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Back reaction and the local cosmological expansion rate
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We calculate the back reaction of cosmological perturbations on a general relativistic variable which mea-
sures the local expansion rate of the Universe. Specifically, we consider a cosmological model in which matter
is described by a single field. We analyze back reaction both in a matter-dominated Universe and in a phase of
scalar field-driven chaotic inflation. In both cases, we find that the leading infrared terms contributing to the
back reaction vanish when the local expansion rate is measured at a fixed value of the matter field which is
used as a clock, whereas they do not appear to vanish if the expansion rate is evaluated at a fixed value of the
background time. We discuss possible implications for more realistic models with a more complicated matter
sector.
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I. INTRODUCTION

Because of the nonlinear nature of the Einstein equatio
linear fluctuations about a homogeneous and isotro
Friedmann-Robertson-Walker~FRW! cosmology will back
react on the background on which they live. The back re
tion of short wavelength gravitational waves was studie
long time ago by Brill, Hartle and Isaacson@1#. In this ap-
proach, the back reaction of fluctuations on the spatially
eraged metric can be described by an effective ene
momentum tensor which contains the spatially avera
terms in the Einstein tensor which are second order in
amplitude of the fluctuations. More recently, Tsamis a
Woodard@2# have initiated a detailed study of the back rea
tion of long wavelength gravitational waves in a de Sit
background. Scalar-type metric fluctuations~called ‘‘cosmo-
logical fluctuations’’ in what follows! are also expected to
back react on the background space-time. Since in the
text of inflationary and post-inflationary cosmology the sc
lar metric fluctuations are believed to dominate over the
fects of gravitational waves, the back reaction of the
cosmological perturbations is expected to give the domin
ing back reaction effect.

In @3,4#, the formalism of@1# was generalized to describ
the back reaction of cosmological perturbations on the s
tially averaged metric. On this basis, it was argued@3–5# that
gravitational back reaction in scalar field-driven inflationa
models, calculated up to quadratic order in perturbations
to leading order in the long wavelength expansion and in
slow roll approximation could decrease the expansion rat
the universe and potentially solve the cosmological cons
problem@6# ~see also@7# for similar results in the context o

*Email address: ghazal@het.brown.edu
†Email address: rhb@het.brown.edu
0556-2821/2002/66~12!/123507~6!/$20.00 66 1235
s,
ic

c-
a

-
y-
d
e

d
-
r

n-
-
f-
e
t-

a-

d
e
of
nt

back-reaction studies of gravitational waves!. The formalism
of @3,4# is covariant under first order space-tim
diffeomorphisms.1

However, as emphasized by Unruh@21#,2 the approach of
Refs.@2–4# is deficient in several respects. First of all, due
the nonlinear nature of the Einstein equations, calculating
‘‘observable’’ from the spatially averaged metric will not i
general give the same result as calculating the spatially
eraged value of the observable. More importantly, the s
tially averaged metric is not a local physical observab
Thus, to take into account the deficiencies of the previo
work on gravitational back reaction, we must identify a loc
physical variable which describes the expansion rate of
Universe, calculate the back reaction of cosmological per
bations on this quantity, and then take the spatially avera
value of the result. It is important to fix the hypersurface
averaging by a clear physical prescription in order to remo
the possibility of being misled by effects which are seco
order gauge artifacts.

In this paper we propose an implementation of this a
proach. We focus on the variable which yields the gene
relativistic definition of the local expansion rate and calc
late this quantity to second order in the amplitude of t
cosmological fluctuations in terms of a time variable defin

1The back reaction of small-scale~i.e. smaller than the Hubble
radius! cosmological perturbations has been considered~without
taking into account the issues of gauge freedom! in @8–15#. This
problem has also been considered in the context of Newtonian
mological perturbation theory in@16,17#. More recently, Nambu
@18–20# has initiated a program to compute back-reaction effects
the spatially averaged metric using the renormalization gro
method.

2We are also grateful to Andrei Linde and Alan Guth for detail
private discussions on these points.
©2002 The American Physical Society07-1
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by an unambiguous physical prescription. For simplicity,
assume that matter is described by a single field~either a
hydrodynamical field or a single scalar field!.

We study two examples, first a matter-dominated U
verse, and second the inflationary phase of a cosmo
dominated by a single scalar field. In both cases we find
the leading infrared contributions to the back reaction on
local expansion rate of the Universe vanish, in contrast to
findings of the initial work on gravitational back-reaction
cosmological fluctuations@3–5#, and confirming the analysi
of @21#. We thus confirm the conclusions reached recently
@22,23# where a different variable related to the local expa
sion rate is proposed, and different techniques to evalu
this variable are used.

