the H iggsm ediated doublepenguin e ect. In addition, we have used
the next+to-Jeading order Q CD factors determ ined in [28{32], along w ith their hadronic
matrix elementsat thescale = 42G&V:

prf = 058; PR = 088; PP = 052; P = 1d: (43)

TheW ilson coe cients occurring in (14.2) are given by

3 L L
SLL (DP) 16 “m} X I 109 9H i
2GyM 7 1 H,
2.2 3 R R
SRR (DP) ﬂ16 m o X gHibngibq
Cl = = 5 M2 7
ZGFMW =1 H
3 L R
cLR OGP _ 32 mutg X T T g ) 44
2 - M= 2 2 14 ( ')
2GyM g P MHi

where the tan® -enhanced couplings gj, id m ay be obtained from (3.18). Hence, the DP
W ilson coe cients in ([£4) have a tan® dependence and, although two-loop suppressed,
they becom e signi cant for large values of tan ~ 40.
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T here are two relevant one-loop contrbutions to 1B 1 B2 8 gy ¢y atlargetan : (3)
the tH box contrbution to C;* of the 2HDM type, and (ii) the one-doop chargino-stop

box diagram contributing to C . To a good approxin ation, C;° “EPM) 1 ay be given
by [32]
2m
clr@iom) T oy P otan? (45)
W
In the kinem atic region M 4 m., the above contribution can am ount to as much as

10% of the DP e ects m entioned above. This estim ate is obtained by noticing that the
lght-quark m asses in (4.4) and (4.3) are running and are evaluated at the top-quark m ass
scale,ie,mmy)’ 90MeV,mgmy)’ 4M eV [33]. The second contribution (ii) tumsout
to be nonmnegligble only for am all values of the -param eter [32], ie., for 7 §< 200 G &V.

42 Bi ! °

+

T he leptonic decays of neutral B m esons, B g s ! , are enhanced at large values of
tan [6{15]. Neglecting contributions proportional to the lighter quark masses m 4, the

relevant e ective Ham iltonian for B = 1 FCNC transitions is given by

p_
HP™' = 2 2Ge VeV CsOs + CpOp + C10010 ; (46)
w here
e’ )
Os = 162mb(qPRb)( ) ;
o & @D s )
= m ;
P 16 2 b OER 5
eZ
O10 = 1 2(CI P1Db) ( 5 ) (4.7)

U sing the resumm ed FCNC e ective Lagrangian (3.18), theW ilson coe cientsC ¢ and Cp
In the region of arge values of tan  are given by

3
2 m 1 X gg el gg i

Cs = 7
e VaVy Mg
2 m 1 X g o
Ce = 1 e (4.8)
e VeV o, Mg
where Cp = 4221 denotes the leading SM contribution. In addition, the reduced scalar

and pseudoscalar H iggs couplings to charged leptons g:;f n (48) are given by

O
¢, = —; &, = tan Oy: (4.9)
COSs
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Here we neglect the non-holom orphic vertex e ects on the leptonic sector since they are
unobservably an all.
Taking into consideration the aforem entioned approxim ations, the branching ratio for

Bi, ! *  isfound to be [8]

BBS! ) = (4.10)
s
G2 2 4m 2 4m ? ; o o
16 2 B TR MZ Lowz FF o+ Fo 4 m FIF

where g = d;s and 3, is the total lifetin e of the B4 m eson. M oreover, the form factors

q .
Fgp, aregiven by
i, my

i
. qa _ .
SMg, qumwchs;p ;i Fl = ZFs,Cuc: (411)

T _
Fgp = >

A Ithough the W ilson coe cient C 19 is subdom inant for tan ~ 40, its e ect has been
Inclided in our num erical estim ates.

43 By'!

T here is an in portant treelevel charged-H iggs boson contribution to B, ! decay [16,
17]. Tt isnot helicity suppressed and interferes destructively w ith the SM contrdbution [341].
T he ratio of the branching ratio to the SM value is given by

BB ! G,  hs M :
Ry = ( ) - 14t n = ; (412)
B B ! ) V13 M g
wheregy = tan VYattree kvel [cf. (323)], leading to the negative interference w ith

the SM contribution.

44 B! X,

T he relevant e ective H am iltonian forB ! X 4 isgiven by
( )

bl s 4Gy X 0 0 0 0
H_ =  P= VgV Ci( )O:( )+ Co( L)O5( )+ Cg( p)Og( ) ; (413)
2 i=2;78
w ith
O, = s oo b
B em . 0o_ em .
Oy = Tg 2% Fooly o7_FSR F b
_ JsM p . 0 _ JsM p .
Og = 1 > SL F Ix; Og= 1 > SR F b : (4.14)



W e closely follow the calculations of Refs. [35] for the branching ratio B (B ! X ) and
the direct CP asymm etry In the decay. For the running c quark m ass, we usem . (m IC’O]E) to
capture a part of NN LO corrections [36]. W e refer to, forexam ple, A ppendix B ofRef. [37]
for the detailed expression of the branching ratio in term s of the W ilson coe cients which
we are gong to present below .

The LO charged-H iggs contribution is given by

1 ( Ry ) R ( Ly ) R
78 3 V33 Vy 78 V33 Vy 78
23 23

where y WMy )M , the ratio of the top-quark running mass at the scale My

to the charged H iggsboson pole mass. In the num erical analysis, we include the NLO

contribution. Note thatgy = t'VvYand 9y 4 = tVYattreelevel, seeEgs. 323)
and (3Z24). The functions F, 3" can be found in R ef. [37,38].

