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Evidence for a breakdown of the Isobaric Multiplet Mass Equation:
A study of the A = 35, T = 3=2 isospin quartet
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Mass measurements on radionuclides along the potassium isotope chain have been performed with the
ISOLTRAP Penning trap mass spectrometer. For35K (T1=2 = 178 ms) to46K (T1=2 = 105 s) relative mass
uncertainties of 2� 10�8 and better have been achieved. The accurate mass determination of 35K (�m = 0.54
keV) has been exploited to test the Isobaric Multiplet Mass Equation (IMME) for theA = 35, T = 3=2 isospin
quartet. The experimental results indicate a deviation from the generally adopted quadratic form.

PACS numbers: 07.75.+h Mass spectrometers, 21.10.Dr Binding energies and masses, 21.60.Fw Models based on group
theory, 27.30.+t 20� A� 38

I. INTRODUCTION

The application of the isospin formalism in nuclear physics
stems from the assumption that the strong interaction is almost
charge-independent. In addition to the approximation thatthe
neutron and the proton have the same mass, the isospin for-
malism describes the neutron and the proton as identical parti-
cles with isospinT = 1=2with the projectionsTz(n)= + 1=2
andTz(p)= � 1=2, respectively [1, 2]. Isobaric nuclei with
the same isospinT belong to a2T + 1multiplet with the pro-
jectionsTz = (N � Z)=2, whereN is the number of neutrons
andZ the number of protons in the nucleus. The correspond-
ing states of these isobars with the sameJ� and isospinT
are called Isobaric Analog States (IAS). The IAS have nearly
the same wave function, mainly perturbed by the charge dif-
ference in the nuclei. Assuming only a two-body Coulomb
force for the perturbation, the energy shift due to the charge-
state difference can be calculated. In first-order perturbation
theory, this approximation leads to a quadratic equation [3, 4]:

D (A;T;Tz) = a(A;T) + b(A;T)Tz + c(A;T)T
2
z; (1)

that gives the mass excessD of a member of a multiplet as
a function of its atomic mass numberA , its isospinT and
isospin projectionTz. This relation is known as the Isobaric
Multiplet Mass Equation (IMME).
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The IMME can be used as a local mass model to predict un-
known masses where some members of a multiplet are known.
Short-range predictions can provide accurate masses with un-
certainties as low as a few keV in favorable cases [5]. This can
be very helpful for applications such as nuclear astrophysics,
in particular, modeling the rapid proton-capture (rp) process
where such local models are in fact preferred to global mod-
els [6].

The IMME has been thoroughly studied in the late 70s
[7]. Since then, many additional measurements and tests have
been performed and reported (seee.g. [8, 9, 10]). The IMME
was found to work very well for most cases. However, from
the latest data compilation [11] and recent results of experi-
ments, some cases show a deviation from the quadratic form
of the IMME and need additional higher order terms [12].
Tests require systems with at least four nuclides in the mul-
tiplet, i.e., with an isospinT � 3=2. Up to now, only the
A = 9, T = 3=2 quartet as well as theA = 8, T = 2 quin-
tet system are known to deviate significantly,i.e., by more
than three standard deviations, from the quadratic form of the
IMME (see Fig. 1). For those multiplets higher order terms
have to be added, eitherdT 3

z , eT 4
z , or both. The present paper

reports on the improvement of the35K mass, which allows a
further test of the quadratic form of the IMME for theA = 35,
T = 3=2 isospin quartet.

II. THE ISOLTRAP EXPERIMENT

The tandem Penning trap mass spectrometer ISOLTRAP
[13], installed at the on-line isotope separator ISOLDE [14] at
CERN (Geneva), is an experiment dedicated to high-precision
mass measurements on short-lived radionuclides [15, 16]. The
mass measurement is based on the determination of the cy-
clotron frequency�c of a stored ion, probed by use of radiofre-
quency (rf) fields in a Penning trap. With a charge-to-mass
ratio q=m and a magnetic fieldB the cyclotron frequency is
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FIG. 1: Compilation for the cubic parameterd of the IMME [8, 9,
10, 11]. Top: Values ofdas a function of the mass valueA . Bottom:
Relative uncertainty ofdwhere the shaded areas indicate the 1, 2 and
3 � agreement.

given by:

�c =
1

2�

q

m
B : (2)

With this technique, a relative mass uncertainty of the order
of �m =m = 10�8 is routinely reached with ISOLTRAP [17].

