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We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds.

Recent progress in solving topological string theory on compact, one-parameter models allows us to test

numerically various conjectures about these black holes. We give convincing evidence that a microscopic

description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we

check that highly nontrivial cancellations—which seem necessary to resolve the so-called entropy enigma

in the Ooguri-Strominger-Vafa conjecture—do in fact occur. We also study analytically small 5d black

holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we

obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their

asymptotic expansion for large charges.
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I. INTRODUCTION

String theory can provide in many situations a precise
microscopic description of supersymmetric black holes
which reproduces for large charges the Bekenstein-
Hawking entropy [1]. Degeneracies of microstates that
are highly protected by supersymmetry are often counted
by mathematically well understood quasitopological quan-
tities related to the compactification manifold. For ex-
ample, the computation of microstates of the D1-D5
system is encoded in the elliptic genus of a symmetric
product of a hyper-Kähler manifold (see [2,3] for a review
of these computations).

Avery challenging class of black holes in string theory is
obtained by compactifying M theory on a Calabi-Yau (CY)
manifold X with generic SUð3Þ holonomy. These are five-
dimensional black holes, which are characterized by a
membrane charge Q 2 H2ðX;ZÞ and an angular momen-
tum m. It was proposed in [4] that the microscopic entropy
of these black holes is accounted for by BPS states asso-
ciated to M2 branes wrapping the cycle Q and with left
spin m ¼ 2jL in five dimensions. According to the pro-
posal of [4] their degeneracies are encoded in the five-
dimensional supersymmetric index

Ið�;�Þ ¼ Trð�1Þ2jLþ2jR expð��jL � �HÞ: (1.1)

The information captured by this index can be extracted
from the all-genus expansion of the holomorphic free
energy of the topological string, computed at the large
radius point of X [5],

lim
�t!1

Fðt; �t; gsÞ ¼
X1
g¼0

g2g�2
s FgðtÞ: (1.2)

In this identification the BPS degeneracies are mapped to
the Gromov-Witten invariants of genus g holomorphic
maps. Since the topological string could not be solved on
compact Calabi-Yau threefolds at higher genus, progress in
understanding the microscopic degeneracies in the general
case was very limited. On the boundary of the Kähler cone
the problem might reduce effectively to a counting prob-
lem on a two complex dimensional surface, which is
mathematically simpler, but the situation is also physically
more degenerate. When the compactification manifold is
X ¼ X2 � T2, where X2 ¼ T4 or K3, one obtains the five-
dimensional black hole solutions constructed in [6], and
the microscopic degeneracies are encoded in the elliptic
genus of symmetric products of X2.
In this paper we study the microscopic counting pro-

posed in [4] in two different situations, by using numerical
and analytic methods. First of all, we consider 5d black
holes obtained by compactifying M theory on the one-
parameter Calabi-Yau spaces studied in [7]. This explores
a generic direction in the Kähler cone and allows to de-
scribe generic 5d black holes, which have nonvanishing
classical horizon area and can carry spin. In [7] significant
progress was made in solving the topological string on
compact Calabi-Yau threefolds. By combining the holo-
morphic anomaly of [8] with modularity properties of the
topological string partition function Z ¼ expðFÞ, effective
action arguments, and Castelnouvo theory, it was possible
to calculate the topological string free energy up to genus
53.
In order to make contact with black hole physics on the

(super)gravity side, one has to obtain the asymptotic ex-
pansion of the microscopic degeneracies for large chargeQ
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and Q � m. For fixed g the expansion of FgðtÞ around
large radius is convergent and under analytic control by
mirror symmetry. In contrast, the genus expansion in (1.2)
is expected to be asymptotic, as in noncritical string theo-
ries [9] (see [10] for a recent discussion of this issue in the
context of topological strings). To obtain a large Q expan-
sion for the degeneracies of the ðQ;mÞ states one needs
information at genus g�Q2 and is hence facing the issues
of the behavior of string theory at large genus. Although we
do not have enough control of the degeneracies to obtain
analytical results on the large charge expansion, the situ-
ation is suited to a numerical study by using the method of
Richardson transforms.1 This method merely relies on the
knowledge of the form of the series and makes it possible
to extract its coefficients from the value of the degeneracies
at finitely many points. The analysis is complicated by the
fact that the large charge expansion of the degeneracies is
an asymptotic expansion, but we find that the Richardson
transforms converge rapidly to the expected macroscopic
values for the asymptotic coefficients. To estimate its
accuracy we sample over the 13 Calabi-Yau manifolds,
which have a sufficiently wide variety of topological data.
Using this sample we can conclude that, given our present
data of the higher genus instanton expansion, the leading
coefficient of the asymptotic expansion is correct within
2% and the first subleading one within 12%. With this
information at hand, we give convincing evidence that
the topological string accounts correctly for the entropy
of 5d spinning black holes, as conjectured in [4].2

Some aspects of the genus expansion (1.2) are much
better understood in terms of D-brane invariants like
Gopakumar-Vafa (GV) or Donaldson-Thomas invariants,
rather than Gromov-Witten invariants. In particular, for a
given charge Q 2 H2ðX;ZÞ and Q � 0 one gets the com-
plete genus information from a finite number of GV invar-
iants. We use the results for Fg in [7] to obtain precise

information on the Donaldson-Thomas invariants of the
one-parameter models. This allows us to study numerically
the scaling exponent k considered in [12] (and defined
below in (4.7) and (4.8)), which governs the growth of
the Donaldson-Thomas invariants under rescalings of the
charges. Our numerical study indicates that k ¼ 2. As
argued in [12], this value indicates that highly nontrivial
cancellations occur between the contributions to the
Donaldson-Thomas invariants, which in turn seem neces-
sary to resolve the so-called entropy enigma [12] in the
Ooguri-Strominger-Vafa (OSV) conjecture [13].

The second class of black holes we study has a different
flavor. These are 5d black holes which are obtained when
the Calabi-Yau manifold is a K3 fibration and the chargeQ
is restricted to the K3 fiber. Their classical horizon area is

zero (i.e. they are small black holes) and have no spin. By
using heterotic/type II duality one can obtain analytic
formulae for the Fg amplitudes at all g [14–18], and

from them one can extract the exact microscopic degener-
acies for the corresponding small 5d black holes. Of
course, as explained, for example, in [12], the most delicate
aspects of 5d spinning black holes, as well as of the OSV
conjecture, cannot be tested with small black holes. This
reflects the fact that the Gromov-Witten theory of K3 fibers
(which is closely related to the theory of Hilbert schemes)
is much simpler than the Gromov-Witten theory of generic
Calabi-Yau manifolds. However, having an exact micro-
scopic counting might be important in understanding some
detailed aspects of the entropy. As in the 4d case consid-
ered in [19], the 5d degeneracies are closely related to
modular forms, but one cannot use the Rademacher expan-
sion featured in [19,20]. We find, however, an exact asymp-
totic expansion for the microscopic degeneracies in powers
of the inverse charge (albeit corrected by terms which are
exponentially suppressed for large charges). The leading
term of the asymptotics is in agreement with a macroscopic
computation using the 4d/5d connection of [21] and the 4d
attractor equations for a D6/D2 system.
The organization of this paper is as follows. In Sec. II we

review the macroscopic and microscopic computation of
the entropy for 5d spinning black holes. In Sec. III we
analyze numerically the asymptotic properties of the de-
generacies for the Calabi-Yau manifolds studied in [7]. In
Sec. IV we study the asymptotic properties of Donaldson-
Thomas invariants to address the entropy enigma of [12].
In Sec. V we study small black holes in K3 fibrations and
compute their degeneracies as well as the asymptotic ex-
pansion. Finally, in Sec. VI we list some conclusions and
open problems.

II. MICROSCOPIC AND MACROSCOPIC
COUNTING FOR 5D BLACK HOLES

A. Macroscopic description

Let us start with the macroscopic description of black
hole entropy. We will consider 5d black holes obtained by
compactifying M theory on a Calabi-Yau threefold X, and
characterized by a charge Q 2 H2ðX;ZÞ and SUð2ÞL �
SOð4Þ angular momentumm. We will introduce a basis �A

for H2ðX;ZÞ, where A ¼ 1; � � � ; b2ðXÞ, as well as a dual
basis �A for H2ðXÞ. With respect to the �A basis, the
charge Q will be given by a set of integers QA. The
classical entropy of these black holes, denoted as S0, is
one quarter of the horizon area

S0 ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 �m2

q
; (2.1)

where Q is the graviphoton charge of the black hole. This
charge is related to the membrane chargeQ by the attractor
mechanism in five dimensions [22], which states that

1For sub-subleading terms we use the Padé approximation.
2For a recent study of this question by using an approach

totally different from ours, see [11].
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Q 3=2 ¼ 1
6CABCy

AyByC; (2.2)

where

1
2CABCy

ByC ¼ QA; (2.3)

and

CABC ¼
Z
X
�A ^ �B ^ �C (2.4)

are the triple intersection numbers of X. For one-parameter
models, the membrane charge will be identified with the
degree d of the holomorphic map in topological string
computations, and we will denote the single intersection
number by CABC ¼ �. From the above equations it follows
that

Q ¼
�
2

9�

�
1=3

d: (2.5)

There is a correction to the black hole entropy from the
R2 term of the supergravity effective action, which we
denote as S1 for convenience. The R2 term correction to

the black hole entropy scales like Q1=2 in the large charge
limit, and was computed in [23] by using Wald’s formula
[24] for the R2 in 5d. The result reads

S1 ¼ �

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 �m2

q
c2 � Y

�
3

Q
þm2

Q4

�
; (2.6)

where

YA ¼ 1

Q1=2
yA (2.7)

and

c2A ¼
Z
X
c2ðXÞ ^ �A: (2.8)

For m ¼ 0 this formula has been rederived in [25,26] by
using the full 5d SUGRA action. In the one-parameter
case, this correction reads

S1 ¼ �c2
8

�
6

�

�
1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3 �m2
q �

1

Q
þ m2

3Q4

�
: (2.9)

