EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/79-97 4 September 1979

SEARCH FOR Σ HYPERNUCLEI BY MEANS OF THE STRANGENESS-EXCHANGE REACTIONS (K , π) AND (K , π +)

[Heidelberg*)-Saclay-Strasbourg Collaboration]

W. Brückner, M.A. Faessler, T.J Ketel, K. Kilian, J. Niewisch, B. Pietrzyk, B. Povh, H.G. Ritter and M. Uhrmacher

Max Planck Institut für Kernphysik, Heidelberg, Germany

Physikalisches Institut der Universität, Heidelberg, Germany

P. Birien, A. Chaumeaux **), J.M. Durand and B. Mayer

Département de Physique nucléaire, Centre d'Etudes nucléaires,

Saclay, France

R. Bertini **) and O. Bing

Centre de Recherches nucléaires, Strasbourg, France

H. Catz***)

CERN, Geneva, Switzerland

A. Bouyssy

Institut des Sciences nucléaires, Grenoble, France

ABSTRACT

In the (K^-,π^-) reaction performed at 720 MeV/c on 9 Be and 12 C, a narrow structure appears around 80 MeV excitation in the hypernuclear spectra, precisely where Σ hypernuclear states could be expected. Especially in 9 Be one finds a structure very similar to the Λ hypernuclear states, with peaks narrower than 8 MeV. Those are nearly bound states of Σ^0 in the nucleus.

The spectrum obtained by the (K^-,π^+) reaction on 9 Be also shows a structure which could be due to nearly bound states of Σ^- in the nucleus.

Paper presented at the 8th International Conference on High-Energy Physics and Nuclear Structure Vancouver, 13-17 August, 1979

^{*)} Work supported in part by the BMFT.

^{**)} CERN Associate.

^{***)} On leave from CEN, Saclay, France.

In recent experiments^{1,2)} the (K^-,π^-) strangeness-exchange reaction has been successfully used to produce Λ hypernuclei. The main advantage of this reaction is the small recoil transferred to the Λ , which replaces a neutron in the same nuclear state without disturbing the residual nucleus. This process is called recoilless Λ production and found to be dominant for light nuclei^{1,2)}. It is the aim of this paper to show that, for ⁹Be and ¹²C, hypernuclear states exist where the constituent nucleon is replaced by a Σ^0 or a Σ^- particle. These states are sufficiently narrow to allow a study of the Σ -nucleus interaction.

Using a (K^-,π^-) or a (K^-,π^+) reaction trigger the following reactions on neutrons or protons of the nuclear targets may occur:

$$K^- + n \rightarrow \Lambda + \pi^-$$
 (1a)

$$K^{-} + n \rightarrow \Sigma^{0} + \pi^{-}$$
 (1b)

$$K^{-} + p \rightarrow \Sigma^{+} + \pi^{-}$$
 (1c)

$$K^- + p \rightarrow \Sigma^- + \pi^+ \tag{2}$$

Our experiment was done at a kaon beam momentum of 720 MeV/c. At this momentum the cross-section for reaction (1c) is an order of magnitude smaller than that for (1b). Therefore a (K^-,π^-) trigger will show only Λ and Σ^0 hypernuclei. The (K^-,π^+) reaction, on the other hand, cannot produce Λ particles but only Σ^- particles.

The experiment took place at the low-momentum separated K beam (k_{22}) at the CERN Proton Synchrotron (PS). The experimental set-up has been described earlier¹⁾ and consists essentially of two spectrometers, the first one for measuring the K momentum and the second one for the momentum of the outgoing pion at about 0°. This second spectrometer is the specially designed SPES II from Saclay. Its large momentum acceptance of $\Delta p/p = \pm 18\%$ gives the unique possibility of measuring simultaneously pions stemming from Λ and Σ^0 hypernuclear production in the same spectrum (see Fig. 1). The over-all energy resolution in this experiment is about 3 MeV, using 9 Be and 12 C targets of 2 g/cm² thickness. In addition to our (K^-,π^-) reaction trigger we used the signal of a scintillation counter which surrounded the target. This counter detected the fragmentation

of a hypernucleus or the decay of the Λ , but not the three-body decay of the kaons near the target which is responsible for a low flat background. The $K \to 2\pi$ decay background was suppressed by geometrical cuts.

