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Additional sources of CP violation in the MSSM may affect B-meson mixings and decays, even in
scenarios with minimal flavor violation (MFV). We formulate the maximally CP-violating and minimally
flavor-violating (MCPMFV) variant of the MSSM, which has 19 parameters, including 6 phases that
violate CP. We then develop a manifestly flavor-covariant effective Lagrangian formalism for calculating
Higgs-mediated flavor-changing-neutral-current (FCNC) observables in the MSSM at large tan�, and
analyze within the MCPMFV framework FCNC and other processes involving B mesons. We include a
new class of dominant subleading contributions due to nondecoupling effects of the third-generation
quarks. We present illustrative numerical results that include effects of the CP-odd MCPMFV parameters
on Higgs and sparticle masses, the Bs and Bd mass differences, and on the decays Bs ! ����, Bu ! ��,
and b! s�. We use these results to derive illustrative constraints on the MCPMFV parameters imposed
by D0, CDF, Belle, and BABAR measurements of B mesons, demonstrating how a potentially observable
contribution to the CP asymmetry in the b! s� decay may arise in the MSSM with MCPMFV.
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I. INTRODUCTION

Models incorporating supersymmetry (SUSY), such as
the minimal supersymmetric standard model (MSSM),
contain many possible sources of flavor and CP violation.
In particular, the soft SUSY-breaking sector in general
introduces many new sources of flavor and CP violation,
giving rise to effects that may exceed the experimental
limits by several orders of magnitude. The unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing ma-
trix suppresses flavor-changing-neutral currents (FCNC)
and CP violation somewhat, thanks to the Glashow-
Iliopoulos-Maiani (GIM) mechanism [1], to the extent
that the soft SUSY-breaking scalar masses are universal.
One possible solution to the flavor and CP problems is to
ensure that the soft SUSY-breaking sector is fully protected
by the GIM mechanism. This can be achieved within the
so-called framework of minimal flavor violation (MFV),
where all flavor and CP effects are mediated by the super-
potential interactions corresponding to the ordinary
Yukawa couplings of the Higgs bosons to quarks and
leptons. In this framework, FCNC and CP-violating ob-
servables depend only on the fermion masses and their
mixings, and hence the CKM mixing matrix V [2]. In such
a scenario, all FCNC and CP-violation observables would
vanish in the MSSM if V were equal to the unit matrix 1.

A minimal realization of MFV in the MSSM is obtained
by assuming that all soft SUSY-breaking bilinear masses
for the scalar particles, such as squarks, sleptons, and
Higgs bosons, are equal to a common valuem0 at the gauge
coupling unification pointMGUT, whereMGUT might be the
threshold for some underlying grand unified theory (GUT)

based, e.g., on SU(5) or SO(10). Likewise, the soft masses
of the fermionic SUSY partners of the gauge fields, the
gauginos, might also be equal to a common value m1=2 at
MGUT and, in the same spirit, all soft trilinear Yukawa
couplings of the Higgs bosons to squarks and sleptons
could be real and equal to a universal parameter A times
the corresponding Higgs-fermion-antifermion couplings.
The Higgs supermultiplet mixing parameter � and the
corresponding soft SUSY-breaking term B� introduce
two additional mass scales in the theory. However, mini-
mization conditions on the Higgs potential can be used to
eliminate these two last mass scales in favor of the elec-
troweak scale MZ and tan� � vu=vd, where vu;d are the
vacuum expectation values (VEVs) of the two Higgs dou-
blets Hu;d in the MSSM.

It is well known that a minimal expansion of the above
MFV framework is to allow the soft SUSY-breaking mass
parameters m1=2 and A to be complex with CP-odd phases,
thereby introducing two additional sources of CP violation
in the theory. In this case, all FCNC observables, whether
CP conserving or not, still depend on the CKM mixing
matrix V in such a way that they vanish if V is assumed to
be diagonal, i.e., equal to the unit matrix. However, the two
new phases introduce the possibility of CP violation in
flavor-conserving processes even if V is real, and in general
CP violation in FCNC processes may differ from CKM
predictions.

Here we go one step further, and ask the following
question. What is the maximal number of additional
CP-violating parameters and extra flavor-singlet mass
scales that could be present in the MSSM, for which the
above notion of MFV remains still valid, i.e., all FCNC
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effects vanish in the limit of a diagonal V? We call this
scenario the maximally CP-violating MSSM with minimal
flavor violation, or in short, the MSSM with MCPMFV. As
we will see in Sec. II, there are a total of 19 parameters in
the MSSM with MCPMFV, including 6 CP-violating
phases and 13 real mass parameters. The purposes of this
paper are to formulate the MSSM with MCPMFV, calcu-
late the most relevant B-meson observables, and explore
the experimental constraints on the MCPMFV theoretical
parameters, exploiting a manifestly flavor-covariant effec-
tive Lagrangian formalism for calculating Higgs-mediated
FCNC observables at large tan� that we develop here.

At large values of tan�, e.g. tan� * 40, one-loop
threshold effects on Higgs-boson interactions to down-
type quarks get enhanced [3–5], and so play an important
role in FCNC processes, such as the K0- �K0 mass differ-
ence, Bs- �Bs and Bd- �Bd mixings, and the decays B! Xs�,
B! Kl�l�, Bs;d ! ���� [6–15], and B! �� [16,17].
We present in this paper a manifestly flavor-covariant
effective Lagrangian formalism for calculating FCNC pro-
cesses that follows the lines of the effective Lagrangian
approach given in [12]. In addition, we include here the
dominant subleading contributions to the one-loop Higgs-
mediated FCNC interactions due to nondecoupling large
Yukawa-coupling effects of the third-generation quarks.
Based on this improved formalism, we compute FCNC
observables in constrained versions of the MSSM, where
MFV has been imposed on the soft SUSY-breaking mass
parameters as a boundary condition at the scale MGUT. We
present numerical results for B-meson observables in one
example of the MCPMFV framework, from which illus-
trative constraints on the basic theoretical parameters are
derived, after incorporating the recent experimental results
from D0 and CDF [18].

The paper is organized as follows: in Sec. II, after briefly
reviewing the MFV framework, we derive the maximal
number of flavour-singlet mass parameters that can be
present in the MSSM with MCPMFV at the GUT scale.
All relevant one-loop renormalization group equations
(RGEs) are given in Appendix A. In Sec. III, we present
an effective Lagrangian formalism for Higgs-mediated
FCNC interactions that respects flavor covariance. We
also discuss the dominant subleading effects at large
tan�, due to the large Yukawa couplings of the third
generation. Useful relations which result from Ward iden-
tities (WIs) that involve the Z and W-boson interactions to
quarks are derived in Appendix B. Section IV summarizes
all relevant analytic results pertinent to FCNC B-meson
observables. In Sec. V we exhibit numerical estimates and
predictions for various FCNC processes, including the
Bs- �Bs and Bd- �Bd mixings, and the decays Bs;d ! ����,
B! Xs�, and B! ��. We also illustrate the combined
constraints on the theoretical parameters imposed by data
from D0, CDF, Belle, and BABAR in one sample
MCPMFV model. We summarize our conclusions in
Sec. VI.

II. MAXIMAL CP AND MINIMAL FLAVOR
VIOLATION

In this section we derive the maximal number of
CP-violating and real flavor-singlet mass parameters that
can be present in the CP-violating MSSM and satisfy the
property of MFV as described in the introduction.

The superpotential defining the flavor structure of the
MSSM may be written as

 WMSSM � ÛChuQ̂Ĥu � D̂
ChdĤdQ̂� Ê

CheĤdL̂

��ĤuĤd; (2.1)

where Ĥu;d are the two Higgs chiral superfields, and Q̂, L̂,
ÛC, D̂C, and ÊC are the left- and right-handed superfields
related to up- and down-type quarks and charged leptons.
The Yukawa couplings hu;d;e are 3� 3 complex matrices
describing the charged-lepton and quark masses and their
mixings. The superpotential (2.1) contains one mass pa-
rameter, the � parameter that mixes the Higgs supermul-
tiplets, which has to be of the electroweak order for a
natural realization of the Higgs mechanism.

In an unconstrained version of the MSSM, there is a
large number of different mass parameters present in the
soft SUSY-breaking Lagrangian
 

�Lsoft �
1
2�M1

~B ~B�M2
~Wi ~Wi�M3 ~ga~ga�H:c:�

� ~Qy ~M2
Q

~Q� ~Ly ~M2
L

~L� ~Uy ~M2
U

~U� ~Dy ~M2
D

~D

� ~Ey ~M2
E

~E�M2
Hu
HyuHu�M2

Hd
HydHd

��B�HuHd�H:c:�

� � ~Uyau ~QHu� ~DyadHd
~Q� ~EyaeHd

~L�H:c:�:

(2.2)

Here M1;2;3 are the soft SUSY-breaking masses associated
with the U�1�Y , SU�2�L, and SU�3�c gauginos, respectively.
In addition, M2

Hu;d
and B� are the soft masses related to the

Higgs doublets Hu;d and their bilinear mixing. Finally,
~M2
Q;L;D;U;E are the 3� 3 soft mass-squared matrices of

squarks and sleptons, and au;d;e are the corresponding 3�
3 soft Yukawa mass matrices.1 Hence, in addition to the �
term, the unconstrained CP-violating MSSM contains 109
real mass parameters.

One frequently considers the constrained MSSM
(CMSSM), which has a common gaugino mass m1=2, a
common soft SUSY-breaking scalar mass m0 and a com-
mon soft trilinear Yukawa coupling A for all squarks and
sleptons at the GUT scale. The number of independent

1Alternatively, the soft Yukawa mass matrices au;d;e may be
defined by the relation: �au;d;e�ij � �hu;d;e�ij�Au;d;e�ij, where the
parameters �Au;d;e�ij are generically of order MSUSY in gravity-
mediated SUSY-breaking models. In our paper, both definitions
for the soft SUSY-breaking Yukawa couplings will be used,
where convenient.
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mass scales is greatly reduced since, even allowing for
maximal CP violation, the free parameters are just m1=2,
�, m0, A, and B�, where all but m0 are complex variables.
The phase arg� may be removed by means of a global
Peccei-Quinn (PQ) symmetry under whichHu andHd have
the same charges. Imposing the two CP-even tadpole
conditions on the Higgs potential, one may replace � �
j�j and Re�B�� by the Z-boson mass MZ and the ratio
tan� � vu=vd of the VEVs of the Higgs doublets Hu;d, in
the phase convention where vu;d are real and positive.
Linked to this, there is one extra CP-odd tadpole condition
which can be used to eliminate Im�B�� in favor of main-
taining the same phase convention for the VEVs, order by
order in perturbation theory [19]. Thus, a convenient set of
input mass parameters of the constrained CP-violating
MSSM is

 

tan��mt�; m1=2�MGUT�;

m0�MGUT�; A�MGUT�;
(2.3)

where the relative sign of � can always be absorbed into
the phase definition of the complex parameters m1=2 and A.
Thus, in addition to tan�, this CP-violating CMSSM has
just 5 real mass parameters, two more than in its
CP-conserving counterpart, namely, the CP-odd parame-
ters: Imm1=2 and ImA.

