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A bstract

W e perform a dedicated study of the four-ferm ion production process e € !
udX near the W pairproduction threshold in view of the im portance of

this process for a precise m easuraem ent ofthe W boson m ass. A ccurate theoret—
ical predictions for this process require a systam atic treatm ent of nitew idth
e ects. W e use unstableparticle e ective eld theory (EFT) to perform an
expansion In the coupling constants, y =M y , and the non—+relatiristic velocity
v of the W boson up to nextto-Jdeading order In =M y cw V. We

nd that the dom inant theoretical uncertainty in M  is currently due to an
ncom plete treatm ent of initialstate radiation. The ram aining uncertainty of
the NLO EFT calculation translates into My 10 { 15 M &V, and to about
5M &V with additional input from the NLO foursferm ion calculation in the fiall
theory.
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1 Introduction

The mass of the W gauge boson is a key obsarvable in the search for virtualparticle
e ects through electrow eak precision m easurem ents. Its current value, MAW = (80403
0:029)G &V [1], is determ ined from a com bination of continuum W pairproduction at
LEPII and singleW production at the Tevatron@ Further m easurem ents of single-W
production at the LHC should reduce the error by a factor of two. Beyond LHC it has
been estin ated that an errorof 6M €V could be achieved by operating an e € collder in
the vicinity of the W pairproduction threshold [3]. T his estin ate is based on statistics
and the perform ance of a future linear collider, and it assum es that the cross section is
know n theoretically to su cient accuracy so that itsm easurem ent can be converted into
one of M . In reality, achieving this accuracy is a di cult theoretical task, requiring
the calculation of loop and radiative corrections. Since the W bosons decay rapidly,
this calculation should be done fora nalstate of su ciently long—lived particles, rather
than for onshell W pairproduction. A system atic treatm ent of nitew idth e ects is
therefore needed.

In this paper we Investigate in detail the inclusive four-ferm jon production process

e (pr)e () ! ud+ X 1)

in the vicihity oftheW pairproduction threshod, ie. fors (@+p:)* 4M?2 .HereX
denotes an arbitrary avour-singlet state (nothing, photons, gluons, ...). No kinem atic
cuts shall be applied to the nal state. In this kinan atical regin e the process (1) is
prin arily m ediated by the production of two resonant, non—<relativistic W bosons w ith
virtuality of order

K2 Mg Mgvi o My oy Mg (2)
one of which decays Into leptons, the other into hadrons. Here we have introduced
the non+eltivistic velocity v, and the W decay width . W e perform a system atic
expansion of the total cross section in the an all quantities
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corresponding to a (reorganized) loop expansion and a kinem atic expansion. A 11 three
expansion param eters are of the sam e order, and for pow ercounting purposes we denote
them coollectively as . Our caltulation is accurate at next-to—leading order (NLO ).
Note that resonant processes such as (Il) are com plicated by the need to account for
the w idth of the Interm ediate unstable particles to avoid kinem atic singularities in their
propagators. The expansion in the electroweak coupling o, = =s§ is therefore not
a standard loop expansion. ( denotes the electrom agnetic coupling, and sfq sif

with ,, theW einberg angle.)

'This value refers to the de nition of the W mass from a BreitW igner param eterization with a
running w dth as it is adopted in the experim entalanalyses. It is related to the polemassM y used in
thispaperby RIMy My = 2 =@y )+ 0( 2,).
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NLO calculations of four-fem ion production have been done already som e tin e ago
n the continuum (not near threshod) in the doublepole approxin ation for the two W
propagators [4{6]orw ith further sim pli cations [7,8]. T his approxin ation was supposed
to break down for kinem atic reasons in the threshold region. Thus, when this profct
was begun [9], there existed only LO calculations in the threshold region as well as
studies of the e ect of Coulom b photon exchanges [10,11], rendering the e ective eld
theory approach [12{14]them ethod of choice for the NLO calculation. M eanw hile a full
NLO calculation of four-ferm ion production has been perform ed in the com plex m ass
schem e [15,16 ]w ithout any kinem atic approxin ations, and for the fully di erential cross
sections in the continuum or near threshold. This isa di cult calculation that required
new m ethods for the num erical evaluation of one-loop six-point tensor integrals. In
com parison, our approach is com putationally sim ple, resulting in an aln ost analytic
representation of the result. The drawback is that our approach is not easily extended
to di erential cross sections. N evertheless, we believe that a com pletely independent
calculation of NLO four-fem ion production is usefill, and we shall com pare our result
to [15] in som e detail. Having a com pact analytic result at hand is also ussful for an
Investigation of theoretical uncertainties. Note that while the full four-fem ion NLO
calculation [15,16] is a priori of the same accuracy n  y =My as the NLO e ective-
theory result, it includes a subset of higher order term s In the EFT expansion. W e
discuss the relevance of these higher order temm s at the end of this paper.

T he organization of the paper is as follow s. In Section [J we explain our m ethod of
calculation. W e focus on agpects of unstableparticle e ective theory that are speci ¢ to
pair production near threshold and refer to [13]for those, which are iIn com plete analogy
w ith the lineshape calculation of a single resonance. T he section ends w ith a list of all
term s that contribute to the NLO result. W e construct the e ectivetheory expansion of
the tree approxin ation to the four-ferm ion cross section in Section[3. O fcourse, this cal
culation can be done nearly autom atically w ithout any expansions w ith program s such
asW hizard [17],Com pHep [18,19]or M adEvent [20,21]. T he purpose of this section is
to dem onstrate the convergence of the expansion towards the \exact" treelevel result,
and to provide analytic expressions for those term s that form part of the NLO calcula—
tion near threshold. In Section [4 we calculate the radative corrections required at NLO .
T hese consist of hard loop corrections to W pairproduction and W decay, of Coulom b
corrections up to two photon exchanges, and soft=photon corrections. T he entire calcu—
lation is done setting the light ferm ion m asses to zero, which is a good approxim ation
except for the nitialstate electrons, whosem ass is relevant, since the cross section isnot
Ihfrared-safe otherw ise. In Section |5 we describe how to transform from the m assless,
\partonic" cross section to the physical cross section with nite electron m ass, includ—
ing a resum m ation of large logarithm s In(s=m 2) from initialstate radiation. A ssem bling
the di erent pieces we obtain the full inclusive NLO four-ferm ion cross section in term s
of com pact analytic and num erical expressions. In Section [d we perform a num erical
evaluation of the NLO cross section, estim ate the nalaccuracy, and com pare our result
to [15], obtaining very good agreem ent. W e nd that the dom inant theoretical uncer—
tainty n M is currently due to an Incom plete treatm ent of initialstate radiation. T he



rem aining uncertainty of the NLO EFT calculation translhates Into My 10 {15M eV,
and to about 5M &V w ith additional nput from the NLO four-fem ion calculation in the
full theory. W e conclude In Section [1. Som e of the lengthier equations are separated
from them ain text and provided in A ppendices[a] and [E].

2 M ethod of calculation

W e extract the inclusive cross section of the process (ll) from the appropriate cuts of
the e ¢ forward-scattering am plitude. For inclusive obsarvables, w here one integrates
over the virtualities of the intermm ediate resonances, the propagator singularity poses
no di culty, if the integration contours can be deform ed su ciently far away from the
singularity. T his is not possible, how ever, for the calculation of the lineshape of a single
resonance, and for pair production near threshold (the pair production equivalent of the
resonance region), where the kinem atics does not allow this deform ation. The w idth of
the resonance becom es a relevant scale, and it m ay be useful to separate the dynam ics
at this scale from the dynam ics of the short distance uctuations at the scale of the
resonance m ass by constructing an e ective eld theory.

2.1 Unstableparticle e ective theory for pair production near
threshold

T he follow ing form alisn resem bles rather closely the form alisn described in [12,13]. The
generalization from a scalar to a vector boson resonance is straightforward. The pair-
production threshold kinem atics in plies a change in power counting that is analogous
to the di erence between heavy-quark e ective theory and non—relativistic QCD .
InW pairproduction the shortdistance uctuations are given by hard m odes, whose
m om entum com ponents are allof orderM y . A fter Integrating out the hard m odes, the
forw ard-scattering am plitude is given by [13]
x 4 X
A = d'xte & THO 00 P )e i+ re e §0.0 (0)p e it (4)
kil k

T he operators0 .’ (x) (05" (x)) in the rsttem on the right-hand side produce (destroy)
a pair of nonrelativistic W bosons. The second term accounts for the ram aining non-
resonant contributions. The m atrix elem ents are to be com puted with the e ective
Lagrangian discussed below and the operators include short-distance coe cients due to
thehard uctuations. N ote that there isno ssparate term for production of one resonant
and one o —shellW , since for such con gurations the integrations are not trapped near
the sihgularity of the W propagator. These con gurations are e ectively short-distance
and included in the non—resonant production-decay operators O f;) (0).

The e ective Lagrangian describes the propagation and interactions of two non-
relativistic, soih-1 elds * representing the nearly on-shell (potential) W m odes; two
sets of collinear elds for the lncom Ing electron and positron, respectively ; and potential



and collinear photon elds. T he corresponding m om entum scalings in the centerofm ass
fram e are: p_
potential (p) : kg My 7 KJ My

soft (s) @ Ko ] My (5)

collinear (c) : ko My ;k°  MJ

The snall parameter  is either the non-relativistic velocity squared, V¥, related to
(s 4M2)=(4M 2 ),or y My o » Sihoe the characteristic virtuality is never para—
m etrically smaller than My  for an unstable W . The interactions of the collinear
m odes are given by softcollinear e ective theory [22{24]. T here is nothing speci cally
new related to collinear m odes In pair production, and we refer to [13] for further de-
tails. A s far as the nextto-Jleading order calculation is concemed, the softcollinear
Lagrangian allow s us to perform the standard eikonal approxin ation for the interaction
of soft photons w ith the energetic electron (positron) in the soft one-loop correction.

T he Lagrangian for the resonance elds is given by the non—+relativistic Lagrangian,
generalized to account for the Instability [9,25]. The temm s relevant at NLO are

" ! #
X . D2 . D% My )7
LyrgoeD = - D%+ oy > . Y oot (6)
a= w w

Here ! and * (i= 1;2;3) are non—relativistic, spin-1 destruction elds for particles
with electric charge 1, respectively. The interactions with photons is incorporated
through the covariant derivative D * (@ ieA ) ! . Thee ective theory does not
contain elds for the other heavy particles in the Standard M odel, the Z and H iggs
bosons, and the top quark. T heir propagators are always o <hell by am ounts of order
M 7 and therefore their e ect is encoded in the short-distance m atching coe cients. In
a general R —gauge this also applies to the pseudo-G oldstone (unphysical H iggs) elds,
except In "t HooftFeynm an gauge = 1,where the scalar W and unphysical charged
pseudo-G odstone m odes have m asses M and can also be resonant. H owever, the two
degrees of freedom cancel each other, Jeading to the sam e Lagrangian (d) describing the
three polarization states of a m assive gpin-1 particle. The e ective Lagrangian has only
a U (1) electrom agnetic gauge symm etry as should be expected at scales farbelow My .
H owever, since the short-distance coe cients of the Lagrangian and all other operators
are determ ined by xed-orderm atching of on-shellm atrix elem ents to the full Standard
M odel, they are independent of the gauge param eter in R gauge by construction. T he
often quoted gauge-invariance problem s In the treatm ent of unstable particles arise only
if one perform s resum m ations of perturbation theory in gauge-dependent quantities such
as propagators.

Them atching coe cient 1 ( [@) is obtained from the on-shell two-point function of
a transverse W boson. \O n—-shell" here refers to the com plex pole determ ined from

s M2 T(s)=0 (7)



with My any renom alized m ass param eter, and ¥ (o) the renom alized, transverse
selfenergy. T he solution to this equation,

s M7 My oy 8)

de nes the pole m ass and the pole width of the W . The m atching coe cient is then

given by
s M wmmee g ©)

My

In the rem ainder of the paper, we adopt a renom alization convention where My s the
polmassMy ,inwhich case ispurely maghary. W ithD ° My, ,0? MZ? ,and
My ,we see that the rstbilinear term in [d) consists of lead ing-order operators,
w hile the second is suppressed by one factorof ,and can be regarded as a perturbation.

A ccordingly, the propagator of the elds is

i¥

T (10)
2M o 2

The e ective theory naturally leads to a xed-width form of the resonance propaga-
tor. Note that it would be su cient to kesp only the one-loop expression for in the
propagator, and to include higher-order corrections perturbatively.

Loop diagram s calculated using the Lagrangian (@) receive contributions from soft
and potemjalphotonsﬁ Since the potential photons do not correspond to on-shell parti-
cles, they can be integrated out, resulting in a non-local (C oulom b) potential, analogous
to potential non+elativistic QED [27]. Up to NLO the required PNRQED Lagrangian

J_S " ! #
_ X yi i~ O @2 i vi (@2 My )2 i
Lenroep = a JD5+2MW > 2t aW a
e
7 . , (11)
h 1 h 1
+ e TP (x+r) — ) (x):

r

Only the (multipoleexpanded) soft photon Ag (t;0) appears in the covariant derivative
DJ. The potential W eld has support in a region 1 4 the tin e direction and in
a region 122 in each space direction, hence the m easure d*x in the action scales as
52 Together w ith @, we nd from the kinetic term IJghat i 3=4 . Analogously
we nd that the non-local Coulomb potential scales as = B =v. Sihce we count
V#, the Coulom b potential is suppressed by v, or 72, and need not be resumm ed,
In contrast to the case of top—quark pairproduction near threshold. H owever, w ith this
counting the Coulomb enhancem ent ntroduces an expansion in half-nteger powers of
the electrom agnetic coupling, the one-oop Coulom b correction being a \N*2L0O " tem .

°W hat we call \soft" here, is usually term ed \ultrasoft" in the ]Jtetﬁtgre on non-relativistic QCD .
T here are further m odes (called \soft" there) with momentum k M y [26]. In the present context
thesem odes cause, for instance, a am allm odi cation ofthe Q ED Coulom b potentialdue to the one-loop
photon selfenergy, but these e ects are beyond NLO .



Figure 1: D lagram s contribbuting to the treelevelm atching of O ;“ .

