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QCD corrections to tbH ™ associated production ine*e™ annihilation
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We calculate the QCD corrections to the cross sectiosi'@ —tbH ™~ and its charge-conjugate counterpart
within the minimal supersymmetric extension of the standard model. This process is particularly important if
m,<my+m, and/s<2my,, so thatt—bH" ande*e”—H"H ™ are not allowed kinematically. Large loga-
rithmic corrections that arise in the on-mass-shell scheme of quark mass renormalization, especially from the
tbH™ Yukawa coupling for large values of ta#h are resummed by adopting the modified minimal-subtraction
scheme, so that the convergence behavior of the perturbative expansion is improved. The inclusion of the QCD
corrections leads to a significant reduction of the theoretical uncertainties due to scheme and scale depen-
dences.
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I. INTRODUCTION guantum loops involving SM3,4] and possibly supersym-
metric [4] particles, e'e =7 v H™ [2,5], and ete”

One of the prime objectives of a futueg e linear col- . tbH ™ [2,6].
lider (LC) will be the detailed study of spin-zero particles  In the following, we are concerned with the latter process.
which remain in the physical spectrum after the elementaryThe cross section of this process exhibits a strong depen-
particle masses have been generated through the Higgence on tag, so that its measurement provides an oppor-
mechanism of electroweak symmetry breaking. Should théunity to directly determine this crucial parameter. At the tree
world be supersymmetric, then the Higgs sector is mordevel, this reaction proceeds through the Feynman diagrams
complicated than in the standard mo@M), which predicts ~ depicted in Fig. 1. It is kinematically allowed if's>m;
just one neutraC P-even Higgs bosoil. The Higgs sector +mp+my. Hence, we are most interested in a situation
of the minimal supersymmetric extension of the SMwhere m+m,< Jsl2<my<\s—m—m,. For s
(MSSM) consists of a two-Higgs-doublet modé&2HDM) =500 GeV (800 Ge\j, this implies that 258&my
and accommodates five physical Higgs bosons: the neutrat320 GeV (406 my=<620 GeV). In such a situation, none
CP-evenh® andH® bosons, the neutral P-odd A° boson,  of the virtual particles appearing in Fig. 1 can be resonating.
and the chargedd=-boson pair. The 2HDM has six free We note in passing that the absence of resonances is also
parameters, which are usually taken to be the masses guaranteed ifn,— m,<my<m,+m, [6]. However, this pro-
Myo, Mao, andmy=, the ratio taB=uv, /v, of the vacuum cess is then of minor interest because we always hive
expectation values of the two Higgs doublets, and the weak-2m,;, so thate"e”—H"H ™ will take place. In the pres-
mixing anglea that relates the weak and mass eigenstates aénce of a resonance, the cross section approxmately factor-
h® andH®. At the tree level, the MSSM Higgs sector has justjzes. Specifically, we haves(e*e” —tbH )~a(ete"
two free parameters, which are usually taken to bentie
and tang.

The discovery of theH™ bosons would prove the SM
wrong and, at the same time, give strong support to the
2HDM and the MSSM. If theH* bosons have massy
<m;—my, they will be mainly produced through the
—bH™ decays of top quarks, which are copiously generated
singly or in pairs at are"e~ LC [1]. On the other hand, if
there is sufficient center-of-magg.m) energy available, b
Js>2m,, then charged-Higgs-boson pair production,
e"e”—H"H™, will be the dominant production mechanism

—>tt)B(t—>bH ) when the virtualt quark_gets on its mass
shell, while we have o(e"e” —tbH )~o(e‘e”

t
4
X b

~

[1]. Otherwise, ifmy>max(m—m,,\/s/2), theH* bosons . . t
can still be produced singly. There are various mechanisms< Y <
of single-charged-Higgs-boson producti@j. The most im- N U . z .
portant of them are*e™—W"H ™, which proceeds through z N, AL AL
e H\\ e b e b
*Permanent address: Il. Institutrfliheoretische Physik, Univer- FIG. 1. Tree-level Feynman diagrams pertinent to the process

sitd Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germang*e™ —tbH .
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—H*H)B(H*—tb) when the virtualH* boson gets on its Of scaled energies and absolute three-momenta, respectively.
mass shell. By four-momentum conservation, we haxgt+ X,+X3=2.

The purpose of this paper is to investigate the dominant The differential Born cross section may be evaluated as

guantum corrections to the cross sectionede ™ —thH 11
which arise from quantum chromodynami€¥CD). The rel- dogom=== — | Teor] 2dPS(P; P1,P2,P3). (2.7
evant Feynman diagrams emerge by attaching one gluon line 2s 4

in all possible ways to each of the diagrams shown in Fig. 1. i ) )
This leads to 2-3 diagrams with one closed lodpee Fig. where the first and second factors on the right-hand side stem

2), which yield the virtual corrections, and to-24 diagrams from the flux and the average over the lepton spins, respec-

of the tree-level typésee Fig. 3, which give rise to the real tively, 7gomm IS the transition-matrix element corresponding to
the Feynman diagrams of Fig. 1, and the summation over the

corrections. The loop diagrams involve two, three, or four Lo 2L )
virtual particles. lepton and quark spins is implied. We assume that the incom-

