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A bstract

W e study scattering of the electrow eak gauge bosons in 5D warped m odels. W ithin
two di erent m odels we determ ine the precise m anner in which the H iggs boson and
the vector resonances ensure the unitarity of longitudinalvector boson scattering. W e
dentify three separate scales that determ ine the dynam ics of the scattering process
In all cases. For a quite general background geom etry of 5D , these scales can be
Iinked to a sin ple functional of the warp factor. The m odels an oothly interpolate
between a “com posite’ H iggs 1in it and a H iggsless lin it. By holographic argum ents,
thesem odels provide an e ective description of vector boson scattering in 4D m odels
w ith a strongly coupled electrow eak breaking sector.
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1 Introduction

Them echanian of electroweak sym m etry breaking is still unknown. W ithin the SM , elec-
troweak symm etry is broken by the condensation of a weakly coupled elem entary scalar

eld,theH iggs eld. This sin plem echanian is consistent w ith electrow eak precision m ea—
surem ents if them ass of the H ggs boson isw ithin the range 100 200 G €V . H ow ever any
such fundam ental scalar that ismuch lighter than the SM cuto isunnatural as there is
no symm etry protecting itsm ass.

T here are two prim ary approaches to solving this hierarchy problem of the SM . The

rst, supersym m etry, provides a rationale for elem entary scalars and protects the H iggs
boson m asses from large quantum corrections. T he sin plest in plem entation —the M SSM
— ensures perturbative physics up to the Planck scale and provides several interesting
predictions at the TeV scale. Unfortunately it is not free from som e residual tuning of
param eters once experim ental constraints are in posad.

A radically di erent idea is that a new , strongly interacting, sector provides a T&V
scale cuto to the SM . One can envisage H iggsless electroweak symm etry breaking that
is generated In a manner sin ilar to the chiral symm etry breaking in QCD . The ongi-
tudinal com ponents of the W and 7 bosons are provided by three G odstone bosons of
the strongly interacting sector. H owever breaking electroweak symm etry with a strongly
Interacting sector does not necessarily lead to a H iggsless theory. It is also possible to
construct m odels in which the full H iggs doublet em erges as a com posite particle. An
Interesting subset of such m odels are those in which the com posite H iggs doublet arises as
a pseudo-G oldstone boson of som e spontaneously broken approxin ate global sym m etry of
the strongly interacting theory.

Strongly interacting theordes are notoriously di cult to handle in four din ensions. It
has been suggested (1], however, that they m ay have a ‘holographic dual’ description in
term s of a 5D gauge theory in a warped background [2]. M odelling strong interactions by
5D theories has becom e a useful tool, allow iIng for quantitative studies of both QCD 3]
and electroweak sym m etry breaking 4,5].

It is well known [@], and has been recently em phasised in [/, 18] that scattering of
Iongitudinally polarized W and Z bosons m ay be usad as a probe of the dynam ics that
breaks electroweak symm etry. Therefore in this paper we use the calculation of the W
and Z boson scattering am plitudes to analyse and com pare di erent 5D descriptions of the
electrow eak symm etry breaking sector.

It is interesting to system atize the phenom enology of this holographic approach. In
this paper we extract the comm on features that show up in In gauge boson scattering that
are independent of such details of the m odel buiding as the symm etries of the strongly
Interacting sector or the warp factor describing the 5D geom etry. T he recurring feature is
the appearance of three distinct physical scales:

v: the electrow eak breaking scale that sets them assof W and 7.

f: the scale that sets the com positeness scale of the H iggs, referred to as the H iggs
decay constant.



Mk : the resonance scale that sets them ass of the rst resonance .

How these scales em erge from the 5D dual is a m odel dependent question. However, we
show that the ssparation between these scales does not depend on the negrained details
of them odel. M ore precisely one can de ne a sim ple functional, which we call the volum e
factor, that depends on the size and the geom etry of the 5th din ension. T he volum e factor

xes the ratio £;,=M xx and, in the H iggsless case, also v=M ¢k . The sam e volum e factor
also xes =M kg where isthe strong coupling scale at which the 5D e ective description
breaksdown.

W e discuss in som e detail how the aforem entioned scales show up in the gauge boson
scattering am plitudes. In the Standard M odel the exchange of a H iggs boson cancels the
divergent behaviour of the four point gauge boson vertex. T his cancellation is not m ain—
tained In m ore com plex m odels of electroweak symm etry breaking. A s can be expected,
the violation of unitarity is associated w ith the scale f;, that controls departures of the
H iggs couplings from the Standard M odel, while the filll restoration of unitarity is post—
poned until the resonance scale M xx . W e present quantitative results for the scattering
am plitudes in two di erent 5D m odels. O ne is them odel or ref. [9]describing a com posite
H iggs em erging from a strong sector w ith the SO (4) custodial symm etry. T he other is the
m odel of ref. [5]describing a pseudo-G odstone H iggs from breaking SO (5) ! SO (4) by
strong interactions.

W e also consider the H iggsless 1im it of the 5D m odels. T his is the lin it where the H iggs
boson decouples from the electrow eak bosons and plays no role in restoring unitarity, even
though itm ay rem ain in the physical spectrum . In this case the electrow eak scale v becom es
Intim ately tied to the geom etry of the 5th din ension and equals f;, . The H ggsless 1im it
tums out to be particularly insensitive to the details of 5D m odelling.

T he paper is structured as follow s. In section|d we review the unitarisation of the gauge
boson scattering am plitudes in the SM . W e em ploy the equivalence theorem that allow sus
to calculate the scattering in tem s of scattering of the G oldstone bosons eaten by W and
Z . This serves to highlight the role of the H iggs boson in the unitarisation and to x our
notation for the rest of the paper. In section [3 we discuss in general term s the m anner in
which strongly coupled electroweak sectors a ect the longitudinal vector boson scattering.
In section [4 we tum to m odelling a strongly interacting electrow eak breaking sector using
a 5D holographic dual. W e investigate the 5D m odel proposad in [9]w ith the H iggs sector
Jocalized on the IR brane and custodial symm etry In thebulk. W e calculate the couplings
of the G oldstone bosons to the physical H iggs and to the resonances, and em ploy useful
approxin ations that reveal a sin ple pattem in these couplings. In section [H, we repeat
this program fora 5D m odel of the pseudo-G oMdstone H iggs [H]. ITn section [@ we collect the
results of our quantitative studies and use them to calculate the precise form of the W 7
scattering am plitude. W e present our conclusions in section [1. T hree appendices contain
m ore technical details of our com putations.



2 G auge boson scattering in the Standard M odel

Firstwe review the unitarisation of longitudinalgauge boson scattering in the SM .Herewe
use the equivalence theorem (ET ) to calculate the scattering am plitudes via the G odstone
bosons [10]. This serves to x our notation, and to highlight the rol of the H iggs boson
n unitarising the am plitudes.

T he Lagrangian for the H ggs doublet is:

L=RHF V®HTEH) 21)

W e param eterise the H ggs elds non-linearly:

1
H = p—z(v+ h)U ; (22)

w here U=-¢e = s — + i sn — ; G%?=G.G.

where h is the physical H iggs boson, v is the H iggs vev and G, are the three G oldstone
bosons. Inserting this into our Lagrangian (2.1]) we get:
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From thiswe acquire canonically nom alized kinetic term s and the interaction tem s of
the G odstone bosons and the H iggs boson that we nead to calculate the scattering. The
relevant term s are:

1 2 2
Lgs = — (G.@G,) (@GL) GGy (24)
6v2
h 2
Lg2n = — (@ Gy,) (2.5)
v

To com plete the picture we introduce the SU (2);, U (1y gauge elds. TheW bos%n_s
acquire longitudinal polarizations by eating the Goldstonemodes G = (G Gy)= 2
while the Z boson eats G ;. M oreover, there appear threepoint vertices involring gauge

bosons:

L= iGRG"T G @G )gA + g2 )
1GL@ G G @Gy gyW "~
iGs@GT G'QRG; gy W (2.6)

whereg = e; g, = (6 ¢ )=2p 9% +9,% = g=2and g, gy are the SM gauge
couplings.

T he H iggs boson plays a crucial role in unitarising scattering processes in which the
nitial and nal state particles are W or Z . Using the ET we can calculate the leading



order contribution to the relevant scattering processes using the follow ing am plitudes for
G odstone boson scattering. Here we take the processW 2, ! W Z; asan exam ple:

M t t t
G*G3l Gg*tG3 T 5 >
vZ vt m?

g + (2.7)

u m

Via the ET, this am plitude corresponds to the am plitude forW [ Z; ! W,  Z;, up to
temrm sO (my =K ). The st term grow s quadratically w ith energy. T his leads to unitarity
violation at high energies, unless it is cancelled by the term from H iggs boson exchange
that follow s. T herefore the presence of a su ciently lIight H iggs boson restores unitarity
In the theory. The last tetrm from the W boson exchange is irrelevant to the discussion of
quadratic divergences as it contributes no grow ing term , but we have included it for later
convenience.