2.2 Production vertex, production-decay vertices and the lead-
ing-order cross section

W e now tum to the production and production-decay operators appearing in the rep—
resentation (4) of the forward-scattering am plitude. The lowest-din ension production
operator must have el content (eg,e. ) ( ¥ ¥7), where the subscripts on the electron
elds stand for the two di erent direction labels of the collinear elds. T he shortdistance
coe clents follow from m atching the expansion of the renomm alized on-shellm atrix el
ements fore e ! W W ' In the amall relative W mom entum to the desired order
In ordinary weak-coupling perturbation theory. T he on-shell condition for the W Ilnes
in plies that theirm om entum satis esk? = k5 = s=M ? + My ,but i a perturbative
m atching calculation this condition must be fill Tled only to the appropriate order in
%nd . On the e ectivetheory side of them atching equation one also has to add a factor

ZMW $ 1:2Wjﬂ1 |

My + k?

o1y ———— (12)
MW

1=2

$

for each extermal Iline [13].@ At treedevel, and at leading orderin  ,$ 1= 1.

Thus we are led to consider the treelevel, onshell W pairproduction am plitude
shown In Figure[ll. To kading order in the non—relativistic expansion the s-channel
diagram svanish and only the helicity con guration e, ef contributes. T he corresponding
operator (ncluding its treelevel coe cient function) reads

0= =" e iy YT (13)
M W

where we have introduced the notation af! &b + a'b and the unitvector n for the
direction of the incom ing electron threem om entum ;. For com pleteness we note that
the em ission of collinear photons from the W or collinear elds of som e other direction,
which leads to o —shell propagators, can be incorporated by adding W ilson lines to the
collinear elds, in plying the form (e, W o, ™IW Ye. ;). However, these W ilson lines
w illnot be needed forour NLO calculation, since the collinear loop Integrals vanish (see,
how ever, Section [3).

3This is the weltknown (E=M )'™? factor, which accounts for the nom alization of non-relativistic
elds, generalized to unstable particles and generalm ass renom alization conventions.



Figure 2: Leading-order e ective-theory diagram for the forward-scattering am plitude.

T he leading contribution from the potential region to the forward-scattering am pli-
tude is given by the expression

Z

)= d'xbe e T Y00 )1 & i (14)
T his corresponds to the oneloop diagram shown in Figure[d, com puted w ith the ver-
tex (13) and the propagator (10). W e can use pow er counting to estin ate them agnitude
of the leading-order am plitude prior to its calculation. W ith e. =2 1 3=4
ghe production operator scales as oY °=2. The integration m easure scales as
d*x °=2 in the potential region and the extemal collinear states are nom alized
as ¢ i =2 hence A ") 2 172 This expectation is con m ed by the explicit

calculation of the one-loop diagram :

2 2

. (0) W R , LA AT .
JALR = M 46 hpZ jj[ j]Pl lh_q jj[ j]PZ 1
w
Z
dr 1
2 ¥ _x2 x2 _
r’ oM 2 E £ M 2
r__
E+ i
S T L (15)
My
Here we have de ned E = pE My . W e adopted the standard helicity notation
P i= l—2511(p), and used = iy ,vald In the polke scheme, n the last lne.

The ferm ion energies are set to My In the extemal spinors. The calculation has been
perform ed by rst evaluating the r’ integral using Cauchy’s theorem , and the trace
ho, 7 99 i 1 Y, i= 16@ M . The ran aining ¥ j integral contains
a linear divergence that is, however, rendered nite by din ensional reqularization (w ith
d=4 2 )sothed! 4 lin it can be taken. T he num erical com parison of[19) to the
full treeJevel result and the convergence of the e ectivetheory approxin ation w ill be
discussed in Section [3.

Taking the in aginary part of (I9) does not yield the cross section of the four-ferm ion
production process (Il) with its avourspeci ¢ nal state. At lading order the cor-
rect result is given by m ultipl/ing the I agihary part w ith the leading-order branching
fraction product Br'” m ! BrYw * ! ud)= 1=27. This procedure can be



F igure 3: Cut one-loop diagram s contributing to non—+resonant production-decay operator
m atching.

Justi ed as follow s. The Im aginary part of the non—+elativistic propagator obtained by
cutting an  line is given by

0)_
T L = w =2 : (16)
x2 i (0) K2 2 0)2 °
W W
F oM y T F 2M y t

T he propagator of the line in plicitly includes a string of selfenergy insertions. Taking
the In agihary part am ounts to perform ing all possible cuts of the selfenergy insertions
w hile the unstable particle isnot cut [28]. To obtain the total cross section fora avour-
speci ¢ fourferm ion nal state, only the cuts through these speci ¢ farm ion lines have
to be taken Into account. At the leading order this am ounts to replacing 0

W) n the
num erator of (16) by the corresponding partialw idth, here @ and L(lod) , respectively,
while the totalw idth is retained In the denom nator. T he leading-order cross section is
therefore 2 s 3

1 4 2 E+ i
= o

(0) : s :
Lr =4, since the other three helicity com bina-

T he unpolarized cross section is given by
tions vanish.
T he leading contrdbution from non-—resonant production-decay operators O f;) to @)

arises from four-<electron operators of the form

(&, 185, )(e, 284 )5 (18)

k)

where ;, , areD racm atrices. IfC ", the contribution to the forw ard-scattering

am plitude scales as ". This should be com pared to AI(JOR) 2 =2 The calculation
of the short-distance coe cients C f;) is perform ed In standard xed-order perturbation
theory In the fullelectroweak theory. TheW propagator is the free propagator, since the
selfenergy insertions are treated perturbatively. T he lead ing contrdbution to the forw ard—
scattering am plitude arises from the one-loop diagram s shown in Figure[d. W e will
calculate the im aginary part of the shortdistance coe cients C f;) by evaluating the cut



diagram s. T he calculation of cuts corresponding to tree am plitudes ism ost conveniently
perform ed in unitary gaugew ith W propagator i(g kk =M 2 )=k? M7 +1i).To
leading order in the expansion in , the cut one-loop diagram s in F igureld correspond
to the production cross section of two on—shell W bosons directly at threshold, which
vanishes. In fact, from an explicit representation of these one-loop diagram s it can be
seen that the In agihary parts from the hard region vanish In din ensional reqularization
to all orders In the expansion. Thus the lading Im aginary parts of Cf;) arise from

tw o-Joop diagram s of order °. Just as the Coulom b correction the leading non—resonant
(hard) contribution provides another N L0 correction relative to (13).

2.3 Classi cation of corrections up to N LO

W enow give an overview of the contributions to the four-fem ion cross section at N *2L0O
and NLO . These consist of the shortdistance coe cients of the non—+relativistic La-
grangian (11l), of the production operators O I()k) , and the four-<electron operators O f;) on
the one hand; and corrections that arise in calculating them atrix elan ents in (4) w ithin
the e ective theory on the other.

2.3.1 Shortdistance coe cients in the e ective Lagrangian

Thee ective Lagrangian (11) is already com plete to NLO . T he only non-trivialm atching
coe cient is , which follows from the location of the W pole, which in tum can be

com puted from the expansion of the selfenergy [13]. In the pole schem e, we require
the NLO correction to the decay width  , de ned as the In agihary part of the pole

Jocation, see (8), (9). At leading order, @) = i‘,(GO) W i
3
o= S oM (19)

T here are electroweak as well as QCD corrections to the W selfenergy. W e shall
count the strong coupling ¢ as 52 . Thus the m ixed Q CD <electroweak two—loop self-
energy provides a N'™L0O correction to , while at NLO we need the selfenergy at
orders 2, and ., Z. TheQCD e ects are ncluded by multiplying the leading-order

hadronic partial decay w dths by the universal Q CD correction form assless quarks [29],

N

ocp = 1+ — + 1:409—; (20)

with = My ) theMS sheme. The electroweak correction to the poleschem e
decay width is denoted by V(ql;ev”. T he explicit expression is given in Section [4.1. W e
therefore have

n N

G=2) _ .02 _ 2 s (0, @) L) . QEw) |, 4 oang 2
= 1y = 13 wor 1y = 1 o + L 32 W

(21)

4H ere the m asses of the light ferm ions are neglected, and the CKM m atrix has been set to the unit
m atrix.



T hese results refer to the totalw dth, which appears In the propagator and the forward-
scattering am plitude. T he extraction of the avour-gpeci ¢ processe e ! udX
w ill be discussed in Section [3.2.

2.3.2 M atching coe cients of the production operators

T here are two sorts of corrections related to production operators: higherdim ensional
operators suppressed by powers of , and one-loop corrections to the operators of lowest
dim ension such as (13).

T he higherdin ension production operators are of the form

0¥ = ———(ex F@De.x) GO) ) (22)

where issom ecombination ofD iracm atricesand F and G are functions of the covariant
derivative D acting on the elds. (Here and below , we drop the collinear direction label
on the electron elds, whenever they are obvious.) The short-distance coe cients of

these operators follow from the expansion of appropriate on-shell am plitudes around the
threshold. The expansion param eter isv =~ ™. However, for the inclusive cross section
there is no interference of the v-suppressed operator w ith the leading one, hence the
correction from higher-dimn ension operators beginsat NLO . Full results for the tree-level
m atching of the N'?L0O production operators are given in [9]. The NLO contribution to
the inclusive cross section is com puted in Section [3.11.

T he one-loop correction to them atching coe cient of the production vertex ([13) and
the related operator w ith right-handed electrons requires to calculate the renom alized
scattering am plitndes ore e, ! W *'W and g, ¢ ! W' W to NLO in ordinary
weak coupling perturbation theory for them om entum con guration (p; + p;)* = 4M 2 ,
ie.directly at threshold. T his generates the NLO production operator

h i
y . y . o
Of' = 4= Coxn & e +Cll & Ve T (23)
W
T he calculation of the coe cientsC ISL)R ,C;QL isdiscussed in Section[4.]l. N ote, how ever,

that the one-loop correction C Lf(i-R)L does in fact not contribute to the NLO cross section,

since there is no leading-order contribution from the e, ¢ helicity initial state, and no
Interference between LR and RL con gurations.

2.3.3 M atching coe cients of four—<electron operators

A s discussed above the leading contrbutions from the non-resonant production-decay
operators to the i aginary part of the orward scattering am plitude arise at N**2L0O ,
where the half=integer scaling arises from the absence of the threshold suppression v
1=2 present in the LO cross section. T he calculation of the cut 2-loop diagram s am ounts
to the calculation of the squared and phase-space integrated m atrix elem ent of the on—
cshellprocesses e " ! W udand e e ! W ¥ in ordinary perturbation theory

10



(no \resumm ations" in IntemalW propagators). This includes contributions of what
is usually called double+esonant (or CC 03) diagram s, where one of the W propagators
is In fact o —shell, as well as genuine singlesxesonant processes. In the tem inology of
them ethod of regions, these corrections are given by the hard-hard part of the two—-loop
forw ard-scattering am plitude. Since they contain all diagram s contributing to the tree—
Jevel scattering processese e | W ande e ! W ud,thematching coe cients
are gauge invariant. Since only one W line is cut in the N'™2LO contributions, they can
beviewed as system atic corrections to the narrow -w idth approxin ation. T his calculation
is perform ed in Section [3.3.

To NLO in the power counting g «w We would have to com pute also the NLO
QCD corrections to e € ! W ud (+g). The corrections to the \double+esonant"
(CCO03) diagram s can be taken Into account approxin ately by m ultiplying them with
the one-loop Q CD correction to the hadronic decay w idth. T he corrections to the single-
resonant diagram s require the full calculation. H owever, we shall nd that the contribu-
tion of the sihgleresonant diagramsto e € ! W ud is num erically already an all, so
we neglect the QCD corrections.

234 Calculations in the e ective theory

O ne-loop diagram s with insertions of sublkading operators. T he contributions in this
class arise from evaluating the rst tetm in (4) at one loop, see Figureld, but w ith one
insertion of the subleading bilinear term s in the Lagrangian (I11l), which correspond to

kinetic energy and w idth corrections, or w ith production operator products O I()O)O E(;l)

and 0,770, where 0" is either a higherdin ension operator (22) or the one-Joop

correction (23). As already mentioned the N'2LO products 0.0 S vanish after
perform Ing the angular ntegrals. In the calculation discussed further in Section [ we
actually follow a di erent approach and directly expand the spin-averaged squared m atrix
elem ents rather than the am plitude before squaring, which would yield the individual

production vertices.

Coulom b corrections. A single insertion of the Coulomb potential interaction in the
Lagrangian (1) contributes at N*"2LO .To NLO onehas to calulate the double insertion
into the leading-orderam plitide from O éO)O E()O) and a single insertion into O éO)O 522) .The
latter vanishes for the total cross section. T here is no coupling of the potential photons
to the collinear electrons and positrons, so there are no Coulomb corrections to the

four-ferm jon operators. The Coulom b corrections are given in Section [4.7.

NLO corrections from soft and collinear photons. To NLO one has to calculate two-
Joop diagram s in the e ective theory arising from the coupling of the collinear m odes
and the potential W bosons to the soft and collinear photons contained In the NRQED

Lagrangian (8) and the SCET Lagrangian. The cuts correspond to one-loop virtual
and bram sstrahlung corrections to the lead ing-order cross section. In the term inology of
the m ethod of regions these are contributions from the softpotential, the ¢ potential
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and the o,-potential regions. T hey correspond to \non-factorizable corrections" and are
discussed in Section [43.

3 Expansion of the Born cross section

T his section serves two purposes. First, we calculate allNLO corrections to four-ferm ion
production in the e ective theory (EFT ) except those related to loop corrections, which
w il1be added in Section[4. Second, we investigate the convergence of the successive EF T
approxin ations to what is usually referred to as the Bom four-ferm ion production cross
section. The two calculations are not exactly the sam e, since the In plem entation of the
W width In theBom cross section isnotunique. W ede ne the \exact" B om cross section
by the ten tree diagram s fore " ! ud, where the W propagators are supplied
with a xed-width prescription. The EFT calculation is done by expanding directly
the forward-scattering am plitude. The relevant loop m om entum regions are either all
hard, or hard and potential. In the latter regions the two W propagators and the W
Interactions are described by the non—relativistic Lagrangian. T he althard contribbutions
correspond to the m atching and m atrix elem ent of the fourelectron operators.