While the QCD corrections to the cross sections of thd"d [eptons are unpolarized. Here and in the following, we
- = define the Lorentz-invariam-particle phase-space measure
related processes™e” —qq®, whereg=t,b and ®=H

[7,8] or ®=h° H° A [9], are available in the literature, the

corresponding analysis fete” —tbH~ has been lacking dPS,(P;p1s - - - ,Pn)
so far. The present paper fills this gap. -
The cross section of the SM processe™ —qqH via a B 4 §(4) ! . d3p;
virtual photon and its QCD corrections can be recovered =(2m)"8 p_Zfl Pi |H1 (2m)32p° 2.2
1

from our results as a special case, involving only a subclass
of the Feynman diagrams shown in Figs. 1-3. As a by-

product of our analysis, we confirm the numerical results forphase space. We wish to express the Born cross section dif-

this cross section obtz_amed n R_e[?.,S]. We also_ pe_rform ferential with respect to the scaled energies of the final-state
the complete calculation for this process, which involves

) : i . "~Squarks,x; and x,. For convenience, we work in the c.m.
E;ﬂmb%ns:rllaﬁrzgm;nmﬂj élg‘ca)zoasgrnetlesrn?:tl?/\tliﬂ g{f;; VI frame, define thez axis of the coordinate system to point
This paper is organized as follows. In Sec. I, we list a'?r:zrr]]ghlialv_e ko, and fix thex axis in an arbitrary way. We

compact Born formula for the cross section efe”

—tbH™ and give details of our analytical calculation of its 4
virtual and real QCD corrections. Lengthy expressions are dps,(p;p;,p,,ps)= —Sdp(l)dcosaldd)ldpgdg{)z,
relegated to Appendices A and B, where the Born form fac- (4w
tors and the parametrization of the four-particle phase space, 2.3
respectively, may be found. In Sec. lll, we present our nu-
merical results. In Sec. IV, we conclude with a summary ofwhere #; and ¢, are the polar and azimuthal anglesmaf
our analysis. respectively, and@, is the azimuthal angle g, with respect
to the axis pointing alongpy; measured from the plane
spanned bk; andp;. Because of the azimuthal symmetry of
the problem at hand, the integration owgy is trivial, and
In this section, we list a compact Born formula for the we may takep, to lie in thex-z plane. If we now rotate the
cross section oé* e~ —tbH ™~ and give details of our ana- Coordinate system in such a way (it points along thez
lytical calculation of its virtual and real QCD corrections. By @Xis andp; lies in the x-z plane, thené=6, and ¢=m
charge-conjugation invariance, the results fae~ = — ¢2 define the direction ok,. We thus have

—tbH™ are the same.

We now discuss the parametrization of the three-particle

II. ANALYTIC RESULTS

S
dPS(p;p1,P2,P3) = 2—dX1 dx, d cosf dd.

4
A. Born cross section (4m)

We start by defining the kinematics. We call the four- 24
momenta of the incoming electron and positlonandk,  Next, we observe thdfg,,|2 can be written as a contraction
and those of the outgoingquark,b quark, andH™ boson  of two rank-two tensors, a leptonic one involvikg andk,
p1. P2, andpg, respectively. We neglect the electron mass,and a quarkonic one involving,, p,, andps. The leptonic
but retain theb-quark mass, so that the on-mass-skéld) one has the form
conditions readki=k3=0, p?=m?, p5=mZ, and p3
=mZ . The virtual photon and boson have four-momentum LA7=trkyy"(ve—agsys) kay*(ve—aeys), (2.5
p=Kk;+k,=p;+p,+ps, and we defines=p?. It is conve-
nient to introduce the dimensionless Lorentz scalajs wherev,, vl, a., anda, are generic vector and axial-
=pi2/s, X;=2p-p;i/s, andy;= \/x?—4ai (i=1,2,3). In the  vector couplings of the electron to the photonzZboson.
c.m. frame,xi=2pi°/\/§ andyi=2|pi|/\/§ carry the meaning Performing the integrations over césnd ¢, we obtain
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FIG. 2. One-loop Feynman diagrams pertinent to the proeésgﬂtEH’. They are classified according to the number of propagators
in the loops.

| O et (it a@) (D —Sg™). 26 0= 26,8,0., Voo 200 le

. —a\Uele ee - . . =—ZC , = =5

am 3 ¢ whiier Ve 1-mé/s ¢ 1-mdls
(2.9

The fact that Eq(2.6) just depends op dramatically sim-  gng fL(X1,%2), f2(X1,X2), and f;7(xy,%,) are form fac-

plifies the remaining phase-space integrations, since scalgjs Jisted in Appendix A Her@fvzl—czzl—mﬁ\,/mﬁ is

. " w

products of the typéd; - p; are precluded. The residual scalar ia sine square of the weak mixing angtg, andm,, are the

products "’_‘r‘?pi'_pi:(5/2)(2_k__ai_ai_)! where zx=1+ak  masses of thaV andZ bosons, respectivel).= — 1 is the

~Xi, With i,],k=1,2,3 and ] #k+1. _ electric charge of the electron, ang=—1/2 is the third