Note that when evaluated at a fixed background time,
leading infrared back-reaction terms give a non-vanish
contribution. This leads us to the conjecture that in m
realistic models in which a second field is present to de
mine time~e.g. the microwave background!, the leading in-
frared back-reaction terms will not vanish.

II. A LOCAL OBSERVABLE

For a general perfect fluid flow in a curved space-time
consider the velocity four-vector fieldua tangential to a fam-
ily of world lines. In the context of cosmology, we can a
ways define a preferred family of world lines represent
the motion of a set of comoving observers. In the case
hydrodynamical matter, this is easy since the ener
momentum tensor is already defined in terms of a velo
four-vector field. Also in the case of scalar field matter
corresponding four-vector field can be defined, although a
more care is required to obtain a consistent definition.
both cases we have

uaua51, ~1!

where a runs over the space-time indices. The project
tensor onto tangential three-surfaces orthogonal toua is

hab5gab2uaub . ~2!

The first covariant derivative of the four-velocity can b
decomposed as~see, e.g.@24# for details!

ua;b5vab1sab1
1

3
Qhab2u̇aub . ~3!

Here

Q[u;a
a ~4!

is the local expansion rate of the tangential surfaces ortho
nal to the fluid flow,v is the vorticity tensor~with vabub

50), ands is the shear tensor~satisfying sabub50, sa
a

50).
For a homogeneous Universe with scale factora(t) the

Hubble expansion rateH is
12350
-
gy
at
e
e

n
-
te

r
g
e
r-

e

f
-
y

it
n

n

o-

H[ȧ/a5
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3
Q. ~5!

For a cosmological model with fluctuations,Q is local in
space and time. We will useQ to define the local expansio
rateṠ/S via the local analog of Eq.~5!, namely via the equa-
tion

Ṡ/S[
1

3
Q. ~6!

The quantityṠ/S is a much better measure of the local
measured expansion rate in a Universe with fluctuations t
the Hubble expansion rate used in@3,4# determined via the
spatially averaged metric, including back reaction. It is
mathematically simpler object than the variable recently
troduced in@22# which involves the integral along the pa
light cone of the observation point. If we are interested
evaluating the expansion rate for a typical observer, we p
pose to take the spatial average of the local expansion
defined via Eq.~6!.

Now that we have defined the observable we are in
ested in, the procedure will be as follows. First, we mu
determine the velocity four-vector fieldua for the models we
are interested in. Then, we use the Einstein equations to
pressua in terms of the metric perturbation. Taking the rel
tive amplitude of the metric fluctuations as the expans
parameter, we then calculateQ, our local measure of the
Hubble expansion rate, to second order. After evaluating
result on a physically determined hypersurface we can t
study the back reaction of cosmological fluctuations on
locally measured Hubble expansion rate. In this paper
will focus on the leading infrared contributions to back rea
tion, the terms found to dominate the back-reaction effect
@3–5#.

III. DERIVING THE EXPANSION RATE FOR SCALAR
METRIC PERTURBATIONS

In this section we consider a model with hydrodynamic
matter. Starting from the expression for the metric to line
order in the fluctuationsF ~see@25# for a detailed review!,
we determine the velocity four-vector fieldua to the order
required to analyze the leading infrared terms in the b
reaction to quadratic order. To obtain the full back react
terms~including terms which dominate in the ultraviolet b
are negligible in the infrared! we should calculateua consis-
tently up to second order. However, if we are only interes
in the leading infrared terms, it is sufficient to keep all t
terms quadratic inF but not containing any spatial gradient
Note that in a consistent second order perturbative form
ism, one also needs to include second order metric pertu
tions. However, since by definition the averages of line
functions of fluctuation variables cancels, the contribution
second order metric fluctuation to average values of ba
reaction quantities calculated to second order vanishes. T
in this work we will not take into account second order m
ric fluctuations.

In order to obtain the complete result for gravitation
7-2
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back reaction we would have to look at the Einstein eq
tions for a perfect fluid with energy densityr and pressureP,

Gmn5~P1r!umun2Pgmn ~7!

~in units in which 8pG51), which, sinceGm
m5R, will yield

2R5r23P ~8!

r5umGmnun, ~9!

and lead to an equation that can be solved perturbativel
any desired order forui :

Gi
05

4

3
umGmnunu0ui1Ru0ui . ~10!

