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A G eneral features of the instanton expansion

1 Introduction

String theory can provide in m any situations a precise m icroscopic description of su-
persym m etric black holes which reproduces for large charges the Bekenstein {H aw king
entropy [39]. D egeneracies of m icrostates that are highly protected by supersymm etry
are often counted by m athem atically well understood quasitopological quantities related
to the com pacti cation m anifold. For exam ple, the com putation of m icrostates of the
D1{D5 systam is encoded in the elliptic genus of a sym m etric product of a hyperK ahler
m anifold (see [14,[11] for a review of these com putations).

A very challenging class of black holes in string theory is obtained by com pactifying
M theory on a Calabi{Yau manifold X with generic SU (3) holonomy. These are ve
din ensional black holes, which are characterized by a m enbrane charge Q 2 H, (X ;7))
and an angularmom entum m . It was proposed In 28] that the m icroscopic entropy of
these black holes is accounted for by BP S states associated to M 2 branes w rapping the
cyckeQ and with left sopinm = 275 in vedin ensions. A cocoording to the proposalof [28]
their degeneracies are encoded in the ve din ensional supersym m etric index

I(; )=Tr( 17" exp( 1 H): (1)



T he inform ation captured by this index can be extracted from the allgenus expansion of
the holom orphic free energy of the topological string, com puted at the large radius point
ofX [211],

%
Im F(htig) = g et (12)
. o

In this denti cation the BP S degeneracies are m apped to the G rom ov{W itten Invariants
of genus g holom orphic m aps. Since the topological string could not be solved on com —
pact Calbi¥Yau threefolds at higher genus, progress in understanding the m icroscopic
degeneracies in the general case was very 1im ited. On the boundary of the K ahler cone
the problem m ight reduce e ectively to a counting problem on a two com plex din ensional
surface, which ism athem atically sin pler, but the situation is also physically m ore degen—
erate. W hen the com pacti cation manibld isX = X, T¢,whereX, = T* orK 3, one
obtains the wve din ensional black hole solutions constructed in [9], and the m icroscopic
degeneracies are encoded In the elliptic genus of sym m etric products of X .

In this paper we study the m icroscopic counting proposed in 28] n two di erent situ—
ations, by using num erical and analytic m ethods. F irst of all, we consider 5d black holes
obtained by com pactifying M {theory on the one{param eter C alabi{Y au spaces studied in
26]. This explores a generic direction in the K ahler cone and allow s to describe generic
5d black holes, which have non-vanishing classical horizon area and can carry spin. In
20] signi cant progress was m ade In solving the topological string on com pact C alabi-
Y au threefolds. By com bining the holom orphic anom aly of 41w ith m odularity properties
of the topological string partition function 72 = exp(F ), e ective action argum ents, and
C astelnouvo theory, it was possible to calculate the topological string free energy up to
genus 53.

In order to m ake contact with black hole physics on the (super)gravity side, one
has to obtain the asym ptotic expansion of the m icroscopic degeneracies for large charge
Q and Q m . For xed g the expansion of Fy(t) around large radius is convergent
and under analytic control by m frror symm etry. In contrast, the genus expansion in
(12) is expected to be asym ptotic, as in noncritical string theordes [38] (see [33] for a
recent discussion of this issue in the context of topological strings). To obtain a large
Q expansion for the degeneracies of the (Q ;m ) states one needs inform ation at genus
g Q? and is hence facing the issues of the behavior of string theory at large genus.
A Ithough we don’t have enough control of the degeneracies to obtain analytical results
on the large charge expansion, the situation is suited to a num erical study by usihg
the m ethod of R ichardson transform @ . Thism ethod m erely relies on the know ledge of
the form of the series and m akes it possible to extract its coe cients from the value
of the degeneracies at nitely many points. The analysis is com plicated by the fact
that the lJarge charge expansion of the degeneracies is an asym ptotic expansion, but we

nd that the R ichardson transform s converge rapidly to the expected m acroscopic values

IFor sub-sub leading term s we use the Pade approxin ation.



for the asym ptotic coe cients. To estin ate its accuracy we sam ple over the thirteen

Calbi¥Yau,which have a su cently w ide variety of topological data. U sing this sam ple

we can conclide that, given our present data of the higher genus Instanton expansion,
the Jleading coe cient of the asym ptotic expansion is correct within 2% and the st

subleading one w ithin 12% . W ith this inform ation at hand, we give convincing evidence
that the topological string accounts correctly for the entropy of 5d spinning black holes,
as con ctured in [28@.

Som e agpects of the genus expansion (1.2) are much better understood in termm s of
D -brane invariants like G opakum ar{Vafa or D onaldson{T hom as invariants, rather than
G rom ov{W itten invariants. In particular, fora given chargeQ 2 H, (X ;Z)and Q 6 0 one
gets the com plete genus inform ation from a nite number of GV invariants. W e use the
results for Fy In [26] to obtain precise inform ation on the D onaldson{T hom as Invariants
of the oneparam eter m odels. This allow s us to study num erically the scaling exponent
k consdered in [12] (and de ned below in (4.7) and (4.8)), which govems the grow th
of the Donaldson{T hom as Invariants under rescalings of the charges. Our num erical
study indicates thatk = 2. Asargued In [12], this value Indicates that highly nontrivial
cancellations occur betw een the contrdbutions to the D onaldson {T hom as invariants, w hich
In tum seem necessary to resolve the so called entropy enigm a [12]in the O SV con fcture
371.

T he second classofblack holeswe study hasa di erent avor. T hese are 5d black holes
which are obtained when the Calabi{Yau isa K3 bration and the charge Q is restricted
to the K3 Dber. Their classical horizon area is zero (ie. they are small black holes)
and have no spin. By using heterotic/type IT duality one can cbtain analytic form ulae
for the Fy am plitudes at all g [2,134,130,132,122], and from them one can extract the
exact m icroscopic degeneracies for the corresponding sm all 5d black holes. O f course, as
explained for exam ple in [12], the m ost delicate aspects of 5d soinning black holes, as
well as of the O SV confcture, cannot be tested w ith am allblack holes. T his re ects the
fact that the G rom ov{W itten theory ofK 3 bers (which is closely related to the theory
of H ibert schem es) ismuch sin pler than the G rom ov{W itten theory of generic C alabi{
Yau manifods. However, having an exact m icroscopic counting m ght be in portant in
understanding som e detailed aspects of the entropy. A s In the 4d case considered in [9], the
5d degeneracies are closely related to m odular form s, but one cannot use the R adem acher
expansion featured in [15,/9]. W e nd however an exact asym ptotic expansion for the
m icroscopic degeneracies in pow ers of the inverse charge (albeit corrected by term swhich
are exponentially suppressed for large charges). T he leading term of the asym ptotics is
in agreem ent w ith a m acroscopic com putation using the 4d/5d connection of 20]and the
4d attractor equations fora D 6/D 2 system .

T he organization of this paper is as follow s. ITn section 2 we review the m acroscopic
and m icroscopic com putation of the entropy for 5d spinning black holes. In section 3

2For a recent study of this question by usihg an approach totally di erent from ours, see [24].



we analyze num erically the asym ptotic properties of the degeneracies for the Calabi{Yau
m anifolds studied In [26]]. In section 4 we study the asym ptotic properties of D onaldson {
Thom as Invariants to address the entropy enigm a of [12]. In section 5 we study sn all
black holes in K3 brations and com pute their degeneracies as well as the asym ptotic
expansion. Finally, in section 6 we list som e conclusions and open problam s.

2 M icroscopic and m acroscopic counting for 5d black
holes

2.1 M acroscopic description

Let us start with the m acroscopic description of black hole entropy. W e w ill consider
5d black holes obtained by com pactifying M theory on a Calbi{Yau threefold X , and
characterized by a charge Q 2 H,(X ;Z) and SU (2), SO (4) angular mom entum m .
W e will introduce a basis * forH,(X ;Z), where A = 1; > (X; aswell as a dual
basis , fOrH 2(X ). W ith respect to the * basis, the charge Q willbe given by a set of
Integers Q » . The classical entropy of these black holes, denoted as Sg, is one quarter of
the horizon area
P
So=2 Q° m% (2.1)

where Q is the graviphoton charge of the black hole. T his charge is related to them em —
brane charge Q by the attractor m echanian in ve din ensions [19], which states that

_ 1
Q¥ = ECAchAyByC; (22)
w here
1 B c _ .
2CABCY Yy =0Qnas (2.3)
and Z
Cagc = A" 8" ¢ (24)

are the triple intersection num bers of X . For oneparam eterm odels, them em brane charge
w ill be denti ed w ith the degree d of the holom orphic m ap in topological string com pu-—
tations, and we w illdenote the single intersection numberby Cagc = . From the above
equations it follow s that )

3

Q = 2 d: (2.5)
= 3 :

T here is a correction to the black hole entropy from the R? term of the supergravity
e ective action, which we denote as S; r convenience. The R? termm correction to the



black hole entropy scales like Q > in the large charge lin it, and was com puted In 23] by
using W ald’s form ula [41]] for the R? in 5d. T he result reads,

Sl:_meZ 2 (26)
24 o 0
w here
v2 = Q}ZYA; 2)
and Z
Coa = QX )" ac (2.8)

X

Form = 0 this form ula has been rederived in [8,/1/] by using the full 5d SUGRA action.