T he chargino contributions are

X 2M . 2 (1)

Cqg ( susy) S JCr)ad Fop (x5 )
, 3 m i
=12 d

VR DLVLY VR DLV, Crlp CrluMu _

T= Foe (X ) )
C V33V§2/3 2m ) 78y
2
2 X g (M Rul)33 g M 2
= CrlulUf) B=——""(CrlpU)) —%F & )
3. 2s My m < ¢ s
=12 G
R Colg CrlyMw  z?
C V33 T om =
=12 i | )
T T (CL )12 (CR )i2 (M uR u1)33 (3)
+ (Ultj) U2tj

Fipls ) i (416)

where x;; mi=m ? . W e refer to [39] for the functions F7(38) and to [40] for the chargino
m xing m atrices C1, g and the stop m xing m atrix U*.

Finally, the gluino contrdbutions to the W ilson coe cients C ;3 are given by

c3y ) = LI : % GF)
susy ) = = i I
! 9 ZGFM:Sf t =1 -
M
(Gi )izfo (x3) + (G§1 )j_'a—3f4 (x:) 7
mp
Co( susy) = . . 5G9y €0 3 () + 26 (k)
= A ——— i i i i
g ( sus 2GF:M3j2ti:1 L2 L 3
L M 1
+ G ln— 3f&:)+ —fi(xy) ; (4.17)
my 3
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where . V3V, = VgV, and x5 Ms3F=m C%_ . The loop functions f 534 (x;) may be
found in Ref. [41]. The W ilson coe cients for the prim ed operators O 9;8 can be obtained
by theexchangeL $§ R andM ;! M;:

8 X
0g s d
C,7( sysy) = = x; (Gg )i
9 GeMsF o, -
(Gg)ﬁfz(xi)Jr (Gi)ﬁ—3f4(xl) ;
my
0y s Xe d d 1
Cg ( susy) = X Gglip Grliz 36+ —fH (%)
ZGFM:Bf t =1 : : 3

ay M3 1
+ G )z— 3f3(xi)+ —fs(x;y) : (4.18)
my 3
In the above, C 7(?5)5 , the dow n-type squark-gluino-quark couplings G ¢ g arede ned through
the Interaction Lagrangian (suppressing the colour indices)
n

D_ _
Liga = 29, & e GT) PL+ (G2) Pr d

@)

+d G9), P, Y& ; (419)

1

Pr + (GI),

1

where £ are the usual GellM ann m atrices, i = 1;2;:::;6 label the m ass eigenstates of
down-type squarks,and = 1;2;3 them asseigenstates ofdow n—+ype quarks. T he couplings
are given by the dow n-fype squark m ixing m atrix as

Gy = ud ; @)y = U : (4.20)

i i+3
The 6 6 unitary m atrix UOT diagonalizes the dow n—type squark m assm atrix as

UYYM C%Ud = djag(mé1 ;mf;2 ;iiiim2); (421)

where & is the Iightest and & the heaviest. In the superCKM basis, in which the down
squarks are aligned w ith the down quarksande =Ul=U2=1,the6 6down-type
squark m assm atrix M gtakes on the form

) vy 2 v vyl 2,
M 5= 5 ) ; (422)
ﬁ RLV ﬁ RR

where the 3 3 subm atrices are given by
0

2
V-
2 = ﬁ2+?1(h§hd)+ o M/ 5+—s§ 1;
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1 1
PﬁER = p—zaivl p—zhﬁ \Zl
1 1
pﬁiL = 'p_éadvl ?—éhd V2 g
v 1
Mie = B3+ —(ah))+ o M; s L (4.23)

p_
with hy = v—fﬂ dVYRdl.Asabyproductofthe chosen super-CKM basis, we observe the
absence of avourm ixing in M iv,ﬁarallhddependenttenns,whean / 1.

5 Num erical Exam ples

For our num erical estim ates of FCNC obsarvabls at large tan , we take the GUT scale
to be the same as in the usual CM SSM with M FV , and a dedicated program has been
developed to calculate the RG evolution from the GUT scale to the low -energy SUSY scale
In the M CPM FV fram ework of theM SSM . For the H ggsm ass spectrtum and the m ixing
matrix O ; attheM gysy scale, the code CPsuperH [40]hasbeen used. In the calculation of
the avourchanging e ective couplings, only the leading contributions have been kept in
the single-H iggs—nsertion approxin ation, neglecting the EW corrections and the generically
an all avouro -diagonal elem ents of the squark m assm atrices.

In order to study the e ects of CP<iolating phases n the M CPM FV fram ework, we
consider a CP—<iolating variant of a typical CM SSM  scenario:

j‘/ll;glgj: 250 G@V,’
MZ =M =MZ=M;=8.=M =8.= 100 Gev);
AuJ= Agj= AcJ= 100 Gev (5.1)

at the GUT scale with tan (M gysy ) = 10, which corresponds to tan @ P°®) 7 102.
A s for the CP-iolating phases, we adopt the convention that = 0 , and we vary the
follow ing three phases:

GUT .
12 1= 237 37 A Ay = Ay = A.7 (5.2)

w here, for sin plicity, conm on phases 1, and "7 aretaken forthephasesofM 1, M gyt )
and A, 4. M gyt ), respectively. W e note that the phases of the gaugino m ass param eters,

125, and the  param eter, , are unchanged by the RG evolution, whilst the phases
of the elam ents of the m atrix A , 5. could be signi cantly di erent at low scales from the

valuesgiven attheGUT scale. T his scenario becom es the SPSla point [42]Jwhen 1,5 = 0
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and $YT = 180 .W e have found thatM g;sy varies between 530 G eV and 540 G &V , and
M gy7=10 Ge&V between 1.825 and 1.838 depending on the values of the CP<iolating

phases.

W e do not consider in this section the electric dipole m om ent constraints [43] on the
M CPM FV param eter space oftheM SSM .A system atic In plem entation of these constraints

and their In pact on the FCNC obsarvables w ill be given in a forthcom ing com m unication.