Besides the corrections that we have considered, there
are well-known correction terms in the low energy effec-
tive action of the form F2g�2R2, g � 2, where F is the
graviphoton field strength. The leading contribution comes
from a classical term, which is the contribution of the
constant map from a genus g world sheet to the Calabi-
Yau manifold. It is of the form

dg�; (2.10)

where � is the Euler number of the Calabi-Yau threefold
and

dg ¼
ð�1ÞgjB2gB2g�2j

4gð2g� 2Þð2g� 2Þ! : (2.11)

We denote the correction to black hole entropy due to the
F2g�2R2 term as Sg. We can roughly estimate the correc-

tion for nonspinning black holes m ¼ 0 as follows.
The graviphoton charge is the integral of its field

strength over the horizon of black hole,

Q �
Z
horizon

F: (2.12)

Since the area of the horizon scales like A�Q3=2, the
graviphoton field strength goes like

F�Q�ð1=2Þ: (2.13)

The R2 term contributes a factor Q�1 in Wald’s formula
for the black hole entropy, and taking into account also the

factor of horizon area A�Q3=2, we find the scaling be-
havior of the F2g�2R2 term correction to black hole en-
tropy to be

Sg � �Qð3=2Þ�g; (2.14)

where we have included the Euler number from (2.10). The
constant of proportionality in (2.14) is now universal and
independent of specific Calabi-Yau geometries and the
black hole charge. We will be able to make a rough test of
(2.14) for the genus 2 case, which is the sub-subleading
correction in the large Q limit.
There are other world-sheet instanton corrections to the

low energy effective action that can be computed also by
topological strings. However, these terms are exponentially
small in large charge Q limit where the supergravity
description is valid, and are much suppressed compared
to the Q�1 power corrections in (2.14). In this paper we
will not need to consider these world-sheet instanton cor-
rections in the macroscopic description of the black hole
entropy. Interestingly these world-sheet instanton correc-
tions are closely related to the BPS states that wewill count
in the microscopic description of the black hole entropy.

B. Microscopic description

Microscopically, a 5d black hole with membrane charge
Q 2 H2ðX;ZÞ is engineered by wrapping M2 branes
around the two-cycle Q. This leads to a supersymmetric
spectrum of BPS states in 5d which are labeled byQ and by
their spin content ðjL; jRÞ. As argued in [5], in order to
obtain an index one has to trace over jR (with an insertion
of ð�1Þ2jR). The resulting spectrum for a membrane charge
Q can be represented as

RQ ¼ Xg
r¼0

nrQIrþ1; (2.15)

where

I‘ ¼
�
2ð0Þ þ

�
1

2

��
‘

(2.16)

encodes the spin content jL, and nrQ are the Gopakumar-
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Vafa invariants [5]. Notice that in (2.15), the sum over r is
finite and the highest spin g appearing in the sum depends
on the membrane charge Q. In other words, for any given
Q there are only finitely many g for which the nrQ are

nonzero.
We can now write down a generating function for the

supersymmetric degeneracies of BPS states with mem-
brane charge Q, keeping track of their left spin jL by
computing X

m

�ðQ;mÞ ¼ X
Q

trRQ
ð�1Þ2jLyjL : (2.17)

Using the decomposition (2.15) one finds

�ðQ;mÞ ¼ X
r

2rþ 2
mþ rþ 1

� �
nrQ; (2.18)

where m ¼ 2jL. In [4] it was proposed that this quantity
gives the microscopic degeneracies for a spinning 5d black
hole of charge Q and spin J ¼ m. The computation of
these degeneracies reduces then to the computation of the
Gopakumar-Vafa invariants nrQ. The most effective way to

determine these is by computing the genus r amplitudes Fr

of topological string theory on X. As shown in [5], the total
free energy

Fðt; gsÞ ¼
X1
r¼0

FrðtÞg2r�2
s (2.19)

can be written in terms of the Gopakumar-Vafa invariants
as

Fðt; gsÞ ¼
X1
r¼0

X
Q2H2ðXÞ

X1
k¼1

nrQ
1

k

�
2 sin

kgs
2

�
2r�2

e�kQ�t:

(2.20)

This means, in particular, that one can obtain the nrQ for all

Q by knowing F0; � � � ; Fr. The black hole entropy is given
by the logarithm of the number of microstates

SðQ;mÞ ¼ logð�ðQ;mÞÞ: (2.21)

This should agree with the macroscopic result in the large
charge limit Q � 1 and Q � m.

As explained in [4], this proposal for the microscopic
counting of states of 5d black holes can be regarded as a
generalization of the elliptic genus, which computes BPS
degeneracies of the D1-D5 system. Indeed, if one considers
M theory compactified on X ¼ K3� T2, the generic M2
brane charge in this compactification is

Q ¼ ½C� þ n½T2�; n 2 Z; (2.22)

and C is a curve in K3. By standard dualities this system
can be related to type IIB on K3� S1 with D-brane charge
½C� andM units of momentum around S1, which is a close
cousin of the D1-D5 system. As it is well known (see, for
example, [3]), the BPS degeneracies of this system can be

computed from the elliptic genus of the symmetric product
of K3. Let

�ðK3;q; yÞ ¼ X
m;‘

cðm; ‘Þqmy‘ (2.23)

be the elliptic genus of K3. The generating function of
elliptic genera of the symmetric product SkK3

�ðSpK3;q; yÞ ¼
Xp
k¼0

�ðSkK3; q; yÞpk

¼ X
k;n;m

cðk; n;mÞpkqnym (2.24)

can be computed from the coefficients in (2.23) in terms of
an infinite product [27]

�ðSpK3; q; yÞ ¼
Y

N;M�0;‘

ð1� pNqMy‘Þ�cðNM;‘Þ: (2.25)

The supersymmetric degeneracies of BPS states for this
system are then given by the coefficients of the expansion
in (2.24),

�ðQ;mÞ ¼ cð12C2 þ 1; n; mÞ; (2.26)

where Q is of the form (2.22). One can show that, for large
charges [3,28],

log�ðQ;mÞ � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2
C2 �m2

r
: (2.27)

It is easy to check that this is precisely the macroscopic
entropy (2.1) computed forK3� T2. Of course, the degen-
eracies (2.18) are in general much more difficult to com-
pute, since they correspond to black holes with only
N ¼ 1 supersymmetry in 5d.

III. ONE-PARAMETER MODELS

A. Topological strings on one-parameter models

In [7] the topological B model was integrated on 13 one-
parameter Calabi-Yau spaces which can be realized as
hypersurfaces or complete intersections in (weighted) pro-
jective spaces. We have listed these spaces and some of
their topological data in Table I. These data are the inter-
section numbers CABC ¼ �, the second Chern classes c2,
and the Euler numbers �. They are needed for computa-
tions of the macroscopic entropy.
The complex moduli space of these threefolds is M ¼

P1 n f1; 1; 0g, and the three special points are the large
radius degeneration point, a conifold point, and a further
point either of finite (Gepner point) or infinite branching
order. The modular group �X 2 SPð4;ZÞ can hence be
generated e.g. by the large radius and the conifold
monodromies.
The conceptual obstacle in integrating the B-model

holomorphic anomaly [8] is the holomorphic ambiguity
which arises in each integration step. Invariance of the
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topological string amplitudes under �X and effective action
arguments, which govern the behavior of the genus g
amplitudes at special points, restrict the ambiguity to 3g�
3 unknowns [4]. By using a refined effective action analy-
sis, which gives rise to the ‘‘gap condition’’ at the conifold,
regularity at the orbifold, and Castelnouvo’s bound for the
Gromow-Witten invariants at large radius, it is possible to
fix the unknowns, and one can calculate the free energy of
the topological string to arbitrary degree and up to genus
12–53.

Instead of using the generic solution of holomorphic
anomaly equation suggested by the world-sheet degener-
ations [8] we use the constraints of �X on the topological
string amplitudes directly when integrating the holomor-
phic anomaly equations genus by genus [29,30]. This
results in an algorithm, which constructs the genus g
amplitudes as weight 3g� 3 polynomials over a ring of
three anholomorphic and one holomorphic modular ob-
jects of weight (1, 2, 3, 1). As a consequence the number
of terms in the Fg grows polynomial with g and not

exponentially as in the approach of [8].3

The approach of [7] views the topological string parti-
tion function as a wave function overH3ðX;RÞ. Choices of
polarization are necessary in order to expand the effective
action at different points in the moduli space M, in ap-
propriate local holomorphic coordinates. Most of the black
hole issues that we will discuss involve the degeneracies
extracted from the topological string at the large radius
limit. Therefore we will discard for now most of the global
information and focus only the holomorphic limit of the
topological string partition function at this limit, where it
encodes the degeneracy of bound states of a single D6
brane and arbitrary D2-D0 branes.

B. Static black holes

We first consider the case of nonspinning black hole J 	
m ¼ 0 and denote Nd ¼ �ðd; 0Þ. The entropy formula

including the first few orders (2.1), (2.9), and (2.14) is in
this case

S ¼ b0d
3=2 þ b1d

1=2 þ b2

d1=2
þO

�
1

d3=2

�
; (3.1)

where the first two coefficients are

b0 ¼ 4�

3
ffiffiffiffiffiffi
2�

p ; b1 ¼ �c2

4
ffiffiffiffiffiffi
2�

p ; (3.2)

and we have used the graviphoton charge relation (2.5).
The coefficient b1 of the subleading term is consistent with
the results in [25,26,31], where it was observed that the b1
can be produced by a shift of the 2-brane charge

d ! dþ c2
8

(3.3)

in the leading term.
To compare with the microscopic counting we define the

following function:

fðdÞ ¼ logðNdÞ
d3=2

: (3.4)

The macroscopic black hole entropy predicts that the large
order behavior of fðdÞ is

fðdÞ ¼ b0 þ b1
d
þ b2

d2
þ � � � (3.5)

Since we have available only the values of fðdÞ for positive
integer d up to a finite degree, it is appropriate to use well-
known numerical methods to extrapolate the asymptotic
value b0. From the form of the subleading corrections in
(3.5), it is appropriate to use the Richardson extrapolation
method (see, for example, [32]).
The basic idea of this numerical method is simple. To

cancel the subleading corrections in (3.5) up to order 1=dN ,
one defines

Aðd; NÞ ¼ XN
k¼0

fðdþ kÞðdþ kÞNð�1ÞkþN

k!ðN � kÞ! : (3.6)

One can show that if the perturbation series (3.5) truncates
at order 1=dN , the expression (3.6) will give exactly the

TABLE I. The sample of 13 one-parameter complete intersection CY models in weighted projective spaces. A complete intersection
Calabi-Yau of degree d1; . . . ; dk in weighted projective space Pl�1ðw1; . . . ; wlÞ is denoted Xd1 ;...;dk ðw1; . . . ; wlÞ, i.e. weights w with

repetition m are abbreviated by wm. � ¼ R
X c3 is the Euler number, � is the triple intersection number, and c2 � � is defined in (2.8).