Tn the onefyaram eter case, this correction reads

1
o 6 3 P—— 1 m?
g -2 2 3 2 o4 29
1 3 Q L (29)
B esides the corrections that we have considered, there are well know n correction term s
in the Iow energy e ective action ofthe form F 29 °R?,g  2,whereF is the graviphoton
eld strength. T he leading contribution com es from a classical term , which is the contri-
bution of the constant m ap from a genus g world-sheet to the Calabi¥Yau m anifold. It is
of the fom ,

dy (210)

where is the Euler num ber of the CalabiYau 3-fvold and

dg: ( 1?j329B2q Zj .
4g(2g  2)(2g  2)1

W e denote the correction to black hole entropy due to the F %9 “R? tarm as S,. W e can
roughly estin ate the correction for non-spinning black holesm = 0 as follow s.

T he graviphoton charge is the Integral of its eld strength over the horizon of black
hole,

(211)

Z
Q F (212)

H orizon

Since the area of the horizon scales like A Q% , the graviphoton eld strength goes like
F Q> (213)

TheR? term contributes a factor @ ' in W ald’s form ula for the black hole entropy, and
3

taking Into account also the factor of horizon area A Q2 ,we nd the scaling behavior

of the F %9 ?R? tem correction to black hole entropy to be

Sy Q7 ¢ (2.14)



where we have Included the Euler num ber from (2.10). T he constant of proportionality in

(2.14) isnow universal, and independent of speci ¢ CalabiY au geom etries and the black
hole charge. W e w ill be able to m ake a rough test of (2.14) for the genus 2 case, which is
the sub-sub—leading correction in the large Q Iim it.

T here are other worldsheet instanton corrections to the low energy e ective action
that can be com puted also by topological strings. H ow ever, these term s are exponentially
an all in Jarge charge Q lim it where the supergravity description is valid, and are much
suppressed com pared to the Q ! power corrections in (2.14). In this paper we will not
need to consider these world-sheet Instanton corrections In the m acroscopic description of
the black hole entropy. Interestingly these world-sheet instanton corrections are closely
related to the BPS states that we w ill count in the m icroscopic description of the black
hole entropy.

2.2 M icroscopic description

M icroscopically, a 5d black hole w ith m em brane charge Q 2 H , (X ;72 ) is engineered by
wrapping M 2 branes around the two{cycle Q . This leads to a supersym m etric goectrum
of BPS states in 5d which are labeled by Q and by their spin content (., ;& ). A s argued
in 21]], in order to obtain an index one has to trace over k (w ith an insertion of ( 17% ).
T he resulting spectrum for a m em brane charge Q can be represented as

Xg
Ro = ng L1 (215)
r=0
w here
1
I.= 20)+ 5 (2.106)

encodes the spin content J, ,and n; are the G opakum ar{Vafa nvariants [21]. N otice that
in (2.I9), the sum over r is nite and the highest spin g appearing in the sum depends
on them em brane charge Q . In other words, for any given Q there are only nitely m any
g for which the n; are nonzero.
W e can now w rite down a generating function for the supersym m etric degeneracies of
BPS states w ith m em brane charge Q , kesping track of their left spin 7§, , by com puting
X X o
(Qim )= o, ( 17Ey*: (2.17)
m Q

U sing the decom position (2.19) one nds

X or+ 2
Qim)= ng : (218)
m+r+1



wherem = 27 . In 28] it was proposaed that this quantity gives the m icroscopic degen—
eracies for a spinning 5d black hole of charge Q and spin J = m . The com putation of
these degeneracies reduces then to the com putation of the G opakum ar{Vafa invariants
n; . Themost e ective way to determm ine these is by com puting the genus r am plitudes
F, of topological string theory on X . A s shown in [21], the total free energy

X

F(tigs)=  Fo(bgl ° (2.19)
r=0

can be written in temm s of the G opakum ar{Vafa invariants as

¥ X % 2 2

1 k
F (tgs) = ngE 2 sin (235 e @ & (220)
r=0Q2H,(X ) k=1
T his m eans, In particular, that one can obtain the ng forallQ by knowing Fg; e
T he black hole entropy is given by logarithm of the num ber of m icrostates
S@Qim)= log( (Qm)): (221)

T his should agree w ith them acroscopic result In the large charge Iim itQ land Q m .

A s explained in [28], this proposal for the m icroscopic counting of states of 5d black
holes can be regarded as a generalization of the elliptic genus, which com putes BP S
degeneracies of the D 1{D 5 system . Indeed, if one considers M theory com pacti ed on
X = K3 T, thegeneric M 2 brane charge in this com pacti cation is

Q=1[C1]+n?; n27%; (222)

and C is a curve n K 3. By standard dualities this system can be related to type IIB
on K3 & with D {brane charge [C ]and M units of m om entum around S', which is a
close cousin of the D1{D 5 system . A s it iswell known (see for exam ple [14]), the BPS
degeneracies of this system can be com puted from the elliptic genus of the symm etric
product ofK 3. Let X

K3;qy)=  cm;d"y (2.23)
be the elliptic genus of K 3. T he generating function of elliptic genera of the sym m etric
product S*K 3

XP X

(SpK 3;q;v) = (S*K 3;q;y)p" = clk;n;m )P g y" (2.24)
k=0 kmnm

can be com puted from the coe cients in ([2.23) in term s of an in nite product [16]
Y
(SpK 3;qiy) = 1 pgty) . (225)
NM  0;f



CY o CY o !
X 5(1°) | =200 50 X 6(1%;2) | 204 42
X g(1%;4) | 296 44 X 10(1%;2;5) | 288 34
X35(1%) | 144 54 X4(1%) | 476 56
X30(17) | 144 60 1 X 0p0(1%) | 128 64 16
X 45(1°;2) | -156 48 X 44 (1%;2%) | 144 40
X 55(1°;3) | 256 52 X 64 (1%;22;3) | 156 32
X 4(1%;2%;3%) | 120 32

O N O
0 = W

N
N

o))

Table 3.1: The sam pl of 13 one-param eter com plete intersection CY s In weighted pro-

jsdeﬁoted Xa g, Wajiii;wy), le. welghts w with repetition m are abbreviated by w™ .
= , G istheEulernumber, Isthe triple ntersection num ber, and ¢ isde ned in

23).

T he supersym m etric degeneracies of BPS states for this system are then given by the
coe cients of the expansion in ([2.24),

1
Qm)=c 5c:2+ 1;n;m (226)
where Q isof the form (2.27). O ne can show that, for large charges [17,[14],
T
n
Ibg ©Q;m) 2 —C?2 m?: (2.27)

2

It is easy to check that this is precisely the m acroscopic entropy (2.0) com puted or
K3 T°.0 foourse, the degeneracies (2.18) are in generalm uch m ore di cult to com pute,
since they correspond to black holeswith only N = 1 supersymm etry in 5d.

3 One{param eter m odels

3.1 Topological strings on one{param eter m odels

In [26] the topological B m odel was integrated on thirteen onefparam eter CalabiY au
Soaces which can be realized as hypersurfaces or com plete intersections in (weighted)
pro gctive spaces. W e have listed these spaces and som e of their topologicaldata In table
[3.1]. These data are the Intersection numbersCapc = ,the second Chem classes ¢,, and
the Fuler num bers . T hey are needed for com putations of the m acroscopic entropy.

T he com plex m oduli space of these threefolds isM = P'n fl ;1;0g, and the three
special points are the lJarge radius degeneration point, a conifold point and a further point
either of nite (G epner point) or in nite branching order. The m odular group x 2
SP (4;Z ) can hence be generated eg. by the lJarge radius and the conifold m onodrom ies.



T he conceptual obstacle In Integrating the B-m odel holom orphic anom aly 4] is the
holom orphic am biguity which arises in each Integration step. Invariance of the topological
string am plitudesunder y and e ective action argum ents, w hich goverm the behaviour of
the genus g am plitudes at special points, restrict the am biguity to 3g 3 unknowns|R8].
By using a re ned e ective action analysis, which gives rise to the \gap condition" at
the conifold, reqularity at the orbifold, and C astelnouvo’s bound for the G rom ow {W itten
Invariants at Jarge radius, it ispossible to x the unknow s, and one can calculate the free
energy of the topological string to arbitrary degree and up to genus 12 53.

Instead of using the generic solution of holom orphic anom aly equation suggested
by the world-sheet degenerations [4] we use the constraints of x on the topological
string am plitudes directly when integrating the holom orphic anom aly equations genus by
genus 42]22]. This results In an alogarithm , which constructs the genus g am plitudes
asweight 3g 3 polynom ials over a ring of three an-holom orphic—and one holom orphic
m odular ob fcts of weight (1;2;3;1). A s a consequence the num ber of term s In the Fy
grow s polynom ialw ith g and not exponentially as in the approach of [4@ .