51 Phases and M asses

W e rst consider the (3,3) eleaments A ¢, (& )33=(hf )33 @t M qygy with £ = u;d;e and
f5= tb; .We nd that the com plex quantity A¢, can be written in term s of the com plex
AfandM 5 attheGUT scale as:

A .
Ar,Mgysy) Co ArMogur) C?;M iMcur); (5.3)

w here the real coe cients C ?;

and C ?Bi are functions of the Yukawa and gauge couplings.
T his expression is sin ilar to that found In Ref. [44]. Tn genera],cgg’d arem uch an aller than
Ci’f; . Indeed,, they are even am aller than C?bl"z withC2® < Cl¢.ForA ,C?¢isnotsomuch
analler than € *#, whilst C"* isneglighle. This is because the strong coupling am pli es
the in uence of M 5, whilke the large Yukawa couplings suppress those of the A tem s via
renom alization e ects [44]. For the param eter set (5.1]) with tan = 10, we observe that
thephases 5, M sysy ) and a, (M gusy ) are largely determ Ined by 3, whereas the phase

a Mgysy) ismorea ected by 1, than by $YT. This situation becom es di erent for
larger values of tan , ie.we nd that CM3* becom es signi cant and Cﬁd decreases when

tan Increases.

In Fig.[4 we show sin »,, sih 5, , and sih » for the parameter set (5.]) with
tan M gysy )= 10. In the left fram es, we ocbserve that a., and a canbeflly generated
from 3 and ., respectively, even when A, 4. at theGUT scalke arereal, ;°7 = 180 .
W hilst the dependence of 5 on 3 isnegligbl (s0lid line in the leftdower fram e), the
dependencesof , , on 1, can be sizeable (dashed lines in the left-upper and leftm ddle
fram es). In the right frames, the caseswith 3= 0 ( 2, )and 1, =0 ( 5 )arecon-
sidered, show ing how large the A term phasesm ay becom e at theM gysy Scale for realM 5
and/orrealM ; and M ,. W hen thegaugihom assesareallreal, jsin »,Jjand jsin A, jtum
out to be 0:06 and 0:12, respectively, whereas jsin 5 jcan be as large as 055. Som e-
what larger CP-violating phases are possible for ,, and ,, when M, and M , are pure
In aginary (see dashed and dash-dotted lines in the rightupper and right-m iddle fram es of
Fi.[). Finally, there are no visble e ectsof 3 on
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Figure 4: In the kft frames, taking ;7 = 180 , sin A, (upper), sh A, (middk), and

sin A (lower) are shown as functions of 3 ®king 1, = 0 (solid lines) and 1, taking
3 = 0 (dashed Iines). In the right fram es they are shown as functions of $YT taking
3=0 or ;2=0.Forsin ,, and sin ,, , three cases are shown: 1, = 270 (ble

dash-dott=d lines), 0 (black solid lines), and 90 (red dashed lines). For sih , , we set
3= 0 aswell. The param eters are taken as in Eq. (&) with tan (M gysy ) = 10.

W e now discuss the e ects of C P<riolating phases on them asses of H iggs bosons, third-

generation squarks and heavy neutralinos and chargino. In the upper-left fram e of F .[q,

we show the absolute values of A ;. as functions ofa comm on phase 1= .= 3
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Figure 5: The absolute values of A 4, (upper—kft) and them asses of the heavy H iggs bosons
(upper right), soottom s and stops (lower kft), and charginos and neutralinos (lower right)
as finctions of a comm on phase 1= 2= 3.Thesold linesare for $"7 = 180
and the dashed lines for $Y" = 0 . The param eters are listed iIn Eq. (..

fortwo valuesof $YT:0 (dashed lines) and 180 (sold lines). In this case, one can show
GUT

the absolute values squared depend only on the di erence M oS
P e foos( 30T )i (54)

using Eq. (£3),with ¢; ¢ > 0. From Fi.[H, we cbserve that there is strong correlation
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between Ay, jand the particle mass spectrum . This correlation is due to the phase-
dependent term s Tr(ala,) and Tr(ajas) i dM # . =dtand dil 2, =dt. The fact that
M Ifu jdecreases (increases) when Tr(ala, ) decreases (Increases) explains the CP-odd phase
dependence of heavier H ggsboson m asses, as can be seen from the uppertight fram e of
Fig.[H. The sam e correlation is cbserved for the heavy chargino and neutralinos in the
low erright fram e of F ig.[d, since a decreased (increassd) value of M }fu Jjleads to an aller
(larger) values of j j. W e nd that the variations in the m asses of the lightest H iggs boson
H; and the lightest neutralino ~ amount to 2 G &V and 3 G &V , respectively. The CP-odd
phase dependences of# 2, 2 ,and M 2 at the scale M gysv can be understood sin ilarly.
Here the (3,3) com ponents of them assm atrices decrease (Increase) when Tr(ala, ) Increases
(decreases). For the chosen valueoftan (M gysy ) = 10, the (3,3) com ponent offt S show s
the largest e ect, since di S=dt contains 2Tr(ala,) com pared to Tr(ala,) + Tr(agad) n
aift ;=dtand 2Tr(ajas) In dfi 2 =dt. Furthem ore,wenote thatty % and® & .From

these obsarvations, one can understand the qualitative CP-odd phase dependence of the
stop and sbottom m asses, as shown In the lower-left fram e of F .[H.

52 E ectson M g, and M g,

In the upper-eft fram e of Fig.[d, we show the SUSY contribution to M 5, in units of
ps ! asa function oftan (M gysy ) for three values of the comm on phase,namely y = 0

(sold Iine), 90 (dashed line), and 180 (dash-dotted line). T he horizontal line is for the
measured value: M F*F = 177  0:0 (stat:)  0:07 (syst:) ps' [18]. W e observe that
the SUSY contribution can be larger than the current observed value for y = 180 when
tan is large. Indeed, for = 180 (90 ),we nd tan < 44 (48), whereas there is no

restriction on tan for y = 0 .