3.1 Expansion in the potential region

W e rst reconsider the one-loop diagram s (before cutting) shown in Figure[d, where the
Joop m om entum  is now assum ed to be in the potential region. T he forward-scattering
am plitude corresponding to these diagram sm ay be w ritten as
Z
iA =

dir

2 7

E ;0P (k)P (k2); (24)

whereE=p§ My ,ki=Myvtr,ky=P Myv r,wihv = (1;0)andP = p+p

the sum of the nitialstatem om enta. Here (E ;r) isthe square of the o —<hellW pair-
production am plitude at tree level, including the num erator ( g + k k =k?) from the
W propagators, and

i

k? My T2)

P (k)= (25)
is the full renom alized (transverse) W propagatorﬁ W riting the am plitude in the full
theory with a resumm ed propagator is contrary to the spirit of e ective eld theory
calculations, where the m atching coe cients are obtained by xed-order calculations.
H ow ever, this allow s us to com pare the EF T expansion w ith the standard calculation of
the xed-width Bom cross section.

To see the correspondence w ith the EFT calculation, we param eterize the W m o-
mentum ask = My v + r ,wherer isa potential residualm om entum (rp My

ST he longitudinalpart of the propagator is cancelled by the transverse pro fctor from the decay into
m assless ferm ions.
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r My '™2),and expand P (k) in , including an expansion of the selfenergy around
M Z and in the number of loops,

X
2 2 n m
T (k) =My wnl; (26)
m m
with = (& MZ)=2M? andm denoting the Joop order. T he result is
i+ G iz My @
P (r)= ( : ) — % u )[]2+o w0 @n
r 2 1
2MW To 2M o 2 4].\/_[‘,? To My > W

where, to m ake the notation sin pler, we included the QCD correction =2 from (21)
nto H= @4 G2 instead ofexpanding £out,and ¥ = M, (@O 4 @) A0))
Next we elin nate ry from the num erator in (27) by com pleting the square and cbtain

My B4 oe?

P (r)= 1+ oY S
2M W o ZI\fW > W
2
f2 i (2)
1 2M o 2 My i
+ 0 (28)
M2 22 n 2 4M v\% M v?
W 0 M 2

T he ndiridual term s now have a clear Interpretation in the EFT form alisn . The st
term In the second line corresponds to a single insertion ofthe NLO temm s { a kinetic en—
ergy correction and a second-order w idth correction { in the non—relativistic Lagrangian
(II) nto a W line. The bcalterm , i=(4M7 ), in the second line is sin ilar to a corre-
sponding term in single resonance production [13], where it contributes to a production—
decay vertex at tree level. Here this term Jleads to potential loop integrals with only
one or no non-relativistic W propagator, which vanish in dim ensional regqularization.
Thus, we can drop this term . In the st line of (28) we recognize the non-relativistic
W propagator (I0) multplied by a correction to the residue. The residue correction
originates from the expansion of the eld nom alization factor $ de ned in (12), and
from the derivative of the renom alized one-oop selfenergy, "%, atk?= M 2 . Th an
EFT calulation these residue corrections are not associated with the propagator, but
they enter the m atching relations of the one-loop and higherdin ension production and
decay vertices [13]. In order to com pare w ith the \exact" B om cross section, w here these
term s are included, we keep these residue corrections here rather than in the m atching
calculation of Section [4.].

The real part of “%) depends on the W eld-renom alization convention in the
full theory. In the follow Ing we adopt the on-shell scheme for eld renom alization,
Re ") = 0, and the polk scheme for mass renom alization. Since Tn ¥ (k?) =

¥ ;,0)=M w (&) at oneJoop due to the decay into m assless ferm ions, it ollow s that

13



. . (0 . (0
(i) — 1V(q)=MW . Furthemore, “ =M, @9 = 1%) and @ =M, ( @94

a0y~ i M in the polem ass renom alization schem e, which inpliesRe 0
My, R, I @O = By, for the renom alized two-loop selfenergy at k?
.TheQCD correction 2 = i can be included into 1 as before.

T o com pare w ith the \exact" B om cross section, we w rite (25) in this renom alization

schem e In the form

0
w
2
W

k? M2
P&k)=1 +0 — (29)
2 M2 02 2 0) @ 2 M

w

2 2 2
- + Mg ke Mg+

The xed-w dth prescription corresponds to replacing k2 <M 2 by ' in the denom -
inator, but not in the num erator, w here the factor of k? arises from the Integration over

2
the two-particle phase space of the W decay products. In addition one drops the v(qo)

1)

tem s (since they come from Re “?) and . Repeating the derivation of (28) w ith
thism odi ed expression we obtain
h i (0)?
P )y wian = EQ. @D with @ = i1 0+ ! S+ (30)
&2 MZ)yY+mz O

The additionalterm ispurely realand does not contrdbute to the cut propagator In P (k)
relevant to the cross—section calculation. W e therefore arrive at the interesting conclusion
that the xed-w dth prescription coincidesw ith the EF T approxin ation in the potential
region up to the nextto-deading order, if M is the pole mass, up to a trivial term

related to the one-loop correction ‘i,l) to the pole scham e decay w dth.

In the calculation of the NLO correction to the forward-scattering am plitude in the
potential region, we use the expansion (27) in (24), and drop allterm sbeyond NLO . T his
already accounts for all NLO corrections from the e ective Lagrangian, and for som e
corrections from higherdim ension production operators w ith tree-level short-distance
coe clents. Further corrections of this type com e from the expansion of the squared
matrix element (E ;r). The square of the production am plitude of two o <hell W
bosons depends on fur kinem atic invariants, which we m ay choose to be r*, p r,
ki M7 ,and k! M7 . This choice is convenient, since all four invariants are sn all
with respect to M ? in the potential region. Tn the expansion of (E ;r) to NLO ,we
may further approxin ate r* by #,shcer, #FaMy ¥ jand explbit that P (k; )
does not depend on the direction of x. W e nd, for the e, e/ and e, ¢ helicity initial
states (the LL and RR com binations vanish),

) 2 2 2 2.
LR (B ,r)— 04 o 1+ E'i‘ 2 (s)+ g (S) w + O ( ),
3_02
ry (E;r)= 1287 2 2(s)M —+ 0 (%) (31)
W



T he functions

M2 (s 2M?2g’ M 2 M 2s?
(s)= il 22“; (s)= ——2+= (32)
s(s M2?) s(s Mj)

originate from the schannel photon and Z boson propagators. The NLO tem s pro-
portional to ¥? can be denti ed w ith treeJevel production operator products O ;O)o E()l)
and O 522)0 Iélzz) asdiscussed in Section[2.3. Th such calculations (s)and (s) would be
evaluated at s= 4M V? . Here we keep the exact s-dependence, since this can be done at
no calculational cost.

N ote that the coe cient functions of production operators in the EF T aredeterm ined
by on—shellm atching, w hich in plies an expansion of am plitudes around the com plex pole
position s = M M? + My rather than M ﬁ [30,31]. The di erence cannot be neglected
in NLO calculations. In principle the expansions (31) could have yieded tem s such as
k? M? ,which should be written ask? s+ My . Thedierencek ? s cancels
a resonant propagator (possibly giving rise to a production-decay operator m atching
coe cient), while the ramainingM y temm must be com bined w ith other contrdbutions
to the loop correction to the leading-order production vertex. T his com plication can be
nored here, since the expansion of (E ;r) is independent ofk?, My up toNLO .

The NLO correction from the potential region is now obtained by inserting the ex-—
pansions (27), (31) nto (24) and perform ing the loop ntegral. T he integralhas an odd
pow erdivergence which is nite in din ensional regularization. The LO cross section has

already been given In (I7). The NLO tem s are

( " (0) Pz ¥
) 4 ? 11 5 38 E+ 1,
LR mom 275t s ?"‘ 2 “(s)+ ] (s) Im T
" 1 S
. (0) (0)
T 3E 171 E+ 1y
8M 4 8M y M 4
's #)
(0)2 (1)
W 1y My .
M2 My E+i”
" | #
322
2 . (0)
(1) _ 8 2(s) I BEtriy (33)
RLpom 27st s My
Since E =M Dy and My 2 every term is suppressed by  relative

to the leading order as it should be. T he unpolarized cross section is one fourth the sum

of the LR ,RL contributions. T he factor 1/27 com es from the treedevel branching ratio
forthe nalstate ud in the conversion from the forw ard-scattering am plitude to the
partial cross section. A s discussed above, when we use this expression to com pare w ith
the standard Bom cross section in the xed-w idth scheme,we st V(ql) to zero. W hen we

use the expression (33) in the com plete NLO calculation inchiding radiative corrections,
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Figure 4: Exam ple of a two-loop diagram w ith one hard and one potential loop. Cut (2)
is part of the Bom cross section, but subleading as discussed In the text.

we have to keep in m ind that multiplying all term s by the product 1=27 of leading-
order branching fractions as in (33)) is actually not correct. T he required m odi cation is
discussed in Section 3.

In addition to the -suppressed tem s from the potential region of the one-loop dia-
gram s shown in Figure[3, there is another NLO contribution from the leading tem s of
tw o—-loop diagram s w ith one hard and one potential loop, which m ay also be associated
w ith the Bom cross section. An exam pl is displayed in Figure[4. Cut (1) does not
correspond to a fourferm ion nal state and m ust be dropped. Cut (3) corresponds to
the interference of a tree-level production operator w ith the real part of a hard one-loop
correction to a production operator. Since the s-channel diagram s do not contribute to
the lead Ingfow er production operator, thiscut isbeyond NLO .Cut (2) isa contribution
to what is usually temm ed the \Bom cross section” corresponding to the interference of
single and double resonant diagram s in the kinem atic region where both ferm ion pairs
have invariant m ass of order M ? . The contrbution from this cut is contained in the
I aginary parts of the hard one-loop correction to the production operators. T he thresh—
old suppression of the schannel diagram s applies here as well, hence this contribution
isalso not relevant at NLO .

3.2 D ecay-w idth correction for the avour-speci c cross section

A s already noted, the expression (33) has to bem odi ed in order to take the radiative
correction to the decay correctly into account. In this subsection we derive the required
m odi cation of the form ula, but note that it w ill not be needed for the com parison to
the Bom cross section, where radiative corrections are excluded.

To include the loop corrections to W decay for the avour-speci ¢ fourfem ion nal
state ud w e have to dentify contributions to the forw ard-scattering am plitude from
cut two-doop W selfenergy insertions and include only the appropriate cuts containing
a muon and muon-antineutrino or up and antidown quarks and, possibly, a photon.
R epeating the expansion in the potential region perform ed in Section [3.]] for the cut dia—
gram with avour-speci c cuts selected, one nds that in the polem ass renom alization
and on-shell eld renom alization schem e adopted here all term s In the expansion are
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correctly treated by m ultiplying the totally inclusive result by the ratio of leading-order

partial branching fractions, © L(lod)=[ ‘;0)]2 = 1=27, except for one term involving the

insertion of @ = iv(ql). In (33) this nsertion results in part of the tem involving

& and is also multiplied by 1=27. W e therefore have to m odify this tem to include
the avour-speci c cuts correctly. At NLO we have to consider diagram swhere i 4)=2
is Inserted in only one of the two W -lines. C utting this line produces a contribbution to
the I aghary part of the forw ard-scattering am plitude of the form

ll (2)i 1 (2) 1 1 (2) 1 1 Tm (2)
T ( i)F ~ = Im - -

1
— (34
2 2 2 2

where is the inverse propagator of the non+relativistic W boson. The rst two tem s
correspond to cutting theW line to the left and right of the ) insertion. The avour-
speci ¢ nal states are extracted from these cuts as discussed below (16). T his am ounts
to multiplying the NLO correction (33) by the leading-order branching ratios, so these
tw o term s are treated correctly by the factor 1=27. T he Jast term correspondstoa cuttwo
Joop selfenergy Insertion, where only the cuts leading to the desired nal statem ust be
taken into account. Thereforehere T @ = " hastobereplaced by ©' = &

and L(lld) = Iild’ew) + 1:409—§ Iiod), respectively, to cbtain the NLO cross section for the

fourferm ion nalstate. To in plem ent these replacam ents, note that the contrilbution of
the Jast term in (34) to the forw ard-scattering am plitude is of the form v(ql)= ‘ﬁ,O) m A @,
W e can therefore com pensate the incorrect treatm ent of the avour-speci c cross section
in (33) by subtracting this contribution for each W Iine and adding the avour-speci ¢
corrections. M ultiplying by the leading-order branching fraction for the second W line
one obtains the additional NLO correction to the cross section,

|
1) 1) @

© ud W ).
decay (0) + (0) Z (0) : (35)
ud W

At NLO this correction is equivalent to m ultiplying the im aginary part of the leading—
order (or even next-to—leading order) forw ard-scattering am plitude by the one-loop cor-

rected branching mtios “"°) "= M*°'¢ rather than by 1=27, where ['"°) =

@+ P TheNLO partialdecay rates are calculated in Section [4.1.

X X °

3.3 Expansion in the hard region

W e now consider the hard contrdbutions, which determ ine the m atching coe cients of
fur-electron production-decay operators. A s already discussed in Section [2.7, the one-
loop diagram s show n in F igure[3 do not provide im aginary parts of the forw ard-scattering
am plituide. The leading hard contributions originate from the two-loop diagram s in
Figure[H. T hese diagram s are to be calculated In standard perturbation theory with no
w idth added to the W propagator, but expanded near threshold. T he result m ust be of
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Figure 5: Two-loop cut diagram s. Sym m etric diagram s are not shown.

order °,which results in a N'*™?LO correction relative to the leading-order cross section .
H igher-order term s in the hard region com e from higher-order term s in the expansion (in
E ="s 2My )near threshod and from diagram s w ith m ore hard loops, all of which
are N>2LO and sm aller.