T he approach of [2d] view s the topological string partition function as a wave func-
tion over H (X ;R ). Choices of polarization are necessary in order to expand the e ective
action atdi erent points in them oduligpace M , in appropriate localholom orphic coordi-
nates. M ost of the black hole issues that we w illdiscuss iInvolre the degeneracies extracted
from the topological string at the large radius Iim it. T herefore we w ill discard for now
m ost of the global inform ation and focus only the holom orphic lim it of the topological
string partition fiinction at this Iim it, where it encodes the degeneracy of bound states of
a single D 6 brane and arbitrary D 2-D 0 branes.

3.2 Static black holes

W e rst consider the case of non-spinning black hole J m = 0and denoteNyg = (d;0).
T he entropy form ula including the rst few orders (2.1), (29), (2.14) is in this case

3 1 b 1
S=hd>+bd+ =+0 — ; (31)
dz dz
where the rst two coe cients are
4 S
b= P=; b=-p=; (32)

3 2 4 2
and we have used the graviphoton charge relation (2.H). The coe cient b, of the sub-
Jeading term is consistent w ith the results n [40,[8,/1], where it was observed that the by
can be produced by a shift of the 2dorane charge

&

3N evertheless the lim iting factor in advancing to higher g is presently not the am biguity but the com —
puting tin e. T he reason is that the num erators in the coe cents of the polynom ials grow exponentially.



n the leading tem .
To com pare w ith the m icroscopic counting we de ne the follow Ing fiilnction

fd)y= ———: (34)

Since we have available only the values of f (d) for positive integerd up toa nitedegree, it
is appropriate to use wellknown num ericalm ethods to extrapolate the asym ptotic value
Iy. From the form of the sub-leading corrections in (3.3), it is appropriate to use the
R ichardson extrapolation m ethod (see for exam ple 3]).

T he basic dea of this num erical m ethod is sin ple. To cancel the sub-leading correc—
tions in (3.9) up to order 1=d" , one de nes

Bfd+ K)d+ k)N ( 15

A (N )= ATEESY ; (36)

k=0

One can show that if the perturbation series (3.9) truncates at order 1=d" , the expression
(3.9) willgive exactly the asym ptotic value by . deally ,the larger N and d are, the closer
A (d;N ) is to the asym ptotic value. But due to the Iim itation of our data, the sum d+ N
m ust not exceed the m axim al degree d,, .x Of the topological string com putations.

Fig. [ shows the convergence of the lading term s In £ (d) and of the R ichardson
transform s A (d;N ), N = 2;3;4 for the quintic and the bicubic. It is cbvious from the
two exam ples in F igg.[Il that theR ichardson m ethod in proves in pressively the convergence
of the series, ie. it provides a m odel independent and consistent schem e to supress the
subleading corrections. Using N = 2 4 is good enough for our purpose of estim ating
the asym ptotic value. W e conduct the analysis for all 13 m odels using N = 3 and the
m axin aldegree available. T he results are sum m arized in Tabl[3.2, and are in very good
agrean ents w ith the expected asym ptotic values by in (3.2). M ore detailed results on all
the analysis carried out in this paper can be found in a script and In a data base at [43].

W e can further extract the sub-leading coe cient b; from thedata.De ne

£ (d) () lk)d;

Xfd+ k)yd+ k)N (1§
Ay (d;N) = e oy ; (3.7)

k=0

and the asym ptotic value of £; (d) should be . W e apply the sam e R ichardson extrap-
olation m ethod to f; (d) and we com pare it w ith the m acroscopic black hole predictions.

10
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Figure 1: M icroscopic data for £(d) ( ), and the R ichardson transform s A (d;2) (),

A (d;3) (

Iy = EéT For the quintic this value is Iy

)yand A (d;4) (?). The straight line corresponds to the m acroscopic prediction
1:359 and for the avaibble degree 14 the

R ichardson transform s lie 1:8, 21, 12 $ from the m acroscopic prediction. For the bi-

cubic Iy

0967, the available degree ishigher, 18, and them icroscopic counting isw ithin

9,12,3% from them acroscopic prediction. A s an exam ple we give BP S num bers usad
for the analysis at degree 18 of the bicubic In table (A 1).

CalkbiYau | dnax |AGhax  3:3)| b= FF= error
X 5(1°) 14 135306 | 132461 | 215%
X 6(1%;2) 10 1.75559 | 1.71007 | 266 %
X g(1%;4) 7 211454 20944 | 096 %
X 10(1°;2;5) 5 299211 | 296192 | 1.02%
X 35(1%) 17 1.00204 | 0987307 | 149 %
X 42(1%) 15 1.07031 10472 221 %
X322 (17) 10 0.821169 | 0.855033 | 3.96 %
X 2002(1%) 13 0.722466 | 0.74048 | 243 %
X 45(1°;2) 11 121626 12092 | 058 %
X 5(1°;3) 11 1.52785 148096 | 317 %
X 44 (1%;27) 7 142401 | 14809 | 385 %
X 64(17;2%;3) 5 206899 20944 | 121 %
X 65 (12;27;3%) 4 295082 | 296192 | 037 %

Table 3.2: Com paring the extrapolated value ofly w ith the m acroscopic prediction.
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Figure 2: M icroscopic data for £(d) ( ), and the R ichardson transform s A (d;4) (2 ),
A (d;5) ( ),and A (d;6) (?). The straight line corresponds to the m acroscopic prediction
b = Zp%— . For the degree X 4, com plete intesection this value is by 1444 and for
the available degree 12 the R ichardson transform s Iie 11:7, 104, 9:77 % below the
m acroscopic prediction. For the bicubic b 9994, the availhble degree is 18 and the
m icroscopic counting is 715, 688, 663 % below the m acroscopic prediction.

CalbiYau | dpax | A1 (Anax  3;33)| b= Zp% error | estin ated b,
5(1°) 14 112668 124182 | 927 % -11.9503

X6 (1 ;2) 10 11.9237 134668 | 115% 12.1848

X g(1%;4) 7 140537 172788 | 18.7 % 149973

X 10(13;2; 5) 5 152509 18.8823 | 192 % 149817

X 35(1°%) 17 9.29062 999649 | <7.06 % -9.63958

X ap(1°) 15 10.0226 10.9956 | -8.85 % -10.7834

X 3450(17) 10 8.45163 961912 | 121 % -9.3828

X 2002 (1%) 13 7.84595 888577 | 11.7 % -8.88773

X 44(1°;2) 11 95981 108828 | 118 % -9.96404

X 62(1°;3) 11 12.5614 144394 | 130 % 14 2582

X 44 (1%;27) 7 9.70091 111072 | 427 % 941295
X 64 (1°;2%;3) 5 11.1008 125664 | 11.7 % -10.0821
X g5 (14;2%;3°) 4 11.1378 122179 | 884 % -8.15739

Tabl 33: Com paring the extrapolated value w ith the m acroscopic prediction of b, .
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Two typical exam ples for the behaviour of the R ichardson transform s are plotted In Fig.
[@. The results for allm odels are summ arized in Tablk[33.

D espite our rather successfil veri cations of the num erical coe cients by and b, , we
should note that the expansion In inverse pow ers of the charge (3.9) is actually an asym p—
totic series. The asym ptotic character of the large charge expansions of m icroscopic
degeneracies ism anifest In the explicit com putations for am allblack holes in [9]and also
n the exam ples we w ill discuss in section 5. In our case, we can relate the asym ptotic
expansion of (3.9) to a large genus behavior In a string serdes, sihce the coe cients in
(3.9) are proportional to the constant m ap contribution

y  &; (3.8)

where d; isgiven In (2.17). T his coe cient grow s at large g as
dy (2 )% 179y (39)

w hich is the typicalbehavior found n string perturbation theory [38]. Tt then follow s that
the serdes expansion (3.9) for £ (d) has zero radius of convergence for any value of d and
it is rather an asym ptotic expansion. Indeed, the d; are the coe cients of the asym ptotic
expansion of theM adM ahon function (see [9], A ppendix E , for a detailed derivation). For
these kinds of expansions, the best approxin ation to their true value (which in this case
is the function f (d) com puted from topological strings) is obtained by truncating the sum
at the order N which m inin izes the error. For an asym ptotic series of the form

fw)= bw; b AS( k)! (3.10)

the optim al truncation occurs generically at

|~

N — (3.11)

W]
Inourcase = 2andwecan estin ateN as follow s. A ccording to the connection between
4D /5D black holes 20], the attractor value for the topological string coupling constant is
gs = 4 [23]. This should be roughly the num erical constant that relates the graviphoton

eld strength to the charge Q in (2.13), and it contrdbutes to the coe cients b, an extra
factor g9 2, so thatwe can re ne (3.8) to

h, (4 ¥9dy; (312)

and the constant in (3.10) isA = 2. Therefore, the optin al truncation is at

N —d7: (313)
2
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For the an all values of d that we are considering we should therefore expect an optin al
truncation around N 5 10.