The SUSY contribution CfRR(DP) is suppressed by m Z2=m ? with respect to clSLL(DP)

LR(DP SLL(DP) .

[see Eq. (44)]. The T, '5 is com parablk to 1 j while the 2HDM contrdbution,
CgR (apm ), becom es less In portant as tan  increases. T he dip of the coupling jClsLL(DP)j
for y = 180 (upperxright frame) at tan ' 45 is due to the fact that the three H iggs
bosons becom e degenerate and cancel other contributions. Beyond this point,M g, My

2

decreases rapdly while M g | 110 G &V ram ains nearly unchanged.

In the upperleft fram e of Fig.[l, we show the SUSY contrdution to M p, in units
of ps ! as a function of tan (M gysy ), usihg the sam e line conventions as in Fig.[d. The
horizontal line is for the m easured valie: M E‘ffp = 05507 0005 ps! [45]. W e observe
that the SUSY contrdbution is always an aller than the m easured value, although it does
exhibit a strong dependence on the CPwviolating phase y . The dibs at tan 7 45
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Figure 6: The SUSY contribution to M . in units of ps ! (upper-left) and the relevant
couplings in the other three fram es, as functions of tan (M gysy ), for three values of the
common phase: y = 0 (solid lines), 90 (dashed lines), and 180 (dash-dotied lines).

We x $Y" =0 and the param eters are taken as in Eq. (5.]), except that here we choose

U g = 200 GeV so0 as to avold a very light or tachyonic ~ state for arge tan . In the
upper—kft fram e, we show the currently m easured value as the horizontal line.

(v =180 )and tan " 49 ( vy = 90 ) ardse for the same reason as n the M 3, case.

. . SLL(DP SRR (DP
T he dom lnant contribution com es from C) ( ),aurldC1 ®F)

DP)_ . SLL(DP) .

The value of ijLR( jis an aller than that of I Jj. Finally, as before, the 2HDM

is suppressed by m 3=m ;.
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53 E ectson Bg!

In the upper-left fram e of F ig.[8, we show thebranchingratioB B, ! *

oftan

27

becom es less signi cant for large values of tan

) as a function

(M sy sy ) using the sam e line conventions as in F ig.[d for three values of the com m on
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Figure 8: The branching ratio B B ! ) in the upperleft fram e and the relevant

couplings in the other three fram es, in units of GeV ' as finctions of tan (M gysy ). The
line conventions and the param eters chosen are the sam e as in Fig.[d, except that the two
horizontal lines in the upper—kft fram e are for the SM pradiction and the current upper
Imitat90 % C L.

phase y : u = 0 (sold line), 90 (dashed line), and 180 (dash-dotted line). The two
horizontal Iines in the upper-left fram e are for the SM prediction and the current upper
lmitat90 % C L. namely 755 108 [18]. W e observe that the branching ratio changes
substantially as v varies. Speci cally, for y = 180 (90 ) 0 ,we nd that the present

28



+

upper Iimiton B (B ! ) In poses the upper Im it tan < 34 (38) 42.

T he phase dependence of the branching ratio com es from that of the couplings Cs and
Cp [see (48)], which are shown In the upperright and the lower-left fram es, respectively.
We nd that £sj’ TpJ sihce 011 Oa1 0 and My, My, [cf. (48) and {(49)].
W e note that, for y = 180 ,B (Bg ! * ) can be an aller than the SM prediction for
tan < 24. This is because the H ggsm ediated contribution Cp cancels the SM one Cp,
as shown in the lowerright fram e of Fig.[8, in which the factorm ,=m , + m ) [cf. (4.11)]

has been suppressed in the label of the y-axis.

54 E ectson B, !

The recent BELLE and BABAR results for the branching ratio B B ! ) are [46,47]
BB ! PELLE = 1597020 (stat)’ ono (syst)  10%; (5.5)
BB ! PABAR - (12 04 (stat) 03 (bkgsyst) 02 (othersyst)) 16;

which lead toB (B ! FXP = (14 043) 10%. Combiing theBELLE and BABAR

results w ith the SM valueB (B ! P o= (141 0:33) 10* obtained by the global
twithoutusing B (B ! ) as an input [48], we have the following 1  range for the

ratio to the SM prediction [1:
RE*F =10 0:38: (5.6)

In the upperdeft frame of Fig.[d, we show possble values of this ratio in the M SSM
with M CPM FV , together w ith the experin ental range given in (5.4), as finctions of tan
for three representative values of the comm on phase y and for $Y" = 0. The three
thin arrow s at the bottom indicate the positions where the ratio vanishes at the tree
level without including threshold corrections for = 180 , 90 , and 0 (from lft to
right). Beyond them inimum point, the charged H iggsfoson contribution dom inates over
the SM one. Tt rapidly grows as tan* initially and then goes over to tan® due to the
threshold corrections. For each digplayed value of  ,we nd two regionsoftan where
the experin ental value of B B ! ) is obtained. One region isattan < 25 (27) 29
for y = 180 (90 ) 0 , and corresponds to the case where the charged H iggsdboson
contrbution is a snall ‘correction’ to the SM tem . The second region is at tan

41 (46) 48,for y = 180 (90 ) 0 ,and corresponds to the case where the charged H iggs—
boson contribution dom inates over the SM term . W e note that the locations of these
second allow ed regions would not be estin ated correctly if the threshold corrections were

3T his range is di erent from that used in [49]due to the new BABAR result [47].
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Figure 9: The atio Ry (upper—keft), the charged-H iggs boson m ass in G &V (upper<ight),
;ydu 135V 13 =

