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We calculate the back reaction of cosmological perturbations on a general relativistic variable which mea-
sures the local expansion rate of the Universe. Specifically, we consider a cosmological model in which matter
is described by a single field. We analyze back reaction both in a matter-dominated Universe and in a phase of
scalar field-driven chaotic inflation. In both cases, we find that the leading infrared terms contributing to the
back reaction vanish when the local expansion rate is measured at a fixed value of the matter field which is
used as a clock, whereas they do not appear to vanish if the expansion rate is evaluated at a fixed value of the
background time. We discuss possible implications for more realistic models with a more complicated matter
sector.
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[. INTRODUCTION back-reaction studies of gravitational way€bhe formalism
of [3,4 is covariant under first order space-time
Because of the nonlinear nature of the Einstein equationsliffeomorphisms.

linear fluctuations about a homogeneous and isotropic However, as emphasized by Unr[2i],? the approach of
Friedmann-Robertson-WalkdFRW) cosmology will back Refs.[2—4]is deficient in several respects. First of all, due to
react on the background on which they live. The back reacthe nonlinear nature of the Einstein equations, calculating an
tion of short wavelength gravitational waves was studied gobservable” from the spatially averaged metric will not in
long time ago by Brill, Hartle and Isaacséh]. In this ap-  general give the same result as calculating the spatially av-
proach, the back reaction of fluctuations on the spatially averaged value of the observable. More importantly, the spa-
eraged metric can be described by an effective energyially averaged metric is not a local physical observable.
momentum tensor which contains the spatially averagedhys, to take into account the deficiencies of the previous
terms in the Einstein tensor which are second order in thgyork on gravitational back reaction, we must identify a local
amplitude of the fluctuations. More recently, Tsamis andyysical variable which describes the expansion rate of the
Woodard[2] have initiated a detailed study of the back reac-jnjyerse, calculate the back reaction of cosmological pertur-

Eonkof Iong Véavclelength grav[tatfllonal wavelsl '3 f‘ de Sitteryations on this guantity, and then take the spatially averaged
I ac glr%un - >ca a[-t_ype r:netfrlcil UCtuat'dllla € cosmdo- value of the result. It is important to fix the hypersurface of
ogical fluctuations” in what follows are also expected 10 5y eraging by a clear physical prescription in order to remove

back react on the background space-time. Since in the COfRe possibility of being misled by effects which are second
text of inflationary and post-inflationary cosmology the SCa-grder gauge artifacts.

lar metric fluctuations are believed to dominate over the ef- | " .o paper we propose an implementation of this ap-

fects of gravitational waves, the back reaction of thes roach. We focus on the variable which yields the general
?OSEOIig'Cal perturflf)anons is expected to give the dominatze|asivistic definition of the local expansion rate and calcu-
ing back reaction efiect. late this quantity to second order in the amplitude of the

In [3,4], the formalism of 1] was generalized to describe ¢ agical fluctuations in terms of a time variable defined
the back reaction of cosmological perturbations on the spa-

tially averaged metric. On this basis, it was arg{@d5] that
gravitational back reaction in scalar field-driven inflationary 11 ok reaction of small-scalee. smaller than the Hubble

models_, Calculat_ed up to quadratic order in pert_urbation_s anpadiue) cosmological perturbations has been considdfeithout
to leading order in the long wavelength expansion and in the,

. . ‘ king into account the issues of gauge freegl@am[8—15]. This
slow roll approximation could decrease the expansion rate 0pﬁoblem has also been considered in the context of Newtonian cos-

the universe and potentially solve the cosmological constangiogical perturbation theory ifil6,17. More recently, Nambu
problem[6] (see alsd7] for similar results in the context of [18_2q has initiated a program to compute back-reaction effects on

the spatially averaged metric using the renormalization group

method.
*Email address: ghazal@het.brown.edu We are also grateful to Andrei Linde and Alan Guth for detailed
TEmail address: rhb@het.brown.edu private discussions on these points.
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by an unambiguous physical prescription. For simplicity, we _ 1
assume that matter is described by a single fielther a H=a/a=-6. ()
hydrodynamical field or a single scalar figld