We thus find the doubly-differential Born cross section tocomponent of weak isospin of its left-handed component.

be The boundaries of integration are

2Vay<xg<l+a;—(Va+az)? x5 <x,<x;,

do Gims 29
Bor _ P2 [ 02 (xy,%p) + QeVief (X4 X2) 29

dxldx2_327T3\/§ Wlth
+(V2+AD 2%, %0)], (2.7)

o1
X§=£[(2—Xl)(zl+ ay—ag)*y1VN(z1,35,a3)],

whereGg is Fermi’s constant, (2.10
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FIG. 3. Tree-level Feynman diagrams pertinent to the proeées’ﬂtEgH’.

where \(x,y,z) =x?+y?+ 72— 2(xy+yz+zX) is Kélén's yet emerge at next-to-leading ordédLO). This leads to
function. We perform the integrations over andx, numeri-  terms logarithmic irmy, which combine with similar terms
cally with the aid of the multi-dimensional Monte Carlo in- arising from soft-gluon emission, to be discussed below, to
tegration routinevEGAS [10]. give amg-independent result. We establish this cancellation
analytically.

UV divergences only occur in the self-energy and vertex
corrections. We extract them using dimensional regulariza-
We now turn to the virtual QCD corrections, which arise tion, with D=4—2¢ space-time dimensions and 't Hooft
from the one-loop Feynman diagrams shown in Fig. 2. Spemass scalg.. They are removed by renormalization. Specifi-
cifically, they includet- andb-quark self-energy corrections; cally, we need to renormalize the quark masses and wave

tty, ttZ, bby, bbZ, andtbH™ vertex corrections; and functions appearing iffg,,. Notice that the quark masses
thyH ™~ andtbZH™~ box corrections. These corrections suffer €Nter not only through the quark propagators, but also
both from infraredIR) and ultraviolet UV) divergences. We through thetbH™ Yukawa coupling. To this end, we substi-
regularize the former by endowing the gluon with an infini- tute my— m8=mq+ omg and ¢y— ¢g= PgN1+ 823 (q
tesimal massmy. In our case, this does not spoil gauge =t,b), where bare quantities are denoted by the superscript
invariance, since the non-Abelian nature of QCD does no0. In the OS scheme, the renormalization constants read

B. Virtual corrections
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Ma_ _ % | ap i3t 4410 21
m_q_ 2, CF nm_ﬁ (e) ], (2.11
a 2 m?
573=— 2| A+In 122 + 4+ 0(e) |,
47T | mq mq
2.12

with Cg=(N2—1)/(2N.)=4/3 for N.=3 quark colors and

Azé—yE+ln(4w), (2.13
whereyg is the Euler-Mascheroni constant. Notice tAdtis
also IR divergent. The expression fémq/my in the modi-
fied minimal-subtraction NIS) scheme[11] emerges from
Eq. (2.11) by retaining only the first term contained within
the square brackets.

The virtual QCD corrections may be evaluated as

(2.19

doyin=dogomdyin( mg) )

with

d 1 q
é\virt( mg) = R Téorn q;t,b 5mq[7_mq + E é\ZZ

|

| %orn| 2

X Tgomt 7I—oop

(2.195
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ones analytically using the results of REf5] and the IR-
finite ones numerically with the help of the program package
LoopTOOLS [13]. Our analytic result foré,;(my) is too
lengthy to be presented here.

C. Real corrections

We now proceed to the real QCD corrections, which arise
from the 2—4 tree-level Feynman diagrams shown in Fig. 3.
We denote the gluon four-momentum loy As mentioned
above, the emission of soft gluons generates IR divergences.
For consistency with the evaluation of the virtual QCD cor-
rections, the latter must also be regularized by the gluon
massm, . It is convenient to work in the c.m. frame and to
introduce an unphysical gluon-energy cutdd,,, with my
<E <Emax, WhereE . is the maximum gluon energy al-
lowed by kinematics, so as to separate the gluon phase space
into soft and hard regions, defined ty,<q°<E, and
Ecu<Q°<Emax respectively. This has two technical advan-
tages, since soft gluons with infinitesimal masg do not
affect the kinematics of the underlying process, while hard
gluons with zero mass do not produce IR divergences. On
the one hand, the soft-gluon bremsstrahlung may be treated
analytically in the eikonal approximation, which is indepen-
dent of the underlying process and results in a multiplicative
correction to the Born result. On the other hang, may be
safely neglected in the treatment of the hard-gluon brems-
strahlung, which facilitates the phase-space integration. In
turn, the soft- and hard-gluon contributions both depend on
E.ut» While their combined contribution is, of course, inde-
pendent ofE.,, which we checked numerically. As men-
tioned above, then, dependence of the soft-gluon contribu-

whereT,,p is the transition-matrix element corresponding totion analytlcally cancels against the one of the virtual QCD
the Feynman diagrams of Fig. 2. Notice that the quarkCOrréctions. S
masses that appear in the squares of the quark spinors and in The soft-gluon contribution is given by
the boundaries of the phase-space integration correspond to
renormalized ones from the outset. As mentioned above,
dvi(mg) is UV finite, but IR divergent. Notice that E(2.6), .
which refers to the physical cage=4, can still be used at with
the one-loop level, since the quarkonic tensor is by itself UV 2
finite upon renormalization. )