(95 4, ):1=Vup as functions of tan  for three or four values of  , king ;"% = 0°.
T he experim entally allbowed 1- region is bounded with two horizontal lines in the upper—
kft fram e. The straight line with a ag ‘Tree’ in the bwer—kft fram e shows the tree—level

coupling. T he param eters are the sam e as in Fig.[d.

and the real (ower—keft) and In aginary (lower=ight) parts of the coupling (g

not included. These regions are actually excluded by theB, ! constraint discussed
previously.
T he tree—level vanishing points are also Indicated in the upperright fram e as intersec-
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tionsoftheM y and tan Mg lines. W e obsarve that the resumm ed threshold e ects
enhance the charged H iggsboson contribution when y = 180 and suppress it when

v = 0 . Ascan be seen from the owerleft frame of Fig.[d, or y = 90 , the tan -
dependence of Ry becom es rather sim ilar to the tree-level one. H owever, as digplayed in
the lowerright fram e of F ig.[d, there is a non-vanishing contribution from the in agiary

part of the coupling (gg Y w3V 13-

55 E ectson B ! Xg

T he current experim entalbound on B (B ! X ) with a photon energy cutofE > E ot =
16 Gev is [50]

BB ! X, =355 02499 0:03) 10%: (5.7)

O ur estin ate of the SM prediction based on the NLO calculation is 335 104, which is
about1l Tlarger than the NNLO result, (3:15 023) 10* [36]. m Fg.[I0we show the
branching ratioB B ! X ) and the direct CP asymm etry AE“E{ (B ! X4 )asfunctions
of tan . In the upperleft fram e, we Include only the charged-H iggs contribution, which
Increases the branching ratio. The larger contridbution in the high-tan region is due to
the decrease of the charged H iggsboson mass. In the upperright fram e of Fig.[10, we
add the contrdbution from the chargino-m ediated loops. T his contribution largely cancels
the charged-H iggs contrbution, when < 90°. Instead, if y is larger than 90,
the chargino contribution interferes constructively w ith the SM one, resulting in a rapid
Increase of the branching ratio astan grow s. T his behaviour can be understood from the
fact that the dom inant contribution to C,,, com es from the last term of Eq. (4.1d),which is
proportionalto & 2:=c ,and the branching ratio is proportional to its real part, nam ely
s a.=C . W e recall that the phase ,, at the low-energy scale can largely be induced
by nonwvanishing  even when $YT vanishes (see the upper fram es of Fig.[d). In the
low er-left fram e of F ig.[10, we show the full result including the contribution of the ghiino—
m ediated loops, which is non-vanishing in the presence of avourm ixing in the dow n-type
squark massm atrix. W e nd that it is num erically negliglble for the param eters chosen. In
the sam e fram e, as well as In the upperxight one, we show the case of the comm on phase

v = 60°,In which there is a nearly exact cancellation between the chargino and charged-
H iggs contributions, and all the tan region considered is com patible with the current
experin ental bound. T his cbservation is also apparent in the left panel of F ig.[11]. In the
low erright fram e of F i5.[10, we show the direct CP asymm etry for several com binations of

( $9T; u), ndig that it can be as krge as 4% ,when y = 60 .
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Figure 10: Thebranchingratio B (B ! X )asa function oftan for severalvalues of the
commonphase y = 1= ,= szand ;°7
2— Jevel is bounded by two horizontal lines. In the upper—kft fram e, only the charged-H iggs
contribution is added to the SM prediction. In the upper+right and ower—kft fram es, the
SUSY contributions are included. The direct CP asymmetry ASE (B | X ) isalo shown

in the Jower—right fram e for several com binations of ( $”T ; ). The param eters are the

. The region allowed experim entally at the

sam e as in Fig.[d.

To illustrate the strong dependences of the branching ratio and the CP asymm etry on
the comm on phase y ,we show them asfunctionsof , forfurvaluesoftan in Figl[Id.
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Figure1ll: Thebranchingratio B (B ! X, ) (left) and the CP asymmetry ASE B | X, )
(right) as functions of  for four values of tan taking ;°" = 0°. The region allbwed
experim entally at the 2— Jvel is bounded by two horizontal lines in the kft frame. In the
right fram e, points satisfying this constraint are denoted by open squares. T he param eters

are the sam e as in Fig.[d.

T he region allowed experim entally at the 2— Jlevel is bounded by two horizontal Iines in

the left fram e. In the right fram e, points w ithin this region are denoted w ith open squares.

W e obsarve that the branching ratio isquite insensitive to tan  around y = 60°,whereas

theCP asymm etry can beas argeas 5% forpointsw ithin the current 2- bound on the
branching ratio. For com parison, we note that the experim ental range currently allowed is

04 3% [B0], mnplying that the new contribution in theM SSM with M CPM FV could be
com parable to the present experin ental error, and m uch larger than the SM contribution,

which isexpected to bebelow 1% . Finally, it is in portant to rem ark that, In the absence of
any cancellation m echanism [43],EDM constraints severely restrict the soft C P-odd phases

in constrained m odels of low —scale SU SY , such as the constrained M SSM . In a forthcom ing

paper, however, we w ill dem onstrate in detail, how these constraints can be considerably

relaxed n theM SSM with M CPM FV .
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6 Conclusions

Tn this paper we have form ulated the m axim ally CP «violating version of the M SSM w ith
m inimal avour viclation, the M SSM with M CPM FV , show ing that it has 19 param e-
ters, Including 6 additional CP <iolating phases beyond the CKM phase in the SM . As
preparation for our discussion of B -m eson observables, we have developed a m anifestly

avour-covariant e ective Lagrangian form alism , lncluding a new class of dom inant sub-
leading contributions due to non-decoupling e ects of the third-generation quarks. W e have
presented analytical results for a range of di erent B -m eson observables, lncluding the B ¢
and By mass di erences, and the decays B¢ ! By ! and b! s . Wehave
presented num erical results for these observables in one speci ¢ M CPM FV scenario. This
serves to dem onstrate that the experin ental constraints on B -m eson m ixings and their de—
cays In pose constraints, eg.,on tan , that depend strongly on the CP-<iolating phases in
theM CPM FV m odel, m ost notably on the soft gliino-m ass phase In the soeci ¢ exam ple
studied.