How can the general notion of MFV be extended to this
constrained CP-violating MSSM? In such a constrained
model, the physical FCNC observables remain indepen-
dent of details of the Yukawa texture chosen at the GUT
scale. They depend only on the CKM mixing matrix V, the
fermion masses, tan�, and the 5 real mass parameters
mentioned above. If the CKM matrix V were equal to the
unit matrix 1, the FCNC observables would vanish, but
flavor-conserving, CP-violating effects would still be
present, associated with Imm1=2 and ImA. Moreover, these
parameters also contribute to CP-violating FCNC observ-
ables in the presence of nontrivial CKM mixing. Most
noticeably, Imm1=2 and ImA cannot generically mimic
the effects of the usual CKM phase �.

We now consider how the above notion of MFV can be
further extended within the more general CP-violating
MSSM. To address this question, we first notice that under
the unitary flavor rotations of the quark and lepton super-
fields,

 Q̂ 0 � UQQ̂; L̂0 � ULL̂; Û0C � U�UÛ
C;

D̂0C � U�DD̂
C; Ê0C � U�EÊ

C;
(2.4)

the complete MSSM Lagrangian of the theory remains
invariant provided the model parameters are redefined as
follows:

 

hu;d ! UyU;Dhu;dUQ;

he ! UyEheUL;

~M2
Q;L;U;D;E ! UyQ;L;U;D;E ~M2

Q;L;U;D;EUQ;L;U;D;E;

au;d ! UyU;Dau;dUQ;

ae ! UyEaeUL:

(2.5)

The remaining mass scales, �, M1;2;3, M2
Hu;d

, and B�, do
not transform under the unitary flavor rotations (2.4). In
fact, it is apparent that the one-loop RGEs presented in
Appendix A are invariant under the redefinitions in (2.5),
provided the unitary flavor matrices UQ;L;U;D;E are taken to
be independent of the RG scale. The effective Lagrangian
formalism we describe in Sec. III respects manifestly the
property of flavor covariance under the unitary transforma-
tions (2.4).

It is apparent from (2.5) that the maximal set of flavor-
singlet mass scales includes:

 M1;2;3; M2
Hu;d
; ~M2

Q;L;U;D;E � ~M2
Q;L;U;D;E13;

Au;d;e � Au;d;e13;
(2.6)

where the mass parameters� and B� can be eliminated by
virtue of a global PQ symmetry and by the CP-even and
CP-odd minimization conditions on the Higgs potential.
The scenario (2.6) has a total of 19 mass parameters that
respect the general MFV property, 6 of which are CP odd,
namely ImM1;2;3 and ImAu;d;e.

We term this scenario the maximally CP-violating and
minimally flavor-violating (MCPMFV) variant of the
MSSM, or in short, the MSSM with MCPMFV.

It is worth noting that, in addition to the flavor-singlet
mass scales mentioned above, there may exist flavor non-
singlet mass scales in the MSSM. For example, one could
impose an unconventional boundary condition on the left-
handed squark mass matrix ~M2

Q, such that

 

~M 2
Q�MX� � ~M2

Q13 � ~m2
1�h

y
dhd� � ~m2

2�h
y
uhu�

� ~m2
3�h

y
dhd��h

y
uhu� � . . . ; (2.7)

where MX could be MGUT or some other scale. Evidently,
there are in principle a considerable number of extra mass
parameters ~m2

n that could also be present in ~M2
Q�MX�,

beyond the flavor-singlet mass scale ~M2
Q. In fact, these

additional flavor nonsinglet mass parameters ~m2
n can be

as many as 9 (including ~M2
Q), as determined by the dimen-

sionality of the 3� 3 Hermitian matrix ~M2
Q�MX�. The

generalized boundary condition (2.7) on ~M2
Q�MX� is in

agreement with the notion of MFV for solving the flavor
problem by suppressing the GIM-breaking effects, pro-
vided the hierarchy ~m2

n 	 ~M2
Q is assumed. In particular,

if these flavor-nonsinglet mass parameters ~m2
n are induced

by RG running, they may be generically much smaller than
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~M2
Q. In this case, the ~m2

n will not all be independent of each
other, e.g., in our MCPMFV scenario, the RG-induced
flavor-nonsinglet scales ~m2

n would be functionals of the
19 flavor-singlet mass parameters stated in (2.6). In gen-
eral, a nonsinglet mass parameter could either be intro-
duced by hand or induced by RG running of a theory
beyond the MSSM with more flavor-singlet mass scales
[20]. However, since introducing ~m2

n 	 ~M2
Q by hand has

no strong theoretical motivation, we focus our attention
here on the flavor-singlet MSSM framework embodied by
the MCPMFV.

Before calculating FCNC observables in the MSSM
with MCPMFV, we first develop in the next section an
effective Lagrangian approach to the computation of
Higgs-mediated effects, which play an important role in
our analysis.

III. EFFECTIVE LAGRANGIAN FORMALISM

Here we present a manifestly flavor-covariant effective
Lagrangian formalism. This formalism enables one to
show the flavor-basis independence of FCNC observables
in general soft SUSY-breaking scenarios of the MSSM. It
will also be used in Sec. IV to calculate FCNC processes in
the MSSM with MCPMFV.

To make contact between our notation and that used
elsewhere in the literature [21], we redefine the Higgs
doublets Hu;d as Hu � �2 and Hd � i�2��1, where �2 is
the usual antisymmetric Pauli matrix. We start our discus-
sion by considering the effective Lagrangian that describes
the tan�-enhanced supersymmetric contributions to the
down-type quark self-energies as shown in Fig. 1. The
effective Lagrangian can be written in gauge-symmetric
and flavor-covariant form as follows:
 

�Ld
eff
�1;�2� � �d0

iR�hd�y1 ��hd
�1;�2��ijQ
0
jL�H:c:;

(3.1)

where the superscript ‘‘0’’ indicates weak-eigenstate fields.
In (3.1), the first term denotes the tree-level contribution
and �hd is a 3� 3 matrix which is a Coleman-Weinberg-
type [22] effective functional of the background Higgs
doublets �1;2. We note that the one-loop effective func-
tional �hd
�1;�2� has the same gauge and flavor trans-
formation properties as hd�y1 . Its analytic and flavor-
covariant form may be calculated via

 

��hd�ij �
Z dnk
�2��ni

�
PL

M�3
k2 � jM2

3j

�
1

k2112 � ~M2

�
~Di

~Qyj

� PL

�
1

6k18 �MCPL �My
CPR

�
~Hu

~Hd

� PL�hd�il

�
1

k2112 � ~M2

�
~Ql

~Uyk

�hu�kj

� PL

�
1

6k18 �MCPL �My
CPR

�
~Hd

~Wk; ~Hd
~B

� PL�hd�il

�
1

k2112 � ~M2

�
~Ql

~Qyj

�
; (3.2)

where n � 4� 2� is the usual number of analytically
continued dimensions in dimensional regularization
(DR), 1N stands for the N � N-dimensional unit matrix,
and PL�R� �

1
2 
1� ����5� are the standard chirality-

projection operators. The 8� 8- and 12�
12-dimensional matrices MC and ~M2 describe the squark
and chargino-neutralino mass spectrum in the background
of nonvanishing Higgs doublets �1;2.

It proves convenient to express the 8� 8-dimensional
chargino-neutralino mass matrix MC in the Weyl basis
� ~B; ~W1;2;3; ~Hu; ~Hd�, where ~Hu;d are SU�2�L doublets: ~Hu �

�~h�u ; ~h0
u�
T and ~Hd � �~h

0
d; ~h�d �

T . In this weak basis, the
Higgs-field-dependent chargino-neutralino mass matrix
MC
�1;�2� reads:

 M C
�1;�2� �

M1 0 � 1��
2
p g0�y2

1��
2
p g0�T

1 �i�2�

0 M213
1��
2
p g�y2�i � 1��

2
p g�T

1 �i�2��i
� 1��

2
p g0��2

1��
2
p g�Ti ��2 02 ��i�2�

� 1��
2
p �i�2�g0�1

1��
2
p g�Ti �i�2��1 ���i�2� 02

0
BBBBB@

1
CCCCCA; (3.3)

FIG. 1. Gauge- and flavor-invariant one-loop self-energy graphs for down-type quarks in the single-Higgs insertion approximation,
with Hu � �2 and Hd � i�2��1.
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where g and g0 are the SU�2�L and U�1�Y gauge couplings, respectively. Correspondingly, in the presence of nonvanishing
Higgs doublets �1;2, the 12� 12-dimensional squark mass matrix ~M2
�1;�2� is given by

 

~M 2
�1;�2� �

� ~M2� ~Qy ~Q � ~M2� ~Qy ~U � ~M2� ~Qy ~D

� ~M2� ~Uy ~Q � ~M2� ~Uy ~U � ~M2� ~Uy ~D

� ~M2� ~Dy ~Q � ~M2� ~Dy ~U � ~M2� ~Dy ~D

0
B@

1
CA
ij

; (3.4)

with
 

� ~M2� ~Qyi
~Qj
� � ~M2

Q�ij12 � �h
y
dhd�ij�1�y1 � �h

y
uhu�ij��

y
2 �212 ��2�y2 � �

1
2�ijg

2��1�y1 ��2�y2 �

� �ij�
1
4g

2 � 1
12g
02���y1 �1 ��y2 �2�12;

� ~M2� ~Uyi
~Qj
� � ~M2�y~Qyj ~Ui

� ��au�ij�T
2 i�2 � �hu�ij���T

1 i�2;

� ~M2� ~Dyi
~Qj
� � ~M2�y~Qyj ~Di

� �ad�ij�
y
1 � �hd�ij�

��y2 ;

� ~M2� ~Uyi
~Uj
� � ~M2

U�ij � �huhyu �ij�
y
2 �2 �

1
3�ijg

02��y1 �1 ��y2 �2�;

� ~M2� ~Dyi
~Dj
� � ~M2

D�ij � �hdhyd �ij�
y
1 �1 �

1
6�ijg

02��y1 �1 ��y2 �2�;

� ~M2� ~Uyi
~Dj
� � ~M2�y~Dyj ~Ui

� �huhyd �ij�
T
1 i�2�2;

(3.5)

where �ij is the usual Kronecker symbol.
The form of the derived effective Lagrangian depends,

to some extent, on the choice of renormalization scheme.
As usual, one may adopt the MS or DR schemes of
renormalization. In general, the different schemes affect
the holomorphic part of the Lagrangian at the one-loop
level. Thanks to the nonrenormalization theorems of
SUSY, the Yukawa couplings hu;d are not renormalized,
and the wave functions of �1;2, QiL, uiR, and diR remove
the ultraviolet (UV) divergences of the one-loop correc-
tions to the Yukawa couplings �diR�y1QjL and �uiR�2QjL.
The leftover UV-finite terms are not tan� enhanced and
can be absorbed into the definition of hu;d, up to higher-
order scheme-dependent corrections. Although the latter
could be consistently included in our gauge-symmetric and
flavor-covariant formalism, we ignore these small UV-
finite holomorphic terms as they are higher-order effects
beyond the one-loop approximation of our interest.