We generatéj,,, and reduce it to standard one-loop sca- P1-d  P2rq)’
lar integrals in two independent ways: one is based on the (2.17
combination of the program packagesYNARTS [12] and
FORMCALC [13] and the other one on custom-made routineswhereq®= /o + mg2 is the gluon energy. The integration in
written in the program languagerM [14]. We then evalu- Eqg.(2.17) can be performed analytically as described in Ref.
ate the standard one-loop scalar integrals, the IR-divergeh6], the result being

(2.19

dosoi= dogomdsofl my, Ecw>

asCg P P2

(2w)2f|q|<Ecm q°

d3q
Osof mg Eew=—

2 2
as aZz—ay—ay a‘a A4Ec:  Zz—a;—ay| . ( X1+Y1) . ( X1_Y1>
Osor( My, Ecu)= —C = In - \ Li,| 1—«a +Lis|1-«a
. Xz"‘Yz) . ( Xz‘Yz) 1( X1—Y1 X2—Y2 (X1 Xg=Y1  Xp Xo—Ys
—Li (1— —Liy| 1- + = In? —In? —==In + —=In ,
2 v 2 A7 Xty XetYol | 21y XatY: o Yo XotYs
(2.18
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where Lp(x)=— [dyIn(1—y)ly is the Spence function, Z-boson line, and found good agreement with H&f. In
turn, this provides a nontrivial check for all parts of our
1 analysis.
a= 2_‘,311[23_511_512+ VA(z3,a1,3,)],
I1l. NUMERICAL RESULTS
. :2a2a1_ a, 2.19 We are now in a position to present our numerical results.
aXi—Xy ' We first specify our input parameters. We usaey

=80.419 GeV, m;=91.1882 GeV, m;=174.3 GeV, my
Notice that Eq.(2.18 is invariant under the interchange of =4.6 GeV, Gr=1.1663% 10 ° GeV 2 [20], and the

the indices 1 and 2. present world average!®)(m,)=0.1180[21]. We consis-
The hard-gluon contribution may be evaluated by inte- (nf) ()
g y y tently evaluater (1) andm;'”(x) to lowest orderLO)

grating in the MS scheme wit,=6 active quark flavors perform-

11 ing the matching witm;=5 QCD at scalen,. For the read-
dohad Ecu) = 75 Z|’Trea||26(q°— Ecw er's convenience, we collect the relevant formulas hagg
(5) 2
XAPS(Pip1.P2.Ps.A) (220 L N W 3.1

(5) (5) T 27
where 7, is the transition-matrix element corresponding to as"(p) - as(mg) Mz
the Feynman diagrams of Fig. 3, over the full four-particle 1 1 1386) u?
phase space, imposing the conditigh>E,,. We use the TR +—In—, (3.2
parametrization of the four-particle phase space presented in a®(p) aPmy 7T m
Appendix B. It involves five nontrivial integrations, which
we perform numerically using the Monte Carlo routive- _

GAS [10]. Our formula for|Z,.,/? is too lengthy to be listed m§6)(,u«):mt[1—
here.

We performed several checks for our implementation of
the four-particle phase-space integration. We numerically a(s)(mb) |
verified the analytical formula for the total cross section of mi®)( ,u):mb[l— ——C¢

e"e”—qqg* —qqQQ, whereq and Q represent massless m
and massive quarks, respectively, agitd denotes a virtual [

Y0 /BE)G)

(3.3

a®(my) . } ()
m " L a(se)( my)

Y0 /BE)G)
, (3.9

185
7o @)

age)(mt)

aP(my)

gluon, given in Eq(2) of Ref.[17]. In this case, IR singu-
alP(my)

larities do not appear in intermediate steps, so that no sepa-
ration into soft-gluon and hard-gluon contributions is re-
quired. We also found excellent agreement with a numericaVhere
result for a similar process involving four different quark 1/11 4 3
masses obtained using the democratic multi-particle phase- é”f)= Z(?CA_ §Tan), Yo= ZCF' (3.5
space generata®tAMBO [18].

Our final result for the QCD-corrected differential cross wjth C,=N, and Te=1/2, are the first coefficients of the
section reads Callan-Symanzik beta function and the quark-mass anoma-

lous dimension, respectively. For simplicity, we use a com-
dogep=dogor] 1+ Syin(Mg) + Ssor My, Ecud) ] mon renormalization scalg in a{®(x) and m{P(u). We
+dohard Ecw)s (2.2)  study the cases/s=500 GeV and 800 GeV. As for the
MSSM input parametrs, we consider the rangestdang
wheredogom, dyin(Mg), Ssor{Mg,Ecu), @nddopad Ecu) ar8 < 40~m, /m, and 256<m, <320 GeV if \s=500 GeV or
defined iq Eqs(2:1), (2.195, (2.17), and(2:2()), re;pectively. 400<my, <620 GeV if Js=800 GeV.
It is manifestly independent ofng and insensitive to the \ye now discuss the influence of the QCD corrections on