CY model � c2 � � � CY � c2 �! �

X5ð15Þ �200 50 5 X6ð14; 2Þ �204 42 3

X8ð14; 4Þ �296 44 2 X10ð13; 2; 5Þ �288 34 1

X3;3ð16Þ �144 54 9 X4;2ð16Þ �176 56 8

X3;2;2ð17Þ �144 60 12 X2;2;2;2ð18Þ �128 64 16

X4;3ð15; 2Þ �156 48 6 X4;4ð14; 22Þ �144 40 4

X6;2ð15; 3Þ �256 52 4 X6;4ð13; 22; 3Þ �156 32 2

X6;6ð12; 22; 32Þ �120 32 1

3Nevertheless the limiting factor in advancing to higher g is
presently not the ambiguity but the computing time. The reason
is that the numerators in the coefficients of the polynomials grow
exponentially.
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asymptotic value b0. Ideally, the larger N and d are, the
closer Aðd;NÞ is to the asymptotic value. But due to the
limitation of our data, the sum dþ N must not exceed the
maximal degree dmax of the topological string
computations.

Figure 1 shows the convergence of the leading terms in
fðdÞ and of the Richardson transforms Aðd;NÞ,N ¼ 2, 3, 4
for the quintic and the bicubic. It is obvious from the two
examples in Fig. 1 that the Richardson method improves
impressively the convergence of the series, i.e. it provides a
model independent and consistent scheme to suppress the
subleading corrections. Using N ¼ 2–4 is good enough for
our purpose of estimating the asymptotic value. We con-
duct the analysis for all 13 models using N ¼ 3 and the
maximal degree available. The results are summarized in
Table II and are in very good agreement with the expected
asymptotic values b0 in (3.2). More detailed results on all

the analysis carried out in this paper can be found in a
script and in a database at [30].
We can further extract the subleading coefficient b1 from

the data. Define

f1ðdÞ ¼ ðfðdÞ � b0Þd;

A1ðd; NÞ ¼ XN
k¼0

f1ðdþ kÞðdþ kÞNð�1ÞkþN

k!ðN � kÞ! ;
(3.7)

and the asymptotic value of f1ðdÞ should be b1. We apply
the same Richardson extrapolation method to f1ðdÞ and we
compare it with the macroscopic black hole predictions.
Two typical examples for the behavior of the Richardson
transforms are plotted in Fig. 2. The results for all models
are summarized in Table III.

2 4 6 8 10 12 14
d1.25

1.5

1.75

2

2.25

2.5

2.75

3

A d,N
Quintic

2 4 6 8 10 12 14 16 18
d

1

1.5

2

2.5

3
A d,N

Bi Cubic

FIG. 1. Microscopic data for fðdÞ (h), and the Richardson transforms Aðd; 2Þ (4), Aðd; 3Þ (
), and Aðd; 4Þ (w). The straight line
corresponds to the macroscopic prediction b0 ¼ 4�

3
ffiffiffiffi
2�

p . For the quintic this value is b0 � 1:359 and for the available degree 14 the

Richardson transforms lie 1.8%, 2.1%, 1.2% from the macroscopic prediction. For the bicubic b0 � 0:967, the available degree is
higher, 18, and the microscopic counting is within 0.9%, 1.2%, 0.3% from the macroscopic prediction. As an example we give BPS
numbers used for the analysis at degree 18 of the bicubic in Table VII.

TABLE II. Comparing the extrapolated value of b0 with the macroscopic prediction.

Calabi-Yau model dmax Aðdmax � 3; 3Þ b0 ¼ 4�
3
ffiffiffiffi
2�

p Error

X5ð15Þ 14 1.353 06 1.324 61 2.15%

X6ð14; 2Þ 10 1.755 59 1.710 07 2.66%

X8ð14; 4Þ 7 2.114 54 2.0944 0.96%

X10ð13; 2; 5Þ 5 2.992 11 2.961 92 1.02%

X3;3ð16Þ 17 1.002 04 0.987 307 1.49%

X4;2ð16Þ 15 1.070 31 1.0472 2.21%

X3;2;2ð17Þ 10 0.821 169 0.855 033 �3:96%
X2;2;2;2ð18Þ 13 0.722 466 0.740 48 �2:43%
X4;3ð15; 2Þ 11 1.216 26 1.2092 0.58%

X6;2ð15; 3Þ 11 1.527 85 1.480 96 3.17%

X4;4ð14; 22Þ 7 1.424 01 1.480 96 �3:85%
X6;4ð13; 22; 3Þ 5 2.068 99 2.0944 �1:21%
X6;6ð12; 22; 32Þ 4 2.950 82 2.961 92 �0:37%
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Despite our rather successful verifications of the numeri-
cal coefficients b0 and b1, we should note that the expan-
sion in inverse powers of the charge (3.5) is actually an
asymptotic series. The asymptotic character of the large
charge expansions of microscopic degeneracies is manifest
in the explicit computations for small black holes in [19]
and also in the examples we will discuss in Sec. V. In our
case, we can relate the asymptotic expansion of (3.5) to a
large genus behavior in a string series, since the coeffi-
cients in (3.5) are proportional to the constant map con-
tribution

bg � dg; (3.8)

where dg is given in (2.11). This coefficient grows at large

g as

dg � ð2�Þ�4gð�1Þgð2gÞ!; (3.9)

which is the typical behavior found in string perturbation

theory [9]. It then follows that the series expansion (3.5) for
fðdÞ has zero radius of convergence for any value of d and
it is rather an asymptotic expansion. Indeed, the dg are the

coefficients of the asymptotic expansion of the MacMahon
function (see [19], Appendix E, for a detailed derivation).
For these kinds of expansions, the best approximation to
their true value (which in this case is the function fðdÞ
computed from topological strings) is obtained by truncat-
ing the sum at the orderN which minimizes the error. For
an asymptotic series of the form

fðwÞ ¼ X1
k¼1

bkw
k; bk � A�kð�kÞ! (3.10)

the optimal truncation occurs generically at

N � 1

�

�
A

jwj
�
1=�

: (3.11)

In our case � ¼ 2 and we can estimate N as follows.
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FIG. 2. Microscopic data for fðdÞ (h), and the Richardson transforms Aðd; 4Þ (4), Aðd; 5Þ (
), and Aðd; 6Þ (w). The straight line
corresponds to the macroscopic prediction b1 ¼ �c2

4
ffiffiffiffi
2�

p . For the degree X6;2 complete intersection this value is b1 � 14:44 and for the

available degree 12 the Richardson transforms lie �11:7%, �10:4%, �9:77% below the macroscopic prediction. For the bicubic
b1 � 9:994, the available degree is 18 and the microscopic counting is�7:15%,�6:88%,�6:63% below the macroscopic prediction.

TABLE III. Comparing the extrapolated value with the macroscopic prediction of b1.

Calabi-Yau model dmax A1ðdmax � 3; 3Þ b1 ¼ �c2
4
ffiffiffiffi
2�

p Error Estimated b2

X5ð15Þ 14 11.2668 12.4182 �9:27% �11:9503
X6ð14; 2Þ 10 11.9237 13.4668 �11:5% �12:1848
X8ð14; 4Þ 7 14.0537 17.2788 �18:7% �14:9973
X10ð13; 2; 5Þ 5 15.2509 18.8823 �19:2% �14:9817
X3;3ð16Þ 17 9.290 62 9.996 49 �7:06% �9:639 58
X4;2ð16Þ 15 10.0226 10.9956 �8:85% �10:7834
X3;2;2ð17Þ 10 8.451 63 9.619 12 �12:1% �9:3828
X2;2;2;2ð18Þ 13 7.845 95 8.885 77 �11:7% �8:887 73
X4;3ð15; 2Þ 11 9.5981 10.8828 �11:8% �9:964 04
X6;2ð15; 3Þ 11 12.5614 14.4394 �13:0% �14:2582
X4;4ð14; 22Þ 7 9.700 91 11.1072 �12:7% �9:412 95
X6;4ð13; 22; 3Þ 5 11.1008 12.5664 �11:7% �10:0821
X6;6ð11; 22; 33Þ 4 11.1378 12.2179 �8:84% �8:157 39
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According to the connection between 4D/5D black holes
[21], the attractor value for the topological string coupling
constant is gs ¼ 4� [23]. This should be roughly the
numerical constant that relates the graviphoton field
strength to the charge Q in (2.13), and it contributes to

the coefficients bg an extra factor g2g�2
s , so that we can

refine (3.8) to

bg � ð4�Þ2gdg; (3.12)

and the constant in (3.10) is A ¼ �2. Therefore, the opti-
mal truncation is at

N � �

2
d1=2: (3.13)

For the small values of d that we are considering we should
therefore expect an optimal truncation aroundN � 5–10.

These considerations have implications for our numeri-
cal analysis. The Richardson method (3.6) is designed in
principle for convergent expansions. For asymptotic ex-
pansions, we should expect it to give increasing precision
and convergence to the true coefficients as long as the order
of the transformationN in (3.6) is lower than the truncation
order N . This is the underlying reason that prevents us
from improving the precision of the leading coefficients by
simply increasing the truncation order N in the Richardson
method, and we indeed find an oscillating behavior around
the expected true value for the Richardson transforms with
N > 5.

We try to go one step further and give a rough estimation
of the coefficient b2 in (3.1), which has not been studied in
the literature from the supergravity point of view. It turns
out that the naive method we use for computing the sub-
leading coefficient b1 gives too big an estimate, which
might be a result that the optimal truncation scheme is no
longer a good approximation at this order. In order to
improve this, we use the Padé approximation which is
well known for summing a divergent series. Given an
asymptotic series

fðzÞ ¼ X1
i¼0

biz
i; (3.14)

one can evaluate the asymptotic value by defining the
following Padé approximation:

PN
MðzÞ ¼

PN
i¼0 Aiz

i

1þP
M
i¼1 Biz

i ; (3.15)

where the coefficients Ai and Bi are fixed by Taylor ex-
panding the above Eq. (3.15) around z ¼ 0 and match to
the first Mþ N þ 1 terms of the original series (3.14).