By analogy, the gauge- and flavor-covariant effective
Lagrangian for the up-type quark self-energies may be
written down as follows:

 �Lu
eff
�1;�2� � �u0

iR�hu�T
2 ��i�2�

��hu
�1;�2��ijQ
0
jL � H:c:; (3.6)

where �hu
�1;�2� may be calculated from Feynman
diagrams analogous to Fig. 1. As opposed to the down-
type quark self-energy case, these radiative corrections are
not enhanced for large values of tan� and so are ignored in
our numerical analysis in Sec. V.

The weak quark chiral states, u0
L;R and d0

L;R, are related
to their respective mass eigenstates, uL;R and dL;R, through
the unitary transformations:

 

u0
L � UQ

LuL; d0
L � UQ

LVdL;

u0
R � Uu

RuR; d0
R � Ud

RdR;
(3.7)

where UQ
L , Uu;d

R are 3� 3 unitary matrices and V is the
CKM mixing matrix. All these unitary matrices are deter-
mined by the simple mass renormalization conditions:

 hLd
eff
�1;�2�i � � �dRM̂ddL � H:c:;

hLu
eff
�1;�2�i � � �uRM̂uuL � H:c:;

(3.8)

where h. . .i denotes the value when the Higgs doublets �1;2

acquire their VEVs, and M̂u;d are the physical diagonal
mass matrices for the up- and down-type quarks. Imposing
the conditions (3.8) yields [12]
 

Udy
R hdUQ

L �

���
2
p

v1
M̂dVyR�1

d ;

Uuy
R huUQ

L �

���
2
p

v2
M̂uR�1

u ;

(3.9)

where
 

Rd � 1�

���
2
p

v1
UQy
L hh

�1
d �hd
�1;�2�iU

Q
L ;

Ru � 1�

���
2
p

v2
UQy
L hh

�1
u �hu
�1;�2�iU

Q
L :

(3.10)

In (3.10) and in the following, the symbol 1 without a
subscript will always denote the 3� 3 unit matrix. We
observe that the unitary matrices UQ

L , Uu;d
R can all be set

to 1 by virtue of the flavor transformations given in (2.4).
The Yukawa couplings hu;d are determined by the physical
mass conditions (3.9). It is important to remark here [12]
that these conditions form a coupled system of nonlinear
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equations with respect to hu;d, since the Yukawa couplings
also enter the right sides of (3.9) through the expressions
Rd;u in (3.10). In addition, one should notice that the
physical CKM mixing matrix V remains unitary through-
out our effective Lagrangian approach. As we will see
below and more explicitly in Appendix B, the unitarity
of V throughout the renormalization process is a crucial
property for maintaining the gauge symmetries through the
Ward identities (WIs) in our effective Lagrangian
formalism.

We now consider the effective FCNC Lagrangian related
to Higgs interactions to down-type quarks. From (3.1), we
find that
 

�Ld;H
eff �

�dR
hd���

2
p 
	1�1��	1

d � � ia1�1��a1
d �

�	2�	2
d � ia2�a2

d �VdL

� �dRhd
	�1 �1��
	�1
d � �	

�
2 �

	�2
d �uL � H:c:;

(3.11)

where the individual components of the Higgs doublets
�1;2 are given by

 �1;2 �
	�1;2

1��
2
p �v1;2 �	1;2 � ia1;2�

 !
: (3.12)

Moreover, the 3� 3 matrices �	1;2

d , �a1;2

d , and �
	�1;2
d are

given by
 

�	1;2

d �
���
2
p �

�
�	1;2

�d

�
; �a1;2

d � i
���
2
p �

�
�a1;2

�d

�
;

�
	�1;2
d �

�
�

�	�1;2
�d

�
; (3.13)

where we have used the short-hand notation, �d �
h�1
d �hd
�1;�2�, and suppressed the vanishing isodoublet

components on the LHS’s of (3.13). In the CP-violating
MSSM, the weak-state Higgs fields 	1;2, a1;2, and 	�1;2 are
related to the neutral CP-mixed mass eigenstates H1;2;3

[21,23], the charged-Higgs boson H�, and the would-be
Goldstone bosons G0 and G�, associated with the Z and
W� bosons, through:
 

	1 � O1iHi; 	2 � O2iHi;

a1 � c�G0 � s�O3iHi; a2 � s�G0 � c�O3iHi;

	�1 � c�G� � s�H�; 	�2 � s�G� � c�H�;

(3.14)

where s� � sin�, c� � cos� andO is an orthogonal 3� 3
Higgs-boson-mixing matrix.

One may now exploit the properties of gauge and flavor
covariance of the effective functional �d
�1;�2� to obtain
useful relations in the large- tan� limit. Specifically,
�d
�1;�2� should have the form:

 � d
�1;�2� � �y1 f1 ��y2 f2; (3.15)

where f1;2��
y
1 �1;�

y
2 �2;�

y
1 �2;�

y
2 �1� are calculable

3� 3-dimensional functionals which transform as hydhd
or hyuhu under the flavor rotations (2.4). Given the form
(3.15), it is then not difficult to show that in the
infinite- tan� limit (v1 ! 0),
 

lim
v1!0

i
���
2
p �

�
�a2

�d

�
�

���
2
p

v2
h�di;

lim
v1!0

�
�

�	�2
�d

�
�

���
2
p

v2
h�di:

(3.16)

Very similar relations may be derived for the up-type quark
sector, but in the limit of vanishing tan�. As we show in
Appendix B, Ward identities (WIs) involving the W� and
Z-boson couplings to quarks give rise to the following
exact relations:
 

�G0

d � i
���
2
p �

�

�G0 �d

�
�

���
2
p

v
h�di;

�G�
d �

�
�

�G�
�d

�
�

���
2
p

v
h�di;

(3.17)

where v �
�����������������
v2

1 � v
2
2

q
is the VEVof the Higgs boson in the

SM. Relations very analogous to those stated in (3.17) hold
true for the up-type sector as well, i.e. �G0

u � �G�
u �

�
���
2
p
h�ui=v, where the extra minus sign comes from the

opposite isospin of the up-type quarks with respect to the
down-type quarks.

For our phenomenological analysis in Sec. IV, we may
conveniently express the general flavor-changing (FC) ef-
fective Lagrangian for the interactions of the neutral and
charged-Higgs fields to the up- and down-type quarks u, d
in the following form:
 

LFC � �
g

2MW

Hi

�d�M̂dgL
Hi

�dd
PL � gR

Hi
�dd

M̂dPR�d

�G0 �dM̂di�5d�Hi �u�M̂ugLHi �uuPL

� gRHi �uuM̂uPR�u�G
0 �uM̂ui�5u�

�
g���

2
p
MW


H� �d�M̂dgL
H� �du

PL � gR
H� �du

M̂uPR�u

�G� �d�M̂dVyPL � VyM̂uPR�u� H:c:�; (3.18)

where the Higgs couplings in the flavor basis UQ
L � Uu

R �
Ud
R � 1 are given by

 

gL
Hi

�dd
�
O1i

c�
VyR�1

d �1��	1
d �V �

O2i

c�
VyR�1

d �	2
d V

� iO3it�VyR�1
d

�
1��a1

d �
1

t�
�a2
d

�
V; (3.19)

 g R
Hi

�dd
� �gL

Hi
�dd
�y; (3.20)

JOHN ELLIS, JAE SIK LEE, AND APOSTOLOS PILAFTSIS PHYSICAL REVIEW D 76, 115011 (2007)

115011-6



 g L
Hi �uu �

O1i

s�
R�1
u �	1

u �
O2i

s�
R�1
u �1��	2

u �

� iO3it�1
� R�1

u �1��a2
u � t��a1

u �; (3.21)

 g R
Hi �uu � �g

L
Hi �uu�

y; (3.22)

 g L
H� �du

� �t�VyR�1
d �1��

	�1
d � � VyR�1

d �
	�2
d ; (3.23)

 

gR
H� �du

� �t�1
� Vy�1� ��

	�2
u �y��R�1

u �
y

� Vy��
	�1
u �y�R�1

u �
y; (3.24)

and t� � tan�. We note that the Higgs-boson vertex-

correction matrices for the up-type quarks, �	1;2
u , �a1;2

u ,

and �
	�1;2
u , are defined as in (3.13).

The above general form of the effective Lagrangian LFC

extends the one derived in [12] in several aspects. First, it
consistently includes all higher-order terms of the form
�t�mb�=M2

SUSY�
n
1, which can become important in sce-

narios with large bottom-squark mixing [5]. Second, it
does not suffer from the limitation that the soft SUSY-
breaking scale should be much higher than the electroweak
scaleMZ. Specifically, SM electroweak corrections may be
included in the Coleman-Weinberg-type effective func-
tionals �d;u
�1;�2�, provided the theory is quantized in
nonlinear gauges [24] that preserve the Higgs-boson low-
energy theorem (HLET) [25]. Finally, the effective
Lagrangian LFC implements properly all the gauge sym-
metries through the WIs as discussed in Appendix B.

The general FC effective Lagrangian (3.18) takes on the
form presented in [12] in the single-Higgs-insertion ap-
proximation. In this case, the tan�-enhanced threshold

corrections �a2
d , �	2

d , �
	�2
d , and h�di are interrelated as

follows:

 

���
2
p

v2

h�di � �a2
d � �	2

d � �
	�2
d � ��

	�2
d �

y; (3.25)

where h�di is given in the MSSM with MCPMFV by

 

���
2
p

v2

h�di � 1
2
3

3�
��M�3I� ~M2

Q; ~M2
D; jM3j

2�

�
hyuhu
16�2 �

�AuI� ~M2
Q; ~M2

U; j�j
2� � . . . ; (3.26)

and I�x; y; z� is the one-loop function:

 I�x; y; z� �
xy ln�x=y� � yz ln�y=z� � xz ln�z=x�

�x� y��y� z��x� z�
: (3.27)

The ellipses in (3.26) denote the small contributions com-
ing from the Feynman diagram in Fig. 1(c), which has the

same flavor structure as the gluino-mediated graph in
Fig. 1(a), i.e., this contribution is flavor-singlet in the
single-Higgs-insertion approximation. We remark, finally,
that in writing down (3.26) we have not considered the RG-
running effects on the squark mass matrices betweenMGUT

and MSUSY. These effects are important, and are taken into
account in our numerical analysis in Sec. V.

