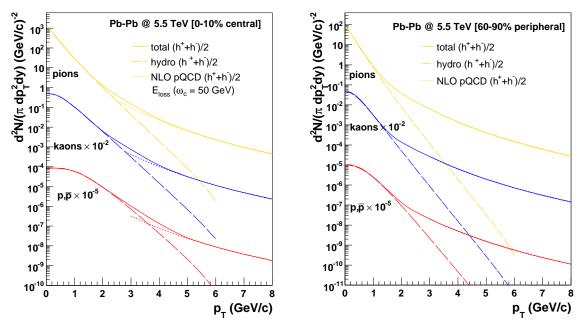
Identified hadron spectra in Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV: hydrodynamics+pQCD predictions

François Arleo 1,2 , David d'Enterria 2 , Dmitri Peressounko 3

- 1. LAPTH, UMNR CNRS/Univ. Savoie, B.P. 110, 74941 Annecy-le-Vieux Cedex
- 2. CERN/PH, CH-1211 Geneva 23
- 3. RRC "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182

Abstract. The single inclusive charged hadron p_T spectra in Pb-Pb collisions at the LHC, predicted by a combined hydrodynamics+perturbative QCD (pQCD) approach are presented.


We present predictions for the inclusive transverse momentum distributions of pions, kaons and (anti)protons produced at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV based on hydrodynamics+pQCD calculations. The bulk of the spectra ($p_T \lesssim 5$ GeV/c) in central Pb-Pb at the LHC is computed with a hydrodynamical model – successfully tested at RHIC [1] – using an initial entropy density extrapolated empirically from the hadron multiplicities measured at RHIC: $dN_{\rm ch}/d\eta|_{\eta=0}/(0.5\,N_{\rm part})\approx 0.75\,{\rm ln}(\sqrt{s_{NN}}/1.5)$ [2]. Above $p_T\approx 3$ GeV/c, additional hadron production from (mini)jet fragmentation is computed from collinearly factorized pQCD cross sections at next-to-leading-order (NLO) accuracy [3]. We use recent parton distribution functions (PDF) [4] and fragmentation functions (FF) [5], modified respectively to account for initial-state shadowing [6] and final-state parton energy loss [7].

We use cylindrically symmetric boost-invariant 2+1-D relativistic hydrodynamics, fixing the initial conditions for Pb-Pb at b=0 fm and employing a simple Glauber prescription to obtain the corresponding source profiles at all other centralities [1]. The initial source is assumed to be formed at a time $\tau_0 = 1/Q_s \approx 0.1$ fm/c, with an initial entropy density of $s_0 = 1120$ fm⁻³ (i.e. $\varepsilon_0 \propto s_0^{4/3} \approx 650$ GeV/fm³) so as to reproduce the expected final hadron multiplicity $dN_{\rm ch}/d\eta|_{\eta=0} \approx 1300$ at the LHC [2]. We follow the evolution of the system by solving the equations of ideal hydrodynamics including the current conservation for net-baryon number (the system is almost baryon-free, $\mu_B \approx 5$ MeV). For temperatures above (below) $T_{\rm crit} \approx 170$ MeV the system is described with a QGP (hadron gas) equation of state (EoS). The QGP EoS – obtained from a parametrization to recent lattice QCD results – is Maxwell connected to the hadron resonance gas phase assuming a first-order phase transition. As done for RHIC energies, we chemically freeze-out the system (i.e. fix the hadron ratios) at $T_{\rm crit}$. Final state hadron spectra are obtained with the Cooper-Frye prescription at $T_{\rm fo} \approx 120$ MeV followed by decays of unstable resonances using the known branching ratios. Details can be found at [1].

Our NLO pQCD predictions are obtained with the code of ref. [3] with all scales set to $\mu = p_T$. Pb-Pb yields are obtained scaling the NLO cross-sections by the number of incoherent

nucleon-nucleon collisions for each centrality class given by a Glauber model ($N_{\rm coll}=1670$, 12.9 for 0-10%-central and 60-90%-peripheral). Nuclear (isospin and shadowing) corrections of the CTEQ6.5M PDFs [4] are introduced using the NLO nDSg parametrization [6]. Final-state energy loss in the hot and dense medium is accounted for by modifying the AKK FFs [5] with BDMPS quenching weights as described in [7]. The BDMPS medium-induced gluon spectrum depends on a single scale $\omega_c = \langle \hat{q} \rangle L^2$, related to the transport coefficient and length of the medium. We use $\omega_c \approx 50$ GeV, from the expected energy dependence of the quenching parameter and the measured $\omega_c \approx 20$ GeV at RHIC [7]. The inclusive hadron spectra in central Pb-Pb are suppressed by up to a factor ~ 10 (2), $R_{PbPb} \approx 0.1$ (0.5), at $p_T = 10$ (100) GeV/c.

Our predictions for the identified hadron spectra in Pb-Pb collisions at 5.5 TeV are shown in Figure 1. The hydrodynamical contribution dominates over the (quenched) pQCD one up to $p_T \approx 4 \ (1.5) \ \text{GeV/}c$ in central (peripheral) Pb-Pb. As expected, the hydro-pQCD p_T crossing point increases with the hadron mass. In the absence of recombination effects (not included here), bulk protons may be boosted up to $p_T \approx 5 \ \text{GeV/}c$ in central Pb-Pb at the LHC.

Figure 1. Spectra at y=0 for π^{\pm} , K^{\pm} , p, \bar{p} in 0-10% central (left) and 60-70% peripheral (right) Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV, obtained with hydrodynamics + (quenched) pQCD calculations.

Dd'E. and D.P. acknowledge resp. support from 6th EU FP contract MEIF-CT-2005-025073 and MPN Russian Federation grant NS-1885.2003.2.

References

- [1] D. d'Enterria and D. Peressounko, Eur. Phys. J. C 46, 451 (2006) [arXiv:nucl-th/0503054] and refs. therein.
- [2] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 71 (2005) 034908 [arXiv:nucl-ex/0409015].
- [3] P. Aurenche et al, Eur. Phys. J. C 13, 347 (2000) [arXiv:hep-ph/9910252].
- [4] J. Pumplin et al., JHEP **0207** (2002) 012 [arXiv:hep-ph/0201195].
- [5] S. Albino, B. A. Kniehl and G. Kramer, Nucl. Phys. B 725, 181 (2005) [arXiv:hep-ph/0502188].
- [6] D. de Florian and R. Sassot, Phys. Rev. D 69, 074028 (2004) [arXiv:hep-ph/0311227].
- [7] F. Arleo, JHEP 07 (2007) 032 arXiv:0706.1848 [hep-ph], and arXiv:0707.2320 [hep-ph].