We study two examples, first a matter-dominated Uni-For a cosmological model with fluctuation®), is local in
verse, and second the inflationary phase of a cosmologypace and time. We will use to define the local expansion

dominated by a single scalar field. In both cases we find th ¢ ; - )
the leading infrared contributions to the back reaction on thart-atES/S via the local analog of Eq(5), namely via the equa

local expansion rate of the Universe vanish, in contrast to the

findings of the initial work on gravitational back-reaction of . 1

cosmological fluctuationg3—5], and confirming the analysis S/8=30. (6)
of [21]. We thus confirm the conclusions reached recently in

[22,23 where a different variable related to the local expan-r,. quantity§/S is a much better measure of the locally

sion rate is proposed, and different techniques to evaluatr%easured expansion rate in a Universe with fluctuations than

thl?\l\é?él?r?;? V%Ligseiiluated at a fixed background time outhe Hubble expansion rate used[B4] determined via the
ackg - gpatially averaged metric, including back reaction. It is a

foi(ilrri]t?utligfrrlar'le'gisb?;ell((;rseicsu(t)cr)l :ﬁ;mcsor?g;u?ent?gtv ?nn';r'é?qnathematically simpler object than the variable recently in-
o ) ; . On)e Qroduced in[22] which involves the integral along the past
re_allsu.c models in Wh'Ch a second field is presen_t to .deterl'ight cone of the observation point. If we are interested in
fr?;:s dtltr)naiie-'rgeétcrt]i% r:n:g:%v;av\\//ﬁl t:\%(t:li/g;rr?iusadhe leading in- evaluating the expans.ion rate for a typical observer, we pro-
: pose to take the spatial average of the local expansion rate
defined via Eq(6).
Il. ALOCAL OBSERVABLE Now that we have defined the observable we are inter-
eested in, the procedure will be as follows. First, we must
determine the velocity four-vector field® for the models we
are interested in. Then, we use the Einstein equations to ex-

wavs define a oreferred familv of world lines representin pressu® in terms of the metric perturbation. Taking the rela-
Y P y P g}ive amplitude of the metric fluctuations as the expansion

the motion of a set of comoving observers. In the case o
parameter, we then calculat®, our local measure of the

hydrodynamical matter, this is easy since the ENeT9YLubble expansion rate, to second order. After evaluating the

momentum tensor is already defined in terms of a veIOC|tyresult on a physically determined hypersurface we can then

four-vector field. Also in the case of scalar field matter, a g X .

. . : study the back reaction of cosmological fluctuations on the
correspond|.ng four?vector field can be deflned, althpL_Jgh a bI;f‘ocally measured Hubble expansion rate. In this paper we
more care is required to obtain a consistent definition. In :

both cases we have will focus on the leading infrared contributions to back reac-
tion, the terms found to dominate the back-reaction effects in
[3-5].

For a general perfect fluid flow in a curved space-time w
consider the velocity four-vector fiela* tangential to a fam-
ily of world lines. In the context of cosmology, we can al-

u®u,=1, 1)

IIl. DERIVING THE EXPANSION RATE FOR SCALAR

where @ runs over the space-time indices. The projection METRIC PERTURBATIONS

tensor onto tangential three-surfaces orthogonal“tds
In this section we consider a model with hydrodynamical
Nop=0ap—UsUg. (2 matter. Starting from the expression for the metric to linear
order in the fluctuation® (see[25] for a detailed review
The first covariant derivative of the four-velocity can be we determine the velocity four-vector field" to the order
decomposed asee, e.g[24] for detail9 required to analyze the leading infrared terms in the back
reaction to quadratic order. To obtain the full back reaction
1 ] terms(including terms which dominate in the ultraviolet but
Ua;p= @apt Tapt 3ONL—UUg. (3)  are negligible in the infraredve should calculate® consis-
tently up to second order. However, if we are only interested
in the leading infrared terms, it is sufficient to keep all the
terms quadratic i but not containing any spatial gradients.
N Note that in a consistent second order perturbative formal-
O=u;, (4) ism, one also needs to include second order metric perturba-
tions. However, since by definition the averages of linear
is the local expansion rate of the tangential surfaces orthoggunctions of fluctuation variables cancels, the contribution of
nal to the fluid flow,w is the vorticity tensorwith w,zu”  second order metric fluctuation to average values of back-
=0), ando is the shear tensdsatisfying craﬁuﬁ=0, ol reaction quantities calculated to second order vanishes. Thus,