In the hard region it is sin pler to calculate the fourfermm ion cross section directly as
the sum over the relevant cuts of the forw ard-scattering am plitude as shown in F igure[S.
N ote that thisincludescuttingW Ilinesaswellasdiagram sw ith self-energy insertions into
theW propagator. T hiscan be interpreted as an expansion of the resum m ed propagator
In the distrbution sense [32,33], such as

My w - ® M2)+PVMW7W+O i
k2 MZP+MZ 3 " k2 M7 P M 7

; (36)

\PV " denoting the principal value. T he left-hand side arises from cutting ferm ion-loop
Insertions into the W propagator, but not the W Ilhnes itself. But the leading term in
the expansion of this expression, equivalent to the narrow -w idth approxin ation, looks
as ifaW Ilinew ith no selfenergy insertions is cut.

T he principalvalie prescription is redundant at N*“2L0O , where the singularity in the
Integrand is Jocated at one of the integration I its, and is reqularized by din ensional
regularization, which has to be supplied in any case to regulate Infrared divergences
that arise as a consequence of factorizing hard and potential regions In the threshold
expansion. A s in the potential region, the integrals are actually analytically continued
to nite values, since the divergences are odd power divergences. The result of the
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calculation can be written as

" #
4 3 X7 X
n pom = Kp+ Kno (8)+ Kns 2(3)+ cf (sK©
LR Bom 5 hl nz \S h3 S iir K
2782 s e
=
" #
(1=2) 47 2 ®X £ £
RL Born = 27888 Kh3 (S)+ . CiRL(S)Ki . (37)
=

Here the rst sum extends over the diagram s as labelled in Figure [J, the second over
the ferm ions £ 2 u;d; ; In the intemal farm on loops. The explicit values of the
coe clents arising from the diagram s hl-h3 are

Kni = 235493; K, = 386286; Kpz= 1:88122: (38)

T he three coe cients contain the contribution of the diagram s h1-h3 shown in Figure [3
and of the symm etric diagram s w ith selfenergy insertions on the lower W Iine. K
contains also the contribution of the com plex conjugate of h2. T he explicit expressions
of coe cients K lf and Cif;h, with h = LR ;RL, for the diagram s h4-h7 are given in
Appendix [A]. Sin ilar to (32) the s-dependence of the Cif;h arises trivially from photon
and Z propagators, and we could put s = 4M 2 at N'LO . Since all other tem s in
(37) are energy-independent, we conclude that the leading hard contribution results in
a constant N'™2LO shift of the cross section.

T his contrdbution can be Interpreted as arising from a nal state where one ferm ion
pair originates from a nearly onshellW decay,w hile the other is produced non—resonant-
Iy, efther from a highly virtual W , or as In the truly singlexesonant diagram s h4-h7.
Num erical investigation reveals that the contribution from h4-h7 is rather amn all, below
0:5% ofthe full tree cross section in the energy rangep s= 155G &V and 180G &V .Below
155G &V it becom es negative and itsm agnitude grow s to 4% at 150G eV . The an allness
of the singleresonant contrlbutions is in part due to large cancellations between the
diagram s h4 and hb.

T he com parison w ith the Bom cross section perform ed below show s that the region of
validity of the EFT expansion is signi cantly enlarged, if the energy-dependent N *~2L0O
tem s are Included. These can only arise from the next=toJeading order temm s of the
expansion in the hard region (the expansion In the potential region producesonly integer—
power corrections in ). The energy-dependent temm s are related to the next order in
the threshold expansion of the cut diagram s in Figure [3. The com putation for the
num erically dom inant diagram s h1-h3 gives

o). 4 °E
(3=2)a a a a 2
= — K+ K (s)+ K (s) ;
LR Bom 27SV6VS].V.[ - hl h2 h3 4
3
Gae - 22 gy e (39)

h
RL Born 27SV6JSMW 3
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w here
K ﬁ‘l = 587912 ; Kﬁ‘z = 19:15095; K§3 = 6:18662: (40)

O ther N**2L0O corrections related to the Bom cross section arise from cut three-Joop dia—
gram s of the type h1-h3, but w ith two selfenergy insertions, and of type h4-h7 w ith one
insertion. This N*2L0O tem is (aln ost) energy—independent and can be param eterized
by

g 4 X

hipom 27sé s )
.

(3=2)b b
ih

(S)K (41)
Thecoe cientsC P, (s) areequalto the factorsm ultiplying K 2, in (39) and we om itted the
an all contrbutions from h4-h7. The calulation of the num erical coe cientsK  is non-
trivial, since it contains products ofdistribbutions. A rough estin ate of these corrections is

}(13; fr)n’b k(ll; i)n ‘i,O)=M W 0:025 }(11:2) , resulting in an energy-independent contribution
to the cross section of order 2fb. The com parison below suggests that actually it is

signi cantly am aller.

3.4 Com parison to the four-ferm ion B orn cross section

W e com pare the successive EFT approxin ations to the four-fem ion Bom cross section
In the xed-w dth schem e. W ediscuss only the unpolarized cross section given by ( 1z +

r1 )=4. T he relevant term s are given in (17), (33), (34), and (39). T he input param eters
are taken to be

M, = 80:403GeV; M, = 91:188GeV; G = 1:16637 10Gev 2: (42)

ThepolemassM y isrelated to the on—shellm ass through the relation (valid to O ( fq ))

2

My =M, + —*; 43
W LRV (43)
w here
3 3G M,
4sz 2 2
p_
W e use the nestructure constant in the G scheme, 26 M2 st= ,and the on—

shell W einberg angle g, = M y =M , . Inserting (44) into (43), and solving the equation
forM  , we get the follow ing pole param eters:

My = 80377G&v; y = 2:04483G€V: (45)

The value of the W width used here is the leading-order decay width (19), excuding
the one-doop QCD correction. This is appropriate for a treelevel calculation and en—
sures that the branching ratios add up to one. Correspondingly we set @) = 0 i
the e ectivetheory calculation. In F igure[d we plot the num erical result obtained w ith
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Figure 6: Sucoessive EFT approxinations: LO (long-dashed/blue), N'™L0O (dash-
dotted/red) and NLO (short-dashed/green). T he solid/black curve is the fullB om result
com puted with W hizard/Con pHep. The N° L0 EFT approxin ation is indistinguish—
able from the fullBom result on the scale of this plot.

W hizard [17]for the treeJevel cross-section, and the successive e ective-theory approxi-
m ations. W e used the xed-wdth schem e In W hizard and checked that the results from
the O M ega [34], CompHep [18]and M adG raph [20]m atrix elam ents agree w ithin the
num erical ervor of the M onte€ arlo integration. T he large constant shift of about 100 fb
by the N'™2LO correction from the hard region is clearly visible, but the NLO approx—
in ation is already close to the full Bom calculation. In Tablk[ll we perform a more
detailed num erical com parison, now incliding also the N*?LO approxin ation. (The
m issing energy-independent N>?LO tem s are set to zero.) W e observe that the conver—
gence of the expansion is very good close to the threshod at™ s 161G &V ,as should be
expected. T he accuracy of the approxin ation degrades as onem oves away from thresh—
oM, particularly below threshold,where the doubly—+resonant potentialcon gurations are
kinem atically suppressed. If one ain s at 0:5% accuracy of the cross section, the NLO
approxin ation su ces only in a rather narrow region around threshold. Tncluding the
N°2LO tem from the rst correction in the expansion in the hard region leads to a
clear in provem ent both above ( 0:1% at 170 G&V ) and below threshold ( 10% at
155 G &V ). The energy region where the target accuracy ism et now covers the region of
interest for the W m ass determ ination (see Section [6.4).

4 R adiative corrections

Tn this section we calculate the NLO contributions that correspond to genuine loop
corrections to four-ferm ion production. A s outlined in Section there are several such
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(e e | ud )(fb)

LJE[GeV] EFT (LO) EFT(BELO) EFT (NLO) EFT(N%LO) exact Bom
155 10161 162 43.28 31.30 3443(1)
158 13543 3923 67.78 62.50 63.39(2)
lel 24085 148 44 16045 160.89 160.62(6)
164 406 .8 3181 3135 318 .8 3183(1)
167 527.8 442.7 420 4 429.7 428 6(2)
170 6155 5339 4929 5054 505.1(2)

Table 1: Com parison of the num erical com putation of the fullBom result w ith W hizard
w ith successive e ective-theory approxin ations.

contrbutions: an electroweak correction to the m atching coe cient of the leading W
pairproduction operatorand toW decay;a correction from potentialphotonsassociated
w ith the Coulomb force between the slow Iy m oving W bosons; and soft and collinear
photon e ects.

4.1 H ard corrections to production and decay

T he two hard electroweak corrections required for a NLO calculation are the one-loop
corrections C ;%L)R and C ;lR)L in the production operator (23) and the tw o-Jloop electrow eak
W selfenergy @), see (20]). W e reiterate that these are conventional perturbative cal-
culations perform ed in a strict expansion n o, . In particular, in the t H ooftFeynm an
gauge, the propagators of them assive gauge bosons are sin ply given by  ig =(k? M?)
and the sslfenergy insertions are taken into account perturbatively. A 11 ferm ions except
for the top quark are treated asm assless.

B efore addressing these two calculations ssparately, we brie y discuss the renom al-
zation conventions for the param eters and elds of the electroweak standard m odel
(SM ). For a scattering am plitude, whose tree-devel expression is proportional to g, =

(4 & )%= (4 = )"7? the oneJloop counterterm is given by
|
S 1%
[tree] n—+n Ze+ — Zext 7 (46)
Su 2

ext

where the sum extends over allexternal lines. A s speci ed In (42) the three Independent
param eters of the electroweak SM are taken to be the W and Z boson m ass, and the
Ferm iconstant G (including the electrom agnetjclgzgrrection tomuon decay in the Ferm i
theory), while g, My =M , and o SC 26 M 2 st= are derived quantities.
Sin ilar to the M 3 ) schem e, the G -scheam e for de ning the electrom agnetic coupling
has the advantage that the light—ferm ion m asses can be set to zero [35,36]. T he coun-
terterm for s, is related to the W —and 7 boson selfenergies. Tn the G schane we
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have 2
s, L, _ 1 Z?Z(O)+ 10 RefMJ) r )
= * s M7 oM 2 27
4 W

where 7 isthe transverse selfenergy of the W bosor@ and

7 4
r—m 6+W]ncﬁ (48)

appears in the explicit expression for the electroweak correction to m uon decay, r (see

eg. [36]). For the eld-renom alization counterterm s Z..: for the external lines we use
the conventional on-shell schem e for wave-function renom alization [36] in accordance
w ith the choice m ade In Section [3.]] for the renormm alized W propagator. In particular,
for the W “Jooson and ferm ion wave-fiinction renom alization we have

_R@qu(pz) ; Ze = Re T(0); 49
Iy = e@ipzpzzMﬁr ¢ = Re ~(0); (49)
where f denotes the selfenergy of the farm fon. (Note thatRe f(0)= £(0).) Theon-

shell eld renomm alization of the ferm ions ensures that no further nite renom alization
is needed In calculating the scattering am plitude. On the other hand, since we never
consider a physical process w ith extemal W bosons, the renomm alization factor for the
W el ispurely conventional, and our nalresult is independent of the convention for
Zw . However, the m atching coe cient of the production operator calculated below
does depend on this convention. T he dependence is cancelled by the dependence of (28)
on 1), the on-shell derivative of the renom alized oneJdoop selfenergy, whose value
dependson Zy .

41.1 Production vertices

T he generalm ethod on how to obtain the m atching equations needed to determ ine the
short-distance coe cients of production operators has been discussed in [13]. For C )

pPLR
and CIS;L we com pute the g _, e;:L ' W W ' scattering am plitude at leading order
In the non—+eltivistic approxin ation using dim ensional reqularization in d = 4 2
din ensions. This is com pared to the am plitude obtained w ith the treelevel operator
In the e ective theory and the m atching coe cient is determ ined to m ake the results
agree. The m atching coe cients thus detemm ined are gauge invariant by construction
provided the scattering am plitude is calculated w ith the externalW boson m om enta at
ghe com plex pole position. The m atching prescription also includes an additional factor
My $ 2 [13],asgiven n (1), or each extemal  eld. However, here we depart
from the \correct" m atching procedure and om it the factor $ 172, since it was already
included n Section [3.]] (see discussion after (29)).

6In the conventions used here and in [13] the sum of the am putated 1P I graphs is given by ( 1 )
which is the opposite sign com pared to [36].
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Figure 7: Sam ple diagram s contributing to the m atching of the production operator O
at one loop.

Thediagram s forthee (p1)e" () ! W (kW * (k,) scattering process are gener—
ated with FeynA rts [37]and the algebra is perform ed w ith FeynCalc [38]. At one loop,
there are 65 twopoint diagram s, 84 threepoint diagram s and 31 fourpoint diagram s
(generically counting up-type quarks, down type quarks, leptons and neutrinos), som e of
which are shown in Figure[d. D ue to the sin pli ed kinam atics, m any of these diagram s
do not contribute. In fact, since the one-loop contributions are already suppressed by

cw it is su cient to take the leading order in the non—+elativistic expansion of the
one-loop diagram s and to set k?, k3 to M ? rmather than to the com plex pole position.
Thus, fortheW momentaweusek; = k; = My v whereas the Incom ing lepton m om enta
can beparam etrized aspr= My ;p)and = My ; p)wih Pj= My . This results
In two sim pli cations. First, m any diagram s vanish consistent w ith the fact that the
tree—level schannel diagram s do not contribute at leading order in the non—+relativistic
expansion. Second, the num ber of scales present in the loop integrals is reduced. D ue to
the sim pli ed kinam atics, all box Integrals can be reduced to triangle diagram s and the
onedoop correction to the am plitude for the process e e | W W * takes the smpl
form

ew (1)

Ayy = M 2 Coar &1 R) I J& ,+6s501 1 (50)
W

expected from (23), with 5, denoting the polarization vectors of the W bosons. (For

h = RL, the ferm jon helicities are reversed.) T he scalar coe cients C ﬁh) can be obtained
by progctions of the filll am plitude. Thus, we are left w ith the calculation of a scalar
quantity and standard technigques for the reduction of tensor and scalar ntegrals can be
applied.