choice ofEgy, as long asng<E ;<Ena, as we verified . T .
numerically. We also checked that the QCD-corrected tota]he total cross sections ef e —tbH ~ and its charge con-
cross section is finite in the limih,— 0, in compliance with Jugate counterpart, which we add. We start by selecting t_he
the Kinoshita-Lee-Nauenberg tht(’aoréﬁrg] renormalization scheme and scale that are most appropriate
The QCD-corrected cross section 'Of the SM procesgor the problem under consideration. For this purpose, we
fem . qaH vi itual oh be obtained f study thex dependence of the Born and QCD-corrected re-
e e —qqgH via a virtual photon can be obtained from our g jt5 in two different renormalization schemes. The first one

results as a special case, involving only a subclass of thESes the pole masses, and m, as basic parametef©S
Feynman d@grams shpwn in Figs. 1_3'. As a by-productp chemg while the second one uses; and theMS mass
our analysis, we confirmed the numerical results for th|s—(6)

cross section obtained in Refd,8]. We also performed the Mo (x) as basic pargmetr(a:nig)ed schemg Both schemes
complete calculation for this process, which involves Feynemploy theMS definition of ag’(x). We refrain from uti-
man diagrams where thid boson is radiated off a virtual lizing m§6)(,u), which, in general, significantly deviates from
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0.06—m———— T suitable average of the final-state-particle masegs, m;,
. andmy . In the mixed scheme witp of orderM, such terms
0.05 g are shifted from the QCD corrections to the Born result,
— NLO oS 1 i —
_____ LO where they are absorbed into the runnmgntlf;6 (u) from

0.04 e 1 u=m, to u=M. This is reflected in Fig. 4 by the fact that,

) 003l T ] in the mixed.scheme, the QCD corrections are rela_tively

I G _ modest, ranging from-39% to +30%. Unless otherwise
002k el MS stated, we shall henceforth work in the mixed scheme,
' which, for plausible values ofu, is superior to the OS
0.01} ] scheme as far as the convergence properties are concerned.

Let us now turn to the question of how to fix the value of
0 . p in a reasonable way. Scale-setting procedures frequently
10> 10} discussed in the literature include the concept of fastest ap-
L(GeV) parent convergend&AC) [24], the principle of minimal sen-
sitivity (PMS) [25], and the proposal by Brodsky, Lepage,
FIG. 4. Total cross section @ e~ —tbH ", tbH" as a function ~and Mackenzi¢BLM) [26] to resum the leading light-quark
of u for \/s=500 GeV, tar3=40, andm,, =260 GeV. The dashed contribution to the renormalization of the strong-coupling
and solid curves correspond to the Born and QCD-corrected result§onstant. The latter is not yet applicable to the problem under
respectively. The upper and lower sets of curves refer to the OS arfgonsideration, which is of LO in the strong-coupling con-
mixed schemes, respectively. stant. The FAC and PMS prescriptions lead us to select the
values of u where the Born and QCD-corrected results in-
. . tersect and where the latter exhibits a local extremum, re-
m;, as may be seen from E@.3). For, if we were to include  gpectively. We observe from Fig. 4 that these twoalues
the weak decays of theandt quarks in our analysis, then, approximately coincide, at about 60 GeV. Incidentally, in the
during the propagation of these quarks between their produ@lose vicinity of these twqs values, also the QCD-corrected
tion and decay vertices, configurations near thggsical results in the OS and mixed schemes cross over, so that also
mass shells would be kinematically favored. As a matter othe scheme dependence at NLO vanishes in this neighbor-
fact, the experimentally measured invariant masses of thelood, at least as for the two schemes considered here. Since
decay products are very closertg. In turn, the phase space the u dependence is logarithmic, a democratic way of com-
of e"e” —tbH~ would undergo a significant, yet artificial Pining the three scalgm_b, m;, andmy is by taking their
change of size if it were parametrized in termsﬁf)( ) geometric meansy =ympmymy . In the present case, this
= K educated guess yields~60 GeV, which nicely agrees with
rather thanm,. On the other hand, the use of”(w) is  the triply distinguished point identified above. We checked
predicated on the grounds that it automatically resums largghat this choice works similarly well for the case qf
logarithmic corrections that arise if tiéH~ Yukawa cou- =800 GeV, tarB=40, andm;=410 GeV. We shall hence-

pling is expressed in terms afj,. A similar feature is famil- ~ forth employ it, with the understanding that Fig. 4 provides
iar from theH—bb decay in the SM23]. This effect is us with a useful estimate of the theoretical uncertainties due

: to scheme and typical scale variations, both at LO and NLO.
larl for | I f h X ’ i
particularly pronounced for large values of jibecause the Figures 5 and 6 refer tgs=500 GeV, while Figs. 7 and

tbH™ Yukawa coupling is then approximately proportional 8 refer to/s=800 GeV. We investigate the,, dependence
to theb—qua_rk mass. . N ffor various values of tap in Figs. 5 and 7 and the tgh