Here

=0). in this work we will not take into account second order met-
For a homogeneous Universe with scale fac¢r) the ric fluctuations.
Hubble expansion ratd is In order to obtain the complete result for gravitational
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back reaction we would have to look at the Einstein equa- Now that we have all components of, we take the
tions for a perfect fluid with energy densiptyand pressur®, covariant derivative of it and retain al dependence up to
second ordet. These second order terms principally come
Gu=(P+p)u,u,—Pg,, (7)  from the Christoffel symbols. Other second order terms
. L . . . . (which as mentioned before are gradient terrosuld be
e /'L: .
(in units in which 8G =1), which, since}, =R, will yield added to the ones computed here if we were to solve the
—R=p-3P (8) Eins_tein equations in the fo_rrﬁlO) beyond linear order. A
straightforward calculation yields

p=UG,, U, )
and lead to an equation that can be solved perturbatively to a’' 3 3
any desired order fou; : 0=3—|1-d+ ECDZ) ——(P'+Dg")
a a
G°—4“G "ulu;+ RuP 10 a®)' (3;®)+ (ad’d)’
P =3 U G, U Ry, (10 +(ai ) (6;®) +(adiP) 16

aZ(H ’ _HZ)
However, as mentioned above, here we just use the results
for u' which are of linear order. Since we will calculate the

divergence oli*, our prescription implies that we are ignor- since a/a—a’/a2, we can immediately read off the extra
ing some of the extra second order gradient terms. The resulfyms contributing to the local expansion rate which result
can also be used for scalar fields if we define theector  from the presence of cosmological fluctuations. Upon spatial

field in a proper way. _ averaging at a fixed conformal time, the terms lineabin
For an unperturbed Robertson-Walker metric, the fouryron out. Hence, it follows that if evaluated at a fixed con-
velocity field u in comoving coordinates would be formal time, infrared modes on average lead to an increase in

_ the expansion rate compared to what would be obtained at
u*=(1,0,0,0. (12) A .

e the same conformal time in the absence of metric fluctua-
In linear perturbation theory, and in the case of simple formdions. Whether this is a physically measurable effect from an
of matter(such as a single fluid or a single scalar fiefor observational point of view will be discussed in more depth
which there is to linear order no anisotropic stress, the metrié following sections.
(in longitudinal gauggecan be written as

ds?=a(n)?[(1+2®)d7?—(1-2V¥)y;dxdx], (12 IV. EXPANSION RATE FOR A MATTER-DOMINATED
UNIVERSE
1
yij=&ij| 1+ ZlC(x2+y2+ z?) (13 Now let us use the result of the preceding sectiotatan

example calculate the local Hubble expansion rate for a
matter-dominated Universe. In this case, the scale feator
and the scalar metric perturbatidn have the following de-
pendence on the conformal timg

where £=0,1—-1 depending on whether the three-
dimensional space corresponding to the hypersurface

=const is flat, closed or open. In this paper we will take it to
be zero in order to simplify the calculations. The time vari-
able  appearing in Eq(12) is conformal time and is related _ 2
to the physical time via d7=a*dt. For the forms of mat- a(n)=amn/2 (17)
ter considered her& = ® at linear ordef As discussed e.g.

in Ref.[25], in longitudinal gauge the spatial components of

the four-velocity vector field are related ® via ®(7,X)=C1(X)+Cx(x) 7>, (18)

sui=—a ¥ H*~H'+K) " Had)} (14)
wherea,, is a constant, an@, andC, are time independent.
where a prime denotes differentiation with respecttand  The second equation is valid in the long wavelengthper-
H=a'la. Using Eq.(1) we can derive the expression for the Hubble-scalg limit and has been explicitly derived ii25].
time component ofi* in terms of®: Now using Eqs(16), (17) and(18) we obtain® in terms of
conformal time:

u(p)=at

3
1—®+E¢ﬂ. (15)

“This is in the philosophy of the general back-reaction approach in

which it is assumed that the fluctuations of the metric and matter

SEven if we did not make the assumptiin=®, it turns out that  satisfy the linear perturbation equations, and we compute their back

at second order all infrared terms dependingr & will drop reaction on physical quantities to second order. It is not a consistent
out. second order perturbative formalism.
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12 3, 21 | 5 on the local expansion rate cancel exactly up to second order
0= (1—C1(X)+§C1) “3.7 @) in perturbations, when evaluatir®y at a fixed proper time:
m m
) 1 41 Or=27"" (24)
+aCL0) ]+ 77| 3(3iC2(x)(GiCo(x))
m This implies that at least in the approximation of keeping