The setup is composed of mainly three parts (see Fig. 2):
First, a linear radiofrequency quadrupole (RFQ) cooler and
buncher has the task to stop, accumulate, cool, and bunch
the 60-keV ISOLDE beam for a subsequent transfer into the
preparation trap [18]. Second, the cylindrical preparation Pen-
ning trap with helium buffer gas is used to remove isobaric
contaminants [19] with a resolving powerR = m =� m up to
105 and to bunch the ions for an efficient delivery to the sec-
ond Penning trap. Finally, in the hyperbolical precision Pen-
ning trap the cyclotron frequency�c is determined for both
the ion of interest and a well-known reference ion by use of
a quadrupolar rf-excitation [20], for which the frequency is
varied around�c. The duration of the rf-excitation is chosen
between 0.1 and 9 s depending on the required resolution and
the half-life of the ion of interest. As an example of the time-
of-fight technique [21] used at ISOLTRAP, the inset in Fig. 2
shows a cyclotron resonance for35K+ .

For the production of radioactive potassium isotopes a
titanium-foil target was used. It consists of a stack of thin

FIG. 2: Sketch of the experimental setup of the ISOLTRAP mass
spectrometer. Micro Channel Plate (MCP) detectors are usedto mon-
itor the ion-beam transfer (MCP1-2). A newly implemented Chan-
neltron detector [22], which can be used in place of MCP3, records
the time-of-flight (TOF) resonance curve for the cyclotron frequency
determination. The inset shows a resonance curve for35K+ (exci-
tation duration 400 ms) together with the fit of the theoretically ex-
pected line shape to the data points [23].

titanium foils (30�m each) for a total thickness of 19 g� cm�2

and a quantity of 50 g of titanium. By bombardment with
1.4-GeV protons from the CERN Proton-Synchrotron Booster
on the ISOLDE target, the radioactive potassium isotopes
were produced. After diffusing out of the heated target they
were surface-ionized by a hot tungsten ionizer. The potas-
sium ions were then accelerated to 60 keV and delivered to
the ISOLTRAP experiment via the ISOLDE High-Resolution
Separator (HRS). During three days, the isotopic chain of
potassium has been explored from35K for the neutron-
deficient side, up to46K for the neutron-rich side. A total
number of 29 cyclotron resonances for radioactive potassium
isotopes have been recorded, together with 39 resonances of
the stable reference ion39K+ . No ion contamination was ob-
served during the beam time. In the following the ISOLTRAP
mass values of the potassium isotopes are discussed, espe-
cially the 35K mass and its influence on the quadratic form
of the IMME.

III. RESULTS

Table I summarizes the measured frequency ratios and the
deduced mass-excess values of the investigated isotopes. The
mass determination for the potassium isotopes35K (T1=2 =
178 ms) up to46K (T1=2 =105 s) has been performed with
an uncertainty below 2� 10�8 , i.e., a reduction of the mass
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TABLE I: Frequency ratios relative to the39K+ reference ion and mass-excess values of the investigated potassium isotopes. The mass
excessD exp is calculated byD exp = M exp � A , whereA is the respective mass number andM exp the atomic mass as deduced from the
experimentally determined frequency ratio:M exp = (M

ref � m e)�
ref
c =�c + m e.

Isotope T 1=2
a Frequency ratiob �refc =�c D exp

c (keV) D lit
a (keV) � = D lit � D exp (keV)

35K 178 (8) ms 0:8979625551(140) � 11172:73 (54) � 11169 (20) 3:7
36K 342 (2) ms 0:9234557832(97) � 17416:83 (39) � 17426 (8) � 9:2
37K 1.22 (1) s 0:9489176146(84) � 24800:45 (35) � 24800:20 (9) 0:3
38K 7.64 (2) min 0:9744726675(112) � 28800:69 (45) � 28800:7 (4) 0:0
43K 22.3 (1) h 1:1025848117(113) � 36575:19 (46) � 36593 (9) � 17:9
44K 22.1 (2) min 1:1282719566(115) � 35781:29 (47) � 35810 (40) � 28:8
45K 17.3 (6) min 1:1539142443(144) � 36615:43 (57) � 36608 (10) 7:4
46K 105 (10) s 1:1796126258(201) � 35413:71 (76) � 35418 (16) � 4:3

aValues from [24].
bUsing39K+ as a reference.
cMref(39K) = 38 963 706.68 (20)�u [25], m e = 548579:9110(12)nu