As a typical example, we consider in Fig. 4 the case ofyependence for typical valuesof, in Figs. 6 and 8. In each
\s=500 GeV, tarB=40, andmy;=260 GeV. We allows  figure, we present the Born and QCD-corrected results in the
to vary over two orders of magnitude, from 10 to 1000 GeV.mixed scheme with. = 3/m,m;m, . For comparison, in Figs.
In the OS scheme, the Born resultp5|.ndep6endent, while 6 and 8, we also present the corresponding results in the OS
the QCD-corrected one depends pnvia a )(,u)._ln the  scheme with the same scale choice. We observe that the total
mixed scheme, thee dependence enters at LO vigi®(x) ~ Cross sections exhibit minima close to fas Jm/m,~6,
and at NLO viaagﬁ)(,u) and 55,6)(#)- Obviously, the theo- independently of order and scheme. This may be understood

retical uncertainties due to scheme and typical scale varid?y observing that the average strength of thel ~ Yukawa
tions are significantly reduced as we pass from LO to NLO.coupling, which is proportional ta/m; cof g+ngtar 8, is

On the one hand, the OS-scheme to mixed-scheme ratio #§en minimal[27]. Depending onys, tang, andm,, the
brought down to the vicinity of unity, from 1.46—2.92 to QCD corrections may be of either sign. By construction, they
0.78-1.43, depending on the valuewof On the other hand, are generally rather modest in the mixed scheme, although
the « dependence within the mixed scheme is reduced by #hey may reach a magnitude of 50% for specific values of
factor of 5, from 0.020 fb to 0.004 fb in absolute terms. \'s, tan3, andm,, as may be seen from Fig. 7. On the other
Furthermore, we observe that, in the OS scheme, the QCband, in the OS scheme, the QCD corrections lead to a sub-
corrections lead to a dramatic reduction of the cross sectiorstantial reduction in cross section at large values of3tabny

by 36—-67 %. As explained above, this is because they corp to 50%. As explained above, this may be attributed to
tain large logarithmic terms of the form®(w)IN(M?ng),  large logarithms arising from thebH~ Yukawa coupling.
whereM is a generic mass scale in the ball park of someFinally, we notice that Figs. 6 and 8 support the observations
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o(fb)

Vs = 800 GeV

Vs = 500 GeV NN

10' . L . L . ] | - L
260 270 280 290 300

M,(GeV)

PP RN R RN B B T A AN
420 440 460 480 500 520 540 560 580 600 620

M,(GeV)

VRN
310 320 400

FIG. 5. Total cross section oa‘fre’ﬂtEH’,t_bH+ without FIG. 7. Same as in Fig. 5, f0/§= 800 GeV.

(dotted curver and with (solid curve$ QCD corrections in the
mixed scheme as a function afy for \'s=500 GeV and various
values of tarB. The middle, lower, and upper sets of curves corre-
spond to tarB=2, 6, and 40, respectively.

IV. SUMMARY

We considered the proces$e” —tbH™ and its charge-
conjugate counterpart in the MSSM, which are among the
made in connection with Fig. 4. In fact, owing to our judi- dominant charge_d-Higgs-boson production mechanisms at a
cious scale choice, the Born and QCD-corrected results iftture e'e” LC if m+m,<s/2<my<ys—m—m;, so
the mixed scheme and the QCD-corrected result in the o1att—bH" ande”e”—H"H™ are not allowed kinemati-
scheme all approximately coincide, which nicely demon-cally. For {s=500 GeV and 800 GeV, this corresponds to
strates the perturbative stability in the mixed scheme and th#1e my  windows 256smy=<320 GeV and 408my
feeble scheme dependence at NLO. By contrast, the perturs620 GeV, respectively. We presented a compact Born for-
bative stability in the OS scheme is rather poor at large valmula for the cross sections of these processes and evaluated
ues of tang. their dominant radiative corrections, which arise from QCD.

It is interesting to investigate the relative importance of We regularized the IR singularities by introducing an in-
the contributions due to photon addboson exchanges. To finitesimal gluon massn, and the UV ones by using dimen-
this end, we evaluate the photon-induced part of the totagional regularization. The IR singularities cancelled when the
cross section by puttiny,=.4,=0 and compare it with the virtual and soft real QCD corrections were combined and the
full result. We find that the bulk of the total cross section isUV ones upon renormalizing the masses and wave functions
due to photon exchange. In fact, for the typical valyas of the quarks in the Born_ transition—matrix element. We es-
=500 GeV andn, =260 GeV, the photon-induced part ex- tablished these cancellations analytically. We separated the

hausts 78%, 80%, and 82% of the full result if &= 2, 6, soft-gluon and hard-gluon contributions by introducing an
and 40, respectively. unphysical gluon-energy cutot., and verified that their

sum is insensitive to the choice &f,; as long agmy<Ey

0.06 T T T <Eha iS satisfied.
We worked in a mixed renormalization scheme, where the
0.05 o§,, ] strong-coupling constant and thequark mass are defined in
0.04 1 T T T
0.14 |
g 0.03 —NLO »
3] '\}'_LO 0.12
s =500 GeV [
0.02 M,; =260 GeV 0.1y
0.01 . g 0.08
5] [
_____ 0.06
oL ] PR B - [ R
0 5 10 15 20 25 30 35 40 0.04
tanf T
_ = 0.02 [
FIG. 6. Total cross section oé"e” —tbH ,tbH™ without i
0