We take the theoretical values of b0 and b1 from (3.2)
and use the Monte Carlo method to randomly generate the
subleading coefficients b2, b3, etc., then use the Padé
approximation to evaluate the asymptotic series (3.14) for
z ¼ 1

d , where d ¼ 1; 2; � � � ; dmax. We pick the subleading

coefficients bi (i � 2) that minimize the difference of the

Padé evaluation with the expected value fðdÞ from topo-
logical strings, i.e. we minimize

Xdmax

d¼1

�
PN
Mð1dÞ
fðdÞ � 1

�
2
: (3.16)

We find different values ofN,M in the Padé approximation
give qualitatively similar results. In the last column in
Table III, we give the estimated values of the sub-
subleading coefficient b2 using the scheme N ¼ 2,M ¼ 1.
Assuming the constant map contribution is the most

significant contribution at this order in Q, the coefficient
b2 should behave like

b2 � ��1=6: (3.17)

We can verify the relation (3.17) by plotting b2 against the

Euler number ��1=6 for the 13 Calabi-Yau models we
studied. We find as the best-fit coefficient

b2 ¼ 0:047��1=6; (3.18)

see the plot in Fig. 3, which is reasonably consistent with
the expectation (3.17).
Using Eq. (2.11) at g ¼ 2, we can find the numerical

values of the genus two constant map contribution b2 �
0:000 17g2s��

1=6. Taking into account that gs �Oð10Þ,
this is the same order of magnitude as our estimate value
of 0.047 from microscopic topological string computation.

C. Spinning black holes

We can try to extract the spin dependence of the black
hole entropy from (2.1). AssumingQ � J, and expanding
in J=Q, we find the following macroscopic prediction for
the topological string data,

gmðdÞ 	 d3=2

m2
log

�
�ðd; 0Þ
�ðd;mÞ

�
¼ p0 þO

�
1

d

�
; (3.19)

where
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κ6
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FIG. 3 (color online). The plot of �b2 vs ð���1=6Þ for 13
Calabi-Yau models.

HUANG, KLEMM, MARIÑO, AND TAVANFAR PHYSICAL REVIEW D 79, 066001 (2009)

066001-8



p0 ¼ 3�

�
�

2

�
1=2

: (3.20)

For a fixed value m we use again the Richardson ex-
trapolation method to find the asymptotic value of gmðdÞ
for large d. We list the values of gmðdÞ and its first
Richardson extrapolation Amðd; 1Þ for spin m ¼ 1, 2, 3,
using the quintic as an example.

We note that the contribution to entropy from angular

momentum is proportional to d�3=2, as compared to the

leading static contribution (3.1) of order d3=2. Although the
prediction (3.19) should be the leading spinning contribu-
tion, there could be some small statistical fluctuation of
topological string data which is random for the different
spins, and which might become comparable to the spinning
contribution in (3.19) and result in the deviation for large
degree d. This can be seen in the quintic example in
Table IV. We find that the Richardson series does not
converge to an asymptotic value, instead the series ap-
proach a maximal value before deviating again for large
degree d. In order to minimize the effect of statistical
fluctuation of topological string data, we propose to use

the extremal values in the Richardson series Amðd; 1Þ to
estimate the asymptotic value of p0. This is indeed a
relatively good estimate for the quintic case where p0 ¼
14:9019. Other Calabi-Yau manifolds are analyzed in [30].
We analyze the 13 Calabi-Yau models using the above

approach. Let us define the extremal value of the first
Richardson extrapolation over the degree d as

~g m ¼ Amðd; 1Þjmax: (3.21)

For various Calabi-Yau models and spin m ¼ 1, 2, 3, we
compare the value of ~gm with the expected coefficient p0

given in (3.20). The results are summarized in Table V. We
see that for larger angular momentum m the deviations
become bigger, as expected.

IV. ASYMPTOTICS OF THE DONALDSON-
THOMAS INVARIANTS

As we already mentioned, the total free energy of the
topological string (2.19) can be reorganized in terms of
Gopakumar-Vafa invariants as in (2.20). A remarkable
property of (2.20) is that for a given class Q 2 H2ðX;ZÞ,

TABLE IV. The Richardson method for the quintic with spin m ¼ 1, 2, 3.

d g1ðdÞ A1ðd; 1Þ g2ðdÞ A2ðd; 1Þ g3ðdÞ A3ðd; 1Þ
1 0.693 147 3.227 89 NA NA NA NA

2 1.960 52 6.854 32 NA NA NA NA

3 3.591 78 10.9389 9.033 47 12.2117 NA NA

4 5.428 56 14.4696 9.828 04 13.0403 12.1257 6.553 34

5 7.236 77 16.4156 10.4705 12.8183 11.0112 10.2148

6 8.766 58 16.1819 10.8618 11.6135 10.8785 9.989 96

7 9.825 91 13.9173 10.9692 9.712 39 10.7516 8.813 57

8 10.3373 10.4832 10.8121 7.532 59 10.5093 7.270 17

9 10.3535 7.028 69 10.4477 5.51774 10.1494 5.736 28

10 10.021 4.419 12 9.9547 3.9872 9.708 09 4.469 46

11 9.511 78 2.9195 9.4122 3.041 28 9.231 85 3.583 35

12 8.962 42 NA 8.881 29 NA 8.761 14 NA

TABLE V. The Richardson method for the 13 Calabi-Yau models with spin m ¼ 1, 2, 3.

Calabi-Yau model p0 ¼ 3�ð�2Þ1=2 ~g1 ~g1 error ~g2 ~g2 error ~g3 ~g3 error

X5ð1Þ 14.9019 16.4156 10.2% 13.0403 �12:5% 10.2148 �31:5%
X6ð14; 2Þ 11.5429 12.1492 5.25% 10.1828 �11:8% 8.210 85 �28:9%
X8ð14; 4Þ 9.424 78 10.4854 11.3% 8.1382 �13:7% 5.3473 �43:3%
X10ð13; 2; 5Þ 6.664 32 6.774 36 1.65% 5.892 01 �11:6% 3.624 39 �45:6%
X3;3ð16Þ 19.993 22.1786 10.9% 17.7804 �11:1% 14.8114 �25:9%
X4;2ð16Þ 18.8496 21.0741 11.8% 16.569 �12:1% 12.9935 �31:1%
X3;2;2ð17Þ 23.0859 25.9065 12.2% 20.4996 �11:2% 16.5636 �28:3%
X2;2;2;2ð18Þ 26.6573 30.1999 13.3% 23.6923 �11:1% 19.2311 �27:9%
X4;3ð15; 2Þ 16.3242 17.7685 8.85% 14.4772 �11:3% 12.2514 �24:9%
X6;2ð15; 3Þ 13.3286 15.2332 14.3% 11.2819 �15:4% 8.068 44 �39:5%
X4;4ð14; 22Þ 13.3286 13.9081 4.35% 11.618 �12:8% 10.6901 �19:8%
X6;4ð13; 22; 3Þ 9.42478 9.026 11 �4:23% 7.87731 �16:4% 7.568 62 �19:7%
X6;6ð12; 22; 32Þ 6.66432 5.423 33 �18:6% 4.913 55 �26:3% 4.5984 �31:0%
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the expression is exact in the string coupling. This is
because Castelnuovo’s theorem for the ambient space
yields ngd ¼ 0 for d > �

ffiffiffi
g

p
for certain �.

For example, for the quintic the maximal genus gmax

such that ngmax

Q � 0 fulfills a bound

gmax � 1
10ð10þ 5dþ d2Þ (4.1)

with a decreasing relative deviation in the large d limit.
The bound is saturated for curves of total degree 5mwhich
are complete intersections of degree ð1; 5; mÞ in P4, which
are smooth curves in the quintic. For 5>m> 1 we can
describe the moduli space of the D2 brane as follows. The
linear constraint has as a parameter space P4 and allows to
eliminate one variable from the degreem constraint, which
has as many homogeneous parameters as monomials in
four variables, i.e. as many as there are integer solutions toP

4
i¼1 ni ¼ m, namely

mþ 4� 1

m

� �
:

The moduli spaces of the curves are therefore fibrations of

P
mþ4�1

mð Þ�1

overP4. Using the results of [4] we get for the GV invariant

ngmax

5m ¼ ð�1Þ mþ4�1
mð Þ�1 � 5 � mþ 4� 1

m

� �
: (4.2)

If the bound (4.1) is not saturated for small d the relative
deviation can become somewhat larger as seen in Fig. 4.