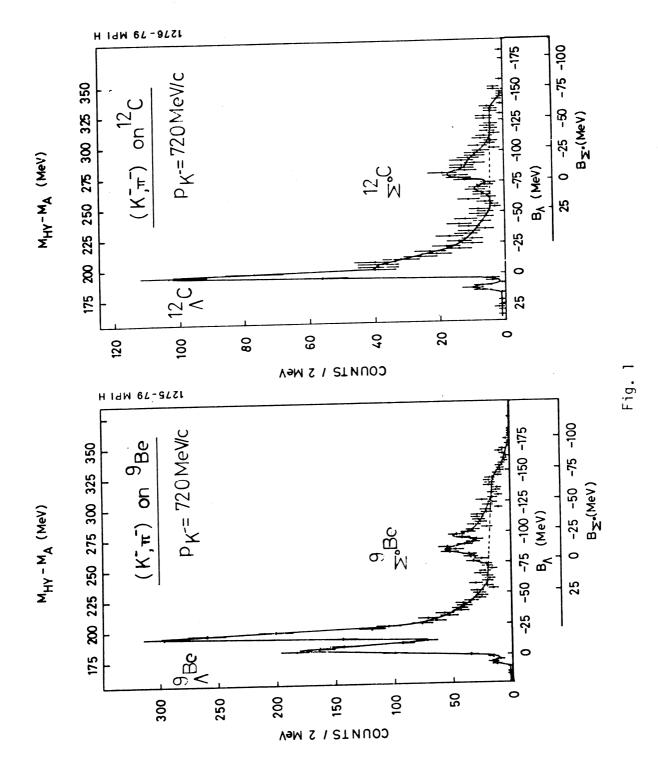
Figure 1 shows the (K,π) spectra taken on 9 Be and 12 C. At the top we indicate the transformation energy $(M_{Hy} - M_A)$ which is the Q-value of the strangeness-exchange reaction in transforming a nuclear ground state with mass M_A into a hypernuclear state with mass M_{Hy} . Σ^0 hypernuclei have to be found at a mass 76.87 MeV higher than the Λ hypernuclei. We also indicate the binding energy scales: $B_{\Sigma^0} = 0$ MeV corresponds to $B_{\Lambda} = -76.87$ MeV. Both spectra show in this region a clear enhancement due to Σ^0 hypernuclear production. The production of Λ hypernuclei is four times stronger than of Σ^0 hypernuclei, which is in agreement with the elementary cross-sections for the reactions (1a) and (1b).

In ${}^{12}_{\Lambda}{}^{\text{C}}$ the strong peak stems from recoilless Λ production on the $1p_{3/2}$ neutrons¹⁾. In ${}^{9}_{\Lambda}{}^{\text{Be}}$ the peak at $B_{\Lambda}=-6$ MeV is due to recoilless production on the loosely bound $1p_{3/2}$ neutron, whereas the second peak contains both recoilless strength from the strongly bound $1p_{3/2}$ neutron pair as well as from $1s_{1/2}$ neutrons³⁾. Comparing the Λ and the Σ^0 spectra one finds for ${}^{12}_{\Sigma}{}^{0}{}^{\text{C}}$ a nearly disappearing recoilless peak. Such a behaviour is expected since the recoilless intensity has to decrease drastically with increased momentum transfer⁴⁾. At 720 MeV/c the momentum transfer for the Σ production is about 130 MeV/c, but for the Λ it is only about 60 MeV/c. The clear similarity between the Λ and the Σ^0 spectra, especially for ${}^{9}{}^{\text{Be}}$, indicates that we see recoilless produced Σ^0 hypernuclear states. Their width of less than 8 MeV is surprisingly narrow, as the Σ particles can decay in nuclear matter via the $(\Sigma + N \to \Lambda + N)$ reaction, where an energy of about 80 MeV is released. There has been no reliable estimate of the lifetime of Σ particles in nuclei up to now.

The (K^-,π^+) spectrum for 9 Be shows a bump of about the same width as the total Σ^0 bump sitting above a shoulder which might be produced by free Σ^- production. In this bump one may see a small peak, which is statistically weak but nevertheless at the expected mass for recoilless produced Σ^- hypernuclear states. In order to compare Λ , Σ^0 and Σ^- hypernuclear spectra, one has to get rid of the hyperon and nuclear mass contribution in the transformation energy $(M_{Hy}^- - M_A^-)$. For that purpose we use

in Fig. 2 the scale $\Delta_B = M_{Hy} - M_A - (M_{\Lambda,\Sigma} - M_{n,p}) = B_{n,p} - B_{\Lambda,\Sigma}$, where M means the masses and B the binding energy of the indexed particles. The peaks in the Σ^0 spectra are shifted by about 3 MeV towards higher Δ_B values. This indicates that the Σ -nucleus interaction differs from the Λ -nucleus one.