[26], and 1u = 931 494.009 (7) keV [26].

uncertainty by a factor of up to 40 for the neutron-deficient
side (35K) and close to 80 for the neutron-rich potassium iso-
topes (44K) as compared to the literature values [24, 25]. An
overview is shown in Fig. 3. The data for the well-known iso-
topes37�39 K are plotted as a cross-check for the measurement
process and the reliability of the ISOLTRAP results.

The mass excess for35K found in this work (D exp =

� 11172:73(54)keV) agrees with the value given in the lat-
est Atomic-Mass Evaluation (AME2003) [24] but has a 40
times reduced uncertainty. The consequences with respect to
the quadratic form of the IMME are discussed in detail in the
next section.

Concerning 36K with a mass excess ofD exp =

� 17416:83(39)keV, the only contribution to the AME2003

FIG. 3: Difference of mass-excess values (D lit� D exp ) of the potas-
sium isotopes taken from this work (D exp , see Table I) and the lit-
erature [24, 25]. The experimental value of39K results from a con-
sistency check of the ISOLTRAP data (see text). The shaded area
represents the uncertainty of the ISOLTRAP values. The differences
of the mass-excess values of37�39 K are given as a cross-check. For
more details refer to the discussion section.

arises from the36Ar(p,n)36K reaction [27] and gives origi-
nally D = � 17421(8)keV. It has to be emphasized that the
(p;n) reaction energy has been recalibrated afterwards [28].
Other indirect mass determinations from36Ar(p,n)36K [29]
and 36Ar(3He,t)36K [30] can be also found in the literature
but were not used for the mass evaluation. Whereas the value
given in [29] agrees within the uncertainty, a deviation of 2.4�
is observed relative to the value reported in [30]. Finally,
only a slight difference is observed compared to the litera-
ture value from the recalibrated experiment of Goosmanet
al.: D lit = � 17426:2(7:8)keV [24] with 1.1�. The mass
of 36K has also an impact on the IMME test for theA = 36,
T = 2 quintet. The consequences for the quadratic form of
the IMME are presented together with theA = 35, T = 3=2

quartet in Section IV.

The ISOLTRAP value for the mass excess of37K (D exp =

� 24800:45(35)keV) has a four times larger uncertainty
than the literature value, since the latter is known with a
precision better than the current limit of our experiment
�(m )=m = 8� 10�9 . However, the present result shows an ex-
cellent agreement with the adopted mass-excess value, which
gives strong confidence in the ISOLTRAP results.

For 38K an isomeric state might have been present during
the measurements. The excitation energy of the isomeric state
is well determined,E � = 130:4(3)keV [31], by measure-
ments of the38Km (IT)38K internal transition-rays, after
the production of38Km with a 38Ar(p,n)38Km reaction. In
specific radioactive-beam preparation and together with laser
ionization using the resonant laser ionization method RILIS
[32], the ISOLTRAP experiment showed its ability to perform
pure isomeric mass determination in the case of68Cu [33]
and70Cu [34]. With an excitation time ofTR F = 900 ms,
the resolving power was about 2� 106, i.e., one order of mag-
nitude higher than needed to resolve the two respective iso-
mers. However, in the present work only one of the isomeric
states has been observed. For this reason, the resulting mass
could not be clearly assigned directly to any of the two iso-
meric states. The excited state38Km is shorter-lived (924 ms)
than the ground state38K (7.64 min). During the cyclotron
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TABLE II: Mass excess for nuclides of theA = 35, T = 3=2 quartet. The members of theA = 35 quartet with their respective half life and
the associated isospin are given in the first three columns. The corresponding mass excess of the ground state and the excitation energy and
their uncertainty for the IAS are given in columns 4 and 5. Thelast column indicates the total mass excess entering in the IMME.