In addition to graphs involving SUSY particles, the two-
Higgs-doublet model (2HDM) sector of the MSSM may
also contribute significantly to the one-loop self-energy
graphs of the down quarks. This contribution is shown in
Fig. 2 and is formally enhanced at large tan�, since it is
proportional to hd. In the single-Higgs-insertion approxi-
mation, the 2HDM contribution is given by

 

���
2
p

v2

h�2HDM
d i �

hyuhu
16�2

B���

M2
Hd
�M2

Hu

ln

��������M
2
Hd
� j�j2

M2
Hu
� j�j2

��������:
(3.28)

This contribution turns out to be subleading with respect to
the Feynman diagram 1(b) and exhibits a very similar
flavor structure. Beyond the single-Higgs-insertion ap-
proximation, the effective functional �h2HDM

d 
�1;�2� is
calculated as
 

��h2HDM
d �ij �

Z dnk
�2��ni

�hd�ilPL

�

�
1

6k16 �MqPL �My
qPR

�
Ql �uk

PL�hu�kj

�

�
1

k214 �M2
H

�
�1�y2

; (3.29)

where Mq
�1;�2� and M2
H
�1;�2� are the 6� 6- and

4� 4-dimensional quark and Higgs-boson mass matrices
in the background of nonzero �1;2. The 6� 6-dimensional
quark mass matrix is given by

 M q
�1;�2� �
�Mq� �uiQj

�Mq� �diQj

 !
�
�hu�ij�T

2 ��i�2�

�hd�ij�
y
1

 !
:

(3.30)

The Higgs-boson background mass matrix M2
H
�1;�2�

receives appreciable radiative corrections beyond the tree
level [19,21,23,26]. At the tree level, the 4�
4-dimensional matrix M2

H
�1;�2� is given in the weak
basis ��1;�2� by

FIG. 2. Two-Higgs-doublet model (2HDM) contribution to the
one-loop self-energy graphs for down-type quarks in the single-
Higgs-insertion approximation.
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 M 2
H
�1;�2� �

�M2
H��y1 �1

�M2
H��y1 �2

�M2
H��y2 �1

�M2
H��y2 �2

 !
; (3.31)

where
 

�M2
H��y1 �1

�

�
M2
Hd
� j�j2 �

g2 � g02

2
�y1 �1

�
g2 � g02

4
�y2 �2

�
12 �

g2

2
�2�y2 ;

�M2
H��y2 �2

�

�
M2
Hu
� j�j2 �

g2 � g02

2
�y2 �2

�
g2 � g02

4
�y1 �1

�
12 �

g2

2
�1�y1 ;

�M2
H��y1 �2

� �M2
H�
y

�y2 �1
�

�
�B��

g2

2
�y2 �1

�
12

�
g2 � g02

4
�1�y2 :

(3.32)

In the one-loop effective Lagrangian LFC given in
(3.18), the couplings of the Goldstone bosons G0 and G�

to quarks retain their tree-level form. This result is not
accidental, but a consequence of the Goldstone theorem,
which applies when the momenta of the external particles
are all set to zero. However, the tree-level form of the
Goldstone couplings gets modified when momentum-
dependent (derivative) terms are considered. To leading
order in a derivative expansion, one would have to consider
the effective Lagrangian

 L 6D � i �QL
ZQ 6D�A�i;j�Q ��
y
i � 6D�j� � � 6D�j�

y�i�

�B�i;j�Q ��i� 6D�j�
y � � 6D�j��

y
i ��QL � . . . ;

(3.33)

where the dots denote analogous terms for the right-handed
up- and down-type quarks uR and dR. The first term de-
pending on ZQ is a functional of �1;2 for the left-handed
quarks QL. Such a term is not tan� enhanced and
renormalization-scheme dependent. As mentioned above,
these terms can be neglected to a good approximation. The
effective functionals A�i;j�Q 
�1;�2� and B�i;j�Q 
�1;�2� are
UV finite and include large Yukawa-coupling effects due to
ht.

2 In particular, this is the case for the effective func-
tionals with i � j � 2. One typical graph of such a con-
tribution is displayed in Fig. 3. Because of gauge
invariance, analogous contributions will be present in the
one-loop Z- and W-boson couplings. All these effects are
not enhanced by tan�, and can be consistently neglected
without spoiling the gauge symmetries of the effective
Lagrangian LFC.

In the next two sections, we present analytic and nu-
merical results related to FCNC B-meson observables,
using the effective Lagrangian (3.18) and including the
2HDM contribution (3.29).

IV. FCNC B-MESON OBSERVABLES

In this section, our interest will be in FCNC B-meson
observables, such as the B0

d;s- �B0
d;s mass differences �MBd;s ,

and the decays Bs;d ! ����, Bu ! ��, and B! Xs�.

A. �MBd;s

Our discussion and conventions here follow closely [12].
In the approximation of equal B-meson lifetimes, the SM
and SUSY contributions to �MBd;s may be written sepa-
rately, as follows:

 �MBq � 2jh �B0
qjH

�B�2
eff jB0

qiSM � h �B0
qjH

�B�2
eff jB0

qiSUSYj;

(4.1)

where q � d; s and H�B�2
eff is the effective �B � 2

Hamiltonian. Neglecting the subdominant SM contribu-
tion, the SUSY contributions to the �B � 2 transition
amplitudes are given by

 h �B0
djH

�B�2
eff jB0

diSUSY � 1711 ps�1

� B̂1=2
Bd
FBd

230 MeV

�
2
�
�B

0:55

�
�
0:88�CLR�DP�

2 � CLR�2HDM�
2 �

� 0:52�CSLL�DP�
1 � CSRR�DP�

1 ��;

h �B0
s jH

�B�2
eff jB0

siSUSY � 2310 ps�1

� B̂1=2
Bs
FBs

265 MeV

�
2
�
�B

0:55

�
�
0:88�CLR�DP�

2 � CLR�2HDM�
2 �

� 0:52�CSLL�DP�
1 � CSRR�DP�

1 �

�
;

(4.2)

where DP stands for the Higgs-mediated double-penguin
effect. In addition, we have used the next-to-leading order
QCD factors determined in [28–32], along with their

FIG. 3. Dominant gauge- and flavor-invariant contribution
leading to a modification of the tree-level Goldstone-boson
couplings to quarks.

2These effects have first been identified and studied in [27]
within the standard model.
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hadronic matrix elements at the scale � � 4:2 GeV:

 

�PLR
1 � �0:58; �PLR

2 � 0:88;

�PSLL
1 � �0:52; �PSLL

2 � �1:1:
(4.3)

The Wilson coefficients occurring in (4.2) are given by

 

CSLL�DP�
1 � �

16�2m2
b���

2
p
GFM

2
W

X3

i�1

gL
Hi

�bq
gL
Hi

�bq

M2
Hi

;

CSRR�DP�
1 � �

16�2m2
q���

2
p
GFM2

W

X3

i�1

gR
Hi

�bq
gR
Hi

�bq

M2
Hi

;

CLR�DP�
2 � �

32�2mbmq���
2
p
GFM

2
W

X3

i�1

gL
Hi

�bq
gR
Hi

�bq

M2
Hi

;

(4.4)

where the tan2�-enhanced couplings gL;RHi �sd
may be ob-

tained from (3.18). Hence, the DP Wilson coefficients in
(4.4) have a tan4� dependence and, although two-loop
suppressed, they become significant for large values of
tan� * 40.

There are two relevant one-loop contributions to
h �B0jH�B�2

eff jB0iSUSY at large tan�: (i) the t-H� box con-
tribution to CLR

2 of the 2HDM type, and (ii) the one-loop
chargino-stop box diagram contributing to CSLL

1 . To a good
approximation, CLR�2HDM�

2 may be given by [32]

 CLR�2HDM�
2 � �

2mbmq

M2
W

�V�tbVtq�
2tan2�: (4.5)

In the kinematic region MH� � mt, the above contribution
can amount to as much as 10% of the DP effects mentioned
above. This estimate is obtained by noticing that the light-
quark masses in (4.4) and (4.5) are running and are eval-
uated at the top-quark mass scale, i.e., ms�mt� ’ 90 MeV,
md�mt� ’ 4 MeV [33]. The second contribution (ii) turns
out to be non-negligible only for small values of the
�-parameter [32], i.e., for j�j & 200 GeV.

B. �B0
d;s ! ����

The leptonic decays of neutral B mesons, �B0
d;s !

����, are enhanced at large values of tan� [6–15].
Neglecting contributions proportional to the lighter quark
masses md;s, the relevant effective Hamiltonian for �B �
1 FCNC transitions is given by

 H�B�1
eff � �2

���
2
p
GFVtbV�tq�CSOS � CPOP � C10O10�;

(4.6)

where

 

OS �
e2

16�2 mb� �qPRb�� ����;

OP �
e2

16�2 mb� �qPRb�� ���5��;

O10 �
e2

16�2 � �q�
�PLb�� �����5��:

(4.7)

Using the resummed FCNC effective Lagrangian (3.18),
the Wilson coefficients CS and CP in the region of large
values of tan� are given by

 CS �
2�m�


em

1

VtbV�tq

X3

i�1

gRHi �qbg
S
Hi ���

M2
Hi

;

CP � i
2�m�


em

1

VtbV�tq

X3

i�1

gRHi �qbg
P
Hi ���

M2
Hi

;

(4.8)

where C10 � �4:221 denotes the leading SM contribution.
In addition, the reduced scalar and pseudoscalar Higgs
couplings to charged leptons gS;PHi ��� in (4.8) are given by

 gSHi ��� �
O1i

cos�
; gPHi ��� � � tan�O3i: (4.9)

Here we neglect the nonholomorphic vertex effects on the
leptonic sector since they are unobservably small.

Taking into consideration the aforementioned approxi-
mations, the branching ratio for �B0

d;s ! ���� is found to
be [8]
 

B� �B0
q ! ����� �

G2
F


2
em

16�3 MBq�Bq jVtbV
�
tqj

2

�

�������������������
1�

4m2
�

M2
Bq

vuut ��
1�

4m2
�

M2
Bq

�
jFqSj

2

� jFqP � 2m�F
q
Aj

2

�
; (4.10)

where q � d; s and �Bq is the total lifetime of the Bq
meson. Moreover, the form factors FqS;P;A are given by
 

FqS;P � �
i
2
M2
Bq
FBq

mb

mb �mq
CS;P;

FqA � �
i
2
FBqC10:

(4.11)

Although the Wilson coefficient C10 is subdominant for
tan� * 40, its effect has been included in our numerical
estimates.

C. Bu ! ��

There is an important tree-level charged-Higgs-boson
contribution to Bu ! �� decay [16,17]. It is not helicity

B-MESON OBSERVABLES IN THE MAXIMALLY CP- . . . PHYSICAL REVIEW D 76, 115011 (2007)

115011-9



suppressed and interferes destructively with the SM con-
tribution [34]. The ratio of the branching ratio to the SM
value is given by

 RB�� �
B�B� ! �� ���

BSM�B� ! �� ���

�

��������1� tan�
�gLy
H� �du
�13

V13

�
MB�

MH�

�
2
��������2
; (4.12)

where gL
H� �du

� � tan�Vy at tree level [cf. (3.23)], leading
to the negative interference with the SM contribution.

D. B! Xs�

The relevant effective Hamiltonian for B! Xs� is
given by

 Hb!s�
eff � �

4GF���
2
p VtbV

�
ts

	 X
i�2;7;8

Ci��b�Oi��b�

� C07��b�O
0
7��b� � C

0
8��b�O

0
8��b�



; (4.13)

with
 

O2 � �sL��cL �cL��bL;

O7 �
emb

16�2
�sL���F��bR;

O07 �
emb

16�2
�sR���F��bL;

O8 �
gsmb

16�2
�sL���F

��bR;

O08 �
gsmb

16�2
�sR���F

��bL:

(4.14)

We closely follow the calculations of Refs. [35] for the
branching ratio B�B! Xs�� and the direct CP asymmetry
in the decay. For the running c quark mass, we use
mc�m

pole
c � to capture a part of NNLO corrections [36].

We refer to, for example, Appendix B of Ref. [37] for
the detailed expression of the branching ratio in terms of
the Wilson coefficients which we are gong to present
below.

