
974 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Tools for the Automation of Large
Distributed Control Systems

C. Gaspar and B. Franek

Abstract—The new LHC experiments at CERN will have very
large numbers of channels to operate. In order to be able to con-
figure and monitor such large systems, a high degree of parallelism
is necessary. The control system is built as a hierarchy of sub-
systems distributed over several computers. A toolkit—SMI++,
combining two approaches: finite state machines and rule-based
programming, allows for the description of the various sub-systems
as decentralized deciding entities, reacting in real-time to changes
in the system, thus providing for the automation of standard pro-
cedures and for the automatic recovery from error conditions in a
hierarchical fashion. In this paper we will describe the principles
and features of SMI++ as well as its integration with an indus-
trial SCADA tool for use by the LHC experiments and we will try
to show that such tools, can provide a very convenient mechanism
for the automation of large scale, high complexity, applications.

Index Terms—Automation, control systems, distributed systems,
finite state machines, rule-based systems.

I. INTRODUCTION

LARGE Control Systems, like the ones needed by the LHC
experiments have some specific requirements.

• Distribution and Parallelism—Due to the large number
of devices and input/output channels, the acquisition and
monitoring of the data has to be done in parallel and
distributed over several machines.

• Hierarchical Control—The data gathered by the different
machines has to be summarized in order to present a
simplified but coherent view to the users Decentralized
Decision Making—Each sub-system should be capable of
taking local decisions since a centralized decision engine
would be a bottleneck.

• Partitioning—Due to the large number of different teams
involved and the various operation modes of the system the
capability of operating parts of the system independently
and concurrently is very important.

• Full Automation—Standard operation modes and error re-
covery procedures should be, as much as possible, fully au-
tomated in order to prevent human mistakes and to speed
up standard procedures.

• Intuitive User Interfaces—Since the operators will not be
control system experts it is important that the user inter-
faces provide a uniform and coherent view of the system
and are easy to use.

Manuscript received June 16, 2005; revised September 20, 2005.
C. Gaspar is with the CERN, CH 1211 Geneva 23, Switzerland (e-mail: Clara.

Gaspar@cern.ch).
B. Franek is with the Rutherford Appleton Laboratory, Didcot OX11 0QX,

U.K. (e-mail: B.Franek@rl.ac.uk).
Digital Object Identifier 10.1109/TNS.2006.874470

In order to solve these problems effectively the four LHC
experiments at CERN have combined efforts by creating a
common control project—the Joint Controls Project (JCOP)
[1], to define and implement common solutions for their control
and monitoring systems.

In the context of JCOP a common architecture has been de-
vised and a common control Framework [2] has been developed.

This Framework is based on a SCADA (Supervisory Control
And Data Acquisition) system called PVSSII [3]. PVSSII, al-
though providing most of the needed features, does not provide
for hierarchical control and abstract behavior modeling. So an-
other tool: SMI [4] has been integrated with PVSSII and can
thus be used as a component of the Framework.

II. ARCHITECTURE

From the software point of view, JCOP adopted a hierar-
chical, tree-like, structure to represent the structure of sub-de-
tectors, sub-systems and hardware components. This hierarchy
should allow a high degree of independence between compo-
nents, for concurrent use during integration, test or calibration
phases, but it should also allow integrated control, both auto-
mated and user-driven, during physics data-taking.

This tree is composed of two types of nodes: “Device Units”
(Devs) which are capable of “driving” the equipment to which
they correspond and “Control Units” (CUs) which correspond
to sub-systems and can monitor and control the sub-tree below
them. Fig. 1 shows the hierarchical architecture defined by
JCOP.

The architecture defined by JCOP is the basis for the devel-
opment of the common Framework. Each LHC experiment can
than adopt this architecture and use the Framework tools wher-
ever they find it suitable.

III. FRAMEWORK

The JCOP Framework provides for the integration of the var-
ious components (devices) in a coherent and uniform manner.
JCOP defines the Framework as:

“An integrated set of guidelines and software tools used by
detector developers to realize their specific control system appli-
cation. The Framework will include, as far as possible all tem-
plates, standard elements and functions required to achieve a
homogeneous control system and to reduce the development ef-
fort as much as possible for the developers”.