(dotted curvesand with(solid curve$ QCD corrections as a func-
tion of tang for \/s=500 GeV andn, =260 GeV. The upper and

lower dotted curves refer to the OS and mixed schemes, respec-

tively. The two solid curves referring to the OS and mixed schemes FIG. 8.

lie on top of each other.

tanf}

Same as in Fig. 6, fon/s=800 GeV and my

=410 GeV.
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the MS scheme, while thequark mass is defined in the OS Berge for technical assistance regardingopTooLs [13].

scheme. In this way, large logarithmic corrections that arisé-A-K. is grateful to the CERN Theoretical Physics Division

if the tbH ™~ Yukawa coupling is expressed in terms of the?cor its hpspitality during a visit yvhen this paper was final-
b-quark pole mass are automatically resummed, so that th'éehd' This wor]< Warl]s f‘:flf[ﬁportehd (_';n pa:r't\lby g[]qe 3%%7;5?(; Ftc;]r-
convergence behavior of the perturbative expansion is imzchungsgemeinschat through rant Mo. -, Dy the

— Bundesministerium fu Bildung und Forschung through
proved. On the other hand, the use of thguarkMS mass Grant No. 05 HT1GUA/4, and by Sun Microsystems through

does not entail such an improvement, but it rather appearg .- qemic Equipment Grant No. EDUD-7832-000332-GER
somewhat unnatural from the physical point of view. The ' '

inclusion of the QCD corrections significantly reduces the

theoretical uncertainties due to scheme and typical scale APPENDIX A: BORN FORM FACTORS

variations. We found that the QCD corrections to the total |, this appendix, we list compact expressions for the form
cross section may be of either sign, depending on the Valueﬁctorsfw(xl,Xz),fyz(Xl.Xz), andf,»(x;,X,) appearing in

of \/s, tanB, andm,,, and that they may reach a magnitude Eq. (2.7). It is possible to combine the propagators of the
of up to 50%. quark, b quark, andH~ boson with their couplings to the

Thee'e™ TeV Energy Superconducting Linear Accelera- photon andz boson by defining the effective couplings
tor (TESLA), which is being developed and planned at

DESY, has a design luminosity of 310*cm 2?s™1!

(5.8x10* cm~2s~1) at \/s=500 GeV (800 Ge\}, which __ 2CwSuQq S :'q—ZS@Qq
corresponds to 340 fb'(580 fh™1) per year[28]. Thus, a 4 1-Xq T 1-xg
total cross section of typically 0.03 f{0.07 fb will yield
about 10(40) signal events per year. s 2
As a by-product of our analysis, we confirmed the nu- _ g Moo= 2CuSw _Sw”C (A1)
merical results for the QCD-corrected total cross section of ~ ¢ 1—X,’ Yo1l-X3' 2 1-xg '

. : .

the SM procese™e” —qqH obtained in Refs|7.8]. whereg=t,b and we have identified, = x; andx,=x,. The
ACKNOWLEDGMENTS tbH™ Yukawa coupling introduces tgh dependence

through the combinations
We thank Stefan Dittmaier for providing us with numeri-

cal results from Ref[7], Thomas Hahn for helpful commu- T.=a, cof B*+a,tarf S. (A2)

nications concerningoRMCALC [13], and Tao Han for a ben-

eficial discussion preceding our work. F.M. thanks Stefan We find

f,,=2V%4aja,(2+2a;—x1)+ T, [(1+2a;)(1+a;+a,—az—Xy) — X(1—x1) |} + 4V Wp{2a,a,(4 + 28, + 2a,— 2a4
—X1—Xo) + T [(I+ay—ag—x))(l+a;—as—X,) +(a;+ay)(l+a;+a,—az)—aa,|} + 2V§{4a1a2(2+ 2a,—X,)
+T, [(1+2ay)(1+a;+as—az—Xy) —X(1—=X) [} =4V AT _[(1—X,)(1+2a;—x,) —a; +a,—az]
+AV AT _[(1+a,—az;—Xq)(1+a;+2a,—as—X,)+(a;—ay)(l+a;+a,—az)—3aa | — MV AT [(1+a;—a;
—Xo)(1+2a+a,—az—x) —(a;—a,)(1+ta;+a,—asz)—3ajar |+ 4V Ay T_[(1—X1)(1+2a,—X,) +a;—a,—az]
—2AH4a,a,(2+6a;—3%,)— T, [(1—6a;)(1+a;+a,—az—x;) —Xo(1—x1) 1} — 4 A Ap{2a;,8,(4+ 62, + 6a,
—6a;—3%x;—3%,)+ T, [(1+2a;+a,—a;—Xq)(1l+a;+2a,—az;—X,) —(a;+a,)(l+a;+a,—as)
+7aja,]} — 2A 2 4a,8,(2+ 6a,— 3%y) — T, [(1—6a,)(1+a,+a,—a3—X) — X1 (1—Xz) |} + 2V Hz{4aa,(1— 23,
+2a,—2a3—X,)+ T, [(1+2a,—2a3—Xq)(l—a;—a,—az;—X;—X,) —2a,(a;+az)+2a(1+a,;
+2a,—2a3) ]} — 2V Ho{4a,a,(1+2a;—2a,— 2a3— X)) + T, [(1+2a;—2a3—X,)(1—a;—a,—az— X;—Xp)
—2ay(a,taz)+2a,(1l+2a;+a,—2a;3) |} —2AH,T_[(1+2a,+2a,—2az—Xy)(1+a;—a,—az—X;—X,)
+2a,(1—2a;+2a,—2a3) |- 2A,HT _[(1+2a;+2a,—2a3—X5)(1—a;+a,—az—X;—Xo) +2a,(1+2a;—2a,
—2a3)] —H§[4a1a2(3—4a3— 2X1—2X5)+ T, (3—4az—2x;—2X,)(1+a;+a,—az—X;—Xo) . (A3)
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The formulas forf,,(x;,X;) and f,z(x;,X;) may be ob-
tained from Eq.(A3) by adjusting the coupling constants.
Specifically, one has to substitute