The Σ^- spectra are produced on the target protons. As expected, the Σ^- spectrum on the 9 Be target shows only one recoilless peak at a position where the Λ and the Σ^0 spectra contain the peak stemming from recoilless production on the $1p_{3/2}$ neutron pair and on the $1s_{1/2}$ neutrons.


So we conclude that the Σ -nucleus potential appears to be the same for Σ^0 and Σ^- hypernuclei. The data, however, are inadequate for deciding whether the difference between the Λ - and Σ -nucleus potential originates, from a different spin-orbit coupling or from a different central potential felt by the Λ and the Σ particles in the nucleus. Measurements at much lower kaon momentum are necessary to enhance the recoilless Σ production, but kaon beams with sufficient intensities at 300-400 MeV/c do not exist at present.

REFERENCES

- W. Brückner, M.A. Faessler, T.J. Ketel, K. Kilian, J. Niewisch, B. Pietrzyk, B. Povh, H.G. Ritter, M. Uhrmacher, P. Birien, H. Catz, A. Chaumeaux, J.M. Durand, B. Mayer, J. Thirion, R. Bertini and O. Bing, Phys. Lett. <u>79B</u>, 157 (1978).
- 2) R. Bertini, O. Bing, P. Birien, W. Brückner, H. Catz, A. Chaumeaux, J.M. Durand, M.A. Faessler, T.J. Ketel, K. Kilian, B. Mayer, J. Niewisch, B. Pietrzyk, B. Povh, H.G. Ritter and M. Uhrmacher, Phys. Lett. 83B, 306 (1979).
- W. Brückner, M.A. Faessler, T.J. Ketel, K. Kilian, J. Niewisch, B. Pietrzyk, B. Povh, H.G. Ritter, M. Uhrmacher, P. Birien, H. Catz, A. Chaumeaux, J.M. Durand, B. Mayer, R. Bertini,
 O. Bing and A. Bouyssy, The (Κ̄,π̄) strangeness-exchange reaction on ⁶Li, ⁷Li and ⁹Be, paper contributed to this conference.
- 4) B. Povh, Z. Phys. A279, 159 (1976).

Figure captions:

- Fig. 1 : (K^-,π^-) spectra taken at a kaon momentum of 720 MeV/c on 9Be and ^{12}C . The transformation energy and the different binding energy scales are given.
- Fig. 2 : Comparison of the Λ , Σ^0 and Σ^- hypernuclear spectra on $^9 \text{Be}$ in the $\Delta_{\overline{B}}$ scale.

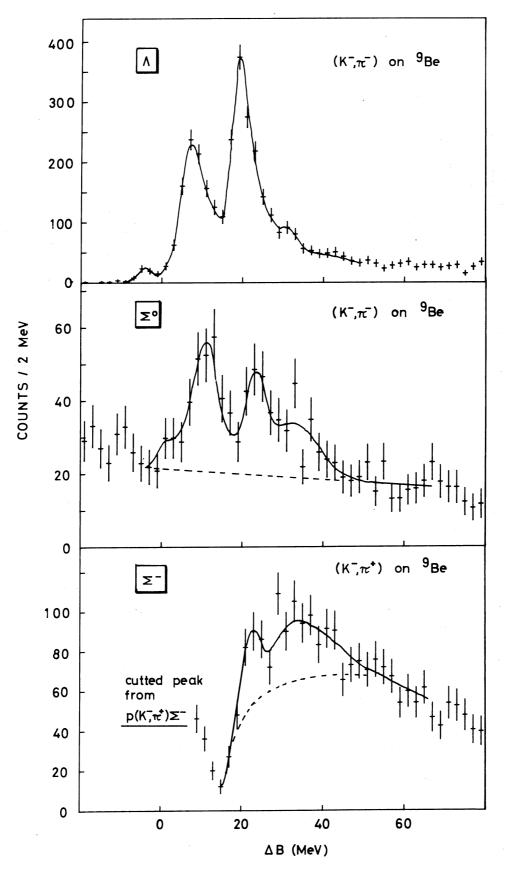


Fig. 2