Let us denote by F0ð�; tÞ the total free energy without the
contribution (2.10). After exponentiation one finds [16]

Z0
GVðX; q; tÞ ¼

Y1
d¼1

��Y1
r¼1

ð1� qre�dtÞrn0d
�

� Y1
g¼1

Y2g�2

l¼0

ð1� qg�l�1e�dtÞð�1Þgþl 2g�2
lð Þngd

�
;

(4.3)

where

q ¼ ei� (4.4)

and we have assumed that there is only one Kähler pa-
rameter, so that Q is labeled by a single integer d. On the
other hand, the conjecture of [33] relating the Donaldson-
Thomas invariants Dd;n to Gromov-Witten invariants leads

to

ZDTðq; tÞ ¼
X
d;n

Dd;nq
ne�dt ¼ Z0

GVð�q; tÞMð�qÞ�ðXÞ;

(4.5)

where

MðqÞ ¼ Y1
n¼1

1

ð1� qnÞn (4.6)

is the MacMahon function. This term reinstalls the con-
stant map contribution. We list for reference a few
Donaldson-Thomas invariants Dd;n on the quintic in

Table VI.
After an extensive discussion of possible tests of the

OSV conjecture [13], the authors of [12] isolate as a crucial
question for the validity of the latter the growth behavior of
the Donaldson-Thomas invariants. This behavior is en-
coded in the scaling exponent k, defined as

logðD�2d;�3nÞ � �k: (4.7)

The question is relevant in the range d3 � n2 > 0 for which
stable black hole configurations exist.
Because of Castelnouvo’s bound, and since our data are

up to genus 31, we can calculate the Donaldson-Thomas
invariants exactly in the range 0 � d � 15 and for arbi-
trary high n for the quintic. We are interested in the limit

k ¼ lim
�!1

loglogjD�2d;�3nj
log�

: (4.8)

In order to evaluate it for given values ðd; nÞ we chose � so
that dþ l ¼ �2d for d, l 2 N and use the fact that
logjDdþl;nj for fixed d, k scales in good approximation

linearly with n to calculate the interpolated value of the

Ddþl;n0 at n
0 ¼ �3ðd; lÞn, with �ðd; lÞ ¼

ffiffiffiffiffiffiffi
dþl
d

q
. For ðd; 0Þ the

latter interpolation is of course completely irrelevant and
for charges for which the n0 values become large it is not
very relevant.
The leading correction to (4.8) is of order 1=ðlogð�ÞÞ. It

therefore makes sense to eliminate this leading correction
by logarithmic Richardson-Thomas transforms. We define

kð0Þl ¼ loglogjD�ðd;lÞ2d;�ðd;lÞ3nj
log�ðd; lÞ ; (4.9)

and the mth logarithmic Richardson-Thomas transform as

20 40 60 80
genus

5

10

15

20

25

degree

FIG. 4. Castelnuovo’s bound for higher genus curves on the
quintic. The dots represent ngmax

d and the curve is (4.1).
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kðmÞ
l ¼ kðm�1Þ

lþ1 logðlþ 1Þ � kðm�1Þ
l logðlÞ

logðlþ 1Þ � logðlÞ : (4.10)

With our knowledge of the topological string up to g ¼ 31
for the quintic we can evaluate the Donaldson-Thomas
invariants up to degree 15. In the two graphs in Fig. 5,

we plot the data for the kð0Þl and its first two logarithmic

Richardson-Thomas transforms. The graphs clearly indi-
cate that the convergence is improved by the transform. So
even if there are subleading terms of other forms, we

certainly managed to suppress the leading correction and
speed up the convergence. The data further show that there
is a universal behavior independent of d and that the value
of k is within the 2% range close to 2. The higher loga-
rithmic Richardson-Thomas transforms are consistent with
this value but do not determine it better as we also have to
take into account values with smaller l hence smaller �. We
next test the universality of these results for other charges
ðd; nÞ in Fig. 6. If n � 0we need the interpolation for the n0
values. This introduces some random subleading errors,

TABLE VI. Donaldson-Thomas invariants.

d/n �3 �2 �1 0 1 2

0 0 0 0 0 2875 569 250

1 0 0 0 0 609 250 124 762 875

2 0 0 0 609 250 439 056 375 76 438 831 000

3 0 8625 2 294 250 4 004 590 375 1 010 473 893 000 123 236 265 797 125
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FIG. 5. Scaling data kð0Þ (h) and the transforms kð1Þ (4), kð2Þ (
) for the Donaldson-Thomas invariants on the quintic in P4 starting
for ðd; 0Þ states.
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FIG. 6. Scaling data kð0Þ (h) and the first transform kð1Þ (4) for the Donaldson-Thomas invariants on the quintic in P4 for the (2, 1)
and (3, 1) states.
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which are of the order of the improvement by the second
logarithmic Richardson-Thomas transform. However, as in
the figure for (2, 0) we see that higher d seems to lower the
coefficient of the sub-subleading correction and makes
already the second Richardson transform to converge rea-
sonably well—well enough at least to conclude that the k is
considerably lower than three and very well compatible
with the value k ¼ 2
 0:03 found for the previous
charges. We solved the bicubic inP5 up to genus 29, which
yields complete information about the Donaldson-Thomas
invariants up to degree 18. A similar analysis as above
confirms the analysis for the quintic. The corresponding
plots are in Figs. 7 and 8. Again a detailed summary of the
data for more models can be found in [30]. We note a slight

noise in the transform kð1Þ in Fig. 8, which is presumably
due to the interpolation in the n value of Dd;n described

above. The results for the other models are similar, but
somewhat less precise due to smaller values of d that are
currently available.

To summarize: our analysis indicates that the value of k
is indeed universal and close to k ¼ 2. This strongly sug-
gests that the ‘‘mysterious cancellations’’ [12] that even-
tually make it possible to extend the OSV conjecture to
small coupling, actually take place.

V. K3 FIBRATIONS

A. Topological strings on K3 fibrations

We will now consider Calabi-Yau manifolds X that have
the structure of a K3 fibration, i.e. there is a fibration of the
form

�: X ! P1; (5.1)

where the fibers are K3 surfaces. When the fibration is
regular the homology of X can be written as

H2ðX;ZÞ ¼ h½P1�i � PicðK3Þ; (5.2)

where Pic(K3) is the Picard lattice of the K3 fiber. The rank
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FIG. 8. Scaling data kð0Þ (h) and the first transform kð1Þ (4) for the Donaldson-Thomas invariants on the bicubic complete
intersection in P5 for the (3, 1) and (3, 2) states.
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FIG. 7. Scaling data kð0Þ (h) and the transforms kð1Þ (4), kð2Þ (
) for the Donaldson-Thomas invariants on the bicubic complete
intersection in P5 starting for ðd; 0Þ states.

HUANG, KLEMM, MARIÑO, AND TAVANFAR PHYSICAL REVIEW D 79, 066001 (2009)

066001-12



of this lattice will be denoted by �, and �a, a ¼ 1; � � � ; �
will denote a basis for this lattice. Let ! be the complexi-
fied Kähler form on X. The complexified Kähler parame-
ters of X are given by

S ¼
Z
P1

!; ta ¼
Z
�a

!; a ¼ 1; � � � ; �: (5.3)

We will denote by �S, �a the two-forms which are dual to
P1, �a.

It turns out that type IIA string theory compactified on
these manifolds is very often dual to heterotic string theory
compactified on K3� T2 [34,35]. Under this duality, S
becomes the axidilaton of the heterotic string. It follows
that in the regime S ! 1 one can map computations in the
type IIA theory to perturbative computations in the heter-
otic string. In particular, the Fg couplings of topological

string theory (which are graviphoton couplings in type IIA
theory) can be computed exactly at one loop in the heter-
otic string, provided the Kähler parameters are restricted to
the K3 fiber [14,34–36]. We will now review here some of
these results.

The topological string amplitudes FgðS; tÞ on these fi-

brations have the following structure:

F0ðS; tÞ ¼ 1

6
Cabct

atbtc þ 1

2
CabSt

atb þ 	ð3Þ
2

�ðXÞ
þF 0ðtÞ þOðe�SÞ;

F1ðS; tÞ ¼ 1

24
ðcSSþ cat

aÞ þF 1ðtÞ þOðe�SÞ;
FgðS; tÞ ¼ dg�ðXÞ þF gðtÞ þOðe�SÞ; g � 2: (5.4)

In these formulae, Cabc and Cab are triple intersection
numbers in the fiber and in the mixed fiber/base direction,
respectively. Notice that

Cabc ¼
Z
X
�a ^ �b ^ �c; Cab ¼

Z
X
�S ^ �a ^ �b:

(5.5)

We also have

ca ¼
Z
X
c2ðXÞ^�a; a¼ 1;� � � ;�; cS¼

Z
c2ðXÞ^�S:

(5.6)

For K3 fibrations with trivial fundamental group one has
cS ¼ 24 [37], but for the Enriques Calabi-Yau manifold
(which we will also analyze), cS ¼ 12. The coefficient dg
is the contribution of constant maps written down in (2.11).
In (5.4), F gðtÞ denotes the contribution of world-sheet

instantons in the K3 fiber. It follows from
[14,16,18,36,38] that the F gðtÞ can be completely deter-

mined in terms of a single modular form that we will
denote fXðqÞ. In order to write down an explicit formula
for F gðtÞ, we have to introduce the quasimodular forms

P gðqÞ which are defined by

2��3�

#1ð�j
Þ
 !

2 ¼ X1
g¼0

ð2��Þ2gP gðqÞ: (5.7)

The quantities P gðqÞ can be explicitly written in terms of

generalized Eisenstein series [18], and one has, for ex-
ample,

P 1ðqÞ ¼ 1
12E2ðqÞ; P 2ðqÞ ¼ 1

1440ð5E2
2 þ E4Þ: (5.8)

We now introduce the coefficients cgðnÞ through
P gðqÞfXðqÞ ¼

X
n

cXg ðnÞqn: (5.9)

One then has the following expression for the heterotic
F gðtÞ:

F gðtÞ ¼
X

Q2PicðK3Þ
cXg ðQ2=2ÞLi3�2gðe�Q�tÞ; (5.10)

where Lin is the polylogarithm of index n

Li nðxÞ ¼
X1
k¼1

xk

kn
: (5.11)

In (5.10) we have also denoted

Q � t ¼ nat
a; Q2 ¼ Cabnanb; (5.12)

where Cab ¼ C�1
ab is the intersection form of the Picard

lattice Pic(K3).
We will be particularly interested in three special K3

fibrations: the STU model, the ST model, and the Enriques
Calabi-Yau model. Let us give some extra details for these
cases:
(i) The STUmodel has � ¼ 2 and it can be realized by a

complete intersection in a weighted projective space
which is frequently denoted by X24ð1; 1; 2; 8; 12Þ. It
has Euler characteristic � ¼ �480. The classical
prepotential can be obtained from the nonvanishing
intersection numbers,

C111 ¼ 8; C112 ¼ 2; C11 ¼ 2; C12 ¼ 1;

(5.13)

while the classical part of F1ðS; tÞ is encoded by

c1 ¼ 92; c2 ¼ cS ¼ 24: (5.14)

The modular form encoding the information about
topological string amplitudes in the fiber is given by
[18]

fSTUðqÞ ¼ � 2E4E6

�24
ðqÞ: (5.15)

It is sometimes useful to parametrize the Kähler cone
in terms of the variables

T ¼ t1 þ t2; U ¼ t1: (5.16)

In this basis one has Q2=2 ¼ mn.
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(ii) The ST model has � ¼ 1 and is realized in type IIA
by the CY model X12ð1; 1; 2; 2; 6Þ. It has � ¼ �252
and the classical intersection numbers