The LO charged-Higgs contribution is given by
 

C�0�H
�

7;8 �MW� �
1

3

�gRy
H� �du
�33

V33

�gR
H� �du
�23

Vy23

F�1�7;8�y�

�
�gLy
H� �du
�33

V33

�gR
H� �du
�23

Vy23

F�2�7;8�y�; (4.15)

where y � �m2
t �MW�=M

2
H� , the ratio of the top-quark run-

ning mass at the scaleMW to the charged-Higgs-boson pole
mass. In the numerical analysis, we include the NLO
contribution. Note that gR

H� �du
� �t�1

� Vy and gL
H� �du

�

�t�Vy at tree level, see Eqs. (3.23) and (3.24). The func-

tions F�1�;�2�7;8 can be found in Refs. [37,38].
The chargino contributions are

 C

�

7;8��SUSY� �
X
i�1;2

	
2

3

M2
W

~m2
q
j�CR�i1j2F

�1�
7;8�x~q
�i

� �
�VyR�1

d �
y
13Vy21 � �V

yR�1
d �
y
23Vy22

c�V33Vy23

�CL�i2�CR�
�
i1MW���

2
p
m
�i

F�3�7;8�x~q
�i
�

�
2

3

X
j�1;2

���������CR�i1�U~t
1j�
� �
�M̂uR�1

u �33���
2
p
s�MW

�CR�i2�U
~t
2j�
�

��������2M2
W

m2
~tj

F�1�7;8�x~tj
�i
�

�
�VyR�1

d �
y
33

c�V33

X
j�1;2

�
�
�CL�i2�CR�

�
i1MW���

2
p
m
�i

��������U~t
1j

��������2
��U~t

1j�
�U~t

2j
�CL�i2�CR�

�
i2�M̂uR�1

u �
y
33

2s�m
�i

�
F�3�7;8�x~tj
�i

�



; (4.16)

where xij � m2
i =m

2
j . We refer to [39] for the functions F�3�7;8 and to [40] for the chargino mixing matrices CL;R and the stop

mixing matrix U~t.
Finally, the gluino contributions to the Wilson coefficients C7;8 are given by

 C~g
7��SUSY� � �

8�
s
9
���
2
p
GFjM3j

2�t

X6

i�1

xi�G
d
L�
�
i2

�
�Gd

L�i3f2�xi� � �G
d
R�i3

M3

mb
f4�xi�

�
;

C~g
8��SUSY� � �

�
s���
2
p
GFjM3j

2�t

X6

i�1

xi�G
d
L�
�
i2

	
�Gd

L�i3

�
3f1�xi� �

1

3
f2�xi�

�
� �Gd

R�i3
M3

mb

�
3f3�xi� �

1

3
f4�xi�

�

;

(4.17)

where �t � V33Vy23 � VtbV�ts and xi � jM3j
2=m2

~di
. The loop functions f1;2;3;4�xi� may be found in Ref. [41]. The Wilson

coefficients for the primed operators O07;8 can be obtained by the exchange L$ R and M3 ! M�3:
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 C0~g7 ��SUSY� � �
8�
s

9
���
2
p
GFjM3j

2�t

X6

i�1

xi�G
d
R�
�
i2

�
�Gd

R�i3f2�xi� � �G
d
L�i3

M�3
mb

f4�xi�
�
;

C0~g8 ��SUSY� � �
�
s���

2
p
GFjM3j

2�t

X6

i�1

xi�G
d
R�
�
i2

	
�Gd

R�i3

�
3f1�xi� �

1

3
f2�xi�

�
� �Gd

L�i3
M�3
mb

�
3f3�xi� �

1

3
f4�xi�

�

:

(4.18)

In the above, C�0�~g7;8 , the down-type squark-gluino-quark
couplings Gd

L;R are defined through the interaction
Lagrangian (suppressing the color indices)
 

L~d ~g d � �
���
2
p
gsf~d

�
i t
a �~ga
�Gd

L�i
PL � �G
d
R�i
PR�d


� �d

�G
d
L�
�
i
PR � �G

d
R�
�
i
PL�~g

ata ~dig; (4.19)

where ta are the usual Gell-Mann matrices, i � 1; 2; . . . ; 6
label the mass eigenstates of down-type squarks, and 
 �
1, 2, 3 the mass eigenstates of down-type quarks. The
couplings are given by the down-type squark mixing ma-
trix as

 �Gd
L�i
 � �U

~dy�i
; �Gd
R�i
 � ��U

~dy�i
�3: (4.20)

The 6� 6 unitary matrix U ~d diagonalizes the down-type
squark mass matrix as

 U ~dyM2
~d
U ~d � diag�m2

~d1
; m2

~d2
; . . . ; m2

~d6
�; (4.21)

where ~d1 is the lightest and ~d6 the heaviest. In the super-
CKM basis, in which the down squarks are aligned with the
down quarks and UQ

L � Uu
R � Ud

R � 1, the 6� 6 down-
type squark mass matrix M2

~d
takes on the form

 M 2
~d
�

Vy ~M2
LLV Vy ~M2

LR
~M2
RLV ~M2

RR

 !
; (4.22)

where the 3� 3 submatrices are given by
 

~M2
LL � ~M2

Q �
v2

1

2
�hydhd� � c2�M

2
Z

�
�

1

2
�

1

3
s2
W

�
1;

~M2
LR �

1���
2
p aydv1 �

1���
2
p hyd�v2;

~M2
RL �

1���
2
p adv1 �

1���
2
p hd��v2;

~M2
RR � ~M2

D �
v2

1

2
�hdhyd � � c2�M

2
Z

�
�

1

3
s2
W

�
1;

(4.23)

with hd �
��
2
p

v1
M̂dVyR�1

d . As a byproduct of the chosen
super-CKM basis, we observe the absence of flavor mixing
in M2

~d
, for all hd-dependent terms, when Rd / 1.

V. NUMERICAL EXAMPLES

For our numerical estimates of FCNC observables at
large tan�, we take the GUT scale to be the same as in
the usual CMSSM with MFV, and a dedicated program has
been developed to calculate the RG evolution from the
GUT scale to the low-energy SUSY scale in the

MCPMFV framework of the MSSM. For the Higgs mass
spectrum and the mixing matrix O
i at the MSUSY scale,
the code CPsuperH [40] has been used. In the calculation
of the flavor-changing effective couplings, only the leading
contributions have been kept in the single-Higgs-insertion
approximation, neglecting the EW corrections and the
generically small flavor-off-diagonal elements of the
squark mass matrices.

In order to study the effects of CP-violating phases in
the MCPMFV framework, we consider a CP-violating
variant of a typical CMSSM scenario:
 

jM1;2;3j � 250 GeV;

M2
Hu
� M2

Hd
� ~M2

Q �
~M2
U � ~M2

D � ~M2
L � ~M2

E

� �100 GeV�2;

jAuj � jAdj � jAej � 100 GeV;

(5.1)

at the GUT scale with tan��MSUSY� � 10, which corre-
sponds to tan��mpole

t � ’ 10:2. As for the CP-violating
phases, we adopt the convention that �� � 0�, and we
vary the following three phases:

 �12 � �1 � �2; �3;

�GUT
A � �Au � �Au � �Ae ;

(5.2)

where, for simplicity, common phases �12 and �GUT
A are

taken for the phases of M1;2�MGUT� and Au;d;e�MGUT�,
respectively. We note that the phases of the gaugino mass
parameters, �1;2;3, and the � parameter, ��, are un-
changed by the RG evolution, while the phases of the
elements of the matrix Au;d;e could be significantly differ-
ent at low scales from the values given at the GUT scale.
This scenario becomes the SPS1a point [42] when �1;2;3 �
0� and �GUT

A � 180�. We have found that MSUSY varies
between 530 GeV and 540 GeV, and MGUT=1016 GeV
between 1.825 and 1.838 depending on the values of the
CP-violating phases.

We do not consider in this section the electric dipole
moment (EDM) constraints [43] on the MCPMFV parame-
ter space of the MSSM. A systematic implementation of
these constraints and their impact on the FCNC observ-
ables will be given in a forthcoming communication.

A. Phases and masses

We first consider the (3, 3) elements Af3
�

�af�33=�hf�33 at MSUSY with f � u; d; e and f3 � t; b; �.
We find that the complex quantity Af3

can be written in
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terms of the complex Af and Mj at the GUT scale as:

 Af3
�MSUSY� � C

Af
f3
Af�MGUT� � C

Mi
f3
Mi�MGUT�; (5.3)

where the real coefficients C
Af
f3

and CMi
f3

are functions of the
Yukawa and gauge couplings. This expression is similar to
that found in Ref. [44]. In general, CAu;dt;b are much smaller

than CM3
t;b . Indeed, they are even smaller than CM1;2

t;b with

CAut < CAdb . For A�, C
Ae
� is not so much smaller than CM1;2

� ,
whileCM3

� is negligible. This is because the strong coupling
amplifies the influence of M3, while the large Yukawa
couplings suppress those of the A terms via renormaliza-
tion effects [44]. For the parameter set (5.1) with tan� �
10, we observe that the phases �At�MSUSY� and
�Ab�MSUSY� are largely determined by �3, whereas the
phase �A��MSUSY� is more affected by �1;2 than by �GUT

A .
This situation becomes different for larger values of tan�,
i.e. we find that CM3

� becomes significant and CAdb decreases
when tan� increases.

In Fig. 4 we show sin�At , sin�Ab , and sin�A� for the
parameter set (5.1) with tan��MSUSY� � 10. In the left
frames, we observe that �At;b and �A� can be fully gen-
erated from �3 and �1;2, respectively, even when Au;d;e at
the GUT scale are real, �GUT

A � 180�. Whilst the depen-
dence of �A� on �3 is negligible (solid line in the left-
lower frame), the dependences of �At;b on �1;2 can be
sizeable (dashed lines in the left-upper and left-middle
frames). In the right frames, the cases with �3 � 0�

(�At;b) and �12 � 0� (�A�) are considered, showing how
large the A-term phases may become at theMSUSY scale for
real M3 and/or real M1 and M2. When the gaugino masses
are all real, j sin�At j and j sin�Ab j turn out to be 0.06 and
0.12, respectively, whereas j sin�A� j can be as large as 0.55.
Somewhat larger CP-violating phases are possible for �At
and �Ab when M1 and M2 are pure imaginary (see dashed
and dash-dotted lines in the right-upper and right-middle
frames of Fig. 4). Finally, there are no visible effects of �3

on �A� .
We now discuss the effects of CP-violating phases on

the masses of Higgs bosons, third-generation squarks, and
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FIG. 4 (color online). In the left frames, taking �GUT
A � 180�, sin�At (upper), sin�Ab (middle), and sin�A� (lower) are shown as

functions of �3 taking �12 � 0� (solid lines) and �12 taking �3 � 0� (dashed lines). In the right frames they are shown as functions
of �GUT