In summ ary, on the one hand, our paper introduces a new class of M SSM m odels of
potential phenom enological interest and develops an appropriate form alian for analyzing
them , and on the other, it presents exploratory num erical studies of the constraints m —
posad by experin ental lim its on B -m eson observables. In view of the large num ber of the
theoretical param eters in theM SSM with M CPM FV ,we leave for future work a m ore com —
plete exploration of its param eter space, including the correlation w ith other experim ental
constraints, eg. those in posad by lin its on electric dipole m om ents.
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A R enomm alization G roup Equations

Here we list all relevant one-loop renomm alization group equations (RG Es) for the gauge
and Yukawa couplings [51], as well as for the soft SU SY Joreaking m ass param eters of the
generalM SSM [52,53]. De ning the RG evolution parameter t= n(Q?=M 2., ), wemay
w rite down the one-loop RG E s as follow s

dgizps 1 33 5 3
‘ = — g ; ;03 ; Al
dt 322 §Ai% g (#-1)
dM 1,5 1 33, )
2P = —gMq;9M,;  3gM 7 A2
a0t ez 5 aMiigM. gM s @ 2)
dh, hy 13 16
= — 3 — g + 3hYh, + h’hy + 3Trt'h, ; A3
- 37 =9 g 39 ! hy (h'h,) (@ 3)
dhy hy 7, 16
— = — 3 — g5 + 3h’hy + hYh, + 3Trt’h
dt 32 2 155 g 3 % ard T T (haha)
+ Tr(’h.) @A 4)
dh h 9 ,
dte — 3262 <9 3¢ + 3h'h. + 3Tr(h’hy) + Tr(hth,) ; @ 5)
da, 1 26 o4 em .+ P, n 13, 52, 16,
= i - u i - Ay
gt 322 gttt PEM2 T ToGEs 15T R T

+ 4h,h¥a, + 5ayh’h, + 6Tr(h’a,)h, + 3Tr(hlh,)a, + 2hyh’aq

+ ayh’hg (A b)
dag 1 14 , 32, 7 . 16
— = —gM + 6gM, + —giM h —g; + 395 + — a
dt 322 15t T PRz T g R 15T PR 5% G

+ 4hdh§ad + 5adh§hd + 6Tr(h§ad)hd + 3Tr(h§hd)ad + 2hdhiau

+ aghlh, + 2Tr(lac)hg + Tr(hlho)aq A7)

dae 1 2 2 2 2
% - 322 6giM 1 + 69M > he 391 + 39; ae

+ 4hch¥a. + 5achyh. + 2Tr(hYa.)h. + Tr(hth.)a.

+ 6Tr(hlaq)he + 3Tr(hihg)ae ; (A 8)

40 ur results are in agreem ent w ith [531.
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dB 301, , , , 1 ,

at 16 2 gglMl + M, + Tr(hja,) + Tr(hjaq) + gTr(heae) ;

d 3 1 1

w - 322 ggf g + Tr(’h,) + Tr(hlhy) + STrthe)
am 2 3

iy —gl #1,F  g#.F + Trm.fZnd) + Tr(lE 2h,)

1
+ leu Tr(hlh,) + Tr(ala,) + ngTr(YM 2y

dMI?d 3 1 2 Pﬁ[ y yﬁ 2
= T Eglj\/lljz gM.F + Trq ZhY) + Trhl¥ hy)
1 1
+M§ Tr(hihg) + Tr(ajaq) + ETr(heﬁ?i nY) + 5Tr(hgnﬁ Zh.)
2 y 1 y 1 2 2
+ —MHd rthih.) + - Tr(aiae) — g Tr(YM “)
3 10
a2 1 1
Q 2
= = —gljmf + 3 M T + ggj\ma L + S hihuM g
1@ 21y yﬁ 2 2 Y y 1 Y P@ 2 115@
+ W ohin, + b Ghy + M hihy + oafa, + Shingd g o+ o
1
+hi¥ Jhy + M hlhg + alag + ngTr(YM Y15 ;
df 2 1 3 1 1
dtL = ggfmlf + 3giM L, 15+ Ehghekﬁlf + Ekﬁl “n'h,
3
+h% Zh. + M h'h. + ala. l—ngTr(YM 1,
difr 2 1 16
= = oS+ qmaf 1; + hyh® 5 + @ Shoh!
2
+2h,M 2hY + 2M 7 hyhY + 2a,a! gngr(YM 1 ;
dif1 2 1
. = gmlf qmaf 1; + hehlf 2+ # 2 hoh)
1
+ 2hgf 3hY + 2M [ hgh) + 2aqa) + gngr(YM 1, ;
al 2 1 12
— 15 + heh 2 + @ 2hoh? + 2h hY
at 16 2 5 gl:M F1s eﬁ
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3
+ 2M } hch? + 2a.al + gngr(YM 1s @ 17)

where g; is the GUT -nom alized gguge coupling, which is related to the U (1), gauge
coupling g° of the SM through g; =  5=3g°. In addition, the expression

Tr(YM?) = M} M o+ Tr @7 @7 WG+ @I+ H] (A 18)

u E

is the Fayet{Tliopoulos D term contribution to the one-loop RG Es. Tt can be shown that
dTr(YM ?)=dt / Tr(YM ?), ie., the expression Tr (Y M 2) is m ultiplicatively renom al-
izable. Asusual, the GUT scale is determ ined by the boundary condition: gy (M gur ) =

PHMeur)= B3Mgyr ). W enote, nally, that the one-loop RG E s listed above are Invariant
under the unitary avour transform ations given in (2.3).