Va—Qqr Aq—0, Hz—H, (A4)
in the first case and
VoV = QgVa+ QaVg: VoAg— QoA
AqAq—0, VHz— QHz+ VM,
AHz— A, HE—2H, M, (A5)

in the second oneq,q’ =t,b).

APPENDIX B: FOUR-PARTICLE PHASE SPACE

PHYSICAL REVIEW D66, 054016 (2002

Owing to the azimuthal symmetry of the problem under con-
sideration, the integration ovep,, is trivial, and we may
choosep,, to lie in thex-z plane. If we now rotate the coor-
dinate system in such a way th@at, points along thez axis
and p, lies in thex-z plane, thend=6,, and ¢p=m— ¢,
define the direction ok;. Introducingz;=s;;/s, we thus
have

2
S
dPS,(p;P1,P2,P3,P4) =
(4m)"IN(1,212,234)
X dz;,dz3,0X;dX3d b5

X dcosfdde.

(B4)

As explained in Eq(2.6), the integrations over casand ¢
can be exploited to transform the leptonic tenis6ét defined

In this appendix, we present the parametrization of thédy Eq.(2.5), which depends ok, andk,, into one depend-
four-particle phase space that we use to evaluate the hartrg only onp, So as to preclude scalar products of the type
gluon contribution. We generically denote the four-momenta;- p; . The residual scalar products read

and masses of the final-state particles msand m; (i
=1,...,4),respectively. Similarly as in Sec. Il A, we define
p=2_,pi, s=p% a=ms, x=2p-pi/s, and Y,

= \x*—4a;. Due to four-momentum conservation, we have
Ei‘L 1X;=2. We decompose the four-particle phase space int
three nested two-particle phase spacef28%

dsi sz,
(2m)?
XdPS(P12;P1,P2)
X dPS(P34;P3,P4),

dPS,(p;P1,P2,P3,P4) = dPS,(p;P12,P34)

(B1)
wherep;; = p;+p; ands”:pizj , with (i,j)=(1,2),(3,4). As

in Sec. Il A, we work in the c.m. frame, take tkexis of the
coordinate system to point alokg= —k,, and choose thr

axis arbitrarily. We have p;,=—p3;, and |py
=(1/2)y\(s,S12,S34)/S. Using
dPS,(p;p12.p )=—|p12| d cosf,d¢
1P12,P34 (4245 120412,
dPS(pyj PPy = ————dp; dby, (B2)
P am?py

where 6, and ¢4, are the polar and azimuthal anglesgj,
respectively, and; is the azimuthal angle gd, with respect
to the axis pointing alongy; measured from the plane
spanned bk, andp;, we obtain

8
dpP 1P1.P2,P3,P4) =
S(P;P1,P2,P3,P4) (477)3\/@
X ds;,ds3,d cosh,d by

xdpYdg dpgdes.  (B3)

s
P1-P2= 5(212_ a;—ay),

(0]

s
P3-Ps= 5(234_ azg—ay),

S . .
P1-Ps= Z[X1X3_ Y1Y3(Sinéy sin 63 coses

—C0S64 c0sb3) ],

S

P1-Ps= z(xl_zlz_ a;t+az)—p1-Ps,

S

5(Xg—2z34—az+ays) —pP1-P3,

P2- 2

Ps=

2(1_X1_X3+al_a2+a3_a4)+pl' P3,

(B5)

P2- P4

where 6; is the angle enclosed betweppandp;. It is de-
termined by

Xi(1+2zj;—2z) — 2(z;; +a;—a;)

YivA(1zj,zy)

with (i,j),(k,1)=(1,2),(3,4) andi(,j)# (k,I). Furthermore,
we have

cosh,= (B6)

ijl_xi+zij_zk|' (B?)

The limits of integration are
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(Vay+ay)?<z,< (1-Vag—ay)?,

(Vag+ Vay)*<z3< (1~ V212" = N1z ,z0)N(Zij ,a;,8) . (B9)

xi’<xi<xi+ , For the application in Sec. Il C, it is convenient to assign

the indices 1, 2, 3, and 4 to thequark,gquark, gluon, and
H~ boson, respectively. Then, the hard-gluon conditin

1
Xi_zz_zij[(l+zij —zu)(zj+a—a)

0<¢s<2m, (B8  >E,, may be implemented by substitutingx;
—max(s ,2E ./ \/s) in Eq. (B8). Furthermore, we hava,
where =0 throughout this appendix.
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