A taking �3 � 0� or �12 � 0�. For sin�At and sin�Ab , three cases are shown: �12 � 270� (blue dash-dotted lines), 0� (black
solid lines), and 90� (red dashed lines). For sin�A� , we set �3 � 0� as well. The parameters are taken as in Eq. (5.1) with
tan��MSUSY� � 10.
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heavy neutralinos and chargino. In the upper-left frame of
Fig. 5, we show the absolute values of At;b;� as functions of
a common phase �M � �1 � �2 � �3 for two values of
�GUT
A : 0� (dashed lines) and 180� (solid lines). In this case,

one can show the absolute values squared depend only on
the difference �GUT

A ��M:

 jAfj
2 � 
f � �f cos��GUT

A ��M�; (5.4)

using Eq. (5.3), with 
f, �f > 0. From Fig. 5, we observe
that there is strong correlation between jAt;b;�j and the
particle mass spectrum. This correlation is due to the
phase-dependent terms Tr�ayuau� and Tr�aydad� in
dM2

Hu;Hd
=dt and d ~M2

Q;U;D=dt. The fact that jM2
Hu
j de-

creases (increases) when Tr�ayuau� decreases (increases)
explains the CP-odd phase dependence of heavier Higgs-
boson masses, as can be seen from the upper-right frame of
Fig. 5. The same correlation is observed for the heavy
chargino and neutralinos in the lower-right frame of
Fig. 5, since a decreased (increased) value of jM2

Hu
j leads

to smaller (larger) values of j�j. We find that the variations
in the masses of the lightest Higgs boson H1 and the
lightest neutralino ~
0

1 amount to 2 GeV and 3 GeV, respec-

tively. The CP-odd phase dependences of ~M2
Q, ~M2

U, and
~M2
D at the scale MSUSY can be understood similarly. Here

the (3, 3) components of the mass matrices decrease (in-
crease) when Tr�ayuau� increases (decreases). For the
chosen value of tan��MSUSY� � 10, the (3, 3) component
of ~M2

U shows the largest effect, since d ~M2
U=dt contains

2 Tr�ayuau� compared to Tr�ayuau� � Tr�aydad� in d ~M2
Q=dt

and 2 Tr�aydad� in d ~M2
D=dt. Furthermore, we note that ~t1 �

~tR and ~b1 � ~bL. From these observations, one can under-
stand the qualitative CP-odd phase dependence of the stop
and sbottom masses, as shown in the lower-left frame of
Fig. 5.

B. Effects on �MBs and �MBd

In the upper-left frame of Fig. 6, we show the SUSY
contribution to �MBs in units of ps�1 as a function of
tan��MSUSY� for three values of the common phase,
namely �M � 0� (solid line), 90� (dashed line),
and 180� (dash-dotted line). The horizontal line is for
the measured value: �MEXP

Bs
� 17:77� 0:10�stat:� �

0:07�syst:� ps�1 [18]. We observe that the SUSY contribu-
tion can be larger than the current observed value for
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FIG. 5 (color online). The absolute values of At;b;� (upper-left) and the masses of the heavy Higgs bosons (upper-right), sbottoms and
stops (lower-left), and charginos and neutralinos (lower-right) as functions of a common phase �M � �1 � �2 � �3. The solid lines
are for �GUT

A � 180� and the dashed lines for �GUT
A � 0�. The parameters are listed in Eq. (5.1).
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�M � 180� when tan� is large. Indeed, for �M � 180�

(90�), we find tan�< 44�48�, whereas there is no restric-
tion on tan� for �M � 0�.

The SUSY contribution CSRR�DP�
1 is suppressed by

m2
s=m2

b with respect to CSRR�DP�
1 [see Eq. (4.4)]. The

jCLR�DP�
2 j is comparable to jCSLL�DP�

1 j, while the 2HDM
contribution, CLR�2HDM�

2 , becomes less important as tan�

increases. The dip of the coupling jCSLL�DP�
1 j for �M �

180� (upper-right frame) at tan� ’ 45 is due to the fact
that the three Higgs bosons become degenerate and cancel
other contributions. Beyond this point, MH1

�MH2
de-

creases rapidly while MH3
� 110 GeV remains nearly

unchanged.
In the upper-left frame of Fig. 7, we show the SUSY

contribution to �MBd in units of ps�1 as a function of
tan��MSUSY�, using the same line conventions as in Fig. 6.
The horizontal line is for the measured value: �MEXP

Bd
�

0:507� 0:005 ps�1 [45]. We observe that the SUSY con-
tribution is always smaller than the measured value,
although it does exhibit a strong dependence on the
CP-violating phase �M. The dips at tan� ’ 45 (�M �
180�) and tan� ’ 49 (�M � 90�) arise for the same rea-

son as in the �MBs case. The dominant contribution comes

from CSLL�DP�
1 , and CSRR�DP�

1 is suppressed by m2
d=m

2
b. The

value of jCLR�DP�
2 j is smaller than that of jCSLL�DP�

1 j. Finally,
as before, the 2HDM contribution CLR�2HDM�

2 becomes less
significant for large values of tan�.

C. Effects on Bs ! ����

In the upper-left frame of Fig. 8, we show the branching
ratio B�Bs ! ����� as a function of tan��MSUSY� using
the same line conventions as in Fig. 6 for three values of the
common phase �M: �M � 0� (solid line), 90� (dashed
line), and 180� (dash-dotted line). The two horizontal lines
in the upper-left frame are for the SM prediction and the
current upper limit at 90% C.L., namely 7:5� 10�8 [18].
We observe that the branching ratio changes substantially
as �M varies. Specifically, for �M � 180� (90�) 0�, (we
find that the present upper limit on B�Bs ! ����� im-
poses the upper limit tan�< 34�38�42.

The phase dependence of the branching ratio comes
from that of the couplings CS and CP [see (4.8)],
which are shown in the upper-right and the lower-left
frames, respectively. We find that jCSj ’ jCPj, since
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FIG. 6 (color online). The SUSY contribution to �MBs in units of ps�1 (upper-left) and the relevant couplings in the other three
frames, as functions of tan��MSUSY�, for three values of the common phase: �M � 0� (solid lines), 90� (dashed lines), and 180�

(dash-dotted lines). We fix �GUT
A � 0� and the parameters are taken as in Eq. (5.1), except that here we choose ~ML;E � 200 GeV so as

to avoid a very light or tachyonic ~�1 state for large tan�. In the upper-left frame, we show the currently measured value as the
horizontal line.
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O11 �Oa1 � 0 and MH2
�MH3

[cf. (4.8) and (4.9)]. We
note that, for �M � 180�, B�Bs ! ����� can be smaller
than the SM prediction for tan� & 24. This is because the
Higgs-mediated contribution CP cancels the SM one C10,
as shown in the lower-right frame of Fig. 8, in which the
factor mb=�mb �ms� [cf. (4.11)] has been suppressed in
the label of the y-axis.

D. Effects on Bu ! ��

The recent Belle and BABAR results for the branching
ratio B�B� ! �� ��� are [46,47]
 

B�B� ! �� ���Belle � �1:79�0:56
�0:49�stat��0:46

�0:51�syst�� � 10�4;

B�B� ! �� ���BABAR � �1:2� 0:4�stat� � 0:3�bkg syst�

� 0:2�other syst�� � 10�4; (5.5)

which lead to B�B� ! �� ���EXP � �1:4� 0:43� � 10�4.
Combining the Belle and BABAR results with the SM value
B�B� ! �� ���SM � �1:41� 0:33� � 10�4 obtained by the
global fit without using B�B� ! �� ��� as an input [48], we
have the following 1� range for the ratio to the SM
prediction3:

 REXP
B�� � 1:0� 0:38: (5.6)

In the upper-left frame of Fig. 9, we show possible values
of this ratio in the MSSM with MCPMFV, together with the
experimental range given in (5.6), as functions of tan� for
three representative values of the common phase �M and
for �GUT

A � 0. The three thin arrows at the bottom indicate
the positions where the ratio vanishes at the tree level
without including threshold corrections for �M � 180�,
90�, and 0� (from left to right). Beyond the minimum
point, the charged-Higgs-boson contribution dominates
over the SM one. It rapidly grows as tan4� initially and
then goes over to tan2� due to the threshold corrections.
For each displayed value of �M, we find two regions of
tan� where the experimental value of B�B� ! �� ��� is
obtained. One region is at tan�< 25 (27) 29 for �M �
180� (90�) 0�, and corresponds to the case where the
charged-Higgs-boson contribution is a small ‘‘correction’’
to the SM term. The second region is at tan�� 41 (46) 48,
for �M � 180� (90�) 0�, and corresponds to the case
where the charged-Higgs-boson contribution dominates
over the SM term. We note that the locations of these
second allowed regions would not be estimated correctly
if the threshold corrections were not included. These re-
gions are actually excluded by the Bs ! ���� constraint
discussed previously.
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FIG. 7 (color online). The SUSY contribution to �MBd in units of ps�1 (upper-left) and the relevant couplings in the other three
frames. The line conventions and the parameters are the same as in Fig. 6.

3This range is different from that used in [49] due to the new
BABAR result [47].

B-MESON OBSERVABLES IN THE MAXIMALLY CP- . . . PHYSICAL REVIEW D 76, 115011 (2007)

115011-15



The tree-level vanishing points are also indicated in the
upper-right frame as intersections of the MH� and tan��
MB� lines. We observe that the resummed threshold effects
enhance the charged-Higgs-boson contribution when
�M � 180� and suppress it when �M � 0�. As can be
seen from the lower-left frame of Fig. 9, for �M � 90�, the
tan� dependence of RB�� becomes rather similar to the
tree-level one. However, as displayed in the lower-right
frame of Fig. 9, there is a nonvanishing contribution from
the imaginary part of the coupling �gLy

H� �du
�13=V13.

E. Effects on B! Xs�

The current experimental bound on B�B! Xs�� with a
photon energy cut of E� > Ecut � 1:6 GeV is [50]

 B�B! Xs��EXP � �3:55� 0:24�0:09
�0:10 � 0:03� � 10�4:

(5.7)

Our estimate of the SM prediction based on the NLO
calculation is 3:35� 10�4, which is about 1� larger than
the NNLO result, �3:15� 0:23� � 10�4 [36]. In Fig. 10 we
show the branching ratio B�B! Xs�� and the direct CP
asymmetry Adir

CP�B! Xs�� as functions of tan�. In the
upper-left frame, we include only the charged-Higgs con-

tribution, which increases the branching ratio. The larger
contribution in the high- tan� region is due to the decrease
of the charged-Higgs-boson mass. In the upper-right frame
of Fig. 10, we add the contribution from the chargino-
mediated loops. This contribution largely cancels the
charged-Higgs contribution, when �M & 90�. Instead, if
�M is larger than �90�, the chargino contribution inter-
feres constructively with the SM one, resulting in a rapid
increase of the branching ratio as tan� grows. This behav-
ior can be understood from the fact that the dominant
contribution to C


�

7;8 comes from the last term of
Eq. (4.16), which is proportional to �ei�At =c�, and the
branching ratio is proportional to its real part, namely
cos�At=c�. We recall that the phase �At at the low-energy
scale can largely be induced by nonvanishing �M even
when �GUT

A vanishes (see the upper frames of Fig. 4). In the
lower-left frame of Fig. 10, we show the full result includ-
ing the contribution of the gluino-mediated loops, which is
nonvanishing in the presence of flavor mixing in the down-
type squark mass matrix. We find that it is numerically
negligible for the parameters chosen. In the same frame, as
well as in the upper-right one, we show the case of the
common phase �M � 60�, in which there is a nearly exact
cancellation between the chargino and charged-Higgs con-
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tributions, and all the tan� region considered is compatible
with the current experimental bound. This observation is
also apparent in the left panel of Fig. 11. In the lower-right
frame of Fig. 10, we show the direct CP asymmetry for
several combinations of ��GUT

A ;�M�, finding that it can be
as large as �� 4%, when �M � 60�.