The architectural design of the software Framework is an im-
portant issue. The Framework has to be flexible and allow for
the simple integration of components developed separately by
different teams and it has to be scalable to allow a very large
numbers of channels.

0018-9499/$20.00 © 2006 IEEE

GASPAR AND FRANEK: TOOLS FOR THE AUTOMATION OF LARGE DISTRIBUTED CONTROL SYSTEMS 975

Fig. 1. JCOP software architecture.

Some of the components of this Framework include the fol-
lowing.

• Guidelines imposing rules necessary to build components
that can be easily integrated (naming conventions, user in-
terface look and feel, etc.)

• Drivers for different types of hardware, such as fieldbuses,
and PLCs.

• Ready-made components for commonly used devices con-
figurable for particular applications, such as high voltage
power supplies, temperature sensors, etc.

• Tools to build control hierarchies of device and control
units as described in the architecture chapter.

While “Device Units” are typically implemented using
PVSSII features directly, “Control Units” are abstract objects
and are better implemented using a modeling tool. For this
purpose SMI was integrated into this Framework.

IV. SMI

SMI is a toolkit for designing and implementing dis-
tributed control systems. SMI ’s methodology combines
three concepts: object orientation, Finite State Machines (FSM)
and rule-based reasoning.

Classes and objects allow the decomposition of a complex
system into smaller manageable entities. Each entity, or object,
is described as a finite state machine, allowing the modeling
of its behavior in terms of simple states and actions. Each ob-
ject is always in a well-determined state. For each state a list
of rules can be declared which when fulfilled will trigger, asyn-
chronously, a change of state or the execution of an action.

SMI objects can be “concrete” or “abstract”. Concrete
objects interface to real-world devices, like a power supply or
a temperature sensor, through an associated process: a proxy.
Abstract objects represent logical entities, like a Run or the De-
tector Control System, and are implemented within SMI .

Logically related objects, abstract and concrete, can be
grouped inside SMI “domains” representing a given
sub-system. Fig. 2 shows the interconnections between the

Fig. 2. SMI++ run-time environment.

components of the SMI toolkit. In this figure two SMI
domains are depicted, one of them containing several connec-
tions to hardware devices, through proxies. A user interface
can attach to the different domains in order to view the states of
their objects or to send commands to them.

SMI domains and their objects are described using a
simple language: SML- the State Management Language.

A. SML Language

Concrete objects are simply declared in SML, i.e., only their
list of states and possible actions for each state are defined.
The actual implementation is provided externally by a process

976 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 3. SML device declaration.

written in “C”, or in “C ” or by a PVSSII script, if the de-
vice is implemented within PVSSII. Abstract objects are com-
pletely implemented in SML. Objects, concrete or abstract, can
be grouped into “objectsets” to ease the manipulation of large
number of objects. Fig. 3 shows an example declaration of sev-
eral devices. In this example three power supplies are declared
as being of class “PowerSupply”. The three power supplies are
then included in an “objectset” (called PSS) so that they can be
manipulated as a group, when necessary.

In the class definition the qualifier “/associated” is used to
mean that the actual implementation is done by an associated
proxy. The “/dead_state” qualifier instructs any derived object
to go to the specified state, in this case “UNKNOWN”, if for
any reason the respective proxy is not running or not reachable.

Abstract object description will contain not only the possible
states and actions, but also the code that implements each action
and the rules for asynchronous transitions.

The SML instruction set is reduced to a small number of
simple and intuitive instructions.

The most important instructions are:
• “do” instruction: send a command to an object or to a set

of objects;
• “if” instruction: test the state of an object or a group of

objects;
• “move_to” instruction: end the action by moving to a new

state.
SMI objects are normally in a stable, well-defined, state,

but they can temporarily be transiting from a state to another.
An object is “transiting” between the time it received a com-
mand (via a “do” instruction) and the time it reached a new
state (via a “move_to” instruction). While an object is tran-
siting any “do” instructions it receives are queued and only pro-
cessed after it reaches the new state. Also any “if” instructions
involving the state of a transiting object will block until the ob-
ject reaches a stable state, this new state is then used in the eval-
uation of the “if” condition. “Do” instructions, on the other hand
are non-blocking. I.e. several consecutive “do” instructions will
be sent in parallel to the various objects involved. The conjunc-
tion of the behavior of these two instructions allows sending
“do” commands to several objects in parallel and waiting until
they all respond using a single “if” instruction.