In the com putation ofCIigL allpoles canceland we are left w ith a nite result. This
is to be expected, since the corresponding Bom temm vanishes, as indicated in (13). For
c®  them atching coe cient of the operator that does not vanish at tree level, the

pLR '
poles do not cancel. A fter adding the counterterm (46) w ith n = 2, it takes the fom

n #
2
1 1 aM (1; n)
2

cp;LR = 2— + C

(51)

2 pAR 7

3
2

where the nite part c;l;{g) together w ith the expression for ngL is given explicitly

in Appendix Bl. For the nal expression of the m atching coe cient, the poles have to
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be subtracted. However, we leave than explicit in order to dem onstrate their cancella—

tion against (double) poles from the soft contrlbution and poles related to initialstate

collinear singularities. N um erically,
(1;n) _

0 = 10076+ 02051 (52)

forMy = 80377G&V,M,; = 91:188G€&V, topquark massm = 1742G &V and H iggs
massMy = 115G e&v.

Them atching coe cientsC SL) r and C ;2 ., both have a non-vanishing im aginary part.
Taken at face value, this in aginary part contributes to the In aginary part of the forward

scattering am plitude A and, therefore, to the total cross section. D enoting by A (lc) the

NLO contribution to A resulting from Cél) we have

1)

mA'Y =M 20'A@ =2ReCcV AP+ 2mC/ Ren (53)

H ow ever, the second term in (53) is induced by cuts that do not correspond to the nal
state we are interested in, such as the Z2 intemm ediate state in the fourth diagram of
Fiure[l. In fact, at leading order in the non-relativistic expansion, none of the diagram s
that contribute to the hard m atching coe cients contains either a quark oramuon. To
obtain the avour-speci c cross section we are concemed w ith , w e therefore have to drop
the second term in (53) and in what follow s it is always understood that we take the real
part of the m atching coe cients C p(iL)R and CI:%L . Recalling the discussion of cut (2) at
the end of Section [3.1], we note that beyond NLO the situation ism ore com plicated, as
som e of the cuts contributing to the in aginhary part of the m atching coe cient C , do
correspond to the avour-gpeci ¢ cross section we are interested in.

T he contribution to the cross section resulting from the NLO correction to the pro-
duction operators is obtained by m ultiplying the im aginary part of A (1C) by the leading
order branching ratios. T he correction to the cross section for the ¢ e, polarization is
therefore given by

1
1 (1) (0)
hard — 2—75 2R eCp;LR Im ALR N (54)
Because there is no interference of the helicities e, ¢ and e €. , the coe cient C ;gL
does not contribute at NLO . Introducing the abbreviations
2 (0) 2 (0)
r ¥
= r° + 12, ,=E 2 + 9 (55)
M W 2 2M w 2

or the non—relatiistic propagators in the lading-order diagram , Figure[d, and ~? =
e =(4 ),we can rewrite (54) as

o _ 162 2 Y dr 1
hard  27M 2 s 2@ .
nw #
1 3 a (17 n)
2Re2— = 7 > + Cogr  f (56)

T he unintegrated form of the result is given to m ake the cancellation of the -poles
against other contributions com puted in the follow Ing subsections m ore transparent.
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Figure 8: D iagram s contrbuting to the virtual correction Cf;h) at one loop.

4.1.2 D ecay corrections

N ext we discuss the electroweak correction to the m atching coe cient . In the pole
m ass and on-shell eHd renom alization scheme ©“& )= {1@&) = v, I ©@? . The
cuts of the 2-loop electroweak W selfenergy consist of two parts, corresponding to the
virtual and real hard corrections to the W pole decay width. Dealing with the total
cross section, we only need the sum of these two. However, we also have to discuss how
to obtain results for the avour-speci ¢ processe’ e ! udX . Toald this,wewill
discuss the virtual and real corrections separately, starting w ith the fomm er.

T he virtual one-loop correction to the pole-schem e decay w idth into a single lepton
(1) or quark (h) doublet can be written as

(1virt) () a
Wi = 2 wanR€Cqn7 (57)
where the treedevel w dths in d din ensions are ‘;O);l = O _ wMy =12+ O ( ) and

W o w 1+ L he calculation of C C(Sh) nvolves the evaluation of the diagram s
depicted in F igure[8 w ith obviousm odi cations for the leptonic decay. A fter adding the
counterterm (46) with n = 1 we obtain

© _ O _ 5 ©

" #
1 5 M 2 1 3 M 2 .
1) W W (1;n)
Capn = 5 572 71 > + Q0+ E > t Cpn 7
(58)
where for the leptonic (hadronic) decay we have to set the electric charges to Q¢ =
10:=00Q¢s=2=3;,0Q= 1=3).The njtepartscél,l":}?) of the m atching coe clients

are given explicitly in A ppendix [Bl. Num erically,

(1; n)
d;l

= 209 05521 g,h = 2034 05971 (59)

forMy = 80377GeV, M, = 91188GeV,m.= 1742Ge&V,and My = 115G &V.

To this we have to add the correction due to hard real radiation of a single photon.
Since the corresponding soft corrections vanish, the hard real corrections are equivalent
to the real corrections evaluated in the standard electrow eak theory and their calculation
is straightforward . W e com pute the bram sstrahluing diagram s and integrate the squared
am plitude (divided by 2M i ) over the d-din ensional phase—space [39]. T he expression
thus obtained contains Infrared (double) poles which cancel the poles n (57) and we
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Figure 9: F irst and second order C oulom b correction.

are left with nite expressions for the avour-speci ¢ Iptonic and hadronic m atching
coe clents. Including the (two—-doop) Q CD correction to the hadronic decay, they read

2) _ o (Lew) |
1 w1l o/
2) _ . (1;ew)+ 1409_5 (0) .
h T L owa : 2 Wwa S
, 101 19 72 2
(Lew) (0) (1; n) .
Wash T Wah Z2Rec "+ EE) + ?Q £Qr EE) EQ Qe (60)

Strictly speaking, for the com putation of these m atching coe cients we have to expand
around the com plex pole s and not around M 2 . However, the di erence in the w dth is
of order * and thus beyond NLO [2].

4.2 Coulomb corrections

The&z_@hange of potential photons w ith energy kg My  and threem om entum K
M y , shown in Figureld, corresponds to insertions of the non-local fourboson inter—
actions in the e ective Lagrangian (11]). T hese insertions can be summ ed to all orders
in term s of the G reen function G . (r;¥%E ) of the Schrodinger operator & 2=M =r
evaluated at » = %= 0. Usig the representation of the G reen finction given in [40],
we obtain [41]

8 | 0 19

<

. (0) =
1 E+1i
1A coulomb = 41 z —In — 4 e 1 S A . ; (61)

2 M .
W 2 E+ iy

where (x) is Euler’s psiHfunction, and a subtraction-schem e dependent real constant
that drops out In the cross section has been om itted. The diagram with no photon
exchange is not included in this expression, SJI]C%J_E cor£$§ponds to the leading-order
am plitude (19). The logarithm constitutes a = correction relative to the
leading-order scattering am p]ﬂ';uide (I9). The expansion of the psifunction In  results
n an expansion in powers of . Thus, the Coulom b correction up to NLO reads

" ! 87#
4 2 E+ 1Y 2 2 M
S omp = m —h —" " (62)

27st s 2 My 12 E + i ‘;0)
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Figure 10: Softphoton diagram s in the e ective theory: Initialsnitial state interfer-
ence (ii), Initiakntermm ediate state nterference (in ) and intermm ediate-interm ediate state
Interference (mm ). Symm etric diagram s are not shown.

T his contrrbutes only to the LR helicity cross section, since the production operator at
the vertices In F igure[d is the leading order one (13). D irectly at threshod (E = 0) the
one-photon exchange N 21,0 tem (the logarithm in (62)) is of order 5% relative to the
leading order. Two-photon exchange is only a fewpem ille correction, con m ing the
expectation that C oulom b exchanges do not have to be summ ed to all orders due to the
large width of the W boson. The one and two Coulom b-exchange term s have already
been discussed in [10,111].

4.3 Softphoton corrections

W e now tum to the radiative correction originating from soft-photon exchange. T hese
are O ( ) contributions to the forward-scattering am plitude, and corresoond to two—
Joop diagram s in the e ective theory containing a photon w ith m om entum com ponents
D 7 M; . The relevant Feynm an rules are given by the coupling of the soft
photon to the eds in the PNRQED Lagrangian (11) and to the collinear electrons
and positrons contained in the SCET Lagrangian. The latter is simply the eikonal
coupling den , where n is the direction of the fourm om entum of the electron or
positron. T he topologies contributing to the two-loop forward-scattering am plitude are
shown in Figure[I0. The W -boson vertices are leading-order production vertices, hence
at NLO the soft correction applies only to the leftright e €' helicity forw ard-scattering
am plitude. N ote that (mm 2) is not a double-counting of the C oulom b-exchange diagram
in Figure[d, shce the two diagram s refer to di erent Joop m om entum regions.

Tt is well known that for the processe ¢ ! W W * | f£ff,f3f, the softphoton
corrections related to the nal state cancel for the Inclusive cross section [42,43]. The
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diagram s of type (in ) in F igure[10 cancel pairw ise w hen the sum over incom ing positrons
and electrons is perform ed. The sum of the diagram s of the form of (mm 1) and (mm 2)
cancels after the loop integrals are perform ed. T herefore the sum of alldiagram s where
a soft photon couples to an line vanishes. Tn the e ective theory this cancellation can

be seen from the outset, since it follow s from the particular form of the leading coupling
of a soft photon to non—relativistic W bosons in the e ective Lagrangian (11]), which
Involves only Ag (£;0). Since the residual gauge Invariance of the e ective Lagrangian
allow s one to set the tin e-like com ponent of the photon eld to zero, at leading order
the couplings can be ram oved from the Lagrangian.

T herefore the soft-photon correction in the e ective theory is given by the nitial-
Initial state Interference diagram s. However, diagram (ii2) Jeads to a scakless integral
w hich vanishes in din ensional reqularization, and diagram (ii3) and the sym m etric dia—
gram are proportionaltop? Oandpg 0, respectively. T he only non—zero diagram is
(ii1) and the corresponding crossed diagram . The sum of the two diagram s evaluates to

Z 7
N 16 2 §W8 ( 2 ¥ d?r d%g
oft T T2 S -
ft M 2 ey @y
1 1 1 1 1
s @+ 1)0 g ap i) g op i) @)
Z
16 2 2, (12 dor 1
= - 1
M g er .
1 2 2 , 2 5 2
— “h “— +2h -+ = (63)
2 12

The double -pole In [63) cancels against the pole In the hard m atching coe cient; the
single pole can be factorized into the initialstate electron (positron) structure function
as shown in Section[d. Subtracting the pole part of the integrand (63)) before perform ing
the Integration, one obtains
" ! ! #
w ) 41n —W+8+1—32:(64)
24

(1;n) _ 2
A soft ALR_ In

A sbefore, the r’ integration has been perform ed by closing the r’ integration contour in
the upper halfplane and picking up thepoleatr’ = B #=(2M , )+ i \'=2. Because of
the absence of soft corrections related to the nalstate,atNLO the soft corrections to the

avour-speci ¢ process (1) can be obtained by m ultiplying the soft tw o-loop contributions

to the forw ard-scattering am plitude by the leading-order branching ratios, thus

o 1 1) |

soft 27s soft * (65)

A sa check, we also calculated the soft corrections directly for the process (1) and found
agreem ent w ith the sim pler calculation of the forw ard-scattering am plitude.
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Figure 11: C ollinearphoton diagram s in the e ective theory. Two symm etric diagram s
are not shown.

4.4 Collinearphoton corrections

Finally we consider collinearfphoton corrections, corresponding to photon energies of
order M  , and photon virtuality of orderM y . The fourm om entum of the photon
is proportional to the initialstate electron or positron m om entum . T he collinear photon
couplings arise from the SCET Lagrangian, while their couplings to the W bosons is
encoded in the collinear W ilson lines in the production operators. T he diagram s corre—
sponding to NLO contributions are shown in Figure[11l. A s discussed In [13] all these
diagram s are scakless for on-shell, m assless initialstate particles. However, we shall
have to say m ore about collinear e ects in Section [3, when we nclude the resum m ation
of large nitialstate radiation logarithm s.

45 Summ ary of radiative corrections

T he radiative correction to the next=toJdeading order cross section is given by the sum
of the corrections (5d), (63), (62), (33) com puted in the previous sections,

N 1) 1) 1) 1)

LR hard soft Coulom b decay . (66)

Recall that this refers to the e e, helicity initial state, while there are no radiative
corrections to the other helicity com binations at NLO . T he radiative correction to the
unpolarized cross section is one fourth of the LR contrdbution.

Because of the approxin ation m . = 0, the cross section is not Infrared-safe, as can
be seen by sum m ing the four contributions. T he C oulom b and decay corrections are free
of nfrared singularities. For the sum of the soft (63) and hard (56) term s we obtain the
follow ing expression :

@ w _ 16 ° 5 (12 d'r 1
hard soft 27MV§S (2 )d .

1 3 2

- 2mn +- +2n  —  2x -

My 2
. Bt o112 )
n
+ 3 tRe Gur * (67)

30



T he cross section AﬁlR) is a \partonic" cross section. It should be convoluted w ith the

electron (positron) distribution function, which contains the infrared e ects associated
w ith the electron m ass scale. In the follow ing section we discuss how the partonic cross
section is transform ed to the infrared— nite physical cross section.

5 Initial-state radiation

Theram aining -poles in [67) are associated w ith em ission of photons collinear to the in—
com ing electron or positron, and can be factorized into the electron distrlbution function
"o, In tem s of which the physical cross section  reads [44,45]
Z Z
n(E)= dx dx, L 01) L (o) M (x%08) (68)

Here A;TS(S)= hpom (S)+ A}ﬁ%(s) isour result for the NLO helicity-speci ¢ cross section

after adding the Bom cross section from Section [3 and the radiative correction from (64)
w ith the infrared —olesm inim ally subtracted. T he partonic cross section depends on
the scales Q = fMy ;E; w g and the factorization scale . The electron distribution
finction in the M S scheme depends on  and the very-bong distance scale m.. The
physical cross section is independent of and includes the electron-m ass dependence
up to e ects suppressed by powers of m =Q . By evolving the electron distribution from
the scalem . to the scale Q , one sum s Jarge collinear logarithm s ' n™? (Q ?=m 2), w ith
n, = 1;u231 ,n, = 1;u53n; from initlalstate radiation of photons to all orders in
perturbation theory. A NLO calculation of the partonic cross section should go along
with a next+to-leading logarithm ic approxin ation, where all term s with n, = n; and
n, = n 1 are summ ed. Note that here we do not attem pt to sum Ilogarithm s of
My = w , which are less In portant, although the e ectivetheory form alisn is deally
suited for this summ ation aswell.