To illustrate the strong dependences of the branching
ratio and the CP asymmetry on the common phase �M, we
show them as functions of �M for four values of tan� in
Fig. 11. The region allowed experimentally at the 2-� level
is bounded by two horizontal lines in the left frame. In the
right frame, points within this region are denoted with open
squares. We observe that the branching ratio is quite in-
sensitive to tan� around �M � 60�, whereas the CP
asymmetry can be as large as �5% for points within the
current 2-� bound on the branching ratio. For comparison,
we note that the experimental range currently allowed is
0:4� 3:7% [50], implying that the new contribution in the
MSSM with MCPMFV could be comparable to the present
experimental error, and much larger than the SM contribu-
tion, which is expected to be below 1%. Finally, it is
important to remark that, in the absence of any cancellation
mechanism [43], EDM constraints severely restrict the soft

CP-odd phases in constrained models of low-scale SUSY,
such as the constrained MSSM. In a forthcoming paper,
however, we will demonstrate in detail, how these con-
straints can be considerably relaxed in the MSSM with
MCPMFV.

VI. CONCLUSIONS

In this paper we have formulated the maximally
CP-violating version of the MSSM with minimal flavor
violation, the MSSM with MCPMFV, showing that it has
19 parameters, including 6 additional CP-violating phases
beyond the CKM phase in the SM. As preparation for our
discussion of B-meson observables, we have developed a
manifestly flavor-covariant effective Lagrangian formal-
ism, including a new class of dominant subleading contri-
butions due to nondecoupling effects of the third-
generation quarks. We have presented analytical results
for a range of different B-meson observables, including
the Bs and Bd mass differences, and the decays Bs !
����, Bu ! ��, and b! s�. We have presented numeri-
cal results for these observables in one specific MCPMFV
scenario. This serves to demonstrate that the experimental
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constraints on B-meson mixings and their decays impose
constraints, e.g., on tan�, that depend strongly on the
CP-violating phases in the MCPMFV model, most notably
on the soft gluino-mass phase in the specific example
studied.

In summary, on the one hand, our paper introduces a new
class of MSSM models of potential phenomenological
interest and develops an appropriate formalism for analyz-
ing them, and on the other, it presents exploratory numeri-
cal studies of the constraints imposed by experimental
limits on B-meson observables. In view of the large num-
ber of the theoretical parameters in the MSSM with
MCPMFV, we leave for future work a more complete
exploration of its parameter space, including the correla-
tion with other experimental constraints, e.g. those im-
posed by limits on electric dipole moments.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS

Here we list all relevant one-loop renormalization group
equations (RGEs) for the gauge and Yukawa couplings
[51], as well as for the soft SUSY-breaking mass parame-
ters of the general MSSM [52,53]. Defining the RG evo-
lution parameter t � ln�Q2=M2

GUT�, we may write down
the one-loop RGEs as follows4:
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dt
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4Our results are in agreement with [53].
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where g1 is the GUT-normalized gauge coupling, which is
related to the U�1�Y gauge coupling g0 of the SM through
g1 �

��������
5=3

p
g0. In addition, the expression
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is the Fayet-IliopoulosD-term contribution to the one-loop
RGEs. It can be shown that dTr�YM2�=dt / Tr�YM2�, i.e.,
the expression Tr�YM2� is multiplicatively renormalizable.
As usual, the GUT scale is determined by the boundary
condition: g1�MGUT� � g2�MGUT� � g3�MGUT�. We note,
finally, that the one-loop RGEs listed above are invariant
under the unitary flavor transformations given in (2.5).

APPENDIX B: Z- AND W�-BOSON WARD
IDENTITIES

In the absence of gauge quantum corrections, the Z- and
W� boson couplings to quarks obey the following tree-
level WIs [54]:
 

q�
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where cw �
��������������
1� s2

w

p
is the cosine of the weak mixing

angle and Tu�d�z � 1
2 ��

1
2� and Qu�d� �

2
3 ��

1
3� are the

weak isospin and electric charge quantum numbers for
the u and d quarks. In (B1) and (B2), �ff0 �p� are quark
self-energies describing the fermionic transition f0 ! f,
with f � u; d and f0 � u0; d0. In addition, �Zff

0

� �q; p; p�
q� and �W

�ud
� �q; p; p� q� are vertex functions that de-

scribe the interaction of the Z and W� boson to quarks,
respectively. The momenta q� of the gauge bosons are
defined as flowing into the vertex, while the momentum
flow of the quarks follows the fermion arrow, where p�

always denotes the outgoing momentum.
In general, virtual strong and electroweak gauge correc-

tions to the Z- and W�-boson vertices usually distort these
identities, through terms that depend on the gauge-fixing
parameter, e.g., �. One possible framework in which these
identities can be enforced is the pinch technique [55],
leading to analytic results that are independent of �.
Recently, this approach has been extended to super Yang-
Mills theories [56]. We ignore the gauge quantum correc-
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tions in our phenomenological analysis, since they are
rather small.

In the limit q� ! 0, the WIs (B1) and (B2) simplify
considerably. Let us first consider the WI involving the Z
boson and its associate would-be Goldstone boson G0.
Since the vertex function �Zff

0

� �q; p; p� q� has no IR
singularities in the limit q� ! 0, the WI (B1) takes on
the much simpler form

 �G
0ff0 �0; p; p� �

igw
MZcw

Tfz 
�ff0 �p�PL � PR�ff0 �p��:

(B3)

Decomposing the quark self-energies �ff0 �p� with respect
to their spinorial structure,
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We may rewrite (B3) as follows:
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Considering the proper normalizations determined by the
relations given in (3.13), it is possible to make the follow-
ing identifications in the effective potential limit p� ! 0:
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where the unitary matrices Uu;d
L;R take care of the weak to the

mass basis transformations as given in (3.7), with Uu
L �

UQ
L and Ud

L � UQ
LV. Then, the simplified WI (B5) implies

that
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2
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v
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which is the relation assumed in Sec. III [cf. (3.17)].
We now turn our attention to the WI involving the W�

boson and the associated would-be Goldstone boson G�.
In the effective potential limit q�, p� ! 0, we obtain
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igw���
2
p
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� Vud0�
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Employing the definitions (3.13) and taking the weak-to-
mass basis rotations of the quark states into account, we
find the relations:

 PL�G
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R hu�G�
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d Uu
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From the simplified WI (B8) and its Hermitian conjugate,

we then derive that

 � G�
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2
p
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h�ui; �G�
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2
p

v
h�di; (B10)

which is in agreement with (3.17) and the discussion given
below. We note that the unitarity of the radiatively cor-
rected CKM matrix V lies at the heart of deriving the
relations (B7) and (B10).

APPENDIX C: CPsuperH INTERFACE

To solve the RGEs given in Appendix A, we have
considered the following input parameters:

(i) The gauge couplings at the scale MZ:

 


1�MZ� �
5

3

g02�MZ�

4�
; 
2�MZ� �

g2�MZ�

4�
;


3�MZ�; (C1)

where g�MZ� � e�MZ�=sW and g0�MZ� �
e�MZ�=cW with 
em�MZ� � e2�MZ�=4�.
The evolutions of 
1;2 from MZ to mpole

t are deter-
mined by [57]

 
�1
1 �m

pole
t � � 
�1

1 �MZ�
�1 �

53

30�
ln�MZ=m

pole
t �;


�1
2 �m

pole
t � � 
�1

2 �MZ� �
11

6�
ln�MZ=m

pole
t �:

(C2)

On the other hand, 
3�m
pole
t � has been obtained by

solving the following equation iteratively [58]

 
�1
3 �m

pole
t � � 
�1

3 �MZ� � b0 ln
�
mpole
t

MZ

�
�
b1

b0

� ln
�

3�m

pole
t �


3�MZ�

�
�

�
b2b0 � b

2
1

b2
0

�
�

3�m

pole
t � � 
3�MZ�� �O�
2

3�;

(C3)

where b0 � ��11� 2NF=3�=2�, b1 � ��51�
19NF=3�=4�2, and b2 � ��2857� 5033NF=9�
325N2

F=27�=64�3 with NF � 5.
(ii) The masses of the quarks and the charged leptons at

the top-quark pole-mass scale mpole
t . In particular,

the top-quark running mass at mpole
t is obtained

from: mt�m
pole
t � � mpole

t =
1� 4
3�m
pole
t �=3��.

The CKM matrix V is assumed to be given at the
same scale mpole

t . Then, in general, the complex 3�

3 Yukawa matrices at mpole
t are given by
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hu;e�m
pole
t � �

���
2
p

v
M̂u;e�m

pole
t �;

hd�m
pole
t � �

���
2
p

v
M̂d�m

pole
t �Vy�m

pole
t �

(C4)

in the flavor basis UQ
L � Uu

R � Ud
R � 13. The di-

agonal quark and charged-lepton mass matrices are
given by
 

M̂u�m
pole
t � � diag
mu�m

pole
t �;mc�m

pole
t �;mt�m

pole
t ��;

M̂d�m
pole
t � � diag
md�m

pole
t �;ms�m

pole
t �;mb�m

pole
t ��;

M̂e�m
pole
t � � diag
me�m

pole
t �;m��m

pole
t �;m��m

pole
t ��:

(C5)

Given 
1;2;3�m
pole
t � and hu;d;e�m

pole
t �, the evolution

from mpole
t to the scale MSUSY has been obtained by

solving the SM RGEs. Here the SUSY scale MSUSY

has been determined by solving

 Q2jQ�MSUSY
� max
m2

~t �Q
2�; m2

~b
�Q2�� (C6)

iteratively, where m2
~t � max�m2

~Q3
�m2

t ; m
2
~U3
�

m2
t � and m2

~b
� max�m2

~Q3
�m2

b; m
2
~D3
�m2

b�. For

m2
~Q3; ~U3; ~D3; ~L3; ~E3

�Q2�, we have taken the (3, 3) compo-

nent of the corresponding mass matrix as

 m2
~Q3; ~U3; ~D3; ~L3; ~E3

�Q2� � 
 ~M2
Q;U;D;L;E�Q

2���3;3�: (C7)

At the scale MSUSY, the Yukawa matrices match as
 

hu�M�SUSY� � hu�M�SUSY�= sin��MSUSY�;

hd;e�M�SUSY� � hd;e�M�SUSY�= cos��MSUSY�;
(C8)

and, finally, the evolution fromMSUSY toMGUT have
been obtained by solving the MSSM RGEs.

(iii) The 19 flavor-singlet mass scales of the MSSM
with MCPMFV, which are parametrized as follows:
 

jM1;2;3je
i�1;2;3 ; jAu;d;eje

i�Au;d;e ;

~M2
Q;U;D;L;E; M2

Hu;d
:

(C9)

These are inputted at the GUT scaleMGUT, which is
defined as the scale where the couplings g1 and g2

meet. Any difference between g3�MGUT� and
g1�MGUT� may be attributed to some unknown
threshold effect at the GUT scale.