However, as mentioned above, here we just use the re
for ui which are of linear order. Since we will calculate th
divergence ofum, our prescription implies that we are igno
ing some of the extra second order gradient terms. The re
can also be used for scalar fields if we define theu vector
field in a proper way.

For an unperturbed Robertson-Walker metric, the fo
velocity field u in comoving coordinates would be

um5~1,0,0,0!. ~11!

In linear perturbation theory, and in the case of simple for
of matter~such as a single fluid or a single scalar field! for
which there is to linear order no anisotropic stress, the me
~in longitudinal gauge! can be written as

ds25a~h!2@~112F!dh22~122C!g i j dxidxj #, ~12!

g i j 5d i j F11
1

4
K~x21y21z2!G ~13!

where K50,1,21 depending on whether the thre
dimensional space corresponding to the hypersurfact
5const is flat, closed or open. In this paper we will take it
be zero in order to simplify the calculations. The time va
ableh appearing in Eq.~12! is conformal time and is relate
to the physical timet via dh5a21dt. For the forms of mat-
ter considered here,C5F at linear order.3 As discussed e.g
in Ref. @25#, in longitudinal gauge the spatial components
the four-velocity vector field are related toF via

dui52a22~H22H81K!21~aF! ,i8 ~14!

where a prime denotes differentiation with respect toh and
H5a8/a. Using Eq.~1! we can derive the expression for th
time component ofua in terms ofF:

u0~h!5a21S 12F1
3

2
F2D . ~15!

3Even if we did not make the assumptionC5F, it turns out that
at second order all infrared terms depending onC2F will drop
out.
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Now that we have all components ofua, we take the
covariant derivative of it and retain allF dependence up to
second order.4 These second order terms principally com
from the Christoffel symbols. Other second order ter
~which as mentioned before are gradient terms! could be
added to the ones computed here if we were to solve
Einstein equations in the form~10! beyond linear order. A
straightforward calculation yields

Q53
a8

a2 S 12F1
3

2
F2D2

3

a
~F81Ff8!

1
~a] iF!8~] iF!1~a] i

2F!8

a2~H 82H 2!
. ~16!

Since ȧ/a5a8/a2, we can immediately read off the extr
terms contributing to the local expansion rate which res
from the presence of cosmological fluctuations. Upon spa
averaging at a fixed conformal time, the terms linear inF
drop out. Hence, it follows that if evaluated at a fixed co
formal time, infrared modes on average lead to an increas
the expansion rate compared to what would be obtaine
the same conformal time in the absence of metric fluct
tions. Whether this is a physically measurable effect from
observational point of view will be discussed in more dep
in following sections.

IV. EXPANSION RATE FOR A MATTER-DOMINATED
UNIVERSE

Now let us use the result of the preceding section to~as an
example! calculate the local Hubble expansion rate for
matter-dominated Universe. In this case, the scale factoa
and the scalar metric perturbationF have the following de-
pendence on the conformal timeh:

a~h!5amh2/2 ~17!

F~h,x!5C1~x!1C2~x!h25, ~18!

wheream is a constant, andC1 andC2 are time independent
The second equation is valid in the long wavelength~super-
Hubble-scale! limit and has been explicitly derived in@25#.
Now using Eqs.~16!, ~17! and~18! we obtainQ in terms of
conformal time:

4This is in the philosophy of the general back-reaction approac
which it is assumed that the fluctuations of the metric and ma
satisfy the linear perturbation equations, and we compute their b
reaction on physical quantities to second order. It is not a consis
second order perturbative formalism.
7-3
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Q5
12

am
h23S 12C1~x!1

3

2
C1

2D2
2

3

1

am
h21@„] iC1~x!…2

1] i
2C1~x!#1

1

am
h26S 1

3
„] iC1~x!…„] iC2~x!…

1] i
2C2~x! D1

1

am
h28@18C2~x!166C1~x!C2~x!#

1
1

am
h211

„] iC2~x!…21
48

am
h213

„C2~x!…2. ~19!

Some of the terms are decreasing very fast as a functio
time and thus we can ignore them. If we just keep the te
with the powers23 and21 of h then we get:

Q5
12

am
h23S 12C1~x!1

3

2
C1

2D2
2

3

1

am
h21@„] iC1~x!…2

1] i
2C1~x!#. ~20!

If we take the average ofQ on a constanth hypersurface,
only the terms quadratic in the fluctuation variables survi
Thus, considering large values ofh and focusing on the sec
ond order terms, it appears from Eq.~20! that infrared modes
give a positive contribution toQ and thus lead to a
speeding-up of the expansion, whereas ultraviolet modes
ter with a negative sign and thus yield a slowing effect,
latter becoming more significant~relative to the unperturbed
expansion rate! for larger values ofh.