Unfortunately the structure functions ¢ (x) available in the literature do not corre-
spond to theM S schem eand sum only keading logarithm s ® In® (Q ?=m 2). To convert our
result A?TS (s) to this schem e and sum the leading-logarithm ic initialstate radiation e ects
we proceed as follows: rst,using the expansion " (x)= (1 x)+ o ™x)+0( ?),
we com pute the schem e-independent NLO physical cross section w ithout sum m ation of
collinear logarithm s,

Z 4
NOUS) = hpem () M(e)+ 2 dx UM (R) . (k) (69)

hpms ee
0

Then, by com paring this to the corresponding equation in the conventional schem e,
Z

NOS) = npem(8)+ AL ()4 2 dx (X)) . (xS); (70)
0

31



A1) A1)

we determ ne % (s),and hence "7 (s) = ngom (S)+ 7y, (S). Finally, we calculate
the Initialstate radiation resum m ed cross section
Z 1 Z 1
n(s)= dx; dx, o (x1) oo (%)W" (%1%8) (71)

0 0

in the conventional schem e for the electron (positron) distrdbution fiinctions. N ote that
since the B om cross section for the R L helicity com bination isalready a NLO e ect, the
schem e conversion must be performed only forh = LR. Forh = RL we sinply have

/\EOEV(S): Agi(s): RL Born (S)'

Step 1: Caluktion of the xed-order physicalcross section 2° (s). Rather than cal-
culating the last term on the right-hand side of (6€9), we com pute directly the radia—
tive correction to the physical cross section, ﬁlR) (s), by converting Af}%(s), where the
collinear divergences are requlated din ensionally, Into the expression when the electron
m ass itself is used as the regulator.

In the presence of the new scalem ¢ w ;E My there are two new m om entum
regions that give non-zero contrilbutions to the radiative corrections. T hey correspond
to hard-collinear photon mom entum (@ My , ¢  m?) and softcollinear photons
(Cx w o T mZ 2 =M 2 1 The corresponding loop integrals are scaleless when

me= 0;orm. 6 0, they supply the di erence

(1) AL (1) ),
LR (S) LR s—co]l+ h-coll® (72)

In other words L(lR) (s) is the sum of the four contrdbutions in (6d) plus those from the

two new mom entum regions.

Only a am all subset of all the radiative correction diagram s has hard—-or soft—collinear
contributions, nam ely those containing a photon line connecting to an extemal electron
or positron. T he topology of the softcollinear and hard-collinear diagram s is dentical to
the (ii) and (in ) diagram s in F igure[I0, and to the diagram s in F igure[I]], respectively.
T he calculation is straightforward. In each region we sim plify the integrand by neglecting
all an all term s, since the leading-order term in the expansion in each region is su cient.
T he soft-collinear correction is

Z
@ :%_ ( i)~2 dr 1
sl 27M 2 s 2@ .
1 2 m m 3°2
—+In = 2 1f ° — (73)
2 My My 4

"T he existence of two collinear m om entum regions is related to the fact that the W pairproduction
threshold region probes the electron distribution function nearx = 1, w here hard-collinear real radiation
is inhibited.
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the hard-collinear correction

Z
) 16 2 2, s dir 1
hfoﬂzm_m ( l)N (2 )j
W +
1 1 m . 3 , Mg m. 2
— + — 2n — + - +2In° — 3 h — + —+ 3 : (74)
2 2 12

T he structure of the logarithm sm akes it clear that the two contributions arise each from

a single scale, Mme w =My and m., respectively. Adding (64), (Z3), (Z4), and
m aking use of (67) results in the factorization-schem e independent radiative correction
to the physical cross section,

( Z

16 2 2 dr 1 2M
R = == —m ( D~ 4Tn I .
27MW S (2 )d + MW me
M h @) z ) (1) 1)
; n
+3In n. +Re ¢z + vy + 3 + Contomp T decay
( s - @00
4 3 E+1i” 4E + 19 oM
- w1 Eilwogy B2 a) g 2
27s, s M My me
2M y h @y 2 ! (1) (1)
5h n. +Re ¢z + 7 + 3 + Contomp T decay (75)

A fter perform ing the r-integral we may set d to four and obtain a nite result. As
expected the —poles have cancelled, but the nfrared-sensitivity of the cross section is
re ected in the large logarithm s n(2M y =m ).

Step 2: Caluktion of *%"(s). Com paring the right-hand sides of (69) and (70), we
obtain the radiative correction to the conventional \partonic" cross section

Z 1
e 1 ;
e (8)= (8) 2 dx BVR) Lk (xS) (76)
0

where 1/ (x)istheO ( ) tem in the expansion of the conventional electron structure
function provided in [46,47]. In the notation of [47]we em ploy the structure function
with ¢p= o= .= =2 2h( s=m.) 1).To cakukhte the subtraction tem i
(7d) it issu clent to approxinate = s= 2M y in the expression or ., to set LR gom (XS)
to the leading-order Bom term (17) w ith the replaceament of E by E My (1 x),and

touse o™ (x)inthelmitx ! 1,



W e then reintroduce the Integral over r, and exchange the r—and x-integration to obtain

4 1
2 dx 2Wx) Y xs)=

ee
0
Z
16 2 iw 2 ddr 1 e
oo (1~ — 2
2™ 5 s 2 ¢ + 2 My

i (78)

N w

which show s that *[}" (s) is free from  the Jarge electron m ass logarithm s. To obtain the

nalform in (78) we have shifted the integration variable ry to E . Summ ing (79)
and (78), and perform ing the r-integration, gives the nalresult for the next-to-Jeading
order radiative correction to the conventional \partonic" cross section

( S

43 E+1i© aE + 1) h 1
(1) W W (1; n)
~ . S) = Im 1 —— 2 _— + Re ;
LR,conv( ) 27831\]8 ( ) MW MW Cp,LR
, )
1 (1) (1)
+ Z + 5 + Coulom b + decay : (79)

Step 3: Com putation of the resumm ed cross section. The summ ation of collinear loga—
rithm s from initialstate radiation is com pleted by perform ing the convolution (71l) using
the Bom cross section and the radiative correction (79) together w ith the electron struc—
ture functions from [46,47]. This constitutes our nalresult, which we shall discuss In
detail in the follow Ing section.

6 NLO four-ferm ion production cross section

W e now present our NLO predictions for the total cross section of the process e € !
udX and assess the theoretical error on the W -m ass m easuram ent due to the un—
certainties in the cross—section calculation.

6.1 Input param eters and sum m ation of W -w idth corrections

In addition to the input param eters (42) usad for the com parison of the tree cross section
weuse ;= 1°(80:4GevV)= 0:1199 and them asses

me= 1742G&V; My = 115G&V; m= 0:51099892M &V : (80)

W e use the ne structure constant in the G  schem e everyw here including the initial-
state radiation. W ith these Input param eters we obtain from (60) the num erical value
oftheW width toNLO,

w=3 aat o em w2 Do 0EY o = 209201G eV : (81)



N ote that we have chosen tom ultiply not only the leading order, but also the electrow eak
correction to the hadronic decay by the factor ,., de ned in (20). In the num erical
results below we will resum the fullNLO width (8I) in the e ective-theory propaga—
tor (10), that is we do not perform an expansion of the propagator in the perturbative
corrections to them atching coe cient . W enow describe how the form ula for the NLO

cross section must be m odi ed to accom plish this summ ation of the w idth corrections.
R eaders not interested in this technicaldetailm ay m ove directly to the next subsection.

Leaving = iy unexpanded am ounts to setting ‘i,l) to zero In the NLO txee

cross section (33) and to replacing ‘i,O) by w wherever it appears. Som e care has then
to be taken In order to obtain the correct cross section for the avour-speci ¢ four-
ferm ion nalstate from the calculation of the forw ard-scattering am plitude. Cutting the

e ectivetheory propagator leads to a factor

MW W

; (82)

2 2
(ro - F+
analogously to (16). In the direct calculation of the four-ferm ion production cross sec—
tion the num erator arises from integrating over the two-body decay phase space, which
yieds the leading-order partial width. Hence, we have to multiply all contributions
to the forward-scattering am plitude w ith two cut e ective-theory propagators (the po-
tential contributions in Section [3.l, the Coulomb and soft radiative corrections, and
the contrdbution from the one-loop correction to the production operator) by a factor

@ U= 2 instead ofthefactor ' V)= VP = 1=27 used in the tree kvelanaly-
sis. Tn the calculation of the m atching coe cient of the fourelectron production-decay

operator perform ed in Section [3.3 the selfenergy nsertions on one ofthetwo W lines are
treated perturbatively, and the decay subprocess is already correctly included at lowest

order, while the otherW ise ectively treated in the narrow -w idth approxin ation

My w | W 2
o— ® My (83)
k2 Mg P+Mg g - "

To obtain the correct avourspeci ¢ nal state we therefore have to include a single

prefactor V(VO) \ =y Or ) = y , depending on the W charge. As shown in

! w ! ud
Tabl [, with these prescriptions the N®2L0O e ectivetheory approxin ation and the

f1ll Bom cross section (in the xed-w idth de nition now using (8)) are again in very

good agreem ent, sim ilar to the earlier com parison, w here only V(VO) wasresumm ed in the

propagator.

A s already m entioned the electrow eak radiative corrections are correctly treated by
m ultiplying the nclusive forw ard-scattering am plitude by ‘;O) | ‘;Oi . 2, except
for the correction to W decay itself. These contributions are included by adding the

decay correction |
(Lrew) (lew)’

(1) _ ud (0)
decay (0) + (0) (84)

ud
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(e e ! ud ) (fb)

Y SCev]| EFT Tree NLO) | EFT Tree 3210 ) | exact Bom
155 42 25 30 .54 33.58(1)
158 65.99 60.83 61.67(2)
161 154 .02 154 44 154.19(6)
164 298 6 3037 303.0(1)
167 4003 4093 408 .8(2)
170 469 4 481.7 481.7(2)

Table 2: C om parison of the num erical com putation of the fullBom result w ith W hizard
w ith successive e ective-theory approxin ations as in Table [Il, but now the NLO decay
width  asgiven in (81]) is usd.

instead of (339). The QCD corrections up to order 2 are included in a sim ilar way.
Because of the large NLO corrections to the tree cross section and the large e ect of
ISR, it is sensible to apply the QCD decay correction to the ulllNLO electroweak cross
section. This am ounts to multiplying 1(121)' flld;eW) by the radiative correction factor
ocp asgiven in (20), wherever they appear, which is consistent w ith the de nition of
the NLO W width (81]). If in addition we also account (approxin ately) for the Q CD
decay correction to the non-resonant contributions from Section [3.3, this is equivalent
to multiplying the entire NLO electroweak cross section by ocp and using the QCD

corrected w dth (81]) as willbe done in the follow ing analysis.

6.2 NLO four—ferm ion production cross section in the e ective
theory

The convolution of the \partonic" cross section with the electron structure functions
contains Integrations over partonic center-ofm ass energies far below threshold, where
the e ective el theory approxin ation is not valid. The EFT calculation should be
m atched to a full cross section calculation below som e an s energy, say pE = 155Gev,
where for the full calculation a Bom treatm ent is su cient, because the cross section

below threshol is small. Since the N*?L0O EFT approxin ation to the Bom cross sec—
tion provides a very good approxin ation (except signi cantly below threshold),we have
found it m ore convenient to replace the EFT approxin ation to the Bom cross section
convoluted according to (71l) by the fi1ll ISR —-im proved Bom cross section as generated
by the W hizard program [17] rather than to perform this m atching. To this we add
the NLO radiative correction (79) (replacing the leading-order cross section @) by the
full Bom cross section  gpom i the decay correction (84)), which we also convolute
w ith the electron distribbution fiinctions. Here we sin ply cut o the integration region
pxszs < 155G eV . The dependence on this cuto is negligbl. Lowering it from
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(e e ! udX )(fb)
LJE[GeV] Bom Bom (ISR ) NLO NLO (ISR —txee)
158 61.67(2) 45.64(2) 49.19(2) 50.02(2)
[26 0% ] [202% ] [F18.9% ]
161 15419(6) | 10860(4) | 117.81(5) 120.00(5)
[296% ] [(23.6% ] [222% ]
164 303.0(1) 219.7(1) 2349(1) 2368(1)
[275% ] [22.5% ] [218% ]
167 408 .8(2) 3102(1) 3282(1) 3291(1)
[241% ] 19.7% ] [F19.5% ]
170 481.7(2) 3784(2) 398.0(2) 3983(2)
[21.4% ] H74% ] F173% ]

Table 3: Two NLO Im plem entations of the e ectivetheory calculation, which di er by
the treatm ent of Initialstate radiation com pared to the \exact" B om cross section w ith—
out (second colum n) and w ith (third colum n) ISR in provam ent. T he relative correction
In brackets is given w ith regpect to the Bom cross section in the second colum n.

to 155G &V to 150G &V (140 G &V ), changes the cross section atPE = 161 GeV from
11781 to 11787 (11791 o), whilk the dependence on the cuto for higher ans
energy is even am aller.

Our result or the NLO fourferm ion cross section is shown in Table[3. T he in pact of
radiative corrections is seen by com paring the exact Bom cross section (second colum n,
ddentical to the lJast coumn in Tabl[d), the ISR —in proved Bom cross section (third
colimn) and the NLO result (fourth colimn). A s is welltknown initialstate radiation
results in a large negative correction (about 25% ). The size of the genuine radiative
correction isbest assessed by com paring the \NLO " colum n to the \Bom (ISR )" colum n
and thus seen to be about + 8% . G ven that we ain at a theoretical accuracy at the
sub-percent level, this is an in portant e ect. W e shall discuss below , in Section [6.4, an
estin ate of the ram aining uncertainty of the NLO cross section.