Nucleus T 1=2
a

T z D
gs
exp

a (keV) E
�

exp
b (keV) D

tot
exp (keV)

35K 178(8)ms � 3=2 � 11172:73 (0:54)c — � 11172:73 (0:54)
35Ar 1:775(4)s � 1=2 � 23047:41 (0:75) 5572:71 (0:17) � 17474:70 (0:77)
35Cl Stable 1=2 � 29013:54 (0:04) 5654 (2) � 23359:54 (2:00)
35S 87:51 (12)d 3=2 � 28846:36 (0:10) — � 28846:36 (0:10)

aGround state, values from [24].
bValues from [11].
cThis work.

TABLE III: Mass excess for nuclides of theA = 36, T = 2quintet.The members of theA = 36 quintet with their respective half life and the
associated isospin are given in the first three columns. The corresponding mass excess of the ground state and the excitation energy and their
uncertainty for the IAS are given in columns 4 and 5. The last column indicates the total mass excess entering in the IMME.

Nucleus T 1=2
a

T z D
gs
exp

a (keV) E
�

exp
b (keV) D

tot
exp (keV)

36Ca 102(2)ms � 2 � 6440 (40) — � 6440 (40)
36K 142(2)ms � 1 � 17416:83 (0:39)c

4282:2 (2:5)
d � 13134:7 (2:4)

e

36Ar Stable 0 � 30231:54 (0:03) f
10851:6 (1:50) � 19379:94 (1:50)

36Cl 301(2)ky 1 � 29521:86 (0:07) 4299:7 (0:08) � 25222:16 (0:11)
36S Stable 2 � 30664:07 (0:19) — � 30664:07 (0:19)

aGround state, values from [24].
bValues from [11, 31, 41].
cThis work.
dExtracted from the ground state and the excited state value (seee)
eValue from [42] corrected for relativistic effect and for the 35Ar mass [24].
fSee Section 7.4 in [26].

frequency determination procedure, radioactive nuclidesmay
decay and produce characteristic signals in the time-of-flight
spectrum. The analysis of the cyclotron-resonance data per-
formed with an excitation time of 1.2 s did, however, not
show any decay peaks. Moreover, the obtained mass-excess
value� 28800:69(45)keV agrees with the literature value of
the ground state:� 28800:7(4)keV [24]. Therefore it can be
concluded that the ground state38K and not the excited iso-
meric state was produced in the ISOLDE target and directly
measured with ISOLTRAP.

Even though39K was used as the reference nuclide for
all potassium measurements, all the backward information
flow from the investigated nuclides provided a contribution
to a new mass evaluation for39K. In [24], the mass evalu-
ation from all experimental data is done by solving a sys-
tem of linear equations. In the present work, the mass de-
termination of the well-known nuclides37K and 38K, used
for cross references and data consistency, slightly changed the
39K mass-excess value (D exp+ lit = � 33806:9(2)keV, in-
stead ofD lit = � 33807:0(2)keV. This is of interest since
39K is used as a reference mass in many experimental setups.

Previous work [35, 36] led to two different mass values for
43K. The adopted value in [24], which results from an aver-
age of those input data, has a large uncertainty (D lit(

43K)=
� 36593(9)keV). The value presented in this work shows a
relative discrepancy of a bit more than two standard devia-

tions. The adopted literature value results from indirect mass
determinations. Sometimes such a deviation can be explained
by missing-lines in the recorded spectra. However, in the
present case, no clear indication of missing levels has been
found.

Former investigations on the decay imply large uncertain-
ties of the order of ten keV for44K. The comparison between
the mass-excess value presented in this work and the origi-
nal data shows a good agreement with [37] and a deviation of
1.3� from [38]. However, the weighted average mass-excess
value given in [24] agrees with the ISOLTRAP data.

Concerning45K and 46K, the uncertainties arise from the
reactions46Ca(t,�)45K [39] and 48Ca(d,�)46K [40]. Those
articles are not well documented for a recalibration of the
measurements (see [26] and references therein). The mass-
excess values presented in this work agree with the previous
data and improve the uncertainties by a factor of 20 to 80.

IV. DISCUSSION

The two potassium isotopes35K and 36K are involved in
the A = 35, T = 3=2 isospin quartet and theA = 36,
T = 2 isospin quintet, respectively. In Tab. II and III, the
updated mass-excess values of the multiplets are summarized
taking into account the values presented in this work. Unfor-



5

tunately, to fully evaluate theA = 36 quintet, a precise mass
determination of36Ca (T1=2 = 102(2)ms) is still missing
(D lit = � 6440(40)keV).