T hese considerations have In plications for our num erical analysis. T he R ichardson
m ethod (3.4) is designed in principle for convergent expansions. For asym ptotic expan-—
sions, we should expect it to give increasing precision and convergence to the true coe —
cients as Iong as the order of the transform ation N in (3.6) is Jower than the truncation
order N . This is the underlying reason that prevents us from in proving the precision
of the leading coe cients by sin ply increasing the truncation order N in the R ichardson
m ethod, and we indeed nd an oscillating behavior around the expected true value for
the R ichardson transform swith N > 5.

W e try to go one step further and give a rough estin ation of the coe cient b, In
(31), which has not been studied in the literature from the supergravity point of view .
It tums out that the naive m ethod we use for com puting the sub—-leading coe cient b,
gives too big an estin ate, which m ight be a result that the optim al truncation schem e is
no longer a good approxin ation at this order. Tn order to Im prove this, we use the Pade
approxin ation which is wellknown for summ ing divergent series. G iven an asym ptotic
series

f(z)= biz'; (3.14)

=0

one can evaluate the asym ptotic value by de ning the follow ing Pade approxin ation

Py 5
N _ ':OAiZ
Py (z) = —?M— (3.15)
1+ ileiZl

where the coe cients A ; and B; are xed by Taylor expanding the above equation (3.15)
around z= 0 and match to the rstM + N + 1 tem s of the origihal series (3.14).
W e take the theoretical values of by and by from (3.2), and use the M onte Carb
m ethod to random ly generate the sub-leading coe cients b ,, Iy etc, then use the Pade
approxin ation to evaluate the asym ptotic serdes (3.14) forz = i ,2whered = 1;2; el
W e pick the sub—leading coe cients b; (i 2) that m Inin ize the di erence of the Pade
evaluation w ith the expected value f (d) from topological strings, ie. wem inin ize
B (P;: )

d=1

1¥ (3.16)

W e nd dierent values of N ,M 1n the Pade approxin ation give qualitatively sim ilar
results. In the Jast coimn in Tabk[3.3, we give the estim ated values of sub-sub-leading
coe clent b, using the schemeN = 2;M = 1.

A ssum ing the constant m ap contribution is the m ost signi cant contrlbution at this
order In Q , the coe cient b, should behave lke

o 5 (317)

14
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W e can verify the relation (317) by plotting b, against the Eukr number ¢ for the 13
CalabiYau modelswe studied. W e nd as thebest tcoe cient

b= 0047 ¢; (318)

see the plot in Figure[3, which is reasonably consistent w ith the expectation (3.17).

From the second row ofthe Tablk[3.8,wecan nd the num ericalvalues of the genus two
constant m ap contribution b, 0 :00017<j c. Taking into account thatgs O (10), this
is the sam e order ofm agnitude as our estin ate value of 0047 from m icroscopic topological
string com putation.

3.3 Spinning black holes

W e can try to extract the spin dependence of the black hole entropy from (2.). A ssum ing
Q J, and expanding in J=0Q , we nd the follow Ing m acroscopic prediction for the
topological string data,

2
[0}
~e
o
| =

% @) —bg ——— =p+0 (319)

w here

N

(3.20)



d g (d) | A:(d;l) 9 (d) | Ao(d;1) gs(d) | As(d;l)
1| 0693147 | 322789 NA NA NA NA
2 1.96052 | 6.85432 NA NA NA NA
3| 359178 | 109389 | 9.03347 | 122117 NA NA
4| 542856 | 144696 | 9.82804 | 13.0403 | 12.1257 | 6.55334
5| 723677 | 164156 | 104705 | 128183 | 11.0112 | 10.2148
6| 8.76658 | 16.1819 | 10.8618 | 116135 | 10.8785 | 9.98996
71 982591 | 139173 | 109692 | 9.71239 | 10.7516 | 8.81357
8| 103373 | 104832 | 10.8121 | 7.53259 | 105093 | 7.27017
9| 103535| 7.02869 | 104477 | 551774 | 10.1494 | 5.73628
10 10021 | 441912 | 9.5547 3.9872 | 9.70809 | 4.46946
11| 951178 29195 | 94122 | 3.04128 | 9.23185 | 3.58335
12| 8.96242 NA | 8.88129 NA | 8.76114 NA

Table 34: The R ichardson m ethod for the quintic with spin m = 1;2;3.

Fora xed valuem we use again the R ichardson extrapolation m ethod to nd the
asym ptotic value of g, (d) for arged. W e list the values of g, (d) and its rstR ichardson
extrapolation A, (d;1) for spin m = 1;2;3, using the quintic as an exam ple.

W e note that the contrdbution to entropy from angularm om entum is proportional to
d 32, as com pared to the leading static contribution (3.) of order d*2. A lthough the
prediction (3.19) should be the leading spinning contribution, there could be som e an all
statistical uctuation of topological string data which is random for the di erent spins,
and w hich m ight becom e com parable to the spinning contribution in (3.19) and result in
the deviation for Jarge degree d. This can be seen In the quintic exam ple In Table([3.4.
W e nd that the R ichardson serdes does not converge to an asym ptotic value, iInstead the
series approach a m axin al value before deviating again for lJarge degree d. Tn order to
m inin ize the e ect of statistical uctuation of topological string data, we propose to use
the extram al values In the R ichardson series A, (d;1) to estin ate the asym ptotic value
ofpg. This is indead a relatively good estin ate for the quintic case where py = 14:9019.
O ther CalhbiYau m anifolds are analyzed In [43].

W e analyze the 13 Calabi¥Yau m odels using the above approach. Let us de ne the
extram al value of the rstR ichardson extrapolation over the degree d as

Gn = An (d;l)jnax; (3.21)

For various CalabiYau m odelsand spinm = 1;2;3,we com pare the value of g, with the
expected coe cient p o given in (320). T he results are summ arized in Tablk[33. W e see
that for lJarger angular m om entum m the deviations becom e bigger, as expected.
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CalbiYau | py= 3 (3)° g | o error o | 9, error o | 3 error
() 149019 | 164156 | 102% | 13.0403 | 425% | 102148 | 315%
C(1%:2) 115429 | 121492 | 525% | 101828 | 418% | 821085 | 289%
S (1%;4) 942478 | 104854 | 113% | 8.382| 43.7% | 53473 | 433%
X 10(1°;2;5) 666432 | 677436 | 1655 | 589201 | 16% | 3.62439 | —456%
X35 (1°) 19993 | 221786 | 109% | 17.7804 | 1.% | 148114 | 259%
X 20 (1°) 188496 | 210741 | 118% | 16569 | 42.% | 12.9935| 31.1%
X 2o (1) 230859 | 259065 | 122% | 20499 | 412% | 165636 | 283%
X 2non (1%) 266573 | 301999 | 133% | 236923 | 414% | 192311 | =279%
X a5 (1°:2) 163242 | 17.7685 | 8855 | 144772 | —13% | 122514 | —249%
X on(1°:3) 133286 | 152332 | 143% | 112819 | 154% | 8.06844 | 395%
X an (12527 133286 | 139081 | 4355 | 11618 | 128% | 106901 | 198%
X on(13;27;:3) 942478 | 902611 | 423% | 787731 | 164% | 756862 | 19.7%
X o5 (12;22;3) 666432 | 542333 | 186% | 491355 | 263% | 45984 | 31.0%

Tabl 3.5: The R ichardson m ethod for the 13 CalabiYau modelsw ith spinm = 1;2;3.

4 A sym ptotics of the D onaldson {T hom as invariants

As we already m entioned, the total free energy of the topological string (2.19) can be
reorganized In temm s of G opakum ar{Vafa invariants as n (2.20). A rem arkable property
of (2.20) is that for a given class Q 2 H, (X ;Z), the expression is exact In the string
coupling. This is because C astelnuovo’s theorem for the am bient space yields nd 0 for
d> P35 g for certain

For exam ple, for the quintic the m axim al genus g, ax such that ngm & 0 ful llsa
bound

1
G ax E(lo"' 5d+d2) (4.1)

w ith a decreasing relative deviation in the larged lin it. T he bound is saturated for curves
of total degree 5Sm which are com plete intersections of degree (1;5;m ) in P*, which are
an ooth curves In the quintic. For 5 > m > 1 we can describe the m oduli space of the
D 2 brane as ©llows. The lnhear constraint has as a param eter space P* and allows to
elin .nate one vardiable from the degree m constraint, which has as m any hom ogeneous
Baram eters asm onom ials in four variables, ie. asm any as there are Integer solutions to

;N = m namely mrat . The m oduli spaces of the curves are therefore brations
(m +m4 1) 1

ofP over P*. U sing the results of 28] we get for the GV invariant

G ax _ ( 1)(m+m4 l) 1 5 m + 4 :I_

Nsp (4.2)

m

TIfthebound (4.]]) is not saturated for am alld the relative deviation can becom e som ew hat
larger as seen in the F igure[4.
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Figure 4: C astelnuovo’s bound for higher genus curves on the quintic. T he dots represent
n?"** and the curve is {41)).