3 Param eterising strongly coupled electrow eak sec-—
tors

W enow go on to exam ine the question of the unitarity of gauge boson scattering in theordies
w ith an extended electrow eak sector. In the SM unitarisation of the gauge boson scattering
am plitude relies on the cancellation between the quartic G oldstone vertex and the H iggs
exchange diagram s. T his requires a precise correlation betweaen the quartic G oldstone self-
coupling and the H iggs-G oldstone coupling. In the follow ing we w ill discuss 5D m odels of
electrow eak symm etry breaking and investigate how they a ect this correlation.

Since 5D warped physics provides a holographic description of strongly coupled theories,
w e expect that deviations from the SM scattering am plitudesw ill depend directly upon the
com positeness scale of the H iggs boson, which we denote as f;, . T he com posite structure
should reveal itself In m odi cations of H ggs-G oldstone couplings by term s of order l=f§ .
W e thus expect the couplings to have the formm :

h a2
Lgen = gh;(@ G*7) (3.1)

whereg, = 1 O (¥=f?). Forg, < 1 the Higgs boson on its own cannot unitarise the
scattering of the gauge bosons:

M — — (32)
+ @31 +c3

G*G3!1 G*G > P }21

Above the scale of the Higgsmasswe obtain M g+g31 g+ g3 t——f. T he am plitude con-

tinues grow Ing up to M xx where som e other physics (eg. vector resonances) m ust restore
unitarity. T he H iggless case corresoonds to g, = 0.

A s recently discussed [7], this kind of behaviour is expected on purely low energy
grounds if the H iggs doublet arises as a pseudo-G oldstone boson. Consider the case of



SO (5) broken to SO (4) where we dentify the rem aining SO (4) with the approxim ate
SU (2%, SU (2} custodialsymm etry of the SM . T he four G oldstone bosons are denti ed
w ith the H ggs doublet. T he Lagrangian at lowest order is:

(1=2)@e Ute U (33)

w ith U param eterising the G oldstone bosons:
|

p
i 2H,T. O

U=fiexp —— 22 (3.4)
" £, 1

Here T, are the four broken generators of SO (5) and H , are the four G odstone bosons of
the broken sym m etry that we dentify with the H iggs elds. Finally, f;, is the scale of the
global sym m etry breaking. The H ggs el getsa vev HH 41 = v. T he electrow eak breaking
scale is related to s vev by v = f}, sin(v=f}, ).

To calculate scattering am plitudes we neaed to extract the three point couplings of two
G oMdstone bosons to the H iggs boson. Param eterising the Higgs eld as in 3. (2.2) and
expanding the lowest order Lagrangian we nd the relevant H iggs-G oldstone couplings:

v h 5
Lgep, = s — — (@ Gy) (35)
f, v

Thus g, = cos(v=fy ). The ourpoint couplings rem ain unchanged from (2.4). There-
fore, above the H ggsboson m asstheW Z am plitndegrowsas (1 cos(v=f, ))t=v* = t=f7.
T his is the sim plest setup In which the non-unitary behaviour is encountered, irrespectively
w hether the high-energy UV com pletion that restores unitarity is perturbative or strongly
coupled.

In the follow Ing sections we shall study 5D warped m odels from the point of view of
gauge boson scattering. W e will nd sim ilar qualitative behaviour, even when the H iggs
is not a pseudo-G odstone boson. W e will also study in detail how the vector resonances
restore unitarity of the scattering am plitudes.

4 H olographic com posite H iggs

W e rstconsidera 5D theory with thegaugesymmetry SU (3). SU(2) SU (2 U (1
and the Higgs el on the IR brane, which was proposed in ref. [9]. The lin it where
the brane H iggs vev goes to in nity corresponds to the H iggsless theory of ref. [11].
T he rationale behind extending the SM U (1)y to SU 2)x U (1) is to avoid excessive
contributions to the T param eter [9,12].
The 5th dim ension is warped w ith a gravitational background described by the line
elam ent:
ds® = a’(xs) dx dx  d¥ (41)

where a(xs) isa warp factor nom alized such thata(0)= 1. The 5th dim ension is bounded
by two branes, an IR brane at xs = L and a UV brane at xs = 0. The cholce a(xs) = 1



corresponds to  at space, whereas a(xs) = e 5 corresponds to AdSs. W e do not specify
the warp factor in what follow s other than to require that it generate a su cient hierarchy
between the UV and the IR brane: a(L) a, 1. M oreover, we w ill assum e that the
size L of the extra din ension Js]argemthesenseLw 1. This is typically the case in
backgrounds that solre the hierarchy problem such as AdSs. The signi cance of this last
assum ption w ill becom e clear in the follow ing.

W e allow the gauge bosons to propagate in the buk, while the H iggs sector is con ned
to the IR brane. On the UV brane we explicitly break the gauge symm etry down to the
SM gauge group.

This sstup can be Interpreted as an e ective description of a 4D theory w ith finda-
mental SM gauge bosons and a strongly coupled electroweak symm etry breaking sector
with a glokalSU (3). SU (2) SU (2% U (1lyx symmetry. The IR brane H iggs boson
is Interpreted as a com posite of the strongly interacting sector.

The 5D action for the electrow eak sector is:

z Z .
4 P_ 1 1 1
S = d'x ; dxs g ETr(LMNLMN) ETr(RMNRMN) ZXMNXMN

_ 1
v d'xdxst G (L) S F V() (42)

where Ly y and Ry y are the SU (2), g gauge elds respectively, Xy y are the U (1)
gauge edsand arethe scalar elds that we dentify with the Higgs. T k%?iijm etbsjﬁ)nﬁll
co%p]_jngs of SU (3). SU (2), SU (2% U (1lyx willbe denoted as g, L,g L and
a9 L.

The Higgs eld acquiresa vev hi= a 'vI, , that spontaneously breaks SU (2);
SU@2) ! SU(2) on the R brane. W e separate out the physical H iggs boson from the
G odstone bosons by param eterising the H iggs boson non-linearly:

= a, ' (v+h)y ' '
jGa a G .Ga a . G

withU = exp = s — + i sin — (4.3)
v v G ¥

where G? = G',G, and h is the physical H ggs boson. From the covariant derivative of the
Higgs eld we get the quadratic term s:

" p_ #2
(L)(@ h)? (4.4)
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T hese termm s provide a kinetic term for the H iggs boson and the G oldstone bosons as well
as a branem ass term for the gauge bosons. They also introduce the m ixing between the
G oMdstone bosons and the gauge bosons.



4.1 M ass eigenstates

T he dynam ics of the m odel can be neatly studied in the m ass eigenstate form alisn intro-
duced In [13,[12]. W e expand the 5D elds in the m ass elgenstate basis:

L% (xixs5) = A 5 (x)f] (xs5) L3 (x;xs5)= G, (X))} (Xs5)
R*(x;%5)= A 5 (xS, (x5) RS (x;%x5)= G (xS, (x5)
X ®ixs)= A 5 X))k 5 (xs) Xs5(®ixs)= Gpn () p (xs5)
Gh(x)= Gn(x) (4.5)

where the index n runs over allm ass elgenstates in the theory. The pro les f, (x5) will
be chosen such that the gauge bosons are indeed m ass eigenstates. T he G odstone pro les
fn (x5) will be chosen such that G, becom es the G oldstone boson corresponding to the
m assive eigenstate A , . In other words, the goal is to rew rite the quadratic part of the
5D action asa 4D action that isdiagonalin n:

1 1
Ss= d'x 2 @A @A,.n)2+§(@Gn m,A ) + interactions: (4.6)

n

In this way, there is no treedevel m ixing between the Iight m odes and the heavy KK
m odes, even In the presence of electroweak symm etry breaking on the brane. This is
di erent from the m ore comm on approach, where the KK expansion is perform ed In the
absence of electrow eak symm etry breaking, and the electroweak symm etry breaking leads
to m xing of zero m odes w ith KK m odes.

W e also retain the G oldstone degrees of freedom . The G oldstones, G, allow us to
m aintain explicit gauge nvariance n the presence of the mass tem for the vector A ,, .
K esping G odstones is convenient as, via the equivalence theorem , scattering of longitudi-
nally polarized vector bosons A ,, is equivalent to scattering ofG .

In order to end up w ith the diagonalaction (4.8) the pro Jes £, (xs) m ust satisfy:

1. The equation ofm otdon
@5 (@°@s)+ m?2 f(xs5)= 0 (4.7)

2. T he orthonomm ality condition

z L
fn (y)fm (y): nm (4-8)
0
3. The UV boundary conditions:
@£, (0) = 0 a=1;2;3
f2,(0) = 0 i=1;2
9
5@, (0)+ GBsTx n(0) = 0 5= p=—n=
% + %k
9
Gfi 0+ 8fxn(0) = 0 o= p=—nw= (49)
% + %k



which bresk SU (2) U (1} down to U (1); [

4. The IR boundary conditions

@sfx n (L) = O
gR@5f]fl;n(L)+ gL@Sf}?;n(L) = 0
g @sf, (L) @@, (L) = %(gf+g§ Ja, LV (£, (L) @5, (L))
Py
n T o gafl, @) gfiz (L) (4.10)

n
Finally, the G odstone pro les are determ ined by the gauge pro les,

f,(xs) = m_ '@f,(xs), orm, 6 0
f, = 0,Prm,=0 (411)

To calculate the explicit form of the pro ls f,, we solve the equation of m otion such
that it satis es the conditions (2)—(4). Tnstead of solving it in a speci ¢ background it
is m ore convenient to proceed in a background independent fashion. The equation of
m otion is second order so it has two independent solutions that correspond to warped
trigonom etric functions C (xs;m , ) and S (X5;m , ) W e have freedom to choose them such
that they satisfy C (O;m,) = 1, 8% 0;m,) = m,,C%0;m,) = S(O;m,)= 0. Then the
pro les can be succinctly written:

flaxs) = [,C(xs;my)

fin(Xs) =  §,S(Xsimy)

foo(%5) =  wasC (XsiMy)  ppGeS(Xsimy)

fxn®xs) = waGC(Xsimp)+ ppseSXsimy) (412)

In this way, the pro les satisfy the UV boundary conditions (4.9). Inserting these
expressions into the IR boundary conditions (4.10) we obtain relations between the nor—
m alization constants ,. W e also obtain the quantization condition that factorizes as
Fyy m )F m )Fz; (m )= 0. Thisgives rise to three separate classes of solutions that we refer
toastheW , and Z towers (because the lightest solution w illbe denti ed with theW ,
the photon and the 7, respectively). T he quantization conditions for these three towers

IThe linear combination B = s,R°> + X survives on the UV brane and its zero m ode is denti ed
w ith the hypercharge gauge boson. B couples to m atter w ith the coupling gv = gx gr = gfi + g§ and
the hypercharge depends on the SU (2)r U (1x quantum numbersvia Y = té + X .

2T he properties of warped sines S and cosines C are discussed at m ore length i . n
the at gpace they are the wellknown trigonom etric functions, while In AdSs they can be expressed as
com binations of Besseland N eum ann fiinctions, see eg. (&_8)).



0 = S%Ljmy)CMLmy )
2 2
a;, Lv 200/ . . 2 . 01, »
+ 1 g S (Lmyn)C Lmya)t GSELmy n)C (Lmy n) (413)
= c'Lim ,) (4.14)

= SO(L;mz;n)CO(L;mZ;n)
27 2
a. “Lv
+ LT g SUL Mz 2)C (Limy )+ S (Limyo)C L my n) + My nay °gf

(4.15)

W e give the exact pro les in [A ppendix B|. In the m ain body of the paper we restrict
ourselves to approxin ate expressions that are su cient for our purposes.

4.2 Scales

From the quantization conditions (4.13)—{4.19) we can extract the m ass spectrum . The
m odel contains a tower of resonances starting at  Mgx wh

Myx = Rg———  d(L) (4.16)

o @ )

T here are two exceptions. Firstly, as U (1), Is unbroken, there is always a m assless
vector boson —the photon. Secondly, there can be further statesw ith m asses param etrically
below M xx that are denti ed with theW and Z bosons. In eg. (A_3) we calculate their
m asses by expanding the warped trigonom etric finctions in eq. (4.13), (4.19) at snallm .

From these general results, we now consider two explicit lim iting cases. F irst consider
the lm it wherev M xx . In this case the quantization conditions (4.13) and (4.19) are
dom inated by the second term . In such a lin it we obtain

2f2 2+ 2 f2
mvzq gL h m; (g]_, gy)h (4.17)
4 4
where the scale f;,, called the H iggs decay constant, is xed by the geom etry of the 5th
din ension: A
f}f = R (418)
2 2y b2
Lig+ %) ,a ()
Thus in this Iim it v f, and, aswe will see Iater, g, = 0. Therefore the H iggs plays no
role In unitarising the gauge boson scattering, though it rem ains in the spectrum 11 W e
refer to this Iim it as the H iggsless lim it.

3 The scaleM gk gives the param etric dependence of the m ass of the lightest vector resonances. In 5D
M inkow skithe rstKK photon m ass is exactly equaltoM g ,while In AdSs it is approxin ately 0:8M k¢ .

4 G enerically, in this lim it we expect the H iggs boson to be heavy, m v, but if its selfcoupling is
very weak itmay rem ain light.



Ifwe take g, G ,we get:

am 2, . La’(L)
2y ar,

o £ (4.19)

W e have Introduced the geom etric factor V that we call the volum e factor. In the
H iggsless lm it we need the volum e factor to be large, otherw ise there is no separation
between v and M xx . Such a case is ruled out by searches for Iight resonances. Tn at
gpace we get V = 1. In contrast, w ithin the Randall-Sundrum AdSs sstup it isV = kL
ogM p=M kk ) 30. Asdiscussed In [12], we expect V to be large if the 5D setup is to
sokve the hierarchy problem .

T he volum e factor could be m ade arbitrarily large by an educated choice of the 5D
geom etry. N ote however that consistency argum ents set an upper bound,V < 16 . O th-
erw ise, the resonance scale would be pushed above 1 TeV and the gauge boson scattering
would get strong before the vector resonances set in to restore unitarity.

Now consider the opposite 1im it In which v MKKE In thiscase g, 1 and the H iggs
boson is SM -lke. W e refer to this lim it as the H iggs 1im it. O nce again, this allow s us
to obtain the desired scale separation v Mgk . For v=M ¢ 1 the electroweak gauge
boson m asses are approxin ately given by

2 q.v 2 gfvz
W 4 P Ao

(4.20)

T hus, the electroweak scale in the Higgs Iim it issinply v . M ore precisely, the relation
between the two scales is of the form V2 ¥ 1 ¥ . The sak f, that appears in

f2

this relation is the one de ned by eq. (4.I19). AJthouglil in the Higgs lin it f, enters 1 a
rather intricate way, it w ill tum out to play an In portant role in describing theW and Z
scattering.

Sum m arizing, the follow ing three scales have em erged: the electroweak scale v, the
H iggs decay constant f;, and the resonance scale M xx . T he separation between f,, and
M gk Is set by a geom etric quantity we call the volum e factor. In the Higgs lim it the
electrow eak scale can be ad justed to be an aller than f;,, whilke in the H iggsless 1im it v and

f;, coincide.

4.3 G oldstone bosons

T he in portant input for calculating gauge boson scattering am plitudes are the pro les of
the G oldstone bosons G* , G and G° that are eaten by the physicalW *, W and Z

bosons respectively. In general, they are linear com binations of s, Rs, X 5 and G'. The
exact pro les are given in eq. (B.14). To leading order in m y =M ¢ , these pro les can be

SThe condition v M gk isa postulate,but in generalthis input is a consequence of som e unspeci ed
dynam ics that gives rises to the boundary H iggs potential. W e take v=M ¢ x as a free param eter and set it
to be an allbut getting to generate v=M xx < 1=4 would typically require ne-tuning.

10



concisely describbed in a background independent way. W ith the help of eq. (3 _9) we nd

1

fLi;N ?fmw Xsa °(Xs)
i 1 g
fa pfg—me La 2(xs)
L
. v
it — (4.21)
v
3 1 2
fL;Z ?fmw X5a (X5)
3 1l & 2
R 2 p?g— Sy X5 + qz(L my a “(Xs)
L
tan y 5
fx z g—pi— (xs L)my a “(xs)
3 A\
£ - (4.22)
v

In theHiggs lin it, v v and the G odstones reside m ostly on the brane. In the H iggsless
Im it, ¥ v and the G odstones live m ostly In the bulk, though for warped m etrics they
are still sharply Jocalized at the IR brane due to thea ?(xs) pro le.

W ith this inform ation, we can read o the quartic selfcouplings of the G odstones and
the H iggsG odstone couplings. W e nd

o o
Lese = B @GAYe P+ (@ GG 423
: 5 (@G (@ ) (4.23)
Lo = 2h@c?y (4.24)
v

where g, = v’=v°. Thus, g, 0 in the Higgsless lim it, while g 1 in the Higgs lim it, as
Indicated before.

4.4 Couplings of resonances

To calculate the total gauge boson scattering am plitude we need to calculate the coupling
of the G oldstone bosons to the resonances. T he G odstones interact w ith the charged and
neutral resonances via the triple vertices:

Le2a =  1QRG'G GG G ) nA n
+ i@G G° @G°G )gaW ', + hr: (4.25)

where N stands for neutralbosons ;2 and C stands for the charged W . T he resonance
couplings g, can be found by inserting the G oldstone and resonance pro les into the inter—
action term s In the 5D action. In order to som ew hat sin plify the resulting expressions we
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set g, = gz . Furthem ore, the G oldstone pro les are localized toward the IR brane. T his
results in the factor a 2(y) show ing up in the integrals. T herefore the integrals are dom i~
nated by the IR region and it is a good approxin ation to replacey L In the integrands.
T his allow s us to approxin ate the resonance couplings as

Z L
9 m gm; L7 a’y) £,y)+ £, )
0
1P— v .
+ Lo (7, @)+ £, L) (4.26)
2 A4
Z L
G m gmy L°7  a’(y) £ @)+ ., )
0
1P— v .
T3 LgL@(fLm(LH fa@) (427)

The rst term within the integral dom inates the H iggsless 1im it, v v, when the G old-

stones live in the bulk. T he second term dom inates the H iggs 1in it, when the G oldstones

Iive on the brane. For n corresponding to the electroweak gauge bosons we recover the
2

2
Standard M odel couplings gy : Gy %L r Iz zﬁ% ;9 = e. Forn corresponding the
9; + 9y
heavy resonances the results are collected in eg. (B.19).

In order to estin ate the resonance couplings we can emn ploy the approxin ation (&_4) to
the pro les of resonances. T he sin ple pattem that em erges is that all resonance couplings,
g, , are param etrically enhanced w ith respect to the SM ones by a comm on factor:

P_
9n Vo (4.28)
where V is the volum e factor de ned 1n eg. (4.19) and g, is the SM coupling relevant for
the given tower: gy ,gz org .ShceV  MZ,=f?,weget fg, Mgxgo.Forg, 1 this
coincides w ith the relation advertised in eg. (1) of ref. [7].

To m ake the discussion m ore quantitative, consider rst the couplings of the charged
resonances in the H iggs lm it. In this case the quantization condition for the W tower
(413) reduces to C %L ;m n )SOL ;m g n) 0. Thus, them ass elgenstates in the W tower
split into Neum ann-Neum ann (NN ) and D irichletN eum ann (DN ) m odes (B_10):

C (X5;mw;n)

NN) : £ R —  C’Limyn)=0 (429)
o Cyimy )F
) S ;
DN): £ = G5 M ) = SULmy »)= 0 (4 .30)

OL [S (Y/'mw ;n)F

For warped m etrics, the UV boundary conditions are not relevant for the behaviour of
the resonance pro les n IR (they only a ect the Iight m odes that are delocalized). M ore
precisely, we have the relations

C(@L;m) mLS(L;m) AL ;m) mLSL;m) (431)
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that hod form Mgk . In consequence, the NN and the DN m odes have approxin ately
the sam e m asses and, from 3. (4.27), couple w ith approxin ately the sam e strength to
the electrow eak G oldstone bosons. T hus, at the scale of the rst resonance the G oldstone
bosons couple to tw o aln ost degenerate charged vector states. M oreover, using them ethods
of [14], one can prove som e rem arkable sum rules. A Pro ]eRsatjsfyjng the DN boundary

conditions has the integral representation f, (y)= m2 Ya 2 yLo £, (y9). Thus

0

X fn (L )2 X Z L 5 Z L © z L 5
;= L) a Ly = a (4.32)
n m n 0 y° 0
P
where we have used the com pleteness relation | £, X)f, (y) = (x y). For NN m odes

we get approxin ately the sam e sum rule, once the contribution of the SM W boson is
om itted in the sum . U sing these results we easily obtain

X gv%r m 1

— (4.33)
2 2
1’1>OInW"‘n fh
This sum rule is typically dom inated by the rst two term s, so we nd
2
m
2 W1
G G 2 (434)

This is in accord w ith the param etric estin ate (428).
The H iggsless lim it, although qualitatively sim ilar, di ers in several details. The W
tower splits now Into the vector and axialm odes:

i C(XS;mW;n) i ; 0
£ R — £, £, CcLimyn)=0

2 JC(ymun)?

C (XsiMy n)
RL 1=2
2 yC(ymun)?

i
fa

f2 n £, S@Limuyp)=0 (4 35)

From eg. (427), only the vector m odes couplk to the electroweak G oHdstones. The sum
rule now becom es

X 2
9 1
— = 37 (4.36)
n>0rnw"n h

Atthe scale ofthe st resonance only one vector state appears in the G odstone scattering
am plitude. Tts coupling can be estin ated as

2
g2 mW Hi .
W1 2 !
3£/

(4.37)

so that it is slightly weaker than in the H iggs Iim it.
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To com plete the picture let us discuss the cuto scale where the 5D theory becom es
strongly coupled. From the param etric dependence of the resonance couplings w e conclude
the cuto is xed by the volum e factor. W e can estin ate:

4
——M gk (4.38)
%V
W e see the volum e factor should not be larger than 16 . O therwise, the st resonance

would already be strongly coupled and the 5D description would not be m eaningful.

5 H olographic pseudo-G oldstone H iggs

W em ove to another, closely related higherdin ensional setup. W e considera 5D SU (3)c
SO (5) U (1) gauge theory broken to SU (3): SU (2), U (1) on theUV brane, and
to SU (3)c SO (4) U (ly on the IR brane [3]. The larger sym m etry group of the bulk
allow s us to accomm odate the H iggs eld as the 5th com ponent of the gauge bosons. T he
Higgs eHd ism assless at tree leveldue to 5D gauge invariance, but it acquires a potential
at one loop. Thus, the origin of the light Higgs eld is addressed in this sst-up (rather
than postulated, as In the previous one). In a fully edged theory the Higgs eld would
acquire a vev dynam ically through m inim ization of the C olem an-W einberg potential. H ere
however, we w ill not study the dynam ics that produces the vev, but sin ply assum e it
exists. H olographically, this setup again corresponds to the Standard M odel coupled to a
strongly interacting sector that breaks electroweak symm etry. T he global sym m etry of the
strong sector isSU (3)c SO (5) U (I . SO (5) is spontaneocusly broken to SO (4) by the
strong dynam ics. T he resulting pseudo-G oldstones are denti ed w ith the H iggs eld.

W e concentrateon the SO (5) U (1) partwith thegﬁli;je e]ds%)M_= A, T andXy .
T he din ensionfiill buk gauge couplings are denoted asg L and gx L. The 5D action is

Z Z .
P_

1 1
Sep = d'x dxs g ZTrfAMNAMNg ZXMNXMN ; (5.1)
0

5.1 M ass eigenstates

W e em ploy the m ass eigenstate form alism for the KK expansion. W e want to arrive at
the quadratic action of the form (4.4) which is diagonalin the KK index in the presence
of electrow eak symm etry breaking. In contrast to the previous section there is an added
com plication of the A s vev which a ects the quadratic term s in the action. T he changes
can, how everpkie sin ply taken Into account by replacing @5 w ith the covariant derivative
Ds=0 ig LIAsi; .

W e perform the KK decom position, in the presence of the A s vev:

A (X;%5) = A ;5 X)E Xs;MAs1) As(X;Xs)= MPA5(Xs5)i+ G, (X)E, (Xs5;MA51)
X (x;%5) = A, X)fxpnXs/MAsi) Xs5(Xix5)= Gp (X)x n (Xs5;MA51) (5.2)
where f, = £ T . We split the SO (5) generators as T = (T2;T2;T8), a = 1:::3,

a=1:::4, corresponding to SU (2);, and SU (2)z subgroups and the SO (5)=S0 (4) coset.
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A ccordingly, we also split the gauge ed Ay = (Lu ;Rum ;Cu ) and the pro les f, =
(fL;n;fR;n;fC;n)-
D iagonalization is achieved when the pro les satisfy the follow ing conditions:
1. The equation ofm otion in the A 5 background:
Ds@°Dsf,)+ m2f, = 0
Dsf, = @f, 1ig LIAs(xs)iif,] (53)

f* satis esthe same equation with D5 ! @s.

n

2. The nom alization condition:

Z L
Trlf, (Y;PA s1)f, (vihA si) 1+ £ (v;PA1)ES (vihasi) =1 (54)
0

3. IR boundary conditions:

£ (LiAsi) = 0
D5ff;n(L,'hA5l) = 0
D5f§';n(L,'hA5l) = 0
@sfy o (LMASL) = 0 (5.5)
that break SO (5) U (1} to SO (4) U (1Y .
4. UV boundary conditions:
@sf7, (0;Asi) = 0
fa, (0;HAsL) = 0 i= 1;2
. . g
5c@sfy , (0;MAsi)+ G@sfy » (0;MAsE) = 0 s = %
g + 9f
. . g
Gfnn (OiMRsD)+ 55 o (OjMAS1) = 0 G = p=e——=
g + 9f
£ (0;MAsi) = 0 a=1:4 (56)

thatbreak SO (5) U (1y to SU (2), U (1} , the hypercharge being a linear com —
bination of SU (2)x U (1} . The SM gauge couplingsare g, = g and gy = p-22—

9 +9°

T he G odstone pro les are chosen accordingly :
fo (x5 ;MR s1) = m "D s, (x5 ;MR 1) (5.7)

Tn general, the pro les in the A 5 background are related to thepro lesathA si= 0 by
a rotation via the W ilson-line m atrix,

fo(xs;MAsi) = ! T(xs ;MRS (x5)! (x5;MA1); (5.8)
Z
P x5
w here | = P exp ig LT Ml (5.9)

0
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and £ (xs;M i) = £ (x5). The pro les £, (x5) satisfy the \nom al" equation of m otion,
@s(@%@sf, )+ m2f, = 0. Sim ilarly, for the G odstone pro les

fo(xsiMAsi) = m "1 H(xs;MAs1)@sE, (Xs)! (xs;MAs1) (5.10)
In the ollow Ing we choose the basis such that the vev resides in only one direction in

the group space:
a ?(xs)

i TR——" (5.11)
o @ “(y)
The pro les at zero vev can be written as
fi,(xs) =  [C(Xs;my)
fan(xs) = KS(xsim,)  i=1;2
fi.(xs) =  wsC(xs;my)  p GS(Xsimy)
fx n(X5) = N &C (Xs;mp )+ p S¢S (X5;mp)
fe(xs) = &S(xsimy) (5.12)

T hey satisfy the UV boundary conditions (5.4). T he constants are cbtained by in posing
the IR boundary conditions. The solutions can be organized into two towers W ,, W ,
of charged gauge bosons, and four towers ,;%2,;%2,;H, of neutral ones. W e list all the
pro les in [A ppendix C|. Here we content ourselves w ith the quantization conditions:

0 . . 1 242 Y = 0 . _
CLmyp)STLmygn)+ 2mw;naL sin : =0 S(Lmy ,)=0 (5.13)
h
2 . cos . ! 2an? = o1, ; _
s gy CLmgy)STLmygp)+ 2mz;naL sin : =0 S(Lm,,)=20 (5.14)
h
CLm 4)=0 S@Lmyy)=0 (5.15)

Only themasses in theW and Z towers are sensitive to electroweak symm etry breaking.
The scale f;, is once again de ned in temm s of geom etric quantities:
5 2
fi= —R—— (5.10)
gL ,a ?(y)
T hisde nition coincidesw ith eg. (4.18),once g, = gz . In the presentm odel f;, appears
as the sym m etry breaking scale at which the global SO (5) is broken to SO (4). Tts role in
theW and 7 scattering w ill tum out analogous as In the previous m odel.

5.2 Scales

The tower of heavy resonances begins at Mgk (de ned in eg. (£14)). Th addition the
setup can accom m odate light vector states denti ed w ith the electroweak gauge bosons.
T here is always the photon withm = 0. The Iightest m assive vector states In theW and
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Z tower are denti ed with the W and Z bosons and can be param etrically lighter than
M xx . Finally, there are no light states in the rem aining towers. Expanding the warped
trigs n eg. (8.13) and eg. (5.14) for snallmasseswe nd theW and Z m asses:

2
v
m g—Lfﬁsjn2 — (517)
4 i
2 Gt o T
m, ——f7sn® — (5.18)
4 n

Thus we dentify the electroweak scale asv f, sin (v=£fy, ). The separation between the
electrow eak scale and the resonance scale can be achieved in two ssgparate Iim its. In the rst
case we assum e a ssparation between the H iggs vev and the decay constant, sin (v=f;, ) 1.
T his is the H iggs Iim it. sin(v=f}, ) is a free param eter until we specify the dynam ics that
gives rises to the H iggs potential. O ne should be aw are, how ever, that getting v=f;, am aller
than 1 typically requires nestuning. In the other lim it, sin (v=fy, ) 1. This corresponds
to the Higgsless lim it. Once again we need to separate f;, from M kxx . The ssparation
iy M xx Is obtained in the 5D background w ith a Jarge volum e factor V.

Sum m arizing, the three scales v, f;,, and M xx have en erged again. In the H iggsless
Iim it v f,. In fact, in this 1im it the quantization conditions for the W and Z tower
m asses are exactly the sam e as in the previous m odel. T he physics in the H iggsless 1in it
is Indistinguishable in these two m odels.

5.3 G oldstone bosons

To calculate the gauge boson scattering am plitudes we need to calculate the G oldstone bo-
son pro les corresponding toW ,Z . Theexactpro lesarew ritten in eq. (C_33). Expanding
these pro les in powersofm 7 andm? we nd,at lowest order:

. 1

fla ?fmw xsa °(xs)
i 1 2

fr y P=mu La “(xs5)

p_
£ 1 2 cos(v=ty ) . 2( ) (519)
P— m a X
cH Y1 she=f,) >

1

f]?;Z p?mw Xsa 2(X5)
3 1 2 2
fr 2 19? s'xs+ L my a *(xs)
tan y 5
x z c;—]_ei— (xs L)my a “(xs)

1~ 2cos(v=f)

Lmy a *(Xs) (5.20)

£, p——
’ L sh(v=f,)
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C om pared to the previousm odel, there are no boundary G oldstones. Tnstead their role
is taken over by C¢. The param eter controlling the distribution of the G oldstones is now
sin (v=fy, ). Tn the H iggs lin it the electroweak G oldstone bosons are m ainly com posad of
CZ. In the H iggsless Iim it the electroweak G oldstones ow to LZ and Rf. In all cases the
G odstones are sharply localized on the IR brane w ith the pro le behaving asa . The
self-interactions of the non-linearly de ned G oldstones and the triple vertex w ith the H iggs
boson are described by eg. (4.24) w ith g, = cos(v=f, )@ In the H iggsless lin it the physical
H iggs decouples from the G oldstones but it ram ains in the physical spectrum .

5.4 Couplings to resonances

T he couplings of the electrow eak G o stone bosons to the resonances are given infA ppendix C|.
In the follow ing discussion we again m ake the assum ption that the warp factor is steep
enough close to the IR brane, so thatwe can replacey ! L In allintegrals. In such a case,
the coupling of the vertices de ned In eg. (4.29) can be w ritten as

Z L

I n gL m? a’ £+ fa, (521)
0
Z L

WM n qL3=2mV2q a ? ff,,n + f;’;n (522)

0

where C = W ;W stands for charged, while N = Z;Z; stands for neutral (the vector
bosons from the H tower do not couple to the electoweak G oldstones). The Standard
2 2
L 9y
2 gf +9y
g = e. Theresonance couplingsdepend on theirpro leswhich we collected in[A ppendix C|.
Param etrically, we again observe an enhancem ent of the resonance couplings
p_
n Vdo (523)

M odelgauge bosons couple to the electrow eak gauge bosons as gy g =2,

> !

w here gy is the coupling of the corresponding Standard M odel gauge boson . M oreover, the
couplingsoftheW and Z towers are also proportional to cos(v=f; ), so that they decouple
from the electroweak G oldstones in the H iggsless lim it.

Consider rstthe couplings ofthe charged resonances in the H iggs lim it. In thiscase the
quantization condition in theW tower (5.13) reducestoC%L;my 4)S(L;my ) 0. Thus,
the m ass elgenstates In the W tower split nto Neum ann-Neum ann (NN ) and D irichlet-
D irichlet (DD ) m odes:

C (X5;mw;n)

(NN) £ R —  CLimyn)=0
o Clyimya)F
i S (X5 ;m )
(DD ) £, "  S@Limgn)=0 (524)

SIS ymy p) P

6Suppression of the W W h and Zzh vertices by cos(v=fy ) was also pointed out i ref. [15].
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From eg. (521), only the NN m odes couple to the electroweak G odstone bosons. The W
tower has the pro ke ofthe DN type

S(X5;mw ;n)
R, 1-2
o Blymy )F

(DN) :f5

SLimy )= 0 (5.25)

A s discussed before the NN and the DN resonances have approxin ately the sam e pro les
and m asses, therefore they couple w ith approxin ately the sam e strength to the electrow eak
G odstone bosons. Thus, at the scale of the rst resonance, there are two degenerate
charged vector states. M oreover we obtain the follow ing sum rules:

X g, X g, 1
> > P (526)
n mw'“ n mW n h
The sum rules are typically dom inated by the rst tem , so we get
2
m
2 w1
G2 $a o (527)

W ith respect to gauge boson scattering, the H iggsless lin it is indistinguishable from
the previousm odel. The W tower decouples from the electroweak G oldstone bosons. T he
W tower splits now into the vector and axialm odes:

C(X5;mw;n) i i 0
RL 1= fR;n ﬁ;n C (L;mw;n)=0

2 yC(ymun)?

i
.

i C&simy n) : .
fin R e = L&rn fa SLmyguy)=0 (528)

2 ) Clyimyn)P

From eg. (521), only the vector m odes couplk to the electroweak G oHdstones. The sum
rule now becom es

X 2 1
ng—” — (529)
IR, iy

Thus, at the scale of the rst resonance e ectively only one vector state appears in the
G odstone boson scattering am pﬂ;’i}lde. O n the other hand, its coupling is stronger than in
the H iggs 1im it by the factor 2:

2
mw;1

3f2

2
gW Hi

(5.30)

6 G auge boson scattering am plitudes

W e com e back to discussing the scattering of longitudinally polarized electroweak gauge
bosons. In the follow ing we discuss the speci ccaseW 721, ! W 1 Z; . T he other scattering
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processes follow precisely the sam e logic. Q uite generally, in the 5D m odels the scattering
am plitude of the corresponding G odstone elds has the form
g m2z2 X t s t u

2
M g+g31 663 = — g + (6.1)
' vit m? "y m2 s m?

The sum runs over all charged vector boson states and gc ,, denotes the couplings of the
electrow eak G oldstone bosons w ith the charged vector resonances. The st term com es
from the self-interactions of the G odstones and triple vertices w ith the physical H iggs
boson, as n 3. (4.24). In the 5D models we consider, the quartic coupling is always
correlated w ith that of the H iggs-6 odstone coupling and is given by gZ=v*.

From the G odstone am plitude we can extract the dom nant term in the scattering
amplitude W (2 ! W Z,. At energies above themy mass, but below the H iggsm ass
and the resonances scale, the am plitude contains the term that grow s quadratically w ith
energy: !

M g+g31 g g3 —+ 3 — t t<my (6.2)

T he second term  is the contribution of the heavy charged resonances (the lightW isom itted
In this sum ) that, at low energies, induce an e ective fourG oldstone vertex. In fact, at this
order the behaviour of the am plitude below the H ggs m ass follow s from the low energy
theorem s [16], M t= V. In our 5D m odels, 1+ O (v=M 2, ) due to the custodial
symm etry. W e thus conclude that the am plitude m ust grow lke t=v?. This tells us that
the contribution of the resonances should adjust appropriately and there should be the

sum rule )
X gC;n 1 i

3 2

: (63)
r1>Omrl v

T here should also be an analogous sum rule involring neutral resonances. In several lin iting
cases, we have derived these precise sum rules through analytical calculations in 5D .

At energies above the Higgs mass, the rst term 1n eg. (6.1) does not contribute to
the quadratic growth. The e ective contribution of the heavy resonances ram ains. The
am plitude can be approxin ated :

1 g

2

MG*G3!G*G3 t mh<E<ml (6.4)
Ifg, < 1 the am plitude still grow s quadratically, but slower (unless we are in the H ggsless
Im it where g, = 0). T he quadratic grow th is further softened around the rst resonance
m ass. W e can approxim ate

2
1 gz .
M g+g316+g3 i 3 C2'1 t
v Mmea
! |
t s t u
o — + : E m (6.5)



Above the rst resonance the coe cient of the grow ing term s is din inished by 3g 2=m 7.

In the m odel of Section [4 w ith the H iggs on the brane we fund ¢, = (v=v)>. This
mpliesthat (1  ¢)=v* 3=f intheHiggslimit,and (1 ¢)=v*= 1=v* 1=f i the
H iggsless 1im it. T hus the grow th of the am plitude below the resonance scale is controlled
by the scale f;,, although the coe cient varies depending on which lin it we consider. In
them odel of Section[§ w ith a pseudo-goldstone H iggs boson w e found g, cos(v=f, ). This
mplies (1 ¢)=v* 1=£ both in the H iggs lin it and in the H iggsless lin it.

Tn both m odels, unitarity is restored by resonances at the scale M xx . How e ciently
the restoration proceeds, depends on the coupling strength of the low est Iying resonance(s),
which is clearly m odeldependent. N evertheless, In the 5D m odelswe have studied we were
abl to nd usefiill approxin ations for these couplings. T he results for generalbackgrounds
were given in Section [4.4 and Section [5.4. Tn order to get som e feeling about valdity of
our estim ates we now present the exact results for num erical calculations in AdSs.

W e take the Planck/TeV hierarchy between UV and IR brane corresponding to a; =
10%. The volum e factgr is then V kL 35, the KK scale Mk ka , the decay
constant g, £, 2ka,= V.

In the m odel of Section [4 the m asses of lightest resonances are found as

My g 07 Mgx My 2 0:78Mk (6.6)

In the H iggs lin it and

My g 0:78Mgx My 2 122Mkx (6.7)
In the H gsless Iim it. In theH Iggs lin it we nd the couplings gy ; 82¢ ,% 2 83q .
T hus, at the resonance scale there are tw o alm ost degenerate vector statesw ith com parable
couplings to the electrow eak G oldstone bosons. T hese two states saturate 66% of the sum
rule (433). In the Higskss lin it the couplings are gy 4 814G , Gy 2 O:dg ,
resulting in 96% of the sum rule (4.3d) being saturated by the rst resonance. Thus the
estin ate below eg. (4.36) perfectly captures the coupling of the rst resonance. W , is the
axial resonance and it approxin ately decouples from the electroweak G oldstone bosons.
Avoiding viclation of unitarity in g]gH ggsless 1m it requires M xx < 15TeV (that is
my g © 12TeV). Since M gx Vm i 15TV, the bound is saturated with the
current choice of the hierarchy param etera, © 106°.

In them odel of Section [ we nd them asses of the lightest resonances

My O:8MKK m a1 O:8MKK My 2 1:2MKK (6.8)

w here these m asses are independent of the 1im it we consider.

In the Higgs Imit we nd gy 3 a1 5:7g while gy » 0. In the H iggsless
Iin it the coupling gy ;1 8g ,whileg; 5 = 0. In both cases, 95% of the respective sum
rule is saturated by the rst resonances.

T he picture that em erges In both m odels is that the scattering am plitude is aln ost
entirely unitarized at the scale of the rstresonance. A distinctive feature of the H iggs 1im it
this is that there are two aln ost degenerate resonances that contribute to unitarisation,
while In the H iggsless lin it jist one resonance doesm ost of the pb.
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7 Conclusions

New strong interactions asa cuto to the SM are an interesting altemative to supersym —
m etry as an explanation of the origin of the electroweak scale. B efore the LHC experin ent
tells us m ore about what nature has chosen, it is in portant to investigate the possble
ways strong interactions could m anifest them selves in the scattering of longitudinally po—
larised vector bosons. T his is necessary for staying tuned in to the experim ental analysis
for various options.

W e have studied m odels of electrow eak breaking form ulated in 5D warped space. By
relying on the heuristic link to strongly interacting theories in 4D , or sin ply referring to
5D m odels of electrow eak sym m etry breaking, we have a technical, perturbative, m eans to
nvestigate the detailed dynam ics of the longitudinally polarised electrow eak gauge bosons.

In this paper we have studied the dynam ics of gauge bosons in two, previously pro-
posed 5D m odels of electrow eak symm etry breaking. U sing the powerfulm ass elgenstate
technique in a general background [12,113]we have calculated the m ass spectrum of the
resonances and their couplings, as well as the couplings of the physical ‘com posite’ H iggs
boson to the G oldstone bosons eaten by the W and Z gauge bosons. Thus we have ob—
tained all the elem ents necessary for calculating scattering am plitudes of the longitudinally
polarised vector bosons using the equivalence theorem . T his allowed us to discuss the role
of various contrdbutions in unitarising these scattering am plitudes.

O ur explicit calculation in two very di erent m odels allow s us to extract quite general
features, hopefully comm on to any strongly interacting cuto to the SM .These are, rst
of all, physical scales that em erge and characterise the gauge boson dynam ics. W e have
denti ed four such scales: the electroweak scale v, the H iggs boson decay constant or
equivalently the H iggs boson com posite scale f, , the resonance scale M x ¢k and nally the
cuto scalke of the strongly interacting sector itself. Particularly interesting are the
relative values of the scale v versus f,, and f;, versus M x x which fully determ ine the
unitarity violation and restoration in the gauge bosons scattering am plitudes.

A nother interesting com m on feature of the twom odels is that they sm oothly interpolate
between the com posite H iggs lin it and the H iggsless lm it, depending on the relative
m agnitude of the scales m entioned above. Thus we have explicit exam ples In which the
strong dynam ics is not as simple as is usually assum ed In H iggsless m odels based on
SU(2) SU((2)! SU(2) and the gauge boson dynam ics m ay lie between the com posite
H iggs and H ggsless 1im its. It is interesting by itself that in the H iggsless lim it we have
denti ed a new class of H iggsless m odels w here the scalar particle does not play any role
In the unitarisation of the scattering am plitudes but rem ains in the spectrum .

O n the other side, our com putations provide som e insight into the phenom enology of
gauge boson scattering. T he picture that em erges from 5D m odels isvery di erent from the
expectations based on sim ple unitarisation procedures of the e ective chiral Lagrangians
.L7] For exam ple, we do not have any scalar resonances in the specttum . M oreover, the
num ber and properties of the low —lying vector resonances are quite constrained.
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Appendix A W arped Trigonom etry

T he equation of m otion
@5 (a” (x5)@sF (x5)) + z°F (x5) = 0 A1)

has two independent solutions. D enote them C (x5;z) and S (X5;z). W e choose them such
their boundary conditions as

C(;z)=1 Cc%0;z)=0 S(0;z)= 0 s%0;z)= =z @A 2)
so that in  at gpace they reduce to the fam iliar cosine and sine. The W ronskian relation
S%xs5;2)C (x5;2) Cx5;2)S (xs5;2) = za °(xs) @ 3)

is the warped analog of sin® + cos’ = 1.
Integrating eq. (A1) twice, we obtain the integral representation of the warped trigs

C(xs;z) = 1 z a 2(y) C(yo;z)
S(xsjz) = z a’ly) Z a’ly) sg%z) (A 4)
C(xs;z) = 1 VA ya 2(y)+z az(y) ycoa 2(yoo)+ te

S(X5;z) = z a 2(y) z a

For z and y such that z°=a® 1 we have another usefiil approxin ation.

Z
X5
C (x5;2) a '™ (xs) cos(z alty)+ )
7.
S (X5;2) al™? (x5) cos(z a 1(y)+ ) A 6)
L
where the four real param eters , , , are bound to satisfy sin ( ) =

1. M oreover, for m etrics highly warped toward the IR brane we have an approxin ate

23



relation C (L ;z) zL.S (L ;z), CL ;2) zL8(L ;z) that follow s from the perturbation
expansion (A_H),with y! L in the integrals.

Let us see the warped sines and cosines in som e particular, solvable backgrounds.
For at space,a(xs)= 1,we get the fam iliar trigonom etric functions:

C (x57z) = cos(zxs) S (X5;z) = sin(zxs) A7)

ForAdSs we inserta(xs) = e **5 and aln ost as easily solve 7. (1) in term s of Bessel
functions. The solution isa 'Z; m =ka) (note also that @ 'Z; m =ka)P= za °Z,m =ka))
and we pik up the follow ing com binations

1 z z z z
C (xs5;7z) = 2 (x5) Yo X J1 T b X p4] Ka (xe)
1 z z z z
S (x5;2) 2 xs) 1 X J1 T + J1 X p4] D (A 8)
A nother solvable background is that w ith a power law warp factora(xs)= 1 kX51
For ! 1 we recover the exponential warp factor of the RS m odel. T he solutions to &J.

(&_1l) can be written, sin ilarly as in the AdSs case, In tem s of the Bessel fiinctions,

Z L z z z z
Cxs;z) = —a 2 Y1 — Jz 1 - Ji = Yz o -
2k 2 2k 2 2 kal - 2 2 k 2 2 kal =
Z .1 z z z z
S(xs5;z) = —a 2 Y, 1 — Jz 1 1 +Jdz 1 — Y2 1 I
2k 2 2 k Z 2 kgt~ 2 2 k Z 2 kgt~

A 9)

Appendix B SU@B). SUE@) SU@R U(@d):pro les
and couplings

W e collect here various technical details conceming the m odel of Section 3. W e list the
pro lesthat ollow from solving the boundary conditionson the IR brane. FortheW tower

fLi,-n = wnC XsiMy )
; IR CoLimyn)
£ = — — S (x5;m
s 9 WfSO(L;mw;n) s i ) )
Z 2 0 2
% CoLmyggan)
(w;n)2 = dy Cz(y;mw;n)"'g—i S’O(L.imw;n) SZ(Y;mw,n) (B .10)
0 T 7AW on
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For the photon tower

f]_:,));n = sin W ;nC (XS;mn)
fin = $0Sy 5C(xs5;my)
fxm = &oosy  aC(xsimy)
L
( a)° = dyC *(ym ) (B 11)
0
For the Z tower
fL3;n = Cos W Z;nC (XS;mZ;n)
C’i CO(Limz )
£3 = sin C (X5;m — gin 7me;m
R m % w znC (XsiMyzpn) s, W Z'nSO(L;mZ;n) (X57M 7 )
. . CO(L/'mZ;n)
fxn = Gsin gy z,C Xs;mp)+ cesin oy Z;nois(XB;mZ;n)
SP(Lm g 5)
72 0 )
C (L'mz )
2 2 .2 r mn 2
= d C X5 ;M + — 3sIn P S — S (x5,;m
(Z;n) . Y (5! Z;n) S>2< w SO(L;mZm) (5! Z;n)

(B .12)

T he quantization conditions are given in egs. (4.13), (£14), (4I9). Expanding C and
S at anallm allows to estin ate the masses of W and Z . Tncluding corrections of order
v*=M 2, we nd

2 v v2h2 1RLRY 0, 2,0 Ry 2 Ry 2 .

my 4% 1+ % gLt ) JYaty) 4 Jvadly) 4L ,a ’(y)
. mZ @+ o)sa .
v2 2 2 1RL Ry 0, 2,0 Ry 2 Ry 2 2RL Ry 2,0
+Z ety vaty) ¢ ,vaily) gL Ja’Ww+g , Ja i)

B .13)

From din ensional analysis one would expect the integrals in the above expression to be of
order 1M 2, . However, som e of the integrals scale linearly w ith L, therefore they can be
enhanced when the volum e factor is lJarge. Tn such a case, the corrections tum out to be
O (v*=f?) rather than O (v*=M 2, ).

The G odstone pro les corresponding to W and Z are given by

fLi,W = meICO(Xzsimw )
i 9r CO(L;mW ) 1~0
£ = — ———m, S (X5;m
oA o " SLm, e S )
. 2
£ = W —Pp——2a'C%L;my ) (B 14)

my Logv
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3 1~0
fi, = csy zm, C(Xs;my)

0

3 - 10/, . < CLimyz) 1.0, .

Ry = §SN w zM, C(Xsimz) S—Xsmw meZS(X5’mZ)
. . CLimy)
fuz = Ggsh y ,m,'Co%xsim,)+ s oy zso(Lifm)mzlso(X5imz)
r Z
3 _ - ﬁ2 2~0 .
£, = z p——a;C (L;my) (B .15)

m, L P+
Z gL gyv

T he expansion of these pro les or sm allm asses can be done with the help of eg. (E_3).
To owest order inmy ,m 5 , we derive eq. (£21]).

The pro les serve to establish the couplings of the G oldstones to the resonances. W ork—
Ing out the relevant term s in the 5D action the couplings to the neutral gauge bosons are
given by

Ry 2 B 263 % 1263 °
GQvn= P o dya ) qyf, )+ FLOE ()
p L

0
LT (@, L)+ g2, (L) (B 16)
2 2 L. n IR R mn

w hile those to the charged gauge bosons

nz R n ©

. 3 i
Gom= PC OL dva *(y) quy'fi,(y)+ g—RfL(SiYJF GL)ER 5 (¥)

j S ) )
+ LS G E ML)+ £, (L)) (B17)

Due to the a ? factor, the integrals are dom inated by the behaviour of the pro les near
the IR brane. T herefore it is sane to replacey ! L under the integrals. M oreover, we set
g, = gr for sim plicity. T his yieds
Z
p——*t 1v? 5 5
I g L a“y) 53 @)+myLa ()
0 2w

CoULmy ;)

Clymuyn) mS(YimW;n)

Ry CoULmy) 2 =
o dy CPyma)+ Sooay SPyimn)

Z
2 L 2
g p— 1v
p% L a “(y) 55
9. + 9y 0 v

o L)+ m2 La *(y)

CULmz;)
Clymgzn) ij)s(y;mz;n)

R, ] 5 1=2
o dy C?(yimy,)+ cos2 y

n
SO(Lmn)

pP— 1v° C(ym )
I n 26 L a *(y) L)+ mi La *(y) hg —

2w L
0 o CHyim a)

(B .18)
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Appendix C SU@B) SO((}B) U(@d)x: pro lesand cou-
plings
W e move to the holographic m odel of a aseudoﬂ odstone H iggs boson. Choosing the

—
direction of the H iggs vev ashAgi= va ‘= OL a “(y), theW ilson-line m atrix is given by

2 3
1 00 0 0
010 0 0 p_qRﬁ
=8 0 0t 0 0 fxe) - per’ e Y (19)
Q 0 0 0 cos f(Z5) sin f(;) ! gL ja 2(y)
0 0 0 sh S 45

T his yields the link between the pro lesw ith zero and non-zero vev:

. 1+ cos(v=f) __ 1  cos(v=f)__ sin(v=f) __

£ xeiv) = ————fle) t —————E (xs) —pch (xs5)

R 1  cos(v=f)__ 1+ cos(v=f) __ sin (v=f) __

fllsiv) = —————H )+ ——— (%) —pch (x5)

N sin (v=£f ) 2 sin (v=£ ) N N

e ®sv) = —pé—fL (x5) + _pE—fR (%5) + cos(v=f )f: (X5)

£ (x5;¥) = 2 (Xs) fx (v) = fx (x5) (C 20)

Inserting this Into the IR boundary conditions we can nd the m ass eigenstates.
C harged

T he charged gauge bosons are com binations of L* R* and C*. In the charged sector
we have two towers. In the one referred to asthe W tow er the m asses do not depend on
v. T he quantization condition is sin ple:

SLimy 5)=0 (C 21)
T his tower has the pro Jes:
fin = wan 200S(v=E,)S (Xsimy 5 )
fci;n = w o S (v=£,)S (xs;my )
L
(wan)® = (1+co(v=£))" [Bymy)Tf (C 22)

0
In the other tower, referred to as the W tow er, the m asses do depend on ¥. The
quantization condition is

o1 . . 1 202 ¥ _
CLmy)STLmyqn)+ oMW ndy”sin® =0 (€ 23)
h
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T he corresponding pro les are

fLi;n = W;nc(x5;mw;n)
N CoULmy 4)
ffa = ——— TS (s My )

W
P SOL My )

. 2 cos(v=f, ) C %L ;my n)
fr = ;
°n T en(g) Sy o)
Z . 0
2 C (L;me)C(L;me)
= ; ; 4
(wn) € (yimu )T SO(L;mM)S(L;mM)[S<ymw;n>]2 (C 24)

0

T here is a light solution of the quantization condition proportionalto f;, sin(v=f, ). This is
theW boson.

N eutral

T he neutral gauge bosons are com binations of L° R® and C3# and X . Three of them
have v—=independent m asses. O ne is along the sam e group space direction as the H iggs vev,
hence we refer to it as the H iggs tow er. T he quantization condition:

S(Limyn)=0 (C 25)

The pro e
fon= waSEsmMmun) (un) = Blymax)Tf (C 26)

T here is no light (m ode) in this tower.
Another is called the photon tow er. T he quantization condition:

C'Lim »)=0 (C 27)
The pro Jes
£7, = sy aC(xsm )
fs;n = 5,008y 2C Xs;m p)
fxm = sy AC&Esm 4)
L
( n) 7 = C(ym o)F (C 28)

0

T he photon tower includes a m assless elgenvector: the photon.
There is the 2 tow er, which is sin ilar to the W tower and has no light m ode. The
quantization:
SLimg )= 0 (C 29)
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The pro Jes

£, = ¢ 5 2cos(v=f,)S (xs;m 5 )
fxm = Sk g5 2c0s(v=,)S (X5;m, )
£, = G gnsh(v=f)S (xsimy ) .
L
(20)° = (1+cof(v=f) dgsh’@@=£))" [Sym,)7 (C 30)

0

Finally there isthe 2 tow er,where m asses are sensitive to v. T he quantization condi-
tion is very sin ilar to that of the W —tower,

0 1 2 .2 v
cog wC Lmygn)SLmgy)+ Emz;naL sin = =0 (C 31)
h
the di erence being the cosine of the W einberg angle. The pro les
fLB,-n = COs y z,nC(X5imz,n)
CoL;myq)
3 _ . . rrtZon .
fR;n - g SN i Z;nc(X5lmZ;n) éCOSw Z;nSO(L;mZ;n)S(XSImZ;n)
£ | c( )+ ¢ s CLmanlg, )
= sin X5 ;m sin X5 ;M
X m & W Zm 5 Zn Cx W Z;DSO(L;mZ,n) 5 Zn
2cos(v=Ff,)C %L ;m 4 ., )
fg’;n = oSy 7z , b 5 e S(Xs;mygp)
7 sn(v=fy) S (Limz,n)
L 0
C(L;myg,)C Limyg.,)
(20) 7 = C (yimzn)T = "5 (yimg ) F (C 32)

0 SOLmyzn)S@Limyy)

The 72 boson is the lightest solution of the quantization condition w ith the m ass propor-
tionalto £, sin(v=£f} ).

W em ove to discussing the pro Jes of the G oldstones corresponding to the electrow eak
gauge bosons. T he G odstone pro les at zero vev are sim ply related to the corresponding
gauge pro les, see eg. (5.10). The G odstoneseaten by W and Z have the follow Ing pro le

fLi;W = WmWICO(Xg);mW)
i CO(L;mW) 1~0
£ = _ S (xXs;my )
R T S0mmy ) T T
P
N 2 cos(v=f, ) C %L ;my )
£ = : o s ks m oy )
? sin(v=f,) S%L;my )
fLB;Z = oS y szlCO(X5;mz)
CO(Limz)
£, = sin m, co%x ;m cos R R 04 ;m
R 72 51 w zMg (Xs5;m 7 ) <,2< W Z;DSO(L;IT[Z) 7 (Xs5;m 7 )
CO(L;mZ)
£ = sh m,'C%s;my, . )+ s — T m, ts%xsm oy )
X 72 & w o zDMy 5/ 7 ;n S W ZSO(L;mZ) 7 5/ 7
2 cos(v=fy, ) C %L ;m
fca,z = COS W)€ (L Z)SO(X5;I“ﬂz) (C 33)

SJrl(szh) SO(L B )
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Expanding the warped trigs for a snallm yields the approxin ate expressions (5.19).
T hese approxin ate pro lesallow us to determ ine the resonance couplings. T he general

form ula for the charged ones is
pP_R

L ; : : : 1 : : :
In=9 L oaz le;nfS,Zfll,}N +f§mf§,’zf§,w 3 le,n+f§;n fCB;ZfCl:'V\T
+ofl, B, + B, fo,  fen fly +fag £2, (C 34)
(no summ ing over i here). For the neutral ones,
P—_R, . . . . 1 . .
dn=9 L oa2 f]?;nfll,}/\l fll,}/\l +ff§;nf§,w fI;;W +t 3 fS,n"'fs;n fCl}N fcl,W
o, By + g fig (C 35)

Tnserting the approxim ate G oldstone pro lesand the exact pro les of vector resonances
we obtain the couplings

PR, , " COLmy ) N
g L o2’ COumun) spm5SEmun)@ @ y=L))
I n  STIR Thy - (C 306)
2 L_ L2y COL iy )C L Rw ;) g2,
0@ W) o COUMun) ST, s Ty S Y )
P_R,
g, cos(v=fy) L, a " (y)Slymy ;)
9 n Ep Tt ooF (vt hRL ihRL S (C 37)
cos” (v=1y, ) . a z(y) 0 Sz(y;mwAm)
p_RL n co'Cmyg ) 29? cos® (v=fy ) ©
g G g Loa’) Clmen) ShisSymas)l FEEERA vy
Zmn P R Ty -
2 9P+ g L L . COULM 2, )C(LMzn) s,
L o @ 1Y) G CEYIMza) o, sEa. S Willzn)
C 38
P_R, ( )
i, cos(v=fy ) L ,a“y)Symyg.,)
9z m ?_ECXP i 2 (vt - hRL j_hRL 5 (C 39)
+ cos” (v=fy) ism (v=fn) . a 2(Y) . Sz(y;mf;ﬂ)
P a 2y )
a "y Y/m o on
a 0o & .
9 mn TR IR, N (C 40)

o adly) JC3:ym 5)

T he H iggs tow er does not couple to the electroweak G oldstones.
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