TABLE IV: The A = 35, T = 3=2 quartet and the coefficients for
the quadratic and cubic form.

D (Tz) a (keV) b(keV) c(keV) d (keV) �
2
n

Quadratic� 20 470.7(0.8)� 5 891.2(0.2) 205.0(0.4) — 8.8
Cubic � 20 468.1(0.2)� 5 884.0(2.4) 203.8(0.6)� 3.2(1.1) —

TABLE V: The A = 36, T = 2 quintet and the the coefficients for
the quadratic and cubic form.

D (Tz) a (keV) b(keV) c(keV) d (keV) �
2
n

Quadratic� 19 379.1(0.7)� 6 043.6(0.8) 200.6(0.3) — 0.9
Cubic � 19 380.3(1.5)� 6 043.3(1.1) 202.1(1.8)� 0.7(0.8) 1.1

From the mass-excess values, the coefficientsa;b;cof the
quadratic terms and the possible coefficientdof the cubic term
of the IMME can be derived by use of a standard least mean
square fit. The results for theA = 35, T = 3=2 quartet, and
theA = 36, T = 2quintet, under the assumption of quadratic
and cubic forms of the IMME, are given in Tab. IV and Tab.
V.

The updated plot for the cubic termdof the IMME is given
in Fig. 4. In the latest compilation [11], theA = 35, T = 3=2

isospin quartet was already reported to slightly deviate, and
theA = 36-quintet followed the adopted quadratic form with
a cubic term with the coefficientd = � 0:6(1:6)keV. In [11]
the reduced�2 for the quintet was close to 3, and therefore
indicated a possible non-consistent set of data.

FIG. 4: Partially updated compilation of the coefficientd of the cu-
bic term for multiplets, including this work. The four points shown
correspond to theA = 33 andA = 35 quartets, andA = 32 and
A = 36 quintets for which at least one member has been measured
at ISOLTRAP [8, 10]. The two points on the right hand side,i.e., the
A = 35quartet and theA = 36quintet, arise from the present work.

However, it can be observed that for theA = 35-quartet
none of the coefficients of the quadratic form agrees within
one standard deviation with the corresponding coefficient for
the cubic form. This clearly indicates a strong discrepancy
and is an argument in favor of using higher terms to describe
the IMME. For theA = 36-quintet, which now shows no de-
viation within a standard deviation, the uncertainties on the
coefficients are larger, because of the lack of knowledge on
the36Ca ground state. Unless a new high-precision mass mea-
surement is performed, no final conclusions about the quintet
can be drawn. However, assuming the quadratic form of the
IMME being valid for theA = 36, T = 2 quintet, the mass
value of 36Ca can be extrapolated from the other members
of the multiplet toD IM M E = � 6490:3(6)keV. This value
slightly deviates (1.3�) from the previously adopted value
[24] but has a close to two orders of magnitude smaller un-
certainty.

In order to understand the reasons of the deviation observed
for theA = 35 quartet and to find out the causes for higher-
order terms in the IMME, it will be assumed that the quadratic
form of the IMME is correct and one (or more) of the ground
state masses involved exhibit a systematic shift. The same sig-
nature appears if one of the excited states is wrongly assigned.

TABLE VI: Mass prediction and residuals assuming a quadratic fit
and using the coefficients as given in Tab. IV.

D (Tz)= a+ bTz + cT
2
z

Nucleus D
tot
cal D

tot
cal� D

tot
exp E

�

cal

(keV) (keV) (keV)
35K � 11172:9 (1:2) � 0:2(1:3) —
35Ar � 17473:9 (0:8) 0:8(1:1) 5573:5 (1:1)
35Cl � 23365:0 (0:8) � 5:5(2:1) 5648:5 (0:8)
35S � 28846:4 (1:2) 0:0(1:2) —

In Tab. VI the different mass excess predictions of the sup-
posedly ‘unknown’ nuclides are shown, calculated with the
fit parameters given in Tab. IV. The35K, 35Ar, and35S, val-
ues agree with the literature. However, compared to the value
given in [11, 24] the35Cl mass deviates by 2.6 standard devi-
ations. Due to the 2 keV uncertainty on the IAS, theTz = 1=2

member state in35Cl has the least significant contribution to
the fit. The present status is identical to the IMME ‘break-
down’ reported in [8], where the least significant member was
33Ar. The ‘revalidation’ of the IMME [9] showed that the ex-
cited state of the33Cl was erroneous. Therefore, even if those
direct mass extrapolation methods seem to indicate a devia-
tion of the excitedTz = 1=2 IAS for 35Cl, caution is advised.