By solving the RGEs from the GUT scale MGUT to the
SUSY scale MSUSY, we obtain:

(i) Three complex gaugino masses, jMije
i�i�Q �

MSUSY�.
(ii) Three 3� 3 complex Yukawa-coupling matrices,

hu;d;e�Q � MSUSY�.

(iii) Three 3� 3 complex a-term matrices, au;d;e�Q �
MSUSY�.

(iv) The soft Higgs masses, M2
Hu;Hd

�Q � MSUSY�.
(v) The complex 3� 3 sfermion mass matrices,

~M2
Q;U;D;L;E�Q � MSUSY�.

The inputs for the code CPsuperH are:

 tan��mpole
t �; Mpole

H� ; ��MSUSY�;

M1;2;3�MSUSY�; m ~Q3; ~U3; ~D3; ~L3; ~E3
�MSUSY�;

At�MSUSY�; Ab�MSUSY�; A��MSUSY�:

(C10)

The ratio of the vacuum expectation values at mpole
t is

related to that at MSUSY by [21]

 tan��mpole
t � �

��2 �m
pole
t �

��1 �m
pole
t �

tan��MSUSY� (C11)

with

 �����1�2� �m
pole
t � � 1�

3jhb�t�j2

32�2 ln
M2

SUSY

mpole2
t

: (C12)

The gaugino mass parameters are directly read from the
results of the RG running, the sfermion masses are given by

 m ~Q3; ~U3; ~D3; ~L3; ~E3
�MSUSY� � f
 ~M2

Q;U;D;L;E�MSUSY���3;3�g
1=2;

(C13)

and the A parameters, including their CP-violating phases,
by

 Af�MSUSY� �

af�MSUSY���3;3�


hf�MSUSY���3;3�
: (9.14)

The � parameter and charged-Higgs-boson pole mass
Mpole
H� can be obtained from M2

Hu
�MSUSY� and M2

Hd
�MSUSY�

by imposing the two CP-even tadpole conditions, T	1
�

T	2
� 0 [21]. The tadpoles can be cast into the form

 

T	1�	2�
� v1�2� ��2

1�2� �v2�1�Re �m2
12

�v1�2�
 ��1�2�v2
1�2� �

1
2�

��3� ��4�v2
2�1���v1�2�X1�2�;

(C15)

where

 X1�2� �
3

8�2

�
jhb�t�j2m2

b�t�

�
ln
m2
b�t�

mpole2
t

� 1
��
: (C16)

The quantities ��2
1;2 and ��i are given by

 

��2
1;2 � �M

2
Hd;Hu

� j�j2 ��2�1�
1;2 �m

pole
t �;

��i � �i � �
�1�
i �m

pole
t � � �

�2�
i �m

pole
t �;

(C17)

where
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 �2�1�
1 �m

pole
t � � �

3

16�2

�
jhtj

2j�j2 ln
M2

~t

mpole2
t

� jhbj
2jAbj

2 ln
M2

~b

mpole2
t

�
;

�2�1�
2 �m

pole
t � � �

3

16�2

�
jhtj

2jAtj
2 ln

M2
~t

mpole2
t

� jhbj
2j�j2 ln

M2
~b

mpole2
t

�
:

(C18)

The couplings �i, �
�1�
i �m

pole
t � and ��2�i �m

pole
t �may be found in Ref. [21]. The squared absolute value j�j2 can be determined

from �T	1
=v2 � T	2

=v1� � 0, which does not depend on Re �m2
12, since

 j�j2 �
�M2

Hd
�M2

Hu
t2�� � � ��1v2

1 �
��2v2

2t
2
�� � XA � �X1 � t2�X2�

�t2� � 1� � Xtb
(C19)

with

 XA �
3

16�2

�
jhbj

2jAbj
2 ln

M2
~b

mpole2
t

� t2�jhtj
2jAtj

2 ln
M2

~t

mpole2
t

�
; Xtb � �

3

16�2

�
jhtj

2 ln
M2

~t

mpole2
t

� t2�jhbj
2 ln

M2
~b

mpole2
t

�
: (C20)

We note that the phase of the � parameter, ��, is not renormalized.
Once j�j2 is found, Re �m2

12 can be obtained from T	1
� 0 or T	2

� 0. With Re �m2
12 known, the charged-Higgs-boson

pole mass can be obtained by solving the following equation iteratively:

 �Mpole
H� �

2 �
Re �m2

12

s�c�
�

1

2
��4v

2 � Re �̂H�H��
���
s
p
� Mpole

H� �: (C21)

For the explicit form of �̂H�H� , we refer to Ref. [59]. We note that, for large tan�, Re �m2
12=s�c� ’ M

2
Hd
�M2

Hu
�M2

Z at
the tree level. Finally, after imposing the CP-odd tadpole condition Im�B�� � 0, we use B� � Re �m2

12 to calculate the
2HDM contribution (3.28), by noting HuHd � ��y1 �2.
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[28] A. J. Buras, S. Jäger, and J. Urban, Nucl. Phys. B605, 600
(2001).

[29] M. Ciuchini et al., J. High Energy Phys. 07 (2001) 013.
[30] A. J. Buras, M. Misiak, and J. Urban, Nucl. Phys. B586,

397 (2000).
[31] D. Becirevic, V. Gimenez, G. Martinelli, M. Papinutto,

and J. Reyes, Nucl. Phys. B, Proc. Suppl. 106, 385 (2002).
[32] A. J. Buras, P. H. Chankowski, J. Rosiek, and L.

Slawianowska, Nucl. Phys. B619, 434 (2001).
[33] H. Fusaoka and Y. Koide, Phys. Rev. D 57, 3986 (1998).
[34] W. S. Hou, Phys. Rev. D 48, 2342 (1993).
[35] A. L. Kagan and M. Neubert, Phys. Rev. D 58, 094012

(1998); Eur. Phys. J. C 7, 5 (1999).
[36] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[37] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,

Comput. Phys. Commun. 174, 577 (2006).
[38] M. Ciuchini, G. Degrassi, P. Gambino, and G. F. Giudice,

Nucl. Phys. B527, 21 (1998).
[39] M. Ciuchini, G. Degrassi, P. Gambino, and G. F. Giudice,

Nucl. Phys. B534, 3 (1998); G. Degrassi, P. Gambino, and
P. Slavich, Phys. Lett. B 635, 335 (2006).

[40] J. S. Lee, A. Pilaftsis, M. Carena, S. Y. Choi, M. Drees,
J. R. Ellis, and C. E. M. Wagner, Comput. Phys. Commun.
156, 283 (2004).

[41] S. Bertolini, F. Borzumati, A. Masiero, and G. Ridolfi,
Nucl. Phys. B353, 591 (1991); T. Goto, Y. Okada, Y.

Shimizu, and M. Tanaka, Phys. Rev. D 55, 4273 (1997);
66, 019901(E) (2002); Y. G. Kim, P. Ko, and J. S. Lee,
Nucl. Phys. B544, 64 (1999); F. Borzumati, C. Greub, T.
Hurth, and D. Wyler, Phys. Rev. D 62, 075005 (2000).

[42] M. Battaglia et al., Eur. Phys. J. C 22, 535 (2001); B. C.
Allanach et al., arXiv:hep-ph/0202233; N. Ghodbane and
H. U. Martyn, arXiv:hep-ph/0201233; M. Battaglia, A. De
Roeck, J. R. Ellis, F. Gianotti, K. A. Olive, and L. Pape,
Eur. Phys. J. C 33, 273 (2004).

[43] For a partial list, see, for example, T. Ibrahim and P. Nath,
Phys. Rev. D 58, 111301 (1998); 61, 093004 (2000); M.
Brhlik, G. J. Good, and G. L. Kane, Phys. Rev. D 59,
115004 (1999); A. Bartl, T. Gajdosik, W. Porod, P.
Stockinger, and H. Stremnitzer, Phys. Rev. D 60,
073003 (1999); T. Falk, K. A. Olive, M. Pospelov, and
R. Roiban, Nucl. Phys. B560, 3 (1999); D. Chang, W.-Y.
Keung, and A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999); S.
Pokorski, J. Rosiek, and C. A. Savoy, Nucl. Phys. B570,
81 (2000); E. Accomando, R. Arnowitt, and B. Dutta,
Phys. Rev. D 61, 115003 (2000).A. Pilaftsis, Nucl. Phys.
B644, 263 (2002).For recent compilations of the experi-
mental constraints, see, V. D. Barger, T. Falk, T. Han, J.
Jiang, T. Li, and T. Plehn, Phys. Rev. D 64, 056007 (2001);
K. A. Olive, M. Pospelov, A. Ritz, and Y. Santoso, Phys.
Rev. D 72, 075001 (2005); J. R. Ellis, J. S. Lee, and A.
Pilaftsis, Mod. Phys. Lett. A 21, 1405 (2006).

[44] T. Goto, Y. Y. Keum, T. Nihei, Y. Okada, and Y. Shimizu,
Phys. Lett. B 460, 333 (1999).

[45] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[46] K. Ikado et al., Phys. Rev. Lett. 97, 251802 (2006).
[47] B. Aubert (The BABAR Collaboration), Phys. Rev. D 76,

052002 (2007).
[48] M. Bona et al. (UTfit Collaboration), J. High Energy Phys.

10 (2006) 081.
[49] G. Isidori, F. Mescia, P. Paradisi, and D. Temes, Phys. Rev.

D 75, 115019 (2007).
[50] E. Barberio et al. (Heavy Flavor Averaging Group (HFAG)

Collaboration), arXiv:0704.3575.
[51] B. Grzadkowski, M. Lindner, and S. Theisen, Phys. Lett. B

198, 64 (1987); S. Antusch, J. Kersten, M. Lindner, and M.
Ratz, Phys. Lett. B 538, 87 (2002).

[52] V. Barger, M. S. Berger, and P. Ohmann, Phys. Rev. D 49,
4908 (1994).

[53] D. J. Castano, E. J. Piard, and P. Ramond, Phys. Rev. D 49,
4882 (1994).

[54] See, for instance, A. Pilaftsis, Phys. Rev. D 65, 115013
(2002).

[55] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474
(1989); J. Papavassiliou, Phys. Rev. D 41, 3179 (1990); D.
Binosi and J. Papavassiliou, Phys. Rev. D 66, 111901
(2002); J. Phys. G 30, 203 (2004).

[56] M. Binger and S. J. Brodsky, Phys. Rev. D 74, 054016
(2006); N. Caporaso and S. Pasquetti, arXiv:hep-th/
0609168.

[57] V. D. Barger, M. S. Berger, and P. Ohmann, Phys. Rev. D
47, 1093 (1993).

[58] W. J. Marciano, Phys. Rev. D 29, 580 (1984).
[59] M. Carena, J. Ellis, A. Pilaftsis, and C. E. M. Wagner in

Ref. [23].

JOHN ELLIS, JAE SIK LEE, AND APOSTOLOS PILAFTSIS PHYSICAL REVIEW D 76, 115011 (2007)

115011-24