C111 ¼ 4; C11 ¼ 2; (5.17)

as well as

c1 ¼ 52; cS ¼ 24: (5.18)

The Kähler parameter along the fiber is usually
denoted as

T ¼ t1: (5.19)

The relevant modular form is [16,38]

fSTðqÞ ¼ � 2�E4F6

�24
ðqÞ; (5.20)

where

�ðqÞ ¼ X
n2Z

qn
2=4 ¼ #3ð
=2Þ; F2 ¼ 1

16
#4
2 ð
=2Þ;

F6 ¼ E6 � 2F2ð�4 � 2F2Þð�4 � 16F2Þ: (5.21)

Notice that Q2=2 ¼ n2=4.
(iii) The Enriques Calabi-Yau model is given by the free

quotient ðK3� T2Þ=Z2, and was introduced in the
context of type II/heterotic duality in [39]. It is an
elliptic fibration with � ¼ 10. It has Cabc ¼ 0, while
Cab is given by the intersection numbers of the
Enriques surface E. The Picard lattice is

Pic ðK3Þ ¼ �1;1 � E8ð�1Þ; (5.22)

and

ca ¼ 0; cS ¼ 12: (5.23)

The topological string amplitudes in the fiber were
obtained in [17] (see also [15]). They are also con-
trolled by a single modular form

fEðqÞ ¼ � 2

�12ðq2Þ ; (5.24)

but their form is slightly different from (5.10)

FgðtÞ ¼
X

Q2PicðK3Þ
cEg ðQ2Þf23�2gLi3�2gðe�Q�tÞ

� Li3�2gðe�2Q�tÞg; (5.25)

where cEg ðnÞ are defined again by (5.9).

B. Microscopic degeneracies and their asymptotic
expansion

We have seen that, at least in the case of topological
strings on K3 fibrations, and for classes Q restricted to the
K3 fiber, one can obtain closed formula for the topological
string amplitudes at all genera. It should be therefore
possible to extract a closed formula for the generating

functional of Gopakumar-Vafa invariants. In fact, by using
the product formula

#1ð�j
Þ ¼ �2q1=8 sinð��ÞY1
n¼1

ð1� qnÞ

� ð1� 2 cosð2��Þqn þ q2nÞ (5.26)

one finds from the expression (5.10) and the structure
(2.20)

X
Q2PicðK3Þ

X1
r¼0

nrQz
2rpQ2=2 ¼ fXðpÞ
2ðzÞ; (5.27)

where 
ðzÞ is the function that appears in helicity super-
traces,


ðzÞ ¼ Y1
n¼1

ð1� pnÞ2
ð1� pnÞ2 þ z2pn

¼ Y1
n¼1

ð1� pnÞ2
ð1� pnyÞð1� pny�1Þ ; (5.28)

where we have set z ¼ �iðy1=2 � y�ð1=2ÞÞ.
We can now obtain a closed formula for the microscopic

degeneracies. In order to have a description which incor-
porates as well the elliptic genus, we will count the micro-
states as in (2.18) but with r ! r� 1. With this definition,
the left-hand side of (5.27), expanded in q, y, is precisely
the generating function of microscopic degeneracies
�ðQ;mÞ, summed over all m, Q. We then arrive at the
expression

X
Q2PicðK3Þ

X1
m¼�1

�ðQ;mÞympQ2=2 ¼ fXðpÞ
2ð�;�Þ;

(5.29)

where we have written

y ¼ e2�i�; p ¼ e2�i�: (5.30)

Notice that if we consider X ¼ K3� T2 and restrict to
classes Q in the fiber, the counting of microstates given by
the elliptic genus is

�ðSpK3;q; yÞq0 ¼
Y1
N¼1

1

ð1� pNÞ20ð1� pNyÞ2ð1� pNy�1Þ2

¼ p

�24ðpÞ

2ðyÞ: (5.31)

This has the same form as (5.29) with

fK3�T2ðpÞ ¼ 1

�24ðpÞ ; (5.32)

therefore we can consider the ‘‘small’’ D1-D5 system as a
particular case of our analysis.
The expression (5.29) tells us that the microscopic de-

generacies we are looking for are simply the Fourier co-
efficients of the object in the right-hand side. We can then
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invert it to write

�ðN;mÞ ¼
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�

Z 1

0
d�e�2�iðN�þm�Þ�ð�; �Þ;

N ¼ Q2=2; (5.33)

where we defined

�ð�;�Þ ¼ fXðpÞ
2ð�;�Þ; (5.34)

and we have assumed that N is a non-negative integer (this
can be guaranteed by rescaling p ! pk for some appro-
priate k). The contour in (5.33) has been chosen to avoid
the poles in the integrand.

We will now evaluate the asymptotic expansion of
�ðNÞ 	 �ðN; 0Þ in inverse powers of N. Nonzero values
of the spin m ¼ 0 can be analyzed in a similar way. The
expression we will find is exact up to corrections which are
exponentially suppressed in the large charge limit N ! 1.
Notice that in our situation we cannot appeal to the
Rademacher expansion which was used in [19,20], since
(5.34) is not a Jacobi form (it can be regarded as a Jacobi
form with negative index). It is likely that an analog of the
Rademacher expansion exists, but we will perform a direct
evaluation of the integral (5.33) in the spirit of the counting
of states with spin in Appendix C of [19] and in [40].

First of all, we reexpress the integrand (5.34) in terms of
#1ð�j�Þ as

�ð�; �Þ ¼ 4sin2ð��Þ�6ðpÞ fXðpÞ
#2
1 ð�j�Þ

: (5.35)

Using the modular behavior of #1ð�j�Þ under the S trans-
formation � ! ~� ¼ �1=� we get

#1ð�;�Þ ¼ � 2iffiffiffiffiffiffiffiffiffiffi�i�
p eð�=i�Þð�2þð1=4ÞÞ sin

�
��

�

�

�
�
1þOðe�ð2�i=�ÞÞ

�
: (5.36)

It is easy to see that the saddle point evaluation of (5.33) is
governed by

�� ¼ iffiffiffiffi
N

p þO
�
1

N

�
: (5.37)

Therefore, the corrections to (5.36) will be exponentially
suppressed. Using the modularity of �ðpÞ and taking the
part of the sin in the denominator which is not exponen-
tially suppressed, we obtain

�ð�;�Þ � �4��2e2ði�=�Þð�2��Þsin2ð��ÞfXðpÞ: (5.38)

Therefore, in order to compute the asymptotics of (5.33)
we just need

�ðNÞ � �4
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�2�iN� fXðpÞ

�2

�
Z 1

0
d�e2ði�=�Þð�2��Þsin2ð��Þ: (5.39)

The integral over � is easily worked out in terms of the
error function ErfðxÞ, as follows:
Z 1

0
d�e2ði�=�Þð�2��Þsin2ð��Þ ¼

ffiffiffiffiffi
i�

8

s
eð�=2i�ÞErf

� ffiffiffiffiffiffiffiffi
�

2i�

r �

þ
ffiffiffiffiffiffi
i�

32

s
eð�=2iÞð�þð1=�ÞÞ

�
�
Erf

� ffiffiffiffiffiffiffiffi
�

2i�

r
ð�þ 1Þ

�

� Erf

� ffiffiffiffiffiffiffiffi
�

2i�

r
ð�� 1Þ

��
:

(5.40)

Because of (5.37) we can use the asymptotic expansion of
the Erf function,

ErfðxÞ � 1� e�x2ffiffiffiffi
�

p X1
r¼0

ð�1Þr ð2r� 1Þ!!
2r

x�ð2rþ1Þ;

jxj ! 1; j argð�xÞj<�: (5.41)

Ignoring terms which are exponentially suppressed at large
N, we find

Z 1

0
d�e2ði�=�Þð�2��Þsin2ð��Þ � � 1

4

X1
r¼0

i1þ3r

�1þr
ð2r� 1Þ!!

�Grð�Þ; (5.42)

with

Grð�Þ ¼ �rþ1

�
2þ 1

ð�� 1Þ1þ2r
� 1

ð�þ 1Þ1þ2r

�
: (5.43)

Again, due to (5.37), we can expand it around � ¼ 0,

Grð�Þ ¼ �2
X1
s¼0

2ð1þ sþ rÞ
2r

� �
�3þ2sþr: (5.44)

Putting all together, we obtain

�ðNÞ � 2
X1
r¼0

ð2r� 1Þ!!
ði�Þrþ1

X1
s¼0

2ð1þ sþ rÞ
2r

 !

�
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�2�iN�fXðpÞ�1þ2sþr: (5.45)

We now work out the integral

As;rðNÞ 	
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�2�iN�fXðpÞ�1þ2sþr: (5.46)

We assume that fXðpÞ has modular weight w, so that

fXðpÞ ¼ ��wfXð~pÞ, where ~p ¼ e�ð2�i=�Þ. For the modular
forms that we consider here, fXð~pÞ ¼ c~p�� þ � � � , and the
integral above gives a modified Bessel function

As;rðNÞ � ci1þ2sþr�wÎ2sþrþ2�wð4�
ffiffiffiffiffiffiffiffi
�N

p Þ: (5.47)

We end up then with the following result for the exact
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asymptotics of the microscopic black hole degeneracy:

�ðNÞ � 2ciw
X1
r¼0

ð2r� 1Þ!!
�rþ1

X1
s¼0

ð�1Þs 2ð1þ sþ rÞ
2r

 !

� Î2sþrþ2�wð4�
ffiffiffiffiffiffiffiffi
�N

p Þ: (5.48)

Using now the formula for the asymptotic expansion of Î
functions (see, for example, Appendix A of [19]), we find
for the entropy SðNÞ ¼ log�ðNÞ the following expansion:

S� 4�
ffiffiffiffiffiffiffiffi
�N

p � 5� 2w

4
logðNÞ þ log

� ffiffiffi
2

p
iw�ð2w�5=4Þc

�

�

þ 177þ 16w� 4w2

32�
ffiffiffiffi
�

p 1ffiffiffiffi
N

p þOðN�1Þ: (5.49)

The expansion in powers of 1=N1=2 in (5.48), which is
obtained by using the asymptotics of modified Bessel
functions, is the expansion of the original integral around
the saddle point (5.37). This can be verified by an explicit
computation of the first few orders of the saddle point
expansion.