Fig. 4. SML object implementation.

Fig. 5. SML asynchronous object automation.

For each state, before defining the possible list of actions, the
user can define a list of rules, by means of “when” instructions.
“when” instruction: while the object is in a given state whenever
the condition gets fulfilled, execute an action (“do” action) or
change state (“move_to” state).

• “When” instructions are the means of SMI objects to react
to changes of other objects, i.e., to changes in their envi-
ronment. Several rules can be listed consecutively, they are
examined in order, if one of them triggers it will be imme-
diately executed possibly provoking a change of state and
therefore stopping the execution of the list of rules.

In the example of Fig. 4, a “HighVoltage” abstract object is
modeled. It uses the group of power supplies (the PSS objectset)
declared in Fig. 3 above, in order to send commands and to
react to state changes of all the power supplies using simple
instructions.

Objects can be dynamically included or excluded into/from a
set by any object in the system by using two other instructions:
“insert object in set” and “remove object from set”. As a result
the code example in Fig. 4 will act/react on all power supplies
included in the set at the time of execution.

As mentioned before, objects can react to state changes of
any other object in the system, via a set of “when” rules. This
mechanism can be used to completely automate standard opera-
tions, without user intervention. In the example of Fig. 5 an ob-
ject of class DCS is made to get all sub-detector’s DCS systems
ready whenever the object “STATE” in the “LHC” domain goes
to state “PHYSICS”. Allowing for the complete automation of
the experiment based on the state of the LHC accelerator.

GASPAR AND FRANEK: TOOLS FOR THE AUTOMATION OF LARGE DISTRIBUTED CONTROL SYSTEMS 977

B. Tools

SMI offers a set of run-time tools to implement and de-
ploy the control system. Some of the tools are the following.

• Smirtl—a run time library to be used by proxies in order
to communicate with their respective SMI domain.

• smiSM—A logic engine which at startup reads the trans-
lated SML code and instantiates the objects of a given do-
main. There will be one smiSM process per SMI domain.

• Smiuirtl—A run-time library that can be used by client
programs, in particular user-interfaces, in order to view the
state of any object in the system and to send commands to
them.

All three tools handle all necessary communications transpar-
ently, due to the use of an underlying communication package,
called DIM [4]. Any of the components, SMI domains, proxies
and user interfaces, can dynamically move from one machine
to another on-the-fly (i.e., they can be stopped on one machine
and restarted on another one), all communications are auto-
matically reestablished and all necessary states recalculated.
SMI tools are available on several platforms, including
various UNIX flavors (in particular Linux) and Windows.
The complete control system can be deployed across several
(hundreds) heterogeneous machines.

V. FRAMEWORK INTEGRATION AND FEATURES

SMI has been interfaced to the PVSSII SCADA system,
in order to provide a JCOP Framework component for Hierar-
chical Control.

PVSSIIprovidesanAPI (ApplicationProgrammingInterface)
for external access. This API was used to create a PVSS process
which provides the communication between the two packages: at
run-time it transfersProxystates fromPVSSto thecorresponding
SMI Domain and Proxy commands back (using Smirtl) and it
transfers Object states from the SMI Domains to PVSS (and Ob-
ject commands back) for visualization and user control (using
Smiuirtl). PVSSII also provides a very intuitive graphical editor
which was used to develop both a configuration tool and an op-
eration tool for the Hierarchical Control component.

A. Hierarchical Control

The Framework offers tools to implement a hierarchical
control system. As described in the Architecture chapter above,
JCOP defined a hierarchical control tree composed of two
types of nodes: “Device Units” and “Control Units”. These
components match perfectly the SMI concepts: Device
Units correspond to concrete objects implemented as proxies
within PVSSII and Control Units correspond to SMI domains.