However, before drawing definite physical conclusio
from our analysis, we must take into account that the ba
ground timeh is not an observable quantity. To obtain r
sults for back reaction of any real physical significance
have to find an observable variable like proper time a
evaluate the expansion rate in terms of this variable, so
we can discuss its evolution from an observer’s point
view.

If we use Eq.~12! for the metric, Eq.~18! for F, and Eq.
~17! for the scale factor, we can find the expression for
proper timet in terms of conformal time. Since

dt25a~h!2~112F!dh2, ~21!

a simple integration yields

t5
am

6 S 11C12
1

2
C1

2Dh32
am

4
~C22C1C2!h22

1
am

28
C2

2h27. ~22!

In the approximation of large values ofh we can ignore the
second and the third term of this equation and thus obta

h235
am

6 S 11C12
1

2
C1

2D t21. ~23!

Now we can use this relation and substitute into the first te
of Eq. ~20!. We see the effects of the dominant infrared ter
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on the local expansion rate cancel exactly up to second o
in perturbations, when evaluatingQ at a fixed proper time:

Q IR52t21. ~24!

This implies that at least in the approximation of keepi
only the leading infrared terms, there is no local gravitatio
back reaction of cosmological fluctuations on the loc
Hubble expansion rate in this matter-dominated universe

V. EXPANSION RATE IN TERMS OF SCALAR FIELD AS
AN OBSERVABLE

We now move on to the example more relevant to
work of @3–5#, namely a Universe dominated by a single re
scalar fieldw, which is a toy model for inflationary cosmol
ogy. During inflation, fluctuations which are generated
sub-Hubble scales early on during the inflationary phase
redshifted to scales much larger than the Hubble rad
Thus, in this context it is of great interest to consider t
back reaction of infrared modes.

In the following we will generalize the previous analys
to be applicable to matter consisting of a single scalar fie
In this case one can treat the scalar field as a perfect fluid
derive the velocity four-vector field. To do this, we need
write the energy-momentum tensorTmn of the scalar field
~right-hand side of the following equation! in the form of an
energy-momentum tensor for a perfect fluid~left-hand side
of the following equation!:

~r1P!umun2Pgmn5]mw]nw2L•gmn . ~25!

At the level of the background fields, the two expressions
identical if we takeP5L andum5A]mw with

A5~]nw]nw!21/2. ~26!

Now that we have shown that the energy-momentum t
sor of a scalar field can be written in the form of that of
perfect fluid, we can use the expression~16! which givesQ
in terms of the metric fluctuations to evaluate the local eff
of gravitational back reaction of cosmological fluctuation
Let us first for convenience rewriteQ of Eq. ~16! in terms of
the physical timet:

Q53
ȧ

a S 12F1
3

2
F2D23~Ḟ1ḞF!1

~] iḞ!~] iF!1] i
2Ḟ

aä2ȧ2
.

~27!

Theoretically, the scalar fieldw is an observable. In fact
in a system with a single matter fieldw, it is this field which
must be used as a clock. Hence, to obtain results with ph
cal meaning, we must evaluateQ on a surface of constantw
and not constantt.

As discussed above, in the context of inflationary cosm
ogy it is important to study the effects of infrared modes
to second order. We will also assume that we are in the s
rolling regime of inflation. In our case~as well as for a more
general case!, the prescription is to calculatet, F, a and]/]t
7-4
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BACK REACTION AND THE LOCAL COSMOLOGICAL . . . PHYSICAL REVIEW D 66, 123507 ~2002!
in terms ofw, and to insert the results into the general e
pression~27! for Q. The relation betweent and w can be
derived starting from

w~ t !5w0~ t !1dw1~ t !, ~28!

which can be written as

t5w0
21@w2dw1~ t !#. ~29!

Thus, the equation

t5w0
21~w!2

]w0
21~w!

]w
dw1„w0

21~w!…

1S ]w0
21~w!

]w D 2 ]dw1„w0
21~w!…

]t
dw1„w0

21~w!…

1
1

2

]2w0
21~w!

]w2
dw1

2
„w0

21~w!… ~30!

relatest andw.
We now wish to express the value ofQ in terms of w

~note that we are considering the local value ofQ in this
analysis, and there is no need to perform a spatial averag!.
In order to relate the metric, its fluctuations and the sc
factor to the scalar field and its fluctuations we need to t
an explicit form for the potential and make use of the E
stein constraint equations. TheG0i andG00 equations relate
F to w ~at the level of the first order fluctuations! and the
Hubble parameter of the background to the background
lar field w0 ~at the level of the unperturbed Friedmann equ
tions!. In our simple system we do not need to go throu
these calculations explicitly~as long as we are intereste
only in the leading infrared terms! since by dropping the
gradient terms from theG0i and G00 equations, it can be
shown that@26#

H

A112F
5

1

A3
AV~w!. ~31!