Let us denote by F %( ;t) the total free energy w ithout the contrbution (2.10). A fter
exponentiation one nds [30]

" ! #
Yt Yt 0 Yt ZF ? g+l (29 2 9
20, (X jqit) = (1 de 9y 1 § tled) R (43)
d=1 r=1 g=1 10

w here
g= & (44)

and we have assum ed that there is only one K ahler param eter, so that Q is labeled by a
single integerd. O n the other hand, the con cture of [39]relating the D onaldson {T hom as
Invariants D 4, to G rom ov{W itten Invariants leads to
X
Zp1 (@B = Dand'e =25, ( oM ( @)¥; (4.5)
dmn

where
¥ 1
M (q)= — (4.6)
g
is the M adv ahon function. This term reinstalls the constant m ap contrlbution. W e list
for reference a few D onaldson{T hom as nvariants D 4, on the quintic In Table[4]l.
A fter an extensive discussion of possible tests of the O SV concture [37], the authors
of [12] isolate as a crucial question for the validity of the latter the grow th behaviour of
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d/n| 3 -2 -1 0 1 2
0 O 0 0 0 2875 569250
11 0 0 0 0 609250 124762875
21 0 0 0 609250 439056375 76438831000
3] 0 8625 2294250 4004590375 1010473893000 123236265797125

Tabl 4.1: D onaldson-T hom as Invariants.

the D onaldson-T hom as Invariants. T his behaviour is encoded in the scaling exponent k,
de ned as

gD 2q;3,) ©: (4.7)

T he question is relevant in theranged® 1f > 0 forwhich stableblack hole con gurations
exist.

Because of C astelnouvo’s bound, and since our data are up to genus 31, we can calcu—
late the D onaldson {T hom as invariants exactly in therange 0 d 15 and for arbitrary
high n for the quintic. W e are interested in the lin it

k = T loglong 2d;3nj:
[l Iog

(4.8)

In order to evaluate it or given valies (d;n) we chose so thatd+ 1= 2d ford;12 N
and use the fact that Iog P 4+ 15 Jfor xed d;k scales in good approxin ation ]jnearl%lw ith

n to caloulate the interpolated value of the D g, 10 atn®=  *(d;)n,with ;)= 2.
For (d;0) the latter interpolation is of course com pltely irrelevant and for charges for
which the n’ values becom e large it is not very relevant.

T he Jeading correction to (4.8) is of order 1=(log( )). Itm akes therefore sense to elin —

dnate this leading correction by logarithm ic R ichardson {T hom as transform s. W e de ne

©) _ bglog D @apa; @apn
' by (@D

and the m th logarithm ic R ichardson-T hom as transform as

k

; (4.9)

k(m 1)

g o ey 0900 ) K g, (4.10)
g1+ 1) g

W ith our know Jledge of the topological string up to g = 31 for the quintic we can evaluate
the D onaldson-T hom as Invariants up to degree 15. W e plot in the st two graphs (3)
the data for the kio) and its rst two logarithm ic R ichardson-T hom as transform s. The
graphs clearly indicate that the convergence is Im proved by the transform . So even if
there are subleading tem s of other fom s, we certainly m anaged to supress the leading
correction and speed up the convergence. T he data further show that there isan universal
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Figure 5: Scaling data k@ ( ) and the transbm s k) (. ), k'®> () for the D onaldson-

T hom as Invariants on the quintic in p* starting for (d;0) states.

behaviour independent ofd and that the value ofk isw ithin the 2% rangeclose to 2. The
higher logarithm ic R ichardson-T hom as transform s are consistent w ith this value but do
not determ ine it better as we also have to take into account values w ith sn aller 1 hence
analler .W enext test the universality of these results for other charges (d;n) n Fig [d. If
n 6 0weneed the interpolation forthen’values. T his introduces som e random subleading
errors, which are of the order of the im provem ent by the second logarithm ic R ichardson-—
T hom as transform . However as in the gure for (2;0) we see that higherd seem s to lower
the coe cient of the sub-sub—leading correction and m akes already the second R ichardson
transform to converge reasonably well {well enough at least to conclude that the k is
considerably Iower then 3 and very well com patible with thevaluek = 2 003 found for
the previous charges. W e solved the bicubic in P° up to genus 29, which yields com plete
Inform ations about the D onaldson-T hom as invariants up to degree 18. A sim ilar analysis
as above con mn s the analysis for the quintic. T he corresponding plots are in F ig. [1 and
Fig. 8. Again a detailed summ ary of the data for m ore m odels can be found at [43].
W e note a slight noise in the transform k") in Fig. [8, which is presum ably due to the
Interpolation in then value ofD 4, described above. T he results for the otherm odels are
sim ilar, but som ew hat less precise due to sm aller values of d that are currently available.
To summ arize: our analysis iIndicates that the value of k is indeed universal and close
to k = 2. This strongly suggests that the \m ysterious cancellations" [12] that eventually
m ake possible to extend the the O SV con fEcture to am all coupling, actually take place.
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Figure 8: Scaling data k®) ( ) and the rst transform k™) (. ) for the D onaldson-T hom as
invariants on the bic-cubic com plete intersection in P° for the (3;1) and (3;2) states.
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5 K3 Dbrations

5.1 Topological strings on K 3 Dbrations

W ewillnow consider Calabi{Yau m anifolds X that have the structure ofa K3 bration,
ie. there isa bration of the form

:X ! P (5.1)

where the Dbers are K 3 surfaces. W hen the bration is regular the hom ology of X can
be written as
Hy(X iZ2)=hP'li  PicK3); (52)

where Pic(K 3) isthe P icard Jattice of theK 3 Dber. T he rank of this Jattice w illbe denoted
by ,and °

Kahler form on X . The com plexi ed K ahler param eters of X are given by
Z Z

S = [P £ = 1, a=1; ;
pl a
W ewilldenoteby 5, . the two{form swhich aredualto P!, 2.

Tt tums out that type TTA string theory com pacti ed on these m anifolds is very often
dual to heterotic string theory com pacti ed on K3 T2 [27,[31]. Under this duality, S
becom es the axidilaton of the heterotic string. Tt follow sthat in theregineS ! 1 onecan
m ap com putations in the type TIA theory to perturbative com putations in the heterotic
string. In particular, the F'; couplings of topological string theory (which are graviphoton
couplings in type TTA theory) can be com puted exactly at one{loop in the heterotic string,
provided the K ahler param eters are restricted to the K 3 ber [27,131,125,2]. W e w i1l now
review here som e of these results.

T he topological string am plitudes Fy (S ;t) on these brations have the follow iIng struc—
ture,

1 1
Fo(S;t) = E_Cabctatbtc+ 5cabs.tatb+ —2(3) X )+ Fo)+ 0 (e °);

1
Fi(S;t)= 5 &S+ ct)+ Fi()+ 0 (e ®);

Fo(S;t)=dy; X )+ Fg)+0(e?®); g 2

In these formulae, C, and C,, are triple intersection num bers In the ber and in the
m ixed ber/base direction, respectively. N otice that

Z Z
Cabc_ a/\ b/\ cr Cab_ S/\ a/\ b (5-5)
X X
W e also have
Z Z
G = CZ(X)A ar 4a= 1; 7 rs = C CZ(X)A S 56)

ya=1; ;  willdenote a basis for this lattice. Let ! be the com plexi ed

(5.3)



ForK 3 brationsw ith trivial findam entalgroup onehascgs = 24 36],but for the Enriques
Calebi{Yau (which we willalso analyze), cs = 12. The coe cient d 4 is the contribution
of constant m aps written down In (Z11). In (54), F,(t) denotes the contrdbution of
worldsheet nstantons in the K 3 ber. It follow s from [2,125,129,34,130] that the F' (t) can
be com pletely determ ined in termm s of a singlem odular form thatwe w illdenote fx (g). In
order to w rite down an explicit form ula for F 4 (t), we have to Introduce the quasim odular
form s P4 (9) which are de ned by

2 2 X
ER 2 YP,(): (5.7)
1

g=0

T he quantities P4 (q) can be explicitly written in tem s of generalized E isenstein serdes
34], and one has for exam ple
1

1
Pr@)= 5E2@; Po@-= m‘5E§+ Eq): (5.8)

W e now introduce the coe cients c 4 (n) through
X
Po@fx @= & (): (59)

n

O ne then has the follow ing expression for the heterotic F 4 (t):
X
Fg(t) = & Q*=2)Lk (e ¢ ); (5.10)

9
Q2P ic(K 3)

where L}, is the polylogarithm of index n

X gk
Li (x)= —: (511)
k=1
In (5.10) we have also denoted
Q t=4f5; Q%= C%n.ny; (5.12)

where C 2 = Cab1 is the intersection form of the P icard lattice Pic(K 3).