O ne uncertainty is related to the fact that the conventional In plem entation of ISR
sum s only leading logarithm s, whereas a NLO calculation of the partonic cross section
should be accom panied by a next-toJdeading logarithm ic resumm ation. Thus rather
than convoluting the fi1lllN LO partonic cross section w ith the structure functions asdone
above and indicated in (71]), one could equally well convolute only the B om cross section,
and add the radiative correction w ithout ISR in provem ent, as done In som e previous
NLO calculations [6,15]. A lthough we favour the rst option, the two in plem entations
are fom ally equivalent, because the di erence is a next+o-leading logarithm ic tem .
W e therefore consider this di erence as an estin ate of the uncertainty induced by the
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(e e ! udX )(fb)
Pscev]| Bom |NLOEFT)| etfiis)| pPa 5]
161 | 150.05(6) | 104.97(6) | 105.71(7)| 103.15(7)
170 a812(2) | 373742) | 3717102) | 37692

Table 4: Com parison of the strict electroweak NLO results (without Q CD corrections
and ISR resumm ation).

m issing next+o-leading logarithm ic evolution of the structure functions. To assess this
uncertainty, in the fth coimn of Tablk[3 we show the NLO cross section based on the
expression
Z, 7,
mRoee(S)= Ay Ay (1) Z(X2) mom (K1Xps)+ N0 (S); (85)
0 0

where the NLO correction to the \partonic" cross section, *) (s), isgiven in (79) (w ith
1=277 replaced by © 1(1?= VZV ). T he com parison of the last and second-to-last colum ns
of Tablk [3 show s that the di erence between the two in plan entations of ISR reaches
alm ost two percent at threshold and is therefore m uch larger than the target accuracy in
the perm ille range. The di erence befween the two In plem entations becom es an aller
at higher energies and is negliglble at P s= 170 G&V . The in pact of this di erence on

the accuracy of the W -m assm easuram ent w ill be investigated further in Section [6.4.

6.3 Com parison to the full four-ferm ion calculation

W enow com pare theNLO prediction of the four-ferm ion production process (1) obtained
w ith the e ectivetheory m ethod to the ull NLO calculation performed in [15] in the
com plex m ass schem e. For this com parison, we adjast our input param eters to those
of [15],

My = 80425G€V ; w = 20927GeV; m.= 178G¢€V ; <= 0:1187; (86)

and use (0) = 1=13703599911 in the relhtie radiative corrections as in [15]. W e
rst com pare the strict electroweak NLO calculation, ie. the cross section w ithout the
QCD correction ocp and without initialtstate radiation beyond the rstorder tem . In
the e ective-theory calculation the corresponding radiative correction is given by (79)
om itting the second-order C oulom b correction and the factor ocp In the decay width.
In Tabk[d the EFT result and the result of [15] are shown in the colum ns labelled
\NLO (EFT )" and \eedf", regpectively. For com parison we also show the results for the
Borm cross section and in the doublepole approxin ation (\D PA ") In the in plem entation
of blasquoted In [15]. The m ain observation is that the di erence between the EFT
and the full fourferm ion calculation isonly 0:7% atp s= 161 G eV and grow s to about
% at” s= 170Gev.
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(e e ! udX )(fo)

LJE[GeV] Bom (ISR ) | NLO (EFT )| e=4f [15] | DPA [15]
161 107.06(4) 117.38(4) | 118.12(8) | 115.48(7)
170 381.0(2) 3999(2) 401.8(2) 402.1(2)

Table 5: Com parison of NLO results with QCD corrections and ISR resumm ation in—
cluded.

Next, In Tablk[d, we com pare to the full result including the Q CD correction and the
resum m ation of ISR corrections with [15]. Here we im plam ent the QCD correction as
In [15]by multiplying the entire electroweak NLO result by the overall factor (1+ = ).
Furthem ore, we include ISR corrections only to the Bom cross section as n (83), in
agreem ent w ith the treatm ent of [15]. A gain the second-order C oulom b correction is set
to zero, because [15]doesnot include any two—loop e ects. A sbefore, the Table show s the
two NLO calculations, the Bom cross section (now ISR in proved) and the doublepole
approxin ation. T he discrepancy between the EFT calculation and the full fourferm ion
calculation is around 0:6% at thresholdd. The EFT approxin ation is signi cantly better
than the doublepole approxin ation directly at threshold, while at higher energies the
quality of the DPA im proves relative to the EFT approxin ation, since no threshold
expansion is perform ed in the D PA .

6.4 Theoretical error of the M y determ ination

The W mass will probably be determ ined by m easuring the four-ferm ion production
cross section at a faw selected an s energies near the W pairproduction threshod.
In this section we estin ate the error on the W mass from various sources of theo-
retical uncertainty. To this end we assum e that m easurem ents O; will be taken at

s= 160;161;162;163;164G eV, and at b s= 170G &V, and that the m easured values
coincide w ith our NLO calculation (labelled \NLO (EFT )" in Table[d) corresponding to
theW polemassMy = 80377G&eV.W edenoteby E;( My ) the cross section values at
the six an s energy points for any other theoretical calculation of four-ferm ion production
as a function of the nputW mass 80377G&V + My ,and determ ine them ininum of

X 0: B Myg))
2 2 :

=1 L

( My )= (87)

For sim plicity we assum e that each point carries the sam e weight, so is an
arbjn%rlconstant ofmassdimension 2. (W e checked that a m ore realistic assignm ent
5 O ; does not lead to signi cantly di erent results.) The value of My atwhich
2( My ) attains itsm nin um provides an estin ate of the di erence in the m easured
value of M ; due to the di erent theoretical cross section inputs, O ; and E ;. For instance
ifE;( My ) isthe ISR —m proved B om cross section (labelled \Bom (ISR )" in Table[d),we

39



obtain My = 201M &V ,which tells us that com paring m easurem ents to a theoretical
calculation w ithout the genuine radiative correctionswould result in a value ofM  which
isabout 200 M &V too Jow . The NLO calculation is therefore crucial for an accurate M y
determ ination. N ext we attam pt to estin ate whether it is accurate enough.

Treatm ent of iniHalst@ate radiation. A look at the last two colimns of Tabl [3 re-
veals that two di erent im plem entation of ISR, which are form ally equivalent at the
Jead ing—logarithm ic level, can lad to di erences in the predicted cross section of 2%
at” s = 161G eV, where the sensitivity to My is Jargest. W e take this as a m easure
for the uncertainty caused by the m issing next—to—-Jeading logarithm ic corrections to the
structure function. To estin ate the eror on M y caused by this uncertainty, we apply
the procedure discussed above and nd

[ My Isr 3IM&V: (88)

T his large error could be avoided by m easuring the cross section predom inantly around
170G &V rather than around 162G &V , but the sensitivity toM  is signi cantly sm aller
at higher energies (see Figure below ). Thus, this error should be elin nated by a
consistent treatm ent of the electron structure fiinctions at the next-to-lead ing logarithm ic
level, In which allNLL corrections are taken Into account by convoluting the NLO cross
Ssection w ith the NLL structure functions. A related e ect concems the choice of schan e
and scale of the electrom agnetic coupling. The di erence in the cross section between
using (0)and in theG -scheme in the radiative correction (including, in particular,
nitialstate radiation) is about 1% , which translates into another ervor ofabout 15M &V
In theW mass. The scale am biguity of the coupling usad in nitialstate radiation can be
resolved only in the context of a next+to-leading logarithm ic resum m ation which takes
the evolution of between m. and  into account. On the other hand, the typical
scales In the shortdistance cross section are at least 2GeV,so that 1n theG
schem e ism ore appropriate than the low -energy electrom agnetic coupling in the radiative
correction to the short-distance cross section, since it is num erically close to the running
coupling at 2G &V .

Uncalulated corrections t the \partonic" cross section. The leading m issing higher—
order term s in the expansion in  and are N*L0O corrections to the forw ard-scattering
am plitude from four-loop potential diagram s (third C oulom b correction ), three-loop di-
agram s w ith two potential loops and one soft loop (Interference of singleC oulom b and
soft radiative corrections), two-loop potentialdiagram sw ith O ( ) m atching coe cients

orO ( ) higherdin ensional production operators, and the O ( ) correction to them atch-
Ing coe cients of the fourelectron production-decay operators. T he latter is expected

to be the largest of these contrbutions, in particular since the non-resonant N*2LO

contrdbutions are large at the Bom lvel ( 40% at threshold, see Tablll). Presum —
ably, this contrdbution is also the origin of the 0:6% di erence between the EFT result
\NLO (EFT )" and the full ourfem ion calculation \ee4f" atp§ = 161G &V in Tablk[d.

40



A rough estin ate of this correction to the helicity-averaged cross section is

4

278 s (89)

where K is an s—independent constant of order 1. (In fact, if we attribbuted the di erence
between our calculation (A\NLO (EFT)") and that of [15] (\e=4f") at pg = 161Gev
exclusively to this contribution, we would obtain K = 0:96.) Thus, we choos=e K = 1,
add (89) to the \NLO (EFT )" calulation, and m inin ize the ? function. From thiswe
obtain an error

[ Mw hon res 8M eV : (90)

T he second Jargest uncalculated correction to the partonic cross section is expected to
com e from diagram sw ith single-C oulom b exchange and a soft photon ora hard correction
to the production vertex. A naive estim ate of the sum of the two tem s is

A1) (1) (1)
A LR Coulom b decay (1)

= 0) Coulom b ; (91)
LR

w here the quantities involved have been de ned in Section [4. E stin ating the correspond—
Ing uncertainty on the W m assasbefore,we nd

[ My Foulomb (hard+ soft) S5Mev: (92)

Adding the two errors we conclude that the uncertainty on My due to uncalculated
higherorder e ects In the e ective eld theory m ethod is about 10 15M &V .Thus, to
reach a totalerrorof  6M eV requires the inclusion of at Jeast som e N°*LO corrections
In the EFT approach. The larger of the two errors estim ated above, due to the elec—
trow eak correction to production-decay operator, can be rem oved by using the fullNLO

four-ferm jon calculation, where this correction is lncluded.

Summary. The discussion above is summ arized In Figure [I2, where we plt =

(s;My + My )= (s;My ) Pordi erent valuesof My  as function of the an s energy,
being our NLO result, \NLO (EFT )". The relative change in the cross section is shown
as dashed lines for My = 15; 30; 45M &V. The shape of these curves show s that

the sensitivity of the cross section to theW m ass is largest around the nom inalthresholdd

s 161G eV ,asexpected, and rapidly decreases for lJarger s. (The loss in sensitivity
is partially com pensated by a larger cross section, In plying sm aller statistical errors of
the anticipated experim entaldata.)

T he dark-shaded area In F igure[12 corresponds to the uncertainty on the cross section
from (91]), while the lghtshaded area adds (linearly) the uncertainty from (89). The
theoretical error decreases w ith P s, shce n (I189) is roughly energy-independent,
while increases. T he Jargest current uncertainty is, however, due to am biguities in the
In plem entation of ISR . The solid (red) curve gives the ratio of the two di erent In ple-
m entationsof ISR ,NLO (EFT ) vs. NLO (ISR —tree),both evaluated atM y = 80377G &V.
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Figure 12: W -m ass dependence of the total cross section. A 1l the cross sections are
nom alized to  (s;My = 80:377G V). See text for explanations.

A sm entioned above, we do not consider this as a fundam ental problem , since this un-
certainty can be ram oved w ith further work on a next+o-lead ing-logarithm ic ISR resum —
m ation that will be required form any other processes at a high-energy e €" collder as
well.

7 Conclusion

W e perform ed a dedicated study of four-ferm ion production near the W pairproduction
threshodd In view of the in portance of this process for an accurate determ ination of
the W Jooson m ass. O ur theoretical study of radiative and nitesw dth corrections was
m otivated by a corresponding experim ental study [3] which showed that the planned
high-lum nosity linear collider m ight allow a m easurem ent ofM  with an error of only
6M eV from the threshold region. O ur calculation, and the good agreem ent w ith the full
NLO four-ferm jon cross section calculation of [15], dem onstrates that accurate theoretical
calculations are feasble and available in the threshold region. W ith regard to them ass
determ mnation,we nd:

A resumm ation of next-to—leading collinear logarithm s from initialstate radiation
ism andatory to reduce the eroron M y below the 30 M €V level
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TheNLO partonic cross—section calculation in the e ective theory approach in plies
a residualerror ofabout 10 { 15M &V on M y . T he Jargestm issing N°2LO e ect is
probably due to the electrow eak correction to the (non—resonant) production-decay
vertex, which is included in the fullNLO fourfem ion calculation, and can thus
be elim nated.

It is forseeable that both item s can be ram oved, so we conclude that there is no funda—
m entaldi culty in reducing the theoretical ervor in the W m assdetem ination from the
threshold region to about 5 M &V .

T he calculation presented here isalso the rst NLO calculation of a realistic process
n unstableyarticle e ective theory, since [12,13]discussed the case of a single resonance
In a gauged Yukawa model. Com parison of our results for four-ferm ion production
w ith num erical integrations of the Bom m atrix elem ents and the radiative correction
show s good convergence of the EFT expansion, and very good agreem ent once the rst
subleading term In each essential region (potential/resonant, hard/non-resonant) is in—
clided. The EFT approach provides a consistent treatm ent of nitew dth e ects that
can In principle be extended system atically to higher orders. O ur nal results take the
form of com pact analytic form ulae, which has to be com pared to the num erical and
technical challenges [15]of the fullNLO four-fem ion cross section calculation. H owever,
it should be m entioned that our calculation is restricted to the Inclusive cross section,
whilkamore exible treatm ent of the nalstate phase space is obviously desirable. T his
requires either applying e ective-theory m ethods to four-fem ion production am plitudes
rather than the forw ard-scattering am plitude, or the consideration of speci ¢ cuts such as
corresponding to invariants ass distributions that allow for a sam iHnclusive treatm ent.
Tnteresting developm ents in this direction have recently been reported for top-quark pair
production [48].
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A Coe cients of non-resonant contributions

Tn this appendix we list the explicit expressions of the ram aining coe cientsC if;h and K lf
in (37). The functions Cif,,h are known analytically, and contain all the s-dependence of
the cross section (except for the overall factor 1=s). T hey are determ ined by the photon
and Z propagators and electrow eak couplings. In the lin it of vanishing ferm ion m asses
the only helicity con gurations contributing to the cross section areh = LR ;RL. The
coe cients K | are s—=independent, and result from din ensionally reqularized cut loop

1
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Integrals. Typically the last integration is perform ed num erically, after the subtraction
of the singular term s w hich are integrated analytically, though som e analytic results can
be obtained. The results given below contain the contribution of the diagram s h4-h7
in Figure[§ ncluding their com plex conjugates, except for cut h6, where the com plex
conjugate isthediagram itself,and cuth7,where the sym m etric diagram isautom atically
taken into account by summ ing over the four avours.