The integration of SMI with PVSSII provided for several
new features:

A graphical user interface was created which allows the con-
figuration of object types, declaration of states and actions, etc.
and for the generation of SML code, actions and rules through
the use of wizards. The hierarchical tree of components can also
be configured graphically as shown in Fig. 6.

The PVSSII archiving mechanism can in addition be used to
store state transitions and so be able to retrieve the time evolu-
tion and long-term statistics of object state changes.

Fig. 6. Framework panel for creating hierarchies.

Theintegrationof theSMI paradigmwiththeJCOPFrame-
work also provided for a clear definition of interfaces and task
separation: the PVSSII implementation of device units in terms
of scripts contains only basic actions, like “RESET” or “CON-
FIGURE”, it has no intelligence concerning when or in which
sequence they should be executed. The logic behavior in terms
of sequencing or dependency on other objects in the system is
described in SML and implemented by the SMI objects. The ad-
vantage is that if it is necessary to replace some hardware only the
PVSSII part is affected. On the other hand if the logic behavior
should change than only the SMI rules change.

B. Partitioning

As mentioned before, partitioning is the capability of moni-
toring and/or controlling a part of the system, a sub-system, in-
dependently and concurrently with the others in order to allow
for tests, calibration, etc.

Each Control Unit knows how to partition “out” or “in” its
children. Excluding a child from the hierarchy implies that its
state is not taken into account any more by the parent in its
decision process, that the parent will not send commands to it
and that the owner operator releases ownership so that another
operator can work with it.

It was felt that excluding completely a part of the tree was
not flexible enough, so the following partitioning modes were
defined and implemented in the Framework:

• Included—A component is included in the control hier-
archy; it receives commands from and sends its state to its
parent.

• Excluded—A component is excluded from the hierarchy,
it does not receive commands and its state is not taken into
account by its parent. This mode can be used when the

978 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 7. Parallel control hierarchies.

component is either faulty or ready to work in stand-alone
mode.

• Manual—A component is partially excluded from the hi-
erarchy in that it does not receive commands but its state
is still taken into account by its parent. This mode can be
used to make sure the system will not send commands to
a component while an expert is working on it. Since the
component’s state is still being taken into account, as soon
as the component is fixed the operations will proceed.

• Ignored—A component can be ignored, meaning that its
state is not taken into account by the parent but it still re-
ceives commands. This mode can be useful if a component
is reporting the wrong state or if it is only partially faulty
and the operator wants to proceed nevertheless.

The partitioning mechanism again fits perfectly with the
SMI concept of object sets and was implemented using this
feature: each child of a Control Unit can be part of two sets. A
“Send Commands To” set and a “Take State into Account” set.
The “Include” command will add it to both sets, the “Exclude”
command will remove it from both sets, “Manual” and “Ignore”
will add it only to the relevant set. Whenever a Control Unit
wants to send commands to its children only the ones in the set
will be affected, and the same for computing the state of the
Control Unit. This functionality was encapsulated in a SMI
Partitioning Object which is automatically inherited when a
Control Unit is created.

C. Distribution

Both PVSSII and SMI allow for the implementation of
large distributed and decentralized systems. There is no rule for
the mapping of Control Units and Device Units into machines,
i.e., there can be one or more of these units per machine de-
pending on their complexity, or other factors such as develop-
ment teams they “belong” to. The Framework allows users to de-
scribe their system and run it transparently across several com-
puters. Since both tools can run on mixed environments com-

prising Linux and Windows machines, the user can also choose
the best platform for each specific task.

D. Error Handling

Error handling is the capability of the control system to detect
errors and to attempt recovery from them. It should also inform
and guide the operators and to record/archive the information
about problems for maintaining statistics and for further anal-
ysis offline.

Since SMI++ is also a rule-based system, errors can be han-
dled and recovered using the same mechanism used for “stan-
dard” system behavior. There is no basic difference between im-
plementing rules like “when system configured start run” and
“when system in error reset it”. The recovery from known error
conditions can be automated using the hierarchical control tools
based on sub-system’s states. In conjunction with the error re-
covery provided by SMI++ full use is made of the powerful
alarm handling tools provided by PVSSII for allowing equip-
ment to generate alarms (possibly using the same conditions
that generate states), for archiving, filtering, summarizing and
displaying alarms to users and to allow users to mask and/or ac-
knowledge alarms.