W e w il particularly interested In three specialK 3 brations: the STU m odel, the ST
m odel, and the Enriques Calabi{Yau. Let us give som e extra details for these cases:

The STU modelhas = 2 and it can be realized by a com plete Intersection In a
welghted pro fctive space which is frequently denoted by X 54 (1;1;2;8;12). Tt has
Euler characteristic =  480. T he classical prepotential can be obtained from the

nonvanishing intersection num bers,

Ci11=8; Ci12=2; Ciui=2; Cip=1; (5.13)
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while the classical part of F'; (S ;t) is encoded by
g =92; o=oc=24: (5.14)

Them odular form encoding the inform ation about topological string am plitudes in

the Dber is given by [34]
2F ,E¢
fsru (@) = S (@) (5.15)

Tt is som etin es useful to param etrize the K ahler cone in term s of the variables
T=14H+ b%; U= t; (5.16)
In this basis onehasQ?=2= mn.

The ST modelhas = 1 and isrealized In type IIA by theCY X,(1;1;2;2;6). It

has = 252 and the classical Intersection num bers

Cinn=4; Cuiu=2; (5.17)
aswellas

o = 52; cy = 24: (5.18)

T he K ahler param eter along the ber is usually denoted as

T=1t: (5.19)
T he relevant m odular form is 29,130]
2 E,Fe¢
for () = (@) (520)
where X .
@)= qs = #3( =2);

n2z
1 (5.21)
Fo= o#2( =2);
F6 = E6 2F2( 4 2F2)( 4 16F2):
N otice that Q ?=2 = n?=4.

The Enriques Calbi{Yau is given by the free quotient (K3  *)=Z,, and was
introduced in the context of type II/heteroticduality In [18]. Ttisan elliptic bration
with = 10. TthasCuge = 0,whilk C,, isgiven by the intersection num bers of the
Enrigques surface E . The Picard lattice is

Pic(K3)= ' Eg( 1); (522)
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and

c = 0; G = 12: (5.23)
T he topological string am plitudes in the ber were obtained in [32] (see also [22]).
T hey are also controlled by a single m odular form

2
B@= 5oy (5.24)
but their form is slightly di erent from  (5.10)
X
Fg(t) = Q%) 20 PLh o5 @) Lioge ® ) ; (525)
Q2Pic(K 3)

where ¢, (n) are de ned again by (59).

5.2 M icroscopic degeneracies and their asym ptotic expansion

W e have seen that, at least In the case of topological strings on K3 brations, and for
classes Q restricted to the K3 ber, one can obtain closed formula for the topological
string am plitudes at allgenera. It should be therefore possible to extract a closed form ula
for the generating finctional of G opakum ar{Vafa invariants. Tn fact, by using the product
formula

¥

#.(09)= 2Zash( ) Q@ &)@ 2c0s2 W+ ) (526)

n=1

one nds from the expression (5.10) and the structure (2.20)

X % i
ng z7p? 7 = £ (p) *(2); (527)
Q2Pic(K3) r=0

where (z) is the function that appears in helicity supertraces,

N 2 N 2
2) = 1 pP) _ 1 p) ; (528)
L@ BReZp 1 By)L By )
where we have set z = i(y% y%).

W e can now obtain a closed form ula for them icroscopic degeneracies. In order to have
a description which incorporates as well the elliptic genus, we w ill count the m icrostates
asinh (218)butwithr ! r 1.W ith thisde nition, the lhs. of[6.27), expanded in q;y,
is precisely the generating function ofm icroscopic degeneracies (Q ;m ), summ ed over all
m ;Q . W e then arrive to the expression

X N 2
Qm)y"p? = fx @) ); (529)

Q2Pic(K3)m= 1
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w here we have w ritten

y=¢& *; p=¢& *: (5.30)
N otice that fwe consider X = K3 T° and restrict to classesQ in the ber, the counting
ofm icrostates given by the elliptic genus is

(S.K 3;0;v) —? ! - Pz, (531)
PRV T T e pyrad By L se) O

N=1
This has the sam e form than (529) w ith

1
24 (p)

fx3 r2(P) = ; (532)

therefore we can consider the \an all" D 1{D 5 system as a particular case of our analysis.
T he expression (5.29) tells us that the m icroscopic degeneracies we are looking for are

sin ply the Fourder coe cients of the obfct in the rhs. W e can then nvert it to write

Z %+i0* Zl

Nm)=  d d e m .y, N =Q%=2; (5.33)
§+iO* 0

where we de ned
(7 )="Ffx @ ;) (5.34)

and we have assum ed thatN isa non-negative integer (this can be guaranteed by rescaling
p! p* forsom e appropriate k). The contour in (533) hasbeen chosen to avoid the poles
n the integrand.

W e will now evalute the asym ptotic expansion of (N ) (N ;0) In inverse powers
of N . Nonzero values of the spinm = 0 can be analyzed in a sin flarway. T he expression
we will nd is exact up to corrections which are exponentially suppressed in the large
charge Im it N ! 1 . Notice that In our situation we can not appeal to the R adem acher
expansion which wasused in [15,[9], since (5.34) is not a Jacobiform (it can be regarded
as a Jacobi form w ith negative index). It is lkely that an analog of the R adem acher
expansion exists, but we will perform a direct evaluation of the integral (533) in the
Soirit of the counting of states w ith spin in Appendix C of 9]and in [10].

F irst of all, we reexpress the integrand (534) .n term sof #, ( j ) as,

fx (P)
(; )=4dsn*( )@ —: (535)
’ #2(3)
U sing the m odular behavior of #;( j ) under the S transform ation I~ = 1= we
get,
21 2001y n 21 ©°
i’sn — 1+ O (e ) (5.36)

il )= pe=eT



It is easy to see that the saddle point evaluation of (5.33) is govemed by
i 1
=p—=+0 — : (537)
N N

T herefore, the corrections to (5.36) w illbe exponentially suppressed. U sing them odularity
of (p), and taking the part of the sin in the denom inator which is not exponentially
suppressed, we obtain,

() 4 2257 s’ Ok (p): (5.38)

T herefore, in order to com pute the asym ptotics of (8.33) we jast need

N ) 4 d e2®™ X g2t g2y, (539)

%+io* 0
The integralover is easily worked out In temm s of the error function Erf(x), as follow s,
Z . r — r___
L2 ) a2 1 o
d & sin” ( )= —e2t Erf —
0 8 21
r__ r r (5.40)
i —(+1)
+ —e= Exrf —( + 1) Exf —( 1)
32 21 21

Due to (537) we can use the asym ptotic expansion of the Erf function,

x2 3
e Cr DY L . . .
Erf(x) 1 = ( ”TX ; x®j! 1 ; arg( x)j< (541)
r=0
Ignoring tem s which are exponentially suppressed at large N ,we nd,
Z

1 . 1){1 1+ 3r
gt © gin? — * ! .
d sin” ( ) l+r(2]:‘ DG (); (542)
0 r=0
w ith,
_ r+1 2 l l .
G.( )= YT (s (543)
Again,due to (837),we can expand it around = 0,
X 2(1+ s+ r
Gr( )= 2 ( 2 ) 3+2s+r: (5.44)
s=0 r

Putting all together, we obtain,

X or 1) 21+ s+ r Z%“W .
N) 2 ﬁ (2r ) d e? ™ £y (p) =T (545)

1. .
r=0 s=0 PR
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W e now work out the integral,

Z %+iO*
Ag,(N) d e? ™ £ (p) M (5.46)
%‘F i+
W eassum e that fx (p) hasm odularweight w , so that fx (p) = "fy (p),wherep= e =
For them odular form s that we consider here, fx (p)= cp + ,and the integral above
gives a m odi ed Bessel function
Ag,(N) cF? s vf . .,.@4 N): (5.47)

W e end up then with the follow ng result for the exact asym ptotics of the m icroscopic
black hole degeneracy,

LB er ¥ 2(1+ s+ 1) A P
N) 2ct —T ( 1% 5 Dsirio w (4 N ): (548)
r=0 s=0 r
U sing now the form ula for the asym ptotic expansion of T finctions (see for exam pkeApp.

A of 9]),we nd fortheentropy S(N )= log (N ) the follow Ing expansion

p— 2w 5
P— 5 2w 2 "7 ¢ 177+ léw 4w 1 )
N log(N ) + log + p— p—+ 0N 7):
4 32 N
(5.49)

The expansion in powers of 1=N > in (5.48), which is obtained by using the asym ptotics
of m odi ed Bessel functions, is the expansion of the original integral around the saddle
point (5.37). This can be veri ed by an explicit com putation of the rst few orders of the
saddlepoint expansion.