In the following, a more detailed discussion is presented,
where all ground state mass values for the members of the
A = 35, T = 3=2 quartet as well as the excitation energies
for 35Cl and35Ar are included to find indications for any de-
viation of the IMME.
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A. Ground-state masses of the IMME A = 35quartet

In theA = 35, T = 3=2 quartet four ground state masses
are involved: In this work the mass excess of35K has been
directly determined for the first time by a Penning trap mea-
surement technique. Only few cases showed a discrepancy to
the Atomic-Mass Evaluation [24] that could not be resolved,
ase.g., 36Ar (see Section 7.4 of [26] and references therein).
Moreover, the precision of the mass-excess value in this work
is 40 times better than the adopted one and agrees with it.

The mass excess of35Ar results from an indirect mass mea-
surement by means of the35Cl(p,n)35Ar reaction . Three in-
put data values are taken [43, 44, 45]. However, one of them
[45] deviates by 3.4 keV (close to two standard deviations)
from the adopted value. Nevertheless, this deviation aloneis
not sufficient to explain the discrepancy of the quadratic form
of the IMME.

The mass of35Cl has been determined by direct rf-
measurements [46], which contribute about 79% to the mass
determination. Since the value steams from a direct measure-
ment, it is quite reliable and can be assumed to be correct.

The mass excess of35S is mainly determined (95%) by a
�-endpoint measurement of the35S(�� )35Cl reaction, which
was thoroughly studied for the presumed existence of a 17
keV-neutrino, see [26] (Section 7.3 and references therein).
Even though the data reported in [26] are labeled as ‘well
documented but not consistent with other well documented
data’, the discrepancies observed are less than 0.4 keV [47,
48, 49, 50, 51, 52]. While those relatively small uncertain-
ties and deviations from the adopted value are not sufficientto
draw conclusions on the existence or absence of the 17 keV-
neutrino, they are precise enough to presume the mass value
of 35S is accurate, since no systematic trends were found in
the literature.

Thus, the careful study of the ground states did not show
any deviation from the adopted values [24], except maybe for
35Ar. In [26], this nuclide is labeled as ‘secondary data’,i.e.,
where the mass is known from only one type of data, in the
present case experimental input from the35Cl(p,n)35Ar re-
action [43, 44, 45], and is not cross-checked by a different
connection.

B. Excited states of the IMME A = 35quartet

The values reported for the excited states are taken from
[11, 25, 31, 41] and references therein. The adopted value
for the IAS excited state of35Ar does not show a strong de-
viation from the experimental data. In addition, the different
estimates for the excited state in Tab. VI do not deviate by
more than one standard deviation and are far from any other
known excited state in35Ar. Therefore, it can be concluded
that the excited state is correctly assigned.

For the excited state of35Cl, as summarized in [31],
the experimental data are not precise enough and show as
well some discrepancies (see [53] and references therein).
The energy level scheme of35Cl exhibits a ‘double’ peak
around 5.65 MeV, which has been thoroughly investigated

[53, 54, 55, 56, 57]. Previous work on the IMME showed
that the energy of the excited state for33Cl was wrongly cal-
culated from the center-of-mass to the laboratory frame [8].
From the raw data of the proton energy in the laboratory frame
[57], the excitation energy has been recalculated taking into
account relativistic effects and compared to the values given
in the above mentioned references. No major deviation was
found.

A detailed analysis of the excited state of35Cl and a dis-
cussion of the separation and the spin assignment of the two
5.65-MeV states can be found in [56]. The excitation energy
resulting from the mean values of the data gives the respec-
tive energies of 5646 (2) keV and 5654 (2) keV. The excited
state at 5654 (2) keV is the commonly adopted value for the
T = 3=2 IAS. However, the calculated excitation energy as
given in Tab. VI corresponds to the excited state with energy
5646 (2) keV. When using this state rather than the adopted
one, a cubic termd = 0:8(1:0)keV is found in agreement
with zero. Therefore, it can be concluded that a misassign-
ment of the IAS is possible.