If we expand the right-hand side in terms ofF we get the
result

HS 12F1
3

2
F2D 5

1

A3
AV~w!, ~32!

and substituting this result into Eq.~27! and neglecting terms
containingḞ and] iF ~which are sub-dominant compared
other terms in the infrared and slow roll limit! leads to the
final result for the local expansion rate:

Q5A3AV~w! ~33!

which as a function ofw is the same as the relation for a
unperturbed background.

Thus, again we do not see any back reaction of cos
logical perturbations on the local expansion rate in this
proximation. In retrospect it is easy to understand this res
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since@26# by neglecting gradient terms we have a Friedma
Universe whose expansion rate satisfies Eq.~33!.

VI. CONCLUSIONS

In this paper we have studied the back-reaction effects
a local observable which measures the local expansion
of the Universe. The observable gives the rate at wh
neighboring comoving observers separate and coincides
the usual definition of expansion in the context of the flu
approach to cosmology. In order to obtain a physical qu
tity, we evaluated the observable at a fixed value of the sc
field.

We evaluated our observable, thelocal physical expan-
sion rate, in a simple toy model of chaotic inflation consis
ing of a single scalar matter field coupled to gravity. W
found that the leading infrared terms, the terms which do
nate the effects discussed in@3# and@5#, cancel if we evaluate
the observable at a fixed value of the scalar field, wher
they do not vanish if we evaluate them at a fixed value of
background time. The former result is a physical result sin
it corresponds to a physical observable evaluated at a sp
time point specified by a physical prescription, whereas
latter result~obtained by evaluating at a fixed backgrou
time! does not have a diffeomorphism-invariant meanin
Our analysis thus confirms the concern of@21# that the re-
sults obtained in@3# and @5# are not invariant under secon
order gauge transformations. Our results confirm the con
sions of @23# reached by means of a different method
analysis applied to a different physical observable.

Our result doesnot imply that there is no back reaction o
the infrared modes of cosmological perturbations. There
no reason to expect that the next to leading infrared term
our result will cancel~they do not cancel in the analysis o
@23#!. One of the advantages of our technique is that they
be evaluated without too much trouble. This is left to a futu
publication. So, even in single field models of inflation the
might be some non-vanishing back reaction of infrar
modes.

We expect that back reaction of infrared modes will
much more important in two field models of inflation. Let u
assume that the matter sector of the theory contains bot
inflation field w and a regular matter fieldx ~with a nonva-
nishing and time-dependent spatial average! which, for ex-
ample, could represent the cosmic microwave backgrou
In this case, it is no longer true that long wavelength flu
tuations have no physical effects on local observables. If
measurement point is~in an unambiguous physical way! de-
termined by a fixed value of the fieldx, then the local ex-
pansion rate may sensitively depend on the amplitude of
long wavelength fluctuations inw. Thus, the leading infrared
terms may not cancel when evaluated according to t
above-mentioned physical prescription in the same way
they do not cancel in the analysis of this paper when
observable is evaluated at a fixed value of the backgro
time.

There is a close analogy with the analysis of the param
ric amplification of super-Hubble-scale cosmological flu
tuations during inflationary reheating. From the point of vie
7-5
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of the background space-time coordinates, it appears@27#
that the parametric amplification of matter fluctuations
super-Hubble scales in an unperturbed cosmological b
ground~see, e.g.@28,29# for a discussion of parametric reso
nance during reheating! would imply the parametric amplifi-
cation of the cosmological fluctuations on these sca
However, it can be shown that in single field models physi
observables measuring the amplitude of cosmological fl
tuations do not feel any resonance@26,30–32#. In contrast, in
two field models of inflation there is@33,34# parametric am-
plification of super-Hubble-scale cosmological fluctuatio
In this case, there is a fluctuation mode corresponding
entropy fluctuations which cannot locally be gauged aw
This mode is~in certain theories! parametrically amplified
during reheating, and in turn drives the parametric resona
of the super-Hubble scale curvature fluctuations.

Our techniques allow us to calculate the back reaction
cosmological fluctuations in two field models in a very sim
ys
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lar way to what is presented here. Results will be presen
in a future publication@35#.
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