B Z-and W Boson W ard Identities

In the absence of gauge quantum corrections, the Z—and W  boson couplings to quarks
obey the follow ing treelevel W Is [54]:

q . 0 0ee0
M, T “qpip @)+ C T @pip Q) = ® 1)
z " O 5
- Tzf Py 2QfOSV2v ££0(P) Tzf Pr 2QfSV2v 0P d)
Mg c
d : *u . GTu
v Togipip @) + 1° "Yaipip @) = ®2)
" i, D i
- Voug uu® (p)PL Vuao Pr g0 (p Q) ’
My
B p— ) . ud) 1 1
where ¢, = 1 .%N is the cosine of the weak m ixing angle and T, = 3 ( E) and

Qua) = % ( %) are the weak isogpin and electric charge quantum num bers for the u and
d quarks. In (B.I) and (B.J), :¢o(p) are quark selfenergies describing the ferm ionic
transition £° ! f,wih £ = u;d and £° = u%d’. Tn addition, %™ '(gp;p  q) and

" ludsoip Q) are vertex functions that describe the interaction of the Z —and W * -
boson to quarks, respectively. Them om enta g of the gauge bosons are de ned as ow ing
Into the vertex, while them om entuim ow of the quarks follow s the ferm ion arrow , where
p always denotes the outgoing m om entum .

In general, virtual strong and electrow eak gauge corrections to the Z —and W -boson
vertices usually distort these identities, through temm s that depend on the gauge- xing
param eter, eg, . One possible fram ework In which these dentities can be enforced is
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the pinch technique [55], leading to analytic results that are independent of . Recently,
this approach has been extended to super Yang-M ills theories [56]. W e ignore the gauge
quantum corrections in our phenom enological analysis, sihce they are rather am all.
Inthelimitq ! 0,theW Is (B.) and (B_J) sin plify considerably. Letus rst consider
the W I involving the Z boson and its associate would-be G odstone boson G °. Since the
vertex function %%f (g;p;p q) hasno R singularities in the lmitg ! 0, thew I (B.)
takes on themuch sin pler form
h i

TS  ¢00(P)Py B o) : B 3)

Goffo( jgw
Mzc °©

O;pip) =

D ecom posing the quark selfenergies ¢ro(p) w ith respect to their spinorial structure,
fo(P) = (@) BPL + TE)BPr + F®)PL + L (®)Pr . (B4

wem ay rewrite (B_3) as ollow s:

GOffo ig, fh D 2 D 2 *
(O;pip) = M T, £00(P )P B e (P7) ¢ (B S5)
W

Considering the proper nom alizations determ ined by the relations given in (3.13), it is
possible to m ake the follow ing identi cations in the e ective potential Imitp ! O:

i
Do(0) = UYh:h iUl ; Py ©7FF(0;0;0) = p—zugyhf “ufp,; B

where the unitary m atrices U E’; take care of the weak to the m ass basis transform ations

asgiven in 3),with U} = Uf and U ¢ = USV . Then, the sinpli ed W I (B_H) in plies
that P_
Go 2 ¢ .
: = — T, h £1; B.7)
v

which is the relation assum ed in Section 3 [cf. (3.17)].

W e now tum our attention to the W I nvolving the W ¥ boson and the associated
would-be G odstone boson G* . In the e ective potential limitg ;p ! 0,we obtain
i©%0;0;0) = p=—— Vuy 0)P,  Vuw gq(0)Pr (B 8)

W

D
uuo(

Em ploying the de nitions (3.13) and taking the weak—to-m ass basis rotations of the quark
states into account, we nd the relations:

Pp ¢ "(0;0;0) = Uhy § ULPL; Py ¢ M(0;0;0) = Uha § ULPL:
(B .9)
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From the smpli ed W I (B.8) and its H emm itean conjigate, we then derive that

B S
G 2 ) G 2 )
T a = b oadi (B 10)
which is in agreem entw ith (3.17) and the discussion given below . W enote that the unitarity
of the radiatively-corrected CKM m atrix V lies at the heart of deriving the relations (B_17)

and (B.10).

C CPsuperH Interface

To solve theRG E sgiven in A ppendix[Al, we have considered the follow ing input param eters:

T he gauge couplings at the scale M; :

59%M ;) M)
59472; 2(Mz)=g47Z; sMz); (1)

wheregM ; )= eM ; )=sy and g°M ; )= eM ; )=G; Wwith o Mz)= & (M ;)=4

1(Mz)=

The evolutions of 1, from M , tom °® are determ ined by [57]

53
mE) = 11<Mz>1+¥ln<Mz=m§°b);
1 pole 1 11 pole
, ) =, Myg) 6—Jn(MZ=mt ) : c2)
On the other hand, s(m °®) has been cbtained by solving the fllow ing equation
iteratively [58]
| |
pole pole
m b (m )
S = J'Mg) bk —h
MZ :b) B(MZ)
h i
by
b smEF) sMg) +0(3) (€ 3)

where Iy = (11 2N=3)=2 ,h = (51 19N=3)=4 ?,and b, = (2857
5033N =9+ 325N 2=27)=64 > with Ny = 5.