Let us now evaluate (549) n some examples. For K3 T° we have W; ;c) =
( 12;1;1),and the entropy reads

S 4

p_
pP— 29 2 591 1 1
S 4 N — log(N )+ Iog — —Pp—=—+ 0N 7): (550)
4 32 N
For the STU model, with the values w; ;c)= ( 2;1; 2),we nd
P— 9 8 129 1 .
S 4 N Z]og(N)+]og —_— +3719:+O(N ): (551)
N

The ST m odel is slightly di erent, since in f5r (p) both integer and rational pow ers of
p appear. A sm entioned above, we should rede nep ! p* and write down the generating
functional for the degeneracies as

X % 2
Qm)y"p? = f5r () “( ;4 ); (552)

Q2Pic(K3)m= 1

28



where we recall thatM 20° = n? isan integer. T he asym ptotics is given by the integral

21,00 4 2
2 f i
o (M) d e? ™ SZ(E;) d srt( e (5.53)
2+ i0* 0
The Integralover isgiven by [£.40) upon replacing ! 4 . Since,
E, (P s () D— 5 .
for (p') = 24p24—(pj)p#3<2 ) 162ice; (554)
one nds in the end,
p_X (@r 1) 201+ s+ 1) . P
M) 2 ————— (1} , e (2 M) (5.55)
r=0 s=0 r
and from here one can read the entropy,
r
1
s@) 4 507 21g(Q*) + (5.56)

Finally we tum to the case of Enriques CY m anifold. Tt ollow s from (5.29) that one
has to distinguish two types of hom ology classes: the classes Q whose entries contain at
Jeast an odd Integer (which were called odd classes in [32]), and the classes Q for which
all entries are even (called even classes). A sin ple calculation show s that the generating
function of G opakum ar{Vafa invariants for the odd classes is given by

X X
A _El) e ) 222 o (557)

.2
4sn® —
r=0Q odd 2

while for the even classes is given by

X X g (
a)
nip? gt e 2 2 =2p) (=2 p)
r=0 Q even 2 (5.58)

£@) () (i D)

N otice that for even classes Q 2 0 mod 4, while for odd classes one only has Q? 0
mod 2. In contrast to the previous K3 brations, in the above generating function we
have p?°, instead of p° =2, and this will kead to a di erent leading tem as com pared for
exam ple to the STU m odel.

T he com putation of the asym ptotics of the m icrostates is sin ilar to the one that we
Jjust perform ed. Let us begin w ith odd classes. U sing the dentity,

C2 W2 )
2 . 3
(; p)= 4sih( )

P 2 OB 2 )

7 (559)
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and proceeding as in the previous case, we nd,

caaM)= TMN)+ LMN); N =Q*=2; (5.60)
w here,
Z %+1’O* . Z 1 L )
1(N) 16 d e ™ 22 Qe ) d s( el )
%+i0* 0
A Z . | (561)
, (N ) 41 de*™ S(HE @ d sri( )l V.
1440t 0
2

A sbefore, we evaluate the Integralsover  in temm s of the E rf function and its asym ptotic
expansion. W e then use the m odularity properties of the di erent functions involved here
to obtain,

1 ¥ or 1 2(1+ s+ 1) . P
aN) — = (1] (1 4% N o0 (0 8N ):
16 o v 0 2r

(562)
Let us now consider the even classes, (5.58). C om paring (558) with (557), we see that,

cwen N )= qaMN ) SN ) (5.63)

where,
Z 1., Z
S+ i0* 1

N ) = d d e®¥ asn’®( HEEH (8 ;P (564)
%+j0+ 0

A com putation sin ilar to the one we perform ed show s that (N ) is exponenﬁjag sup-
pressegljrh regoect to g9 (N ), since it leads to temsptllat go like exp( 2N ) and
exp( 6N ). Therefore, as an asym ptotic expansion in 1= N, cen (N ) oad (N ), and
the asym ptotics does not distinguish between the even and the odd classes. W e nally
obtain, for the an all Enriques black hole,
p— 17 P —
S @) 2 Q2 ?bg Q2+ : (5.65)
The main conclusion of our analysis is that, in all cases, the leading temm of the
m icroscopic entropy for these black holes is given by
r

Cs
S 2 —Q7%; 5.66
Q) 12Q ( )

sihce cs = 24 rK3 T¢,the STU and the ST models, but ¢ = 12 for the Enriques CY .
O f course, our analysis has also given precise form ulae for the subleading tem s.
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T he leading behavior (5.6d) can be also veri ed by a num erical analysis sin ilar to the
one perform ed in sections 3 z%pd_él For exam ple, for the STU m odel we have com puted
the quantity TN ) = S(N )= N forl N < 50, where S(N ) = log (N ). In order
to subtract the logarithm ic temm in the asym ptotic expansion (551) we consider the
transform ,

N + 1)S(N + 2) (2N + 1)S(N + 1)+ NS(N )
AN )= e — ——— P
W+1) N+2 @N+1)N+1+N N
In Fig.[@ we plot £(N ) (bottom ) and A (N ) (top). The horizontal line is the expected
asym ptotic value 4 for both quantitiess as N ! 1 . As before, the transform A (N )
In proves rapidly the convergence.

(5.67)

L e
11} .....................................
0l .. .
10 20 30 n -
Fiqure 9: M oscopic data r £ ) = SOV )= N (botiom ) and 5 tansbm A (1)

(top), de ned in (5.67), or the STU model,and for1 N < 50. The horizontal line is
the expected asym ptotic value 4

5.3 M acroscopic entropy for sm all black holes

T he 5d black holes obtained by wrapping the M 2 branes along cycles in the K 3 ber have
actually vanishing classical entropy and are therefore sm all black holes. Tndeed, as we
have seen, the Jeading asym ptotic degeneracy scales lke Q , and not ke Q 2. This isalso
what is found for an all 4d black holes [9].

Let us brie y show that the classical area of these black holes is zero for any set of
Intersection num bersC 4., C 4. In order to do this, we can use the 5d attractorm echanism
described in section 2. Equivalently, by using the 4d/5d connection of [20], we can m ap
the 5d black hole to a 4d black hole with D6 chargep’ = 1 and D2 charges Q» . At the
Jevel of the Jleading m acroscopic entropy, the 4d com putation gives the sam e result as the
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5d com putation [20]. In the 4d language, we start w ith the tree level SUG RA prepotential

1 xSxaxbh 1 X ax bx ¢
F= =Cu —Cape———:

—_— 5.68
2 X0 6 X0 ( )

W e willdo the com putation for a generic D 6-D 2 charge, ie. we will start w ith generic
charges p°, Q., Qs , and then take the charge Q5 ! 0 at the end of the com putation
(aswell as setting p’ = 1). This will guarantee that we obtain generic solutions to the
attractor m echanisn .

Let us rstassume that C... = 0,as it happens in K3 T° and the Enriques C alabi{
Yau. In this case, the attractor equations are easily solved as,

S S
. pP’0?% . 205p°
®X%x X = plii ot Q52 Q% ; (569)
w here
Q%=C™0.0p; Q%= C™Q,: (5.70)
T he entropy is given by D
s=  2p°0s0%; (5.71)

and it vanishes in the Imit Qs ! 0. This is as expected.
Ifwe now consider a general prepotential w ith nonvanishing C ..., the attractor equa—
tions are now solved at

©
X%x%x= p’;i — ° ;1 2005 * ; (5.72)

where the # are solutions to,
? a=1;

Qa= S a+QSCabeef e f, (5.73)

N otice that, in these variables, them odelw ith C 4. = 0 corresoonds to the sn ooth values,
S a P 2
(75 7)) = Q%p—=— : (5.74)

W e can already see that, .n thelm it Q¢ ! 0, the perturbation by C .. in (5.73) vanishes,
therefore in the lin it of zero charge in the base the presence of nontrivial intersection
num bers in the ber should be unin portant. M ore form ally, it is easy to see that one can
construct a consistent solution of (5.73) of the form ,

®
Ao Ay CﬁQrSl; (5.75)
1

n=
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where the coe cients ¢4 depend on C .. and can be calculated order by order. In term s
of the # them acroscopic entropy is

S 2
S = 20°Q « cababs+§Qscabcabc ; (5.76)

and, n the Imi Q¢ ! 0, it will vanish irrespectively of the value of C . T hersfore,
5d black holes whose m em brane charge is restricted to the K3 berofa K3 bration are
always an all. This can be checked as well by detailed com putations in di erent m odels
(lke the STU and ST m odels considered above).

Since the leading contribution to the entropy vanishes we should now look at the
subleading term s in the m acroscopic entropy. A swe explained in section 2, it was shown
n [23,1,18] that these term s are obtained by perform ing the shift

1
Qa ! ®r=0a+ s =35 (5.77)

T he leading term in the entropy for the an all 5d black hole is given (for large charge Q )
by perform ing this shift in (5.71])

S=2 —0Q?2: (5.78)

T his can bederived in detailby solving the attractor equationsw ith shifted charges (5.77)
as a power series in 1=Q , and then taking the Iimit Q5 ! 0. Notice that the entropy
(578) only depends on C,, and ¢ . Also, In this regin e, the solutions of the attractor
equations occur at values of the K ahler param eters which are of the order of the string
size, and the SUGRA calculation m ight be problem atic. Tndeed, it is easy to see that
(5.78)) does not agree w ith the leading term of the asym ptotics that we ocbtained in the
previous subsection. By com paring (5.6d) with (5.78) we nd that the formula agree if
we set Instead = 1=6. This is the value of  that is predicted by the 4d/5d connection
of [20].