5 1 only the leading infrared terms, there is no local gravitational
+37Co(X) |+ T T[18C,(X) +66C1(X)Co(X)] back reaction of cosmological fluctuations on the local
m Hubble expansion rate in this matter-dominated universe.
+ * 7 5,Co(x))* + 8 7 (Ca(x))%. (19
am =2 am 2 V. EXPANSION RATE IN TERMS OF SCALAR FIELD AS

AN OBSERVABLE
Some of the terms are decreasing very fast as a function of

time and thus we can ignore them. If we just keep the terms We now move on to the example more relevant to the
with the powers—3 and—1 of 7 then we get: work of [3—5], namely a Universe dominated by a single real

scalar fielde, which is a toy model for inflationary cosmol-

3 3 L, 2 . ) ogy. During inflation, fluctuations which are generated on
0= a.” 1-Ci(x)+5C1)—3 a” [(3:C1(X)) sub-Hubble scales early on during the inflationary phase are
redshifted to scales much larger than the Hubble radius.
+ai201(x)]. (200  Thus, in this context it is of great interest to consider the
back reaction of infrared modes.
If we take the average @ on a constani hypersurface, In the following we will generalize the previous analysis

only the terms quadratic in the fluctuation variables surviveto be applicable to matter consisting of a single scalar field.
Thus, considering large values gfand focusing on the sec- |n this case one can treat the scalar field as a perfect fluid and
ond order terms, it appears from Eg0) that infrared modes derive the velocity four-vector field. To do this, we need to
give a positive contribution to® and thus lead to a write the energy-momentum tensdr,, of the scalar field
speeding-up of the expansion, whereas ultraviolet modes efiright-hand side of the following equatipin the form of an
ter with a negative sign and thus yield a slowing effect, theenergy-momentum tensor for a perfect flldft-hand side
latter becoming more significaftelative to the unperturbed of the following equation
expansion ratefor larger values ofy.

However, before drawing definite physical conclusions (p+P)u,u,—Pg,,=d,0d,0—L-g,,. (25
from our analysis, we must take into account that the back-
ground time# is not an observable quantity. To obtain re- At the level of the background fields, the two expressions are
sults for back reaction of any real physical significance wedentical if we takeP= £ and u,=Ad,e with
have to find an observable variable like proper time and

evaluate the expansion rate in terms of this variable, so that A=(8"¢d @) 2 (26)
we can discuss its evolution from an observer’s point of
view. Now that we have shown that the energy-momentum ten-

If we use Eq.(12) for the metric, Eq(18) for &, and Eq. sor of a scalar field can be written in the form of that of a
(17) for the scale factor, we can find the expression for theperfect fluid, we can use the expressid®) which gives®

proper timer in terms of conformal time. Since in terms of the metric fluctuations to evaluate the local effect
5 5 5 of gravitational back reaction of cosmological fluctuations.
dre=a(»)“(1+2®)d 7%, (21)  Let us first for convenience rewri®@ of Eq.(16) in terms of

. . . . the physical time:
a simple integration yields

am 12| 5 @m -2 =3§(1—q>+ §<1>2) —3(d+dd)+ (PNHD) + 7'
=% 1+C1—§C1)77 5 (C2=CiCa) 7 a 2 aa—a2 :
(27)
e (22) . o
28 Theoretically, the scalar fielg is an observable. In fact,

in a system with a single matter field it is this field which
In the approximation of large values gfwe can ignore the must be used as a clock. Hence, to obtain results with physi-
second and the third term of this equation and thus obtain cal meaning, we must evaluaf® on a surface of constangt
and not constarntt

As discussed above, in the context of inflationary cosmol-

ogy it is important to study the effects of infrared modes up
to second order. We will also assume that we are in the slow
Now we can use this relation and substitute into the first terntolling regime of inflation. In our cas@s well as for a more
of Eq. (20). We see the effects of the dominant infrared termsgeneral cagethe prescription is to calculated, a andd/dt

—3_2%m

K

P
1+C;— 5Ci |77 (23
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in terms of ¢, and to insert the results into the general ex-since[26] by neglecting gradient terms we have a Friedmann

pression(27) for ®. The relation between and ¢ can be
derived starting from

()= @o(t) + dp4(1), (28)
which can be written as
t=og Lo~ dea(1)]. (29
Thus, the equation
_ d9g (@) _
t=¢q 1(@)—3—¢5¢1(¢01(¢))
Ipg (@) |2 98¢1(0g (@)
+( (P(;QDQD) e (sf ¢ S¢1(9g (¢))
1 %4 (@)
AN RO (30
dg?

relatest and ¢.
We now wish to express the value 6f in terms of ¢
(note that we are considering the local value@fin this

Universe whose expansion rate satisfies B8).