Only the con guration e, e, contrbutes to the cut diagram h4:

ctct
£ 2 2 Qf e f
Crazr = Mygss —+—— ;
LR s s M7
K, =K, = 0266477; K, =K,,= 0:1903% ; (93)

3 2
whereQ¢ and C¢ = T %00 e the couplings of left-handed ferm ionsto  and Z . Q¢

Sw Cw
always denotes the charge of the particle (not the antijparticle) in units of the positron

charge. For the cut diagram h5 we have

2
£ 4 4 Qs CoCe G Q:C? o, Coct
Chsn = My s, 7 ot o 2 - 2o
S s(s My) sy,s(s M;y) s,(s M)
Kpo=K,.=0455244; K. =K, = 0:455244; (94)
where CJ% = CJ and CZ* = CJ = 2Q.. In this case both keft-handed and right-

handed incom ing fem ions contribute (h = LR ;RL), but only left-handed intemal
ferm jons. The coe cients ofh6 are

chct
£ 4 4 Qf e~ f
Ch6’h— 9MWSW — + ’
s s M7
K' =KZ = K,, = K, = 0:0804075; (95)

2
0:0: Q:clci  owcicr cieick
s s(s M2) s(s M2) (s M2y

K=K =K, =K, = 00213082; (96)
where Q¢;0Q¢ and C;;C¢ are the couplings to  and Z of the particles In the sam e
SU (2) doublt (ie. ; andu;d).
B H ard one-loop coe cients

W e give here the explicit analytic results for the hard one-loop coe cients appearing in
Section [4.]].
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B .1l Production vertices

Thegenerale ¢ ! W W * production operatorw e are concaemed w ith in thisappendix
reads

Op= 77 Co e mle SRS 97)
W

where C, = Cypj; is the hard matching coe cient and h = LR ;RL refers to the helicity

of the incom ing kptons (e e, ore, e ). Startingwith e e ! W W *, thematching

coe cient at tree Jevel isequalto 1,ascan beread o ([13). At NLO we have

Coprn =1+ Cl g +0 7 1+2—c§;L)R +0 (98)

4

w here CFSL)R is the coe cient in ([23). Before renom alization the NLO short-distance

coe cient reads

(1);bare 1 aM 2 8ct + 102 + 1 4M 2
PALR 2 2 + 82 <2 2
N 22 1)@4é + 162 1) M7 Co(OM 2 ; MZ;0,M2;M 2)
8¢, Sa
(22 1) M7 Co(0;4M 2 ;0;0;M 2;M 2)
26, si
(& + 17 16)MZ+M2)MZ Co( MZ ;M7 ;0;0;0;,M72)
a 2 g
N MZ+MZ2)MZ Co( MZ;MZ;0;0;M72;M72)
M s
(2c) + 32& + 32df  11¢  16) M7 Co( M7 ;M7 ;0;0;M 2;M 2 )
8¢ Sa
. 3(33 46¢)M2 CoMZ; MZ;0;0;0;,M7)
8st
N (4t 1)4é + 15¢ 28 1) MZ CoMZ; MZ;0;0;0;,M7)
16c st
1 22V (@ +1) (42 + 1)°M 2 Co (4M 2 ;0;0;0;0;M 2)
168 <2
25MV§ C0(4MV§ ;O;O;O;O;Mﬁ )+ Mﬁ ’(Mﬁ ;Mvﬁ ;le)
4s? a2 2

( 1688 2148 + 56c. + 32 3) ‘(MZ M2 ;M 2)
2422 (1 4¢)s?
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(1 2&)(@c + &+ 3)°

(47 M F M 7)

+
6c, s;
3(& + 1)h T4§+1 (1 22)(64c + 42 + 1)In 4;45
16 & " 24,

( 5128°+ 1536 6724 + 44ch + 3¢ 3)h
’ 18k (1 48)<
L 128¢° + 304c + 144 38¢ + 9& + 3)In2

24c8 <2
N 9% (10 25 )& 9% 6
24q; 5]
(128 648 + 4c + 23 + 5) i

48t 2

.
’

(99)

where all functions appearing in the above expression, C,(pf;p5;p5;m 2;m 5;m %) and
‘(M 2;M 2), are known analytically and are supplied in Appendix [B-3. The coun—
terterm s .n the G scham e are com puted from (44) and are given by

(1)ject

P/LR

4ct 226 1 42 Mi 3MIMZ+6Mg ) ‘MZ;MZM2)
8¢ 2 2 12M & &2
M2 5MZ) ‘(O;MZ;MZ) (8 + 27 5) “(0;MZ ;M 72)
12M 2 &2 12¢ <2
(42ct 11& 1) ‘M2 M2 M 2)
12ct s2
™M AMIMZ+12M 0 ) @By M2 ;M7 M2
24M 2 &2
(482 + 68c,  16¢  1)MZ @By M 2 ;M2 ;M 2)
24c; s?
4 20 2 4 M ]
(2M 4 MMy + My )In ME M;Il 3M§
24M 2 M 2 M7 )s? 12M 7 2 1eM 7 s
2 (o 4 4 Mg
Bmt(mt MW )]n 1 mwg 3mﬁ 3mé
M & s 8M 2 sz 4M ;s
2
(2d, 72§ + 26, 15¢  2)n 4t 228 1);n2
+
24ck st 4ct s
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2(35 61 )&+ ( 112+ 661 )¢+ (13+ 31 )G + 2
24ct &2 '

T he full renom alized coe cient is obtained by adding bare result and counterterm s

. (100)

1) _  _(1)jbare (1)jet,
Gar T Gar T Sar ¢ (101)

T he poles ofc;lﬂiR are given explicitly in (51l) and cancel once one takes into account soft
and initialstate collinear radiation.

Tuming to thee, e ! W W © case, thematching coe cient C 5 vanishes at tree
Jevel, as can be seen from (13). The NLO correction is therefore nite. W e have

Cpor = Cpp, 0 7 = 2—c§;L +0 7 (102)
wherecggL is the coe cient n ([23). W e nd
C(l) _ 455v Mﬁ Co (O;Mvﬁ ; Mv? ;O;Mzz;Mﬁ ) 2SV2v Mﬁ Co (O;4MV§ ;O;O;MZZ;MZZ)
bR L 2 (232 1) d 2 1)
(24t + 20 5)g ‘MZ2;M2M2) 2@+ E+3)s (A2 MM 2
32 (22 1)(4é 1) 3& (22 1)
64ct + 42 + 1)2 In 4;“ 1 (645 484 242 + 5)s2 I fj
+ +
12 3¢ (22 1)@ 1)
165> n 2 32cf + 4 + 1) ]

B .2 Virtual corrections to W decay

Thedecay ofaW boson is in plem ented in the e ective theory analogous to the produc—
tion [9]. T here are decay operators w ith collinear elds describing the decay products of
the non+elativistic vector boson. For the avour-speci ¢ decays under consideration we
have up to NLO

Yew i i i i
Oq= EP;— Canp ~ @i wat Can Uz dep (104)
W
T hese operators would be needed for the calculation of thee e ! ud scattering

am plitude in the e ective theory. However, for the total cross section (or the forward
scattering am plitude) the directions &, ¢ of the decay products w ill be integrated over
and, as Indicated In (4), there is no need to introduce collinear €ds 1, s U
and d., 1 In the e ective theory. The m atching coe cients of the decay operators enter
only indirectly through . The virtual correction to the W decay w idth is related to
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the coe cient functions of the decay operators. Ignoring Q CD corrections, at NLO we
have

Cap=1+Cyl+0 2 1+2—cc‘11;1)+o 2

(1) 2 (1) 2
Cygn=1+C.,. +0 1+—c;, +0 : 105
dh dh 2 dh ( )

W e give here the explicit results for the electroweak corrections. The unrenom alized
one-loop correction to the leptonic decay vertex reads

(1)ibare 1 M2 8cl + 22 +1 M2
Qa T 92 2 + 82 &2 2
. (& + 1Y 2F 1) MZ Co M2 ;0;0;0;0;M 2)
4c; s,
. (G +2)MZ CoM g ;0;0;M2 ;M 250)
Sh
4 24 + 1) L
@2 +1) ‘M2 M2 M7 o 26+ 1
2s? 4ct <2
24+ ) + (%2 18i) 31 ¢+ 61 + 6
c — @ ¢ : 106)
and the corresponding counterterm s com puted from (44) are
1);ct M7
et _ Sar  2G+1 Mg o 2, + 1
Ca = > > + — - (107)
g 2 16c2 2 16c2 s2 32¢2 s?
Sin ilarly the NLO bare correction to the hadronic vertex is given by
pae 1 M | 2 M
Gn T 92 2 g2 2
(1+ 2&2)(1+ 32¢) M7 1 M2
+ + —
7282 2 2 3 2
N (82 + 18t + 11c. 1) MZ Co M 2 ;0;0;0;0;,M 2)
36¢8 s2
N (G +2)M7 CoM 7 ;0;0;M2 ;M 7250)
si
6 4 M7
+
2s? 36ct 52
1202 + (48 133 )& 6 (24 + 22 + 2)i
, 120G + ( § 7)o, 6 (24 + 22, + g L
216t 52 72ck 2
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and the corresponding countertem s are

(1);ct

JWier _ AR 16c, 50¢ + 7 Mg
an 2 1443 2 2

Mg
(16c; 326+ I g q6d 508+ 7

109
14432 2 2882 &7 (102

B .3 Integrals and auxiliary functions

T he results for the shortdistance coe cients and their countertermm s have been w ritten
such that all poles In  are apparent and the rem aining functions are nite. W e give
here their analytic expressions. A s usual the scalar two—and threepoint functions are
de ned by

Z
B (k2' 2. 2) [dl] . [dl] (eE Z)ddl. (110)
0 rmllmz (12 m%)((l+ k)2 m%) ’ id:2 7
and
g [d1]
Cok%;k%;(ky + ko)’ sm 2;m 2;m 2 :
ofkiikgill® ke liimimzims) (2 m2)((L+ k)2 m2)((L+ ky + k)2 md)
(111)
@B, (k?;m 2;m 2) is then de ned as
@B ;m 2 ;m 2
@B (k”;m7;m3) o (g im i im ) (112)

@qz q2=k2 :
T he auxiliary function ‘(k?;m ?;m %) used in the expressions for them atching coe cients
is related to the two-point function by

2
m 7

1
Bo(k*’mimi)=~- — +2 ‘Kmim3) (113)
and satis es “(k*;m?;m?2) = ‘k*m2;m?)+ mm2=m?). Tt is su cint to give this
1 2 2 1 2 1
function for the follow Ing special argum ents:
M 2 M 2
OMEMZ)= 1+ Z nh —% ;
Mg Mg M7
M2 MZ 2 MZ
I(MZZ;M‘I?;Mﬁ)Z Z ZZW :II] 1+ ZW 2 Z
2MZ w
2 2 2 2
MZ+MZW]n . MZ, +M7
oM 2 oM 2 !
Z w
2M2 M2+M2 M2 2
I(MV?,MZZ;MV?): W 22 Z W ]n Z 2ZW
2M 2M
oM 2 M2 M2 MZ2+MZ2
+ W 2M22 ZW ]n ZZM 2ZW ; (114)



P
where we Introduced M 2, M} 4MZM 2 . The explicit result for the derivative of
the two-point function that is needed reads

@BoM ;M5 ;M J)= (115)
12 1+MV§ 2MZ2 M§ +MZ2(31\2V§2 M§>h MZ M7,
M 2 oM 2 M 2 MZM 2, My M,

T he analytic expressions of the nite threepoint functions appearing in the results given
in (99){ (109) can allbe obtained from

Co(O;My ; Mg ;0M7 M7 )= (116)
(
2L 1 " 4+ 2L% i z Li z
2 2 2 2 4
4MW MZ W MZ MZW
)
2Li R 2Li ———T —
MZW MZW 3
2 2 2\ _
Co(0;4M 7 ;0;0;M ;M ;)= (117)
(
1 4 M 2 M 4
- n® — + In® W;Z + 2L% —
8M 2 : M F
)
aM 2 2 aM 2 M 2
+ 2L w2 Z + 2L w2 z 4 2 ;
My o My
Co( My My ;0;0M7;M 7 )= (118)
(
1 M 2 M 2
2 ng 2 - 2 Lé‘ 2 . 2
2N[W M +2MZ MW + 2MZ
2 2
+ Lj2 2 ‘g 2 L;Li‘ 2 2] 2
MW MZ MZW MW MZ MZW
)
M2 MZ 2
+ Lj z L - + —
* M2 M2+ M2, > M2 M2+M2, a
2 .0.0M 2 M 2.0 —
CO(MW IOIOIMW IMZIO)_ (119)
( )
1 2M 2 MZ+M7? 2
> L:|2 > W > +L:|2 Z 2ZW - ;
MW MZ+MZW 2‘]'\/‘[Z 6
2 2 N . 2N
CO(MW ’ Mw IOIOIOIMZ)_ (120)
( !
1 2M 2M , M 2
3 In —+ 1 In —+ 1 21 Li 5
am M M ; (@M 7 + M 7)
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+ 2L 1 - + 2Lk = z 2Li ——
M 7 Mg + M Mg+ M
)
- M 7 2 2
+ - .
M7 aM 2 3 7
CoM 70;0;0;0;M ;)= (121)
( )
1 1 MZ +MZ2 M2 +M2 M 2 2
: Z 2 W . z i W . 4 + Li . z . —
M M ; M . M2+ M/ 6
: P 2 2
where we ntroduced M 4 My M M;.
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