In 23,/8]itwasnoticed that the subleading correction (5.77) obtained in a m acroscopic
5d com putation was not in accord w ith the subleading correction predicted by [20] and
the 4d attractor m echanism . W e now nd that, for big 5d black holes, the subleading
correction for the m icroscopic entropy is In rough agreem ent w ith (5.77), while for sm all
5d black holes the leading asym ptotics is in accord with a 4d com putation for a small
D6/D2 systam with p° = 1. Aswe already m entioned, in the case of sn all black holes,
the SUGRA com putations w ith which we are com paring our results should recetve large
corrections, but In other situations they still lead to results which are in agreem ent w ith
them icroscopic counting,as n [9,[13]. In our case we ocbtain a result in disagreem ent w ith
the 5d com putation but in agreem ent w ith the 4d com putation. It would be interesting
to resolve this puzzle.
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6 Conclusions

Tn this paper we have studied the m icroscopic counting of 5d black hole states by using
topological string theory. In the case of big black holes, we have given convincing nu-—
m erical evidence that the BPS invariants encoded in the topological string am plitudes
acocount correctly for the m acroscopic entropy of spinning black holes. M oreover, we have
also shown that the data favour the \m ysterious cancellation" of [12] that m akes possble
to extend the valdity of the O SV concture, and we were able to explore new aspects
of black hole entropy which have not been studied before using supergravity. C learly, it
would be very desirable to Im prove our num erical results w ith m ore data. U sing the inter-
play between m odularity and an-holom ophicity in topological string theory [42,126,122]],
analytic results on the asym totics m ight be not out of readd.

W e also gave exact form ulae for m icroscopic degeneracies of a class of sm all 5d black
holes, which are obtained by wrapping M 2 branes in the ber ofa K3 bration, and we
com puted the asym ptotic expansion in Inverse powers of the charge. A s expected, the
calculation show s that for sm all black holes the leading term in the entropy scales like
S ! S when the charges are scaled with . W e found however that the coe cient of
the leading term does not agree w ith the shift of charges obtained in [23,11,18] in a 5d
SUGRA com putation. In principle there isno reason why these two com putations should
agree, since an allN = 1 black holes are generically beyond the SUGRA approxim ation.
O n the other hand, the m icroscopic results are well reproduced by the 4d/5d connection
of [20]and a 4d attractor com putation. W e should em phasize how ever that for big black
holes the 5d shift (5.77) tsourdata better than the 4d shift with = 1=6. ITtwould be
very interesting to understand this better.
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A G eneral features of the instanton expansion

T he asym ptotic behaviour at the conifold, C astelnouvo’s theory, and the calculation via
degenerate Jacobians, suggest som e general features of the G opakum ar{Vafa expansion.

“R ecently beautifiilanalytic proofs of the asym ptotic of the Fourier coe centsofM ock-T heta fiinctions
have been obtained using a som ew hat sin ilar interplay [d].
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O urdata for the 13 oneparam eterm odels suggest further universal features. T he purpose
of this appendix is to describe som e of these general features. T ypicaldata forhigh degree
ook as is table[A ]l

The last nonzero entry is from the sm ooth genus 28 com plete intersection curveE
(1;2;3;3) ofdegree 18. By Castelhouvo’s theory g = 28 is the largest possible genus for
degree 18. The degree one constraint param etrizes an P°. The m oduli space M fg isa

bration of this P° over a pro fctivization of the 15 param eters in the quadratic constraint.
Te.M 2 isthe totalspace of P° | P, with Eulernumber M %)= 5 15= 90 and
n? = ( 1§7'90=  90.

A s it can further be seen in table[d Jl, the num bers grow from genusg= 0 tog= 3
and fall thereafter. T his feature m ght be related to the binom ials in the description of
the m oduli of space as a sihgular bration of the Jacobian Jac,g of the g = 28 curve over
M 28. In this description the contribution ofa g = g curve com es from degenerating
the genus 28 curve with nodes. A s explained in [R8] the contribution of the degenerate
Jacobians can be expressed by the Euler num bers of relative H ibert schanm es C™) as

) X
nd = ( 1y"®™* blg p; p) €); @ 1)
p=0
w ith b(g;k) = qu 2 A sim ple G auss approxin ation of binom als ts the behaviour of

the ng for large d relatively well. W e show this in Fig. [0 for the bicubic at degree 27.
T he num bers ng are exact and in contrast to (& 1) they count correctly all contribution
from colliding nodes, all contrbutions from reducible curves as well as contributionsfrom

an ooth curves in the classd w ith genus § < g.

Very im portant for the cancellations In the asym ptotic behaviour of the D onaldson {
Thom as invariants is the occurrence of negative num bers. W hile it is clear that such
contrbutions can arise if the dim ensions of the D Jorane m oduli space is odd, we do
not understand a priori the rem arkable pattem w ith which these signs occur. The rst
occurrence of negative signs at g,e4(d) is graphed for the quintic and the bicubic in
Fig.[1l. The data suggest that g, (d) follows a parabol si ilar to the Castehouvo
bound. From the st occurrence of the negative sign the ng are altemating in sign for
g g.Forg g the behaviour becom esm ore erratic. T he G auss approxin ation for the
absolute values of the ng and the sign pattem is very characteristic of the degeneracies of
m icrostates of a large black hole. Tn contrast the absolute value of the ng is alling and
the signs are altemating with ( 1Y starting at g = 0 for an all black holes as shown for
exam ple for the ST -m odel.

°A com plete intersection curve (1;n;3;3) with degree 9n has in generalgenusg = = (1+ 3n)(2+ 3n).
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genus degree= 18
0 | 144519433563613558831955702896560953425168536
1| 491072999366775380563679351560645501635639768
2| 826174252151264912119312534610591771196950790
3| 866926806132431852753964702674971915498281822
41 615435297199681525899637421881792737142210818
51 306990865721034647278623907242165669760227036
6 | 109595627988957833331561270319881002336580306
7| 28194037369451582477359532618813777554049181
8| 5218039400008253051676616144507889426439522
9 688420182008315508949294448691625391986722
10 63643238054805218781380099115461663133366
11 4014173958414661941560901089814730394394
12 166042973567223836846220100958626775040
13 4251016225583560366557404369102516880
14 61866623134961248577174813332459314
15 451921104578426954609500841974284
16 1376282769657332936819380514604
17 1186440856873180536456549027
18 2671678502308714457564208
19 -59940727111744696730418
20 1071660810859451933436
21 —13279442359884883893
22 101088966935254518,
23 —372702765685392
24 338860808028
25 23305068
26 -120186
27 5220
28 90
29 0

TablA 1:G opakum ar{Vafa Invariants ng In theclassd = 18 for the com plete Intersection
X35(1°%).
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log(n(27,9))
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Figure 10: T he binom ials dom inate the behaviour of large d G opakum arVVafa invariants.

For the degree 27 class on the bicubicwe nd nd, — &87747¢ 00985 9:108)°

g d=1 2 3 2 5 6 7

0 2496 223752 38637504 9100224984 2557481027520  805628041231176 o

1 0 492 1465984 1042943520 595277880960  316194812546140

2 0 6 7488 50181180 72485905344 70378651228338

3 0 0 0 902328 5359699200 10869145571844

4 0 0 0 1164 228623232 1208179411278

5 0 0 0 12 4527744 94913775180

6 0 0 0 0 17472 4964693862

7 0 0 0 0 0 152682820

8 0 0 0 0 0 2051118

9 0 0 0 0 0 2124 HEH
10 0 0 0 0 0 22 605915136
11 0 0 0 0 0 0 9419904
12 0 0 0 0 0 0 32448

A further rem arkable fact is the very universal scaling for them axin alvalueM (d) for
n; forgiven d. T his value behaves ke

M d)= exp (a+ d)*™ @ 2)

w ith very sim ilar values for a and b for di erent one-param eter m odels, as shown for the
quintic and the bicubic n Fig.[12.
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gneg (d) gneg (d)

Figure 11: The rst occurrence of negative ng for the quintic (on the right) and the bi-
cubic (on the keft). The tism (d)= a+ d+ od? with a= 46,b= 94 and c= 019 as
wellasa= 52,b= 10 and c= 017 for these two , regpectively.

m(d) m(d)
60
50
50
40
40
30
30
20 20
10 10
d d
5 10 15 20 25 30 35 10 20 30 40

Figure12:m (d) = logM (d))*™* for the quintic on the right and the bicubic on the left.
a= 5164 and b= 1511 aswellasa = 5202 and b= 1:509 for the cases plotted.
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