VI. CONCLUSIONS

In this paper we have studied the back-reaction effects on
a local observable which measures the local expansion rate
of the Universe. The observable gives the rate at which
neighboring comoving observers separate and coincides with
the usual definition of expansion in the context of the fluid
approach to cosmology. In order to obtain a physical quan-
tity, we evaluated the observable at a fixed value of the scalar
field.

We evaluated our observable, thecal physical expan-
sion rate in a simple toy model of chaotic inflation consist-
ing of a single scalar matter field coupled to gravity. We
found that the leading infrared terms, the terms which domi-
nate the effects discussed[B] and[5], cancel if we evaluate
the observable at a fixed value of the scalar field, whereas
they do not vanish if we evaluate them at a fixed value of the
background time. The former result is a physical result since
it corresponds to a physical observable evaluated at a space-
time point specified by a physical prescription, whereas the

analysis, and there is no need to perform a spatial averagingatter result(obtained by evaluating at a fixed background
In order to relate the metric, its fluctuations and the scaldime) does not have a diffeomorphism-invariant meaning.
factor to the scalar field and its fluctuations we need to takéur analysis thus confirms the concern[al] that the re-

an explicit form for the potential and make use of the Ein-sults obtained if3] and[5] are not invariant under second
stein constraint equations. TI&” and G equations relate order gauge transformations. Our results confirm the conclu-
® to ¢ (at the level of the first order fluctuationand the  sions of[23] reached by means of a different method of
Hubble parameter of the background to the background sc@&nalysis applied to a different physical observable.

lar field ¢, (at the level of the unperturbed Friedmann equa- Our result doesiotimply that there is no back reaction of
tions). In our simple system we do not need to go throughthe infrared modes of cosmological perturbations. There is
these calculations explicitlyas long as we are interested NO reason to expect that the next to leading infrared terms in
only in the leading infrared termssince by dropping the our result will cancelthey do not cancel in the analysis of

gradient terms from th&® and G equations, it can be [23]). One of the advantages of our technique is that they can
shown thaf 26] be evaluated without too much trouble. This is left to a future

publication. So, even in single field models of inflation there
might be some non-vanishing back reaction of infrared
modes.

We expect that back reaction of infrared modes will be
much more important in two field models of inflation. Let us
assume that the matter sector of the theory contains both an
inflation field ¢ and a regular matter fielg (with a nonva-
nishing and time-dependent spatial avejagaich, for ex-
ample, could represent the cosmic microwave background.
\/5 In this case, it is no longer true that long wavelength fluc-

tuations have no physical effects on local observables. If the
and substituting this result into E(R7) and neglecting terms measurement point i6n an unambiguous physical wagle-
containing® anda,® (which are sub-dominant compared to t€rmined by a fixed value of the fielg, then the local ex-

other terms in the infrared and slow roll limileads to the ~Pansion rate may sensitively depend on the amplitude of the
final result for the local expansion rate: long wavelength fluctuations in. Thus, the leading infrared

terms maynot cancel when evaluated according to the

0=3WV(p) above-mentioned physical prescription in the same way that

they do not cancel in the analysis of this paper when the

which as a function ofp is the same as the relation for an observable is evaluated at a fixed value of the background
unperturbed background. time.

Thus, again we do not see any back reaction of cosmo- There is a close analogy with the analysis of the paramet-

logical perturbations on the local expansion rate in this apfic amplification of super-Hubble-scale cosmological fluc-
proximation. In retrospect it is easy to understand this resultuations during inflationary reheating. From the point of view

H
J1+20 \/—W

If we expand the right-hand side in terms ®f we get the
result

(31

V(e), (32

3 1
1-d+-P2|=—
2

(33
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of the background space-time coordinates, it appar$ lar way to what is presented here. Results will be presented

that the parametric amplification of matter fluctuations onin a future publicatior]35].

super-Hubble scales in an unperturbed cosmological back-

ground(see, e.g[28,29 for a discussion of parametric reso-
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