Let us now evaluate (5.49) in some examples. For K3�
T2 we have ðw;�; cÞ ¼ ð�12; 1; 1Þ, and the entropy reads

S� 4�
ffiffiffiffi
N

p � 29

4
logðNÞ þ log

� ffiffiffi
2

p
�

�
� 591

32�

1ffiffiffiffi
N

p

þOðN�1Þ: (5.50)

For the STU model, with the values ðw;�; cÞ ¼
ð�2; 1;�2Þ, we find

S� 4�
ffiffiffiffi
N

p � 9

4
logðNÞ þ log

� ffiffiffi
8

p
�

�
þ 129

32�

1ffiffiffiffi
N

p

þOðN�1Þ: (5.51)

The ST model is slightly different, since in fSTðpÞ both
integer and rational powers of p appear. As mentioned
above, we should redefine p ! p4 and write down the
generating functional for the degeneracies as

X
Q2PicðK3Þ

X1
m¼�1

�ðQ;mÞymp2Q2 ¼ fSTðp4Þ
2ð�; 4�Þ;

(5.52)

where we recall that M 	 2Q2 ¼ n2 is an integer. The
asymptotics is given by the integral

�STðMÞ � �
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�2�iM� fSTðp4Þ

4�2

�
Z 1

0
d�sin2ð��Þeði�=2�Þð�2��Þ: (5.53)

The integral over � is given by (5.40) upon replacing � !
4�. Since

fSTðp4Þ ¼ �2
E4ðp4ÞF6ðp4Þ

�24ðp4Þ #3ð2�Þ

� �16
ffiffiffiffi
2i

p
�3=2eði�=2�Þ; (5.54)

one finds in the end

�STðMÞ � ffiffiffi
2

p X1
r¼0

ð2r� 1Þ!!
�rþ1

X1
s¼0

ð�1Þs 2ð1þ sþ rÞ
2r

 !

� Îð7=2Þþ2sþrð2�
ffiffiffiffiffi
M

p Þ; (5.55)

and from here one can read the entropy

SðQÞ � 4�
ffiffiffiffiffiffiffiffi
1
2Q

2
q

� 2 logðQ2Þ þ � � � (5.56)

Finally we turn to the case of Enriques CY manifold. It
follows from (5.25) that one has to distinguish two types of
homology classes: the classes Q whose entries contain at
least an odd integer (which were called odd classes in
[17]), and the classes Q for which all entries are even
(called even classes). A simple calculation shows that the
generating function of Gopakumar-Vafa invariants for the
odd classes is given by

X1
r¼0

X
Qodd

nrQp
Q2
zr�1 ¼ fEðqÞ

4sin2ð��2 Þ
ð
2ð�=2; pÞ

� 
2ð�=2;�pÞÞ; (5.57)

while for the even classes is given by

X1
r¼0

X
Qeven

nrQp
Q2
zr�1 ¼ fEðqÞ

4sin2ð��2 Þ
ð
2ð�=2; pÞ

� 
2ð�=2;�pÞÞ � fEðq4Þ
� ð
2ð�; p4Þ � 
2ð�;�p4ÞÞ:

(5.58)

Notice that for even classes Q2 	 0 mod 4, while for odd
classes one only has Q2 	 0 mod 2. In contrast to the
previous K3 fibrations, in the above generating function

we have pQ2
, instead of pQ2=2, and this will lead to a

different leading term as compared, for example, to the
STU model.
The computation of the asymptotics of the microstates is

similar to the one that we just performed. Let us begin with
odd classes. Using the identity


2ð�;�pÞ ¼ 4sin2ð��Þ �6ð2�Þ#2
3 ð2�Þ

#2
1 ð�j2�Þ#2

3 ð�j2�Þ
; (5.59)

and proceeding as in the previous case, we find

�oddðNÞ ¼ �1ðNÞ þ�2ðNÞ; N ¼ Q2=2; (5.60)

where
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�1ðNÞ � 16
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�4�iN��2�6ð2�Þ#2

3 ð2�ÞfEðpÞ

�
Z 1

0
d�sin2ð��Þeði�=2�Þð�2��þð1=2ÞÞ;

�2ðNÞ � �4i
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�e�4�iN���6ð�ÞfEðpÞ

�
Z 1

0
d�sin2ð��Þeði�=2�Þð��1Þ2 : (5.61)

As before, we evaluate the integrals over � in terms of the
Erf function and its asymptotic expansion. We then use the
modularity properties of the different functions involved
here to obtain

�oddðNÞ � 1

16

X1
r¼0

ð2r� 1Þ!!
�rþ1

X1
s¼0

ð�1Þs 2ð1þ sþ rÞ
2r

 !

� ð1� 4�ð1þrþsÞÞÎ8þ2sþrð�
ffiffiffiffiffiffiffi
8N

p Þ: (5.62)

Let us now consider the even classes, (5.58). Comparing
(5.58) with (5.57), we see that

�evenðNÞ ¼ �oddðNÞ � ~�ðNÞ; (5.63)

where

~�ðNÞ ¼
Z ð1=2Þþi0þ

�ð1=2Þþi0þ
d�

Z 1

0
d�e�4i�N�4sin2ð��ÞfEðp4Þ

� ð
2ð�; p4Þ � 
2ð�;�p4ÞÞ: (5.64)

A computation similar to the one we performed shows that
~�ðNÞ is exponentially suppressed with respect to�oddðNÞ,
since it leads to terms that go like expð� ffiffiffiffiffiffiffi

2N
p Þ and

expð� ffiffiffiffiffiffiffi
6N

p Þ. Therefore, as an asymptotic expansion in

1=
ffiffiffiffi
N

p
, �evenðNÞ ��oddðNÞ, and the asymptotics does

not distinguish between the even and the odd classes. We
finally obtain, for the small Enriques black hole,

SEðQÞ � 2�
ffiffiffiffiffiffi
Q2

q
� 17

2 log
ffiffiffiffiffiffi
Q2

q
þ � � � : (5.65)

The main conclusion of our analysis is that, in all cases,
the leading term of the microscopic entropy for these black
holes is given by

SðQÞ � 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cS
12

Q2

r
; (5.66)

since cS ¼ 24 for K3� T2, the STU and the ST models,
but cS ¼ 12 for the Enriques CY model. Of course, our
analysis has also given precise formulae for the subleading
terms.

The leading behavior (5.66) can be also verified by a
numerical analysis similar to the one performed in Secs. III
and IV. For example, for the STUmodel we have computed

the quantity fðNÞ ¼ SðNÞ= ffiffiffiffi
N

p
for 1 � N < 50, where

SðNÞ ¼ log�ðNÞ. In order to subtract the logarithmic
term in the asymptotic expansion (5.51) we consider the
transform

AðNÞ ¼ ðN þ 1ÞSðN þ 2Þ � ð2N þ 1ÞSðN þ 1Þ þ NSðNÞ
ðN þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 2
p � ð2N þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p þ N

ffiffiffiffi
N

p :

(5.67)

In Fig. 9 we plot fðNÞ (bottom) and AðNÞ (top). The
horizontal line is the expected asymptotic value 4� for
both quantities as N ! 1. As before, the transform AðNÞ
improves rapidly the convergence.

C. Macroscopic entropy for small black holes

The 5d black holes obtained by wrapping the M2 branes
along cycles in the K3 fiber have actually vanishing clas-
sical entropy and are therefore small black holes. Indeed,
as we have seen, the leading asymptotic degeneracy scales

like Q, and not like Q3=2. This is also what is found for
small 4d black holes [19].
Let us briefly show that the classical area of these black

holes is zero for any set of intersection numbers Cabc, Cab.
In order to do this, we can use the 5d attractor mechanism
described in Sec. II. Equivalently, by using the 4d/5d
connection of [21], we can map the 5d black hole to a 4d
black hole with D6 charge p0 ¼ 1 and D2 charges QA. At
the level of the leading macroscopic entropy, the 4d com-
putation gives the same result as the 5d computation [21].
In the 4d language, we start with the tree-level SUGRA
prepotential

F ¼ � 1

2
Cab

XSXaXb

X0
� 1

6
Cabc

XaXbXc

X0
: (5.68)

We will do the computation for a generic D6-D2 charge,
i.e. we will start with generic charges p0, Qa, QS, and then
take the charge QS ! 0 at the end of the computation (as
well as setting p0 ¼ 1). This will guarantee that we obtain
generic solutions to the attractor mechanism.
Let us first assume that Cabc ¼ 0, as it happens in K3�

T2 and the Enriques Calabi-Yau manifold. In this case, the
attractor equations are easily solved as

10 20 30 40 50

10

11

12

FIG. 9. Microscopic data for fðNÞ ¼ SðNÞ= ffiffiffiffi
N

p
(bottom) and

its transform AðNÞ (top), defined in (5.67), for the STU model,
and for 1 � N < 50. The horizontal line is the expected asymp-
totic value 4�.
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ðX0� ; XS� ; Xa� Þ ¼
�
p0; i

ffiffiffiffiffiffiffiffiffiffiffiffi
p0Q2

2QS

s
; i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QSp

0

Q2

s
Qa

�
; (5.69)

where

Q2 ¼ CabQaQb; Qa ¼ CabQb: (5.70)

The entropy is given by

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0QSQ

2
q

; (5.71)

and it vanishes in the limit QS ! 0. This is as expected.
If we now consider a general prepotential with non-

vanishing Cabc, the attractor equations are now solved at

ðX0; XS; XaÞ ¼
�
p0; i

ffiffiffiffiffiffiffiffiffi
p0

2QS

s

S; i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0QS

q

a

�
; (5.72)

where the 
A are solutions to


a
a ¼ 1; Qa ¼ 
S
a þQSC
abCbef


e
f: (5.73)

Notice that, in these variables, the model with Cabc ¼ 0
corresponds to the smooth values,

ð
S� ; 
a�Þ ¼
� ffiffiffiffiffiffi

Q2
q

;
Qaffiffiffiffiffiffi
Q2

p �
: (5.74)

We can already see that, in the limit QS ! 0, the perturba-
tion by Cabc in (5.73) vanishes, therefore in the limit of
zero charge in the base the presence of nontrivial intersec-
tion numbers in the fiber should be unimportant. More
formally, it is easy to see that one can construct a consistent
solution of (5.73) of the form


A ¼ 
A� þ X1
n¼1

cAnQ
n
S; (5.75)

where the coefficients cAn depend on Cabc and can be
calculated order by order. In terms of the 
A the macro-
scopic entropy is

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0QS

q
ðCab


a
b
S þ 2
3QSCabc


a
b
cÞ; (5.76)

and, in the limitQS ! 0, it will vanish irrespectively of the
value of Cabc. Therefore, 5d black holes whose membrane
charge is restricted to the K3 fiber of a K3 fibration are
always small. This can be checked as well by detailed
computations in different models (like the STU and ST
models considered above).