Moreover, theQ -value found in [53] shows a deviation of
about 3 keV as compared to [24] for the34S(p,)35Cl reaction.
For theA = 33 quartet [9] an unexpected shift of a few keV
was revealed for the excited states of33Cl. This shift was
sufficient to explain the observed ‘breakdown’ of the IMME
[8] and revalidated the quadratic form of the IMME [9]. Such
a trend can also be the source of the deviation for theA = 35,
T = 3=2quartet.

C. Higher-order terms of the IMME A = 35quartet

In the discussion above, it was assumed that the IMME has
a pure quadratic form and an indication for a possibly wrong
mass and/or excitation energy has been found. Even though
the adopted quadratic form of the IMME is sufficient to de-
scribe the mass surface for a given multiplet, experimental
and theoretical studies pointed out the possibility of a devi-
ation from the quadratic form and the need for higher order
terms in the IMME [12].

The excited-state assignment of35Cl can be validated with
a simulation based on a theoretical model without isospin mix-
ing [58]. The 3/2+ excited state, corresponding to the IAS in
theA = 35, T = 3=2quartet, shows a preferential branching
ratio towards the 5/2+ state lying at 3 MeV. Compared to the
decay scheme of bound states in35Cl, where the 5654 (2) keV
and 5646 (2) keV states decay towards the 5/2+ and the 7/2�

state, respectively, it can be concluded that there is no misas-
signment of the IAS in35Cl. Calculations based on sd-shell
model calculations [59] with isospin dependent interaction
show as well a deviation from the quadratic form of the IMME
with the same magnitude for the coefficient of the cubic term
but with the opposite sign,i.e., d = 3:1keV. The reasons for
the sign difference are not clear yet but the IMME quadratic
form seems to be insufficient to describe theA = 35,T = 3=2

quartet from both the experimental and the theoretical side.
The pure two-body Coulomb perturbation approximation to

derive the IMME neglects the off-diagonal part of the isovec-
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tor and isotensor components of the Coulomb force. However,
the latter might introduce an isospin mixing which causes a
shift in the levels of the different quartet members and leads
to a higher order polynomial form inTz.

It has been demonstrated in [60] that corrections to the
quadratic form of the IMME can be used. The correction
with the coefficientd of the cubic term is expected to be pro-
portional toZ�c, whereZ is the proton number,� the fine-
structure constant, andc the coefficient of the quadratic form
of the IMME. However, the calculatedd values are found
to be smaller thanZ�c. This can be explained by the fact
that the second-order corrections are ‘absorbed’ in thea;b;c

coefficients. Isospin violation of the nuclear interactionin-
ducing a small isospin-breaking component can also lead to
higher order terms in the IMME. If the bare nuclear interac-
tion has a three-body component, and if it is isospin violating,
it would automatically lead to a cubicT 3

z term. In the vicinity
of theA = 35,T = 3=2quartet members unexpected isospin-
breaking and -mixing effects have been recently observed for
the 7/2� and 13/2� states between the35Cl and35Ar mirror
nuclides [61]. If the isospinT is a good quantum number,
theE 1 transitions are identical in mirror nuclei, which is not
the case. The reason is an isospin mixing of thej7=2� iand
j5=2+ ilevels.

V. CONCLUSION

The thorough study of theA = 35, T = 3=2quartet shows
a discrepancy from the accepted quadratic form of the IMME
with a coefficientd = � 3:2(1:1)keV for the cubic term. On

the one hand questionable experimental data for excited35Cl
levels have been found in the literature, and predictions based
on isospin-mixing dependent models indicate some possible
deviation, too. Moreover, recent experimental data identified
isospin mixing effects in the vicinity of theA = 35, T = 3=2

quartet. From the theoretical calculations and experimental
data a non-zero coefficientd or higher terms are also possi-
ble. Further experimental investigations and a data recheck
are needed to confirm this new ‘breakdown’ of the IMME.
For example a direct measurement of the35Ar ground state
should be performed with the Penning trap technique. Addi-
tional decay studies and spin-assignment checks for the35Cl
and35Ar mirror nuclides should be performed in order to find
new isospin-mixing effects for lower spin levels. Finally,new
challenges are opened to theoretical calculations in orderto
reproduce the experimental data with better precision.
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