The masses of the quarks and the charged Ieptons at the top-quark polem ass

sale m 2%, In pagticular, the top-quark running mass at m PO® is obtained from :

memP®)=mP®= 1+ 4 ;m?*)=3 .TheCKM matrix V isassumed to be given

at the sam e scale m 2°®. Then, In general, the complex 3 3 Yukawa m atrices at

m P°*¥ are given by
p_

hu;e(mi"b)=7ﬂu;e(m§“e); ham %)= — @ ;@) VYym?*®) (C 4)

<l or
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In the avour basis U E =Ug = Ug = 13. The diagonal quark and charged—lepton

m ass m atrices are given by

h i
B ,@m®) = diag m,m%);m @>%);m @) ;
h i
Mm% = diag mamP™®)m o m %) m,mP) ;
h i
M .mi™) = diag m.mP™)m @) m mi™) : (C 5)

G iven 1;2,.3(m§O]e) and hu,d,e(mlt’oje), the evolution from mP°® to the scale M gysy
have been obtained by solving the SM RGEs. Here the SUSY scale M gysy has been
determm Ined by solving
Q2Q = maxi Q%) mz2(Q°)] (C 6)
=M sysy

fteratively, wherem ? max@? +mZ;m2 +mZ)andm? maxm? +mZ;m? +
t 3 U3 B 3 D3

m?).Form (253,% (¢ 2 ),wghave taken the (3;3) com ponentofthg corresponding
massm atrix as h i

Mo gipee @)= Blopae @) (o))
At the scaleM gyqy , the Yukawa m atrices m atch as

hyM gy ) = halM gygy )=sin M gusy ) s

NaeM™ qygy ) = hapM gyqy )=CO8 Mgysy ) (C 8)

and, nally, the evolution from M gysy to M gyt have been obtained by solving the
M SSM RGEs.

The 19 avoursingletm ass scales of theM SSM with M CPM FV ,which are param e-
terized as follow s:

N i . 2 . 2 .
Migade #7°;  Rupple "vee; D"EQ;U;D pe i M Hyg ° (€.9)

These are Inputed at the GUT scale M gy, which is de ned as the scale where the
couplings g; and g, mest. Any di erence between gs;M gyr ) and g M gy ) may be
attributed to som e unknown threshod e ectattheGUT scale.

By solving the RGEs from theGUT scaleM gyt to the SUSY scaleM gygy ,We obtain:

{ Three com plex gaugino m asses, M ;jet *(Q = M sysy )-

{ Three3 3 complex Yukawa coupling m atrices, h, 53 (Q = M sysy ).
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{ Three3 3 complex a-term matrices, a,4.(Q = M sysy ).
{ The Soch:'ggsmaSS@SrM;fu;Hd(Q = Msysy ).

{ Thecomplex 3 3 sferm fon m ass m atrices, Sopnz@=Msysy).

T he Inputs for the code CPsuperH are:

le le
tan myT); MY Mosusy)i MipgMsusy )i

Mo g zm Msvsy )i AcMsusy)i ApMsysy)i A Msysy): (C.10)

T he ratio of the vacuum expectation values at m 2 is related to that atM gysy by [21]

S
ta pole, _ 2 (M )
n o mg)= - o, &N M susy ) (C 1)
1 M)
w ith ; ,
3h M
+() pole, b(t) sUsYy
1(2) me™)= 1+ 32 2 m Poe2 ° (C.12)
t

T he gaugino m ass param eters are directly read from the results of the RG running, the
sferm ion m asses are given by
h i 1=2
2
Mo, oo me Msusy )= B Ggp e Msusy) 55 (C.13)
and the A param eters, ncluding their C P<riolating phases, by

aw . lar M susy )]s, . (C .14)
£ susy e M susy )]3a .

The parameter and charged Higgsboson pole mass M [ °® can be obtained from
Mg, Msysy)and M (Msysy ) by inposing the two CP-even tadpole conditions, T | =
T ,= 0 [21]. The tadpoles can be cast Into the form

-, 1 - _

—2 —2 2
Toon=Wvie) 1t empRemp + Vi) 12)Vig) t+ 5( 3+ )V T VieXie (C15)
w here " "
2
3 m g
2 ®) )
K12 > T Fm b N o o (C 1o)
8 m?
The quantities 77, and ; are given by
—2 _ 2 ) 2(1) pole,
12 = MHO‘;Hu ] %]-I' 12 (mt )r
- (1) pole (2) pole, .
i = it (mt ) + i (mt ) ; (C17)
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w here

- 3 2 M 2 #
e
) = 6 2 e jz]n po]e2 + I RF I po]e2 ;
t t
n #
2(1) ,_ polk 3 M2
L heF A I po]e2+ hfi fn polez : (C 18)
t
The couplings i, i " (m It’oje) and (2)(m Et’Ole) may be found in Ref. [21]. The squared

absolute value j § can be determ ined from (T =, T, =wn)= 0,which does not depend

on Rem ?,, sihhce

M 2 M2 £ (V2 22y 4 X X £x

j j? _ ( Hg Hy ) (l 1 2V2 ) A ( 1 2) (C .19)

1)+ Xy
w ith
3 M 2 2 '
XA 16 2 jlbjzﬁbjzjn poleZ Ejlt:jzﬁt:jzh po]e2 ;
t | t
3 M ? M 2 '

X = hh s polez £h,F In poM : (C 20)

t t

W e note that the phase of the param eter, , isnot renom alized.

Once j § is ound, Rem?, can be cbtained from T, = Oor T, = 0. W ith Rem3,
known, the charged H iggsboson polem ass can be obtained by solving the follow ing equa-
tion iteratively:

M P 2=R:7ri%2+é_4v2 ReP, ., 5= M o) (C 21)
For the explicit form of Py .y , we refer to Ref. [59]. W e note that, for large tan ,
Refij,=s ¢ ' M{  M§ M/ at the tree kevel. Finally, after in posing the CP-odd
tadpole condition In B )= 0, weuse B = Reﬁfz to calculate the 2HDM contribu-—
tion (3.28), by noting H ,H 4 = T,
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