Since the leading contribution to the entropy vanishes
we should now look at the subleading terms in the macro-
scopic entropy. As we explained in Sec. II, it was shown in
[23,25,26] that these terms are obtained by performing the
shift

QA ! Q̂A ¼ QA þ 	c2A; 	 ¼ 1
8: (5.77)

The leading term in the entropy for the small 5d black hole
is given (for large charge Q) by performing this shift in
(5.71)

S ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	cS
2

Q2

s
: (5.78)

This can be derived in detail by solving the attractor
equations with shifted charges (5.77) as a power series in
1=Q, and then taking the limit QS ! 0. Notice that the
entropy (5.78) only depends on Cab and cS. Also, in this
regime, the solutions of the attractor equations occur at
values of the Kähler parameters which are of the order of
the string size, and the SUGRA calculation might be
problematic. Indeed, it is easy to see that (5.78) does not
agree with the leading term of the asymptotics that we
obtained in the previous subsection. By comparing (5.66)
with (5.78) we find that the formula agree if we set instead
	 ¼ 1=6. This is the value of 	 that is predicted by the 4d/
5d connection of [21].
In [23,26] it was noticed that the subleading correction

(5.77) obtained in a macroscopic 5d computation was not
in accord with the subleading correction predicted by [21]
and the 4d attractor mechanism. We now find that, for big
5d black holes, the subleading correction for the micro-
scopic entropy is in rough agreement with (5.77), while for
small 5d black holes the leading asymptotics is in accord
with a 4d computation for a small D6/D2 systemwith p0 ¼
1. As we already mentioned, in the case of small black
holes, the SUGRA computations with which we are com-
paring our results should receive large corrections, but in
other situations they still lead to results which are in
agreement with the microscopic counting, as in [19,41].
In our case we obtain a result in disagreement with the 5d
computation but in agreement with the 4d computation. It
would be interesting to resolve this puzzle.

VI. CONCLUSIONS

In this paper we have studied the microscopic counting
of 5d black hole states by using topological string theory.
In the case of big black holes, we have given convincing
numerical evidence that the BPS invariants encoded in the
topological string amplitudes account correctly for the
macroscopic entropy of spinning black holes. Moreover,
we have also shown that the data favor the ‘‘mysterious
cancellation’’ of [12] that makes it possible to extend the
validity of the OSV conjecture, and we were able to
explore new aspects of black hole entropy which have
not been studied before using supergravity. Clearly, it
would be very desirable to improve our numerical results
with more data. Using the interplay between modularity
and anholomorphicity in topological string theory
[7,15,29], analytic results on the asymptotics might not
be out of reach.4

4Recently beautiful analytic proofs of the asymptotic of the
Fourier coefficients of Mock-Theta functions have been obtained
using a somewhat similar interplay [42].
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We also gave exact formulae for microscopic degener-
acies of a class of small 5d black holes, which are obtained
by wrapping M2 branes in the fiber of a K3 fibration, and
we computed the asymptotic expansion in inverse powers
of the charge. As expected, the calculation shows that for
small black holes the leading term in the entropy scales like
S ! �S when the charges are scaled with �. We found,
however, that the coefficient of the leading term does not
agree with the shift of charges obtained in [23,25,26] in a
5d SUGRA computation. In principle there is no reason
why these two computations should agree, since small
N ¼ 1 black holes are generically beyond the SUGRA
approximation. On the other hand, the microscopic results
are well reproduced by the 4d/5d connection of [21] and a
4d attractor computation. We should emphasize, however,
that for big black holes the 5d shift (5.77) fits our data
better than the 4d shift with 	 ¼ 1=6. It would be very
interesting to understand this better.
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APPENDIX: GENERAL FEATURES OF THE
INSTANTON EXPANSION

The asymptotic behavior at the conifold, Castelnouvo’s
theory, and the calculation via degenerate Jacobians, sug-
gest some general features of the Gopakumar-Vafa expan-
sion. Our data for the 13 one-parameter models suggest
further universal features. The purpose of this appendix is

TABLE VII. Gopakumar-Vafa invariants ngd in the class d ¼ 18 for the complete intersection X3;3ð16Þ.
Genus Degree ¼ 18

0 144 519 433 563 613 558 831 955 702 896 560 953 425 168 536

1 491 072 999 366 775 380 563 679 351 560 645 501 635 639 768

2 826 174 252 151 264 912 119 312 534 610 591 771 196 950 790

3 866 926 806 132 431 852 753 964 702 674 971 915 498 281 822

4 615 435 297 199 681 525 899 637 421 881 792 737 142 210 818

5 306 990 865 721 034 647 278 623 907 242 165 669 760 227 036

6 109 595 627 988 957 833 331 561 270 319 881 002 336 580 306

7 28 194 037 369 451 582 477 359 532 618 813 777 554 049 181

8 5 218 039 400 008 253 051 676 616 144 507 889 426 439 522

9 688 420 182 008 315 508 949 294 448 691 625 391 986 722

10 63 643 238 054 805 218 781 380 099 115 461 663 133 366

11 4 014 173 958 414 661 941 560 901 089 814 730 394 394

12 166 042 973 567 223 836 846 220 100 958 626 775 040

13 4 251 016 225 583 560 366 557 404 369 102 516 880

14 61 866 623 134 961 248 577 174 813 332 459 314

15 451 921 104 578 426 954 609 500 841 974 284

16 1 376 282 769 657 332 936 819 380 514 604

17 1 186 440 856 873 180 536 456 549 027

18 2 671 678 502 308 714 457 564 208

19 �59 940 727 111 744 696 730 418
20 1 071 660 810 859 451 933 436

21 �13 279 442 359 884 883 893
22 101 088 966 935 254 518,

23 �372 702 765 685 392
24 338 860 808 028

25 23 305 068

26 �120 186
27 �5220
28 �90
29 0
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to describe some of these general features. Typical data for
high degree look as in Table VII.

The last nonzero entry is from the smooth genus 28
complete intersection curve5 (1, 2, 3, 3) of degree 18. By
Castelnouvo’s theory ~g ¼ 28 is the largest possible genus
for degree 18. The degree one constraint parametrizes aP5.
The moduli space M28

18 is a fibration of this P5 over a

projectivization of the 15 parameters in the quadratic con-
straint. I.e.M28

18 is the total space of P
5 ! P14, with Euler

number �ðMg¼28
d¼18Þ ¼ 5� 15 ¼ 90 and n2818 ¼

ð�1Þ5þ1490 ¼ �90.
As it can further be seen in Table VII, the numbers grow

from genus g ¼ 0 to g ¼ 3 and fall thereafter. This feature
might be related to the binomials in the description of the
moduli of space as a singular fibration of the Jacobian Jac28
of the g ¼ 28 curve over M28

18. In this description the

contribution of a g ¼ ~g� � curve comes from degenerat-
ing the genus 28 curve with � nodes. As explained in [4]
the contribution of the degenerate Jacobians can be ex-
pressed by the Euler numbers of relative Hilbert schemes

CðnÞ as

n~g��
d ¼ ð�1ÞdimðMÞþ�

X�
p¼0

bð~g� p; �� pÞ�ðCðnÞÞ; (A1)

with

bðg; kÞ ¼ 2g� 2

k

� �
:

A simple Gauss approximation of binomials fits the behav-
ior of the ngd for large d relatively well. We show this in

Fig. 10 for the bicubic at degree 27. The numbers ngd are

exact and in contrast to (A1) they count correctly all
contributions from colliding nodes, all contributions from
reducible curves, as well as contributions from smooth
curves in the class d with genus ~~g < ~g.
Very important for the cancellations in the asymptotic

behavior of the Donaldson-Thomas invariants is the occur-
rence of negative numbers. While it is clear that such
contributions can arise if the dimensions of the D-brane
moduli space are odd, we do not understand a priori the
remarkable pattern with which these signs occur. The first
occurrence of negative signs at gnegðdÞ is graphed for the

quintic and the bicubic in Fig. 11. The data suggest that
gnegðdÞ follows a parabola similar to the Castelnouvo

bound. From the first occurrence of the negative sign the
ngd are alternating in sign for g � ~g. For g� ~g the behav-

ior becomes more erratic. The Gauss approximation for the
absolute values of the ngd and the sign pattern is very

characteristic of the degeneracies of microstates of a large
black hole. In contrast the absolute value of the ngd is falling
and the signs are alternating with ð�1Þg starting at g ¼ 0

5 10 15 20 25
genus

140
145
150
155
160
165

log n 27,g

FIG. 10. The binomials dominate the behavior of large d Gopakumar-Vafa invariants. For the degree 27 class on the bicubic we find
ng27 � e167:747e�0:0985ðg�9:108Þ2 .

8 10 12 14 16 18 20 22
d

5

10

15

20

25

gneg d

7 9 11 13 15 17 19 21
d

5

10

15

20

25

gneg d

FIG. 11. The first occurrence of negative ngd for the quintic (on the right) and the bicubic (on the left). The fit is mðdÞ ¼ aþ bdþ
cd2 with a ¼ �4:6, b ¼ :94, and c ¼ :019 as well as a ¼ �5:2, b ¼ 1:0, and c ¼ :017 for these two, respectively.

5A complete intersection curve ð1; n; 3; 3Þ with degree 9n has
in general genus ~g ¼ 1

2 ð1þ 3nÞð2þ 3nÞ.
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for small black holes as shown, for example, for the ST
model.

A further remarkable fact is the very universal scaling
for the maximal value MðdÞ for ngd for given d. This value
behaves like

MðdÞ ¼ expððaþ bdÞ4=3Þ (A2)

with very similar values for a and b for different one-
parameter models, as shown for the quintic and the bicubic
in Fig. 12.
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