E. Automation

By integrating SMI , the Framework tools can provide for
complete automation of a large control system. SMI ’s mech-
anism for automation of procedures and for automated error-re-
covery is quite suited for large systems: The recovery mecha-
nism is the following.

• Bottom up—each object reacts in an event-driven, asyn-
chronous, fashion to changes of its children.

• Distributed—each sub-system recovers its own errors and
automates procedures for its sub-tree. For large physics
experiments this is an advantage, since each team knows
best how to handle their equipment.

This decentralized approach is inherently scalable, since
there is no centralized expert system examining all faults in

GASPAR AND FRANEK: TOOLS FOR THE AUTOMATION OF LARGE DISTRIBUTED CONTROL SYSTEMS 979

Fig. 8. Prototype run control interface.

the system, which could provoke a bottleneck. Furthermore it
allows for parallel recovery, for example, if there is a general
power cut, each sub-system can start recovering in parallel
when the power comes back.

The Framework tools allow building a completely automated
hierarchy based on the states of the devices composing the ex-
periment and on the states of external elements like the LHC
accelerator. In the example of Fig. 7, the top part of the figure
represents a typical hierarchy for a physics experiment. But it
is also possible to build parallel hierarchies, the bottom part of
Fig. 7, shows an example of a “safety” hierarchy that would con-
tain code like: “When any gas system in error cut all high volt-
ages in the experiment”.

F. System Operation and Run Control

The Framework provides configurable operation panels.
These panels are automatically generated and will have prede-
fined areas showing the states of the hierarchical components,
their partitioning modes, their alarm states, etc. and user defined
areas that are specific to the task of that particular component.
The user can navigate through the hierarchy by clicking on the
different components.

The panel showing the component at the top of the hierarchy
provides a high-level, summarized, view of the complete under-
lying system.

The main interface to a physics experiment is normally called
the “Run Control”. A simple Run-control panel is shown as an
example in Fig. 8.

The operation of the different sub-systems, or complete sub-
detectors when working in stand-alone mode, is based on the
same tools and will provide similar interfaces.

VI. CONCLUSIONS

The SMI framework is a powerful tool which, while
merging the concepts of object modeling, finite state machines
and rule-based reasoning, allows the implementation of homo-
geneous, integrated and fully automated control systems. Its
inherent capabilities of distribution and scalability over large
sets of heterogeneous platforms makes it extremely well-suited
to control very large applications.

The SMI framework has become a time tested, robust
tool through its use by major particle physics experiments: the
DELPHI experiment at CERN in the recent past and the BaBar
experiment at SLAC, which is currently using it in production.

SMI has been integrated with the SCADA tool PVSSII
in order to provide extra functionality, like graphical tools and
standardized partitioning modes, and is now being used by the
four LHC experiments at CERN for the design of either full or
partial experiment control.

REFERENCES

[1] A. Daneels and W. Salter, “The LHC experiments joint controls
project, JCOP,” presented at the International Conference on Acceler-
ator and Large Experimental Physics Control Systems Trieste, Italy,
1999.

[2] S. Schmeling, “Controls framework for LHC experiments,” presented
at the 13th IEEE-NPSS Real Time Conference Montreal, QC, Canada,
May. 18–23, 2003.

[3] PVSS-II, [Online]. Available: http://www.pvss.com.
[4] B. Franek and C. Gaspar, “SMI++—An object oriented Framework

for designing distributed control systems,” IEEE Trans. Nucl. Sci., vol.
45, no. 4, pp. 1946–1950, Aug. 1998.

[5] C. Gaspar and M. Dönszelmann, “DIM, a portable, light weight
package for information publishing, data transfer and inter-process
communication,” (in Ph. Charpentier) Computer Physics Communica-
tions, vol. 140, no. 1+2, pp. 102–